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A basic non-closed field : R, the reals.

Basic rational varieties over a closed field : quadrics ; total space of
a family of positive dimensional quadrics over the projective line.

A basic birational invariant of smooth, projective, geometrically
connected varieties X over the field R : the number of connected
components of the topological space X (R).

Beniamino Segre (1951) : a smooth real cubic surface X ⊂ P3
R is

R-unirational, is C-rational, but if X (R) has two connected
components, it is not R-rational.

A smooth, projective, geometrically rational surface X over R is
R-rational if and only if X (R) is nonempty and connected
(Comessatti 1913, Silhol 1989). Proof uses birational classification.



Suppose X (R) nonempty and connected and X is rational over C.

Is X R-rational ?

(Weaker)
Is X stably R-rational ?

(Weaker)
Is X universally Chow-trivial : for any overfield F/R, is the degree
map degF : CH0(XF )→ Z an isomorphism ?
Enough to prove it for F = R(X ).



Two classical problems.

X = X3 ⊂ Pn
R, n ≥ 3, a smooth cubic hypersurface. For n = 4,

over C need not be rational (n = 4, Clemens–Griffiths). Rationality
is known for various classes for all n odd, also over R. Universal
Chow triviality is known for some other classes (n odd or even).
Just as stable rationality over C, universal Chow triviality is an
open problem for arbitrary X3 over C.

X = X2,2 ⊂ Pn
R, n ≥ 4 a smooth complete intersection of two

quadrics. Over C, rational for all n. Over R, for n = 5, works of
Hassett-Tschinkel and Benoist-Wittenberg extending the
Clemens-Griffiths method yield non-R-rationality when X contains
no real line (may happen with X (R) connected), but the method
gives no information on stable rationality or universal
CH0-triviality. For n = 6, Hassett-Kollár-Tschinkel establish
R-rationality when X (R) is connected.



Let X → P1
R be a family of quadrics of relative dimension d ≥ 1.

with smooth total space X/R.

XC is rational. If X (R) is nonempty, X is R-unirational.

If X (R) is connected, is X rational over R ? Is it at least stably
rational ? Is it universally CH0-trivial ?



First negative answer
Let X be a smooth projective model of the variety given by the
equation

x2 + (1 + u2)y2 − u(z2 + t2) = 0

in P3 × A1, coordinates (x , y , z , t; u).
Real points cover exactly u ≥ 0, real fibres are connected. This
gives connectedness of the real locus. Over u = 0 and over u =∞
the family degenerates to two conjugate planes. One computes
Br(X )/Br(R) 6= 0. The class (−1, u) ∈ Br(R(X )) is not in the
image of Br(R) and is unramified.
This implies that X is not universally CH0-trivial, hence not
R-rational and not even stably R-rational.



A reminder on quadric surface fibrations

Given a field k , say of char. zero, and a quadric surface fibration
X → P1

k the generic fibre is a smooth quadric Y ⊂ P3
K where

K = k(P1). Let L/K be the discriminant quadratic extension.
Thus L = k(∆) for ∆ a smooth projective curve over k. There is
an associated quaternion class β ∈ Br(L). For any smooth plane
(conic) section Z/K of Y , we have Y ' RL/K (ZL).
The Brauer class β ∈ Br(L) is the image under Br(K )→ Br(L) of
the Brauer class of the conic Z/K in Br(K ).
If X/P1

k is a good fibration, we have β ∈ Br(∆).



Back to the problem : Second negative answer
What about “good fibrations”, i.e. those p : X → P1

R with X
smooth and all geometric fibres irreducible quadric surfaces ? For
these, Br(X/Br(R) = 0.

In the 2021 paper by Hassett and Tschinkel, one finds examples of
smooth Y2,2 ⊂ P5

R with Y (R) connected and Y not R-rational
because of the extended Clemens–Griffiths obstruction.
One may birationally transform this into a good fibration into
quadrics X → P1

R with 6 geometric singular fibres. Here the
quotient Br(X )/Br(R) = 0, X (R) is connected and X is not
rational over R.



Under the
Additional assumption : the class of β ∈ Br(∆) ⊂ Br(k(∆)) is not
in the image of Br(k)→ Br(k(∆))
Wittenberg (2023) has a general non-rationality result along these
lines for good quadric surface fibrations X/P1

k with at least 6
geometric singular fibres, with application to the problem over the
reals.
For instance X/P1

R given by the affine equation

(u2 − 1)x2 + (u2 − 2)y2 + (u2 − 3)z2 = 1

is not rational over R but X (R) is connected.



The following problems remain :

Suppose p : X → P1
R is a good fibration, i.e. X is smooth and all

geometric fibres of p are irreducible quadrics (at worse simple
cones), in which case there is no Brauer obstruction to rationality.
Suppose X (R) is connected.

(1) Is X/R stably rational ? Is it universally CH0-trivial ?

(2) If the additional assumption fails, is X rational over R ?



In this talk, we shall concentrate on a very concrete case.
Let p(u) ∈ R[u] a monic, nonconstant, even degree, separable,
polynomial, strictly positive on R. One easily constructs a good
family of quadric surfaces X/P1

R which is a birational model of the
affine variety with equation

x2 + y2 + z2 = u.p(u),

with the projection given by the u coordinate. For the purpose of
this talk, we shall call such a fibration a “special quadric fibration”.
The space X (R) is connected. The curve ∆ is given by
w2 = v .p(−v). The additional assumption fails. Indeed β is given
by (−1,−1).
One may show H i (R,Z/2)) ' H i

nr (R(X )/R,Z/2) for all i ≥ 0.
Is X rational over R ? is X stably rational over R ? Is it universally
CH0-trivial ?



Theorem Let X/P1
R be a special quadric fibration with affine

equation
x2 + y2 + z2 = u.p(u).

Let ∆/R be the smooth projective curve with affine equation

w2 = v .p(−v).

Let W the fourfold given by W := X ×R ∆.
(1) The cup-product (u + v ,−1,−1) ∈ H3(R(W ),Z/2) is
unramified over R. It vanishes if and only if the rational function
u + v ∈ R(W ) (a sum of 6 squares) is a sum of 4 squares in R(W ).
(2) The following conditions are equivalent :
(2a) The variety X is universally CH0-trivial.
(2b) For F = R(∆), the map H3(F ,Z/2)→ H3

nr (F (X )/F ,Z/2) is
an isomorphism.
(2c) The rational function u + v ∈ R(W ) is a sum of 4 squares.



Ingredients of the proof. Results in algebraic K-theory and
quadratic forms (Arason, Merkurjev, Suslin, Kahn-Rost-Sujatha).
[CTSk] CT-Skorobogatov, J. K-Theory 7 (1993).
Let A0(X ) ⊂ CH0(X ) the group of degree zero cycle classes. Let
X/P1

k be a good nonconstant quadric surface fibration X/P1
k . Let

∆/P1
k and β ∈ Br(∆)[2] ⊂ H2(k(∆,Z/2) as above.

[CTSk] gives an injection
Φ : A0(X ) ↪→ H3

nr (k(∆)/k ,Z/2)/[H1(k,Z/2) ∪ (β)].
For “special quadric fibrations”, β = (−1,−1)k and ∆(k) 6= ∅ (the
additional assumption fails). Using precisely this, taking k = R(X ),
using [CTSk], we prove : the image under Φ of the difference
between the generic point of X and an R-rational point
above u =∞ vanishes if and only if
(u + v ,−1,−1) = 0 ∈ H3(R(W ),Z/2), if and only if u + v is a
sum of 4 squares in R(W ).



Universal CH0-triviality via (2c) : hypotheses on p(u)
ensuring u + v ∈ R(W ) is a sum of 4 squares



CH0-triviality via sums of 4 squares, p(u) of degree 2

Theorem. Let p(u) = x2 + au + b ∈ R[u] be separable and
nonnegative. Let X/P1

R be a special quadric fibration with affine
equation

x2 + y2 + z2 = u.p(u).

If b ≥ a2/3, then X is universally CH0-trivial.

This covers the case p(u) = u.(u2 + 1) but does not cover the
range a2/3 > b > a2/4.



Proof. Recall that ∆ is defined by w2 = v .p(−v), and
W = X ×R ∆. In R(u, v),

up(u) + vp(−v) = (u + v)(u2 − uv + v2 + au − av + b) =

= (u + v)

((
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2

)2

+
3
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3

)
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is a sum of 3 squares in R(u, v). In R(W ), we have

x2 + y2 + z2 + w2 = up(u) + vp(−v) = (u + v).r(u, v).

Thus u + v is a sum of 4 squares in R(W ).



CH0-triviality via sums of 4 squares, p(u) of higher degree

Theorem. Let X/P1
R be a special quadric fibration with affine

equation
x2 + y2 + z2 = u.p(u).

Let p(u) = u2n +
∑n−1

i=0 a2iu
2i . If a0 > 0 and a2i ≥ 0 for all

0 < i < n, then X is universally CH0-trivial.

Recall that ∆ is defined by w2 = v .p(−v), and W = X ×R ∆.
Under the hypothesis on the ai ’s, one checks that the rational
function r(u, v) := (up(u) + vp(−v))/(u + v) in the variables
(u, v) is sum of squares in R(u, v), hence is a sum of 4 squares in
R(u, v) (Pfister, 1967). In the field R(W ), one has

(u + v).r(u, v) = x2 + y2 + z2 + w2.

Thus u + v is a sum of 4 squares in R(W ).



Theorem. Let X/P1
R be a special quadric fibration with affine

equation
x2 + y2 + z2 = u.p(u).

Let p(u) = u2n +
∑2n−1

i=0 aiu
2i . There exists a nonempty open set

U ⊂ A2n(R) such that for any (a0, . . . , a2n−1) ∈ U, the associated
variety X is universally CH0-trivial.



Universal Chow triviality via (2b) for deg(p) = 2.

Theorem. Let p(u) ∈ R[u] be a positive polynomial of degree 2.
Let X/P1

R be a special quadric fibration with affine equation

x2 + y2 + z2 = u.p(u).

Assume that the elliptic curve E/R defined by z2 = u.p(u) has
“odd” complex multiplication, namely EndCE = Z[ω], with
ω2 − dω + c = 0, c , d ∈ Z and d odd. Let ∆ be defined by
w2 = v .p(−v). Let F = R(∆). Then the map
H3(F ,Z/2)→ H3

nr (F (X )/F ,Z/2) is an isomorphism, and the
variety X is universally CH0-trivial.



Let F be any overfield of R. We consider the birational conic
bundle fibration XF → P2

F induced by the projection map

(x , y , z , u) 7→ (z , u) ∈ A2 ⊂ P2.

The fibration is ramified along the elliptic curve EF ⊂ P2
F with

affine equation z2 = u.p(u) and possibly along the line at infinity.
By general K -theory results on conics, and a standard analysis of
residues and their functoriality, one shows that any class
β ∈ H3

nr (F (X )/F ,Z/2) trivial at an F -point is the image of a class
α ∈ H3(F (P2),Z/2) whose residues aways from EF and the line at
infinity of P2

F are zero, and whose residue at EF belongs to
Ker[Br(EF )→ Br(EF ′)], where F ′ := F (

√
−1).



Let G = Z/2 = Gal(F ′/F ). We have a standard exact sequence

0→ H2(G ,F ′)→ Ker[Br(EF )→ Br(EF ′)]→ H1(G ,Pic(EF ′))→ 0.

Key technical result :
Proposition. Assume that the elliptic curve E/R defined by
z2 = u.p(u) has “odd” complex multiplication, namely
EndCE = Z[ω], with ω2 − dω + c = 0, c , d ∈ Z and d odd. Let ∆
be defined by w2 = v .p(−v). Let F = R(∆) and F ′ = F (

√
−1).

Then H1(G ,Pic(EF ′)) = 0.

Under this hypothesis, the residue of α at EF is of the shape
(δ,−1) with δ ∈ F ∗. Over A2

F the classes α and
(δ, z2 − up(u),−1) have the same residues. Their difference is thus
in H3(F ,Z/2). Since −(z2 − up(u) = x2 + y2 in R(X ), the image
of (δ, z2 − up(u),−1) in H3(F (X ),Z/2) is (δ,−1,−1) hence
comes from H3(F ,Z/2).



Note : If E has no complex multiplication, one computes
H1(G ,Pic(EF ′)) = Z/2 and one proves
H3
nr (F (X )/F ,Z/2))/H3(F ,Z/2) = Z/2(u + v ,−1,−1).

Whether this is zero or not remains an open question.



Comparing the two methods for deg(p) = 2

Let E/R be the elliptic curve with equation z2 = u.(u2 + au + b),
a, b ∈ R. We assume b > 0 and 0 ≤ a2/b < 4.
One computes

j(E ) = 256[3− (a2/b)]3/[4− (a2/b)] ∈ R.

0 ≤ a2/b ≤ 3 if and only if j(E ) ≥ 0, and then 0 ≤ j(E ) ≤ 1728.
3 ≤ a2/b < 4 if and only if j(E ) ≤ 0.
a2/b = 3 corresponds to j(E ) = 0 and a2/b = 0 to j(E ) = 1728



Chow triviality for x2 + y2 + z2 = u.(u2 + au + b)

First method (sum of squares)
This corresponds to any 0 ≤ a2/b ≤ 3, i.e. any j(E ) ≥ 0. Here
j(E ) takes all values in [0, 1728].

Second method (conic bundle fibration and E had odd complex
multiplication). For 3 < a2/b < 4, i.e. j(E ) < 0, this is the only
method we have.
For E with odd complex multiplication, the invariant j(E ) ∈ R is
algebraic, the values it takes are in [−∞, 1728].
Theorem (Yu. Zarhin) : these values are dense in [−∞, 1728].
In a recent paper, Zarhin systematically analyzes odd versus even
complex multiplication.



Examples for which we can prove X is universally CH0-trivial

p(u) = u2 − 3u + 3
E is given by z2 = (u − 1)3 + 1. It has complex multiplication by ω
with ω2 + ω + 1 = 0. This it has odd CM. Here j(E ) = 0. Both
methods apply.

p(u) = u2 + 1
E is given by z2 = u(u2 + 1). It has j(E ) = 1728. The first method
applies. The curve E has CM by ω =

√
−1, but ω2 + 1 = 0 hence

it is not odd CM. The second method does not apply.

p(u) = u2 − 21u + 112. Here j(E ) < 0, the first method does not
apply. The curve has complex multiplication by Z[ω] with
ω = (1 +

√
−7)/2. Here ω2 − ω + 2 = 0, thus is odd CM, the

second method applies.



Open problems
Let X/R be a smooth projective model of the variety with affine
equation x2 + y2 + z2 = u.p(u), with p(u) monic, separable,
positive on R, of degree at least 2. Let ∆/R be the curve with
affine equation w2 = v .p(−v).

Are the following equivalent conditions always satisfied ?
(a) The variety X is universally CH0-trivial.
(b) The rational function u + v ∈ R(X ×R ∆) (a sum of 6 squares)
is a sum of 4 squares.

• Are there examples for which X is rational over R ?
• Are there examples for which X is not rational over R ?
• What about deg(p) = 2 ?
• What about x2 + y2 + z2 = u.(u2 + 1) ?


