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INTRODUCTION 

In this paper, we define flasque tori and flasque resolutions of tori over 
an arbitrary base scheme (Sect. 1) and we establish the basic 
cohomological properties of flasque tori over a regular scheme (Sect. 2). 
These properties are then used in a systematic and sometimes biased man- 
ner in the study of various problems, which will now be briefly listed. In 
Section 3, an alternative approach to R-equivalence upon tori [S] is given. 
Section 4 studies the behaviour of the first and second cohomology groups 
of arbitrary tori over a regular local ring, when going over to the fraction 
field. Applications to the representation of elements by norm forms and 
quadratic forms are described in Sections 5 and 6. In Sections 7 and 8, we 
study the behaviour of the group of sections of a torus, and of the first 
cohomology group of a group of multiplicative type when going over from 
a local ring to its residue class field, or when going over from a discretely 
valued field to its completion. We thus recover and generalize results of 
Saltman [30, 311 on the Grunwald-Wang theorem and its relation with 
the Noether problem [35]. In Section 9, Formanek’s description [17] of 
the centre of the generic division ring as the function field of a certain torus 
provides a different route to two results of Saltman [31, 321. 

Let us now give more details on the contents of this paper. 
If U is an open set of an integral regular scheme X, the restriction map 
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Pit X-+ Pit U is surjective, hence also, by Grothendieck’s version of 
Hilbert’s theorem 90, the map H&(X, Gm) -+ Hd,( U, G,,J. In other words, 
any torseur (= principal homogeneous space) over U under G, comes 
from a torseur over X under G, (up to isomorphism). It is easy (cf. 3.2) to 
produce X-tori which do not share this property with G,,,. There exists 
however an important class of X-tori T, which we christened jhzsque tori 
precisely because for U and X as above the restriction map 

(1) 

is surjectioe (Sect. 2, 2.2(i)). The general definition of flasque tori is given in 
Section 1. If X is a k-variety, for k a field, and T is a k-torus, the defining 
condition simply reads: 

H’(H, Hom,( F, Z)) = 0 for all subgroups H of G, (2) 

where f denotes the character group of T, and G = Gal(K/k) for K/k a 
finite Galois extension which splits T; in this case, the surjectivity of (1) 
was briefly sketched in [S, Proposition 91. The general case was announ- 
ced in [9] and developed in an unpublished part of our thesis [lo], on 
which Sections 1, 2, 4, 5 of the present paper are built. 

In the language of G-modules, tori as in (2) have already played an 
important role in the work of Endo-Miyata [ 151, Voskresenskii [36, 373, 
and Lenstra [22]. In [S], we showed H’(k, 7’) finite for such tori over a 
field k which is finitely generated over the prime field. This property, which 
certainly does not hold for arbitrary tori, is shown in Section 2 (2.8) to be 
a consequence of the general surjectivity statement (1). 

The main reason why flasque tori deserve attention is that for any torus 
T over a sensible scheme X, there exists an exact sequence of X-tori: 

l+F+E+T-+l, (3) 

where E is a quasitrivial torus (its character group, at least in the ground 
field case, is a permutation module) and F is a flasque torus; moreover, the 
F associated to T is almost unique: it is defined up to a product by a quasi- 
trivial torus (Sect. 1, 1.3; for the ground field case, see [S], or, in the 
language of G-modules, [15, 371). We showed in [S] how sequences (3) 
called jlasque resolutions (of T), compute R-equivalence on a torus T 
defined over a field k, and deduced the finiteness of T(k)/R for k finitely 
generated over the prime field. In Section 3, we present a slightly different 
approach, based on the surjectivity of (1). 

Flasque tori share another property with 6,: if F is a flasque torus over 
an integral regular scheme X with field of fractions K, the restriction map 
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is injectiue (Sect. 2, 2.2(ii)). This property, which is proved at the same 
stroke as the surjectivity of (l), extends the AuslanderGoldman- 
Grothendieck result on the Brauer group. This injectivity together with flas- 
que resolutions is used in Section 4 to give a fancy proof of the following 
results: if T is an arbitrary torus over a regular local ring A, the restriction 
maps 

Ht,(A, T) + H:,(K T), (5) 

H:,(A, T) -+ H:,W, 7’) (6) 

are injectiue. This also holds for arbitrary A-groups of multiplicative type, 
flat cohomology replacing Ctale cohomology. The injectivity (6) extends the 
Auslander-Goldman-Grothendieck result. As for (5), it is a special case of 
a conjecture of Grothendieck for reductive A-group schemes. For a discrete 
valuation ring A, this conjecture has recently been proved by Nisnevich 
[23]. The injections (5) and (6) may be obtained in a more natural man- 
ner [9], but it seemed amusing to give a proof via flasque resolutions. 

If N,,, denotes the norm form associated to a finite &ale cover B of a 
regular local ring A, an element of A* (a unit) is represented by N,, over 
A as soon as it is represented by N,, over the fraction field K of A: this 
special case of injection (5) is discussed at length in Section 5, together 
with extensions to localizations of polynomial rings over A. Various 
counterexamples show that the hypotheses A regular and B/A &ale cannot 
be much relaxed. In Section 6, we give applications to the similar problem 
for representation of elements of A* by a nondegenerate quadratic form 
over A, and we give an (independent) result of the same kind for represen- 
tation of nonunits over an arbitrary valuation ring. This section com- 
plements a paper of Choi-Lam-Reznick-Rosenberg [6]. 

Much of the following two sections (Sect. 7 and 8) is motivated by 
Saltman’s papers [30] and [31], and the beautiful relationship these 
papers established between lifting or approximation problems of the 
Grunwald-Wang type and the Noether problem. Given a local ring A with 
residue class field rc, T an A-torus and A4 an A-group of multiplicative type 
(e.g., an A-torus OY (Z/n), for n invertible in A), one asks: when are the 
natural maps 

T(A) + T(x) (7) 

H’(A, M) + H’(K, M) (8) 

surjective? Also, given a discretely valued field K and its completion K, and 
given a K-torus T and a K-group of multiplicative type It4, one asks: 

is T(K) dense in T(R)? (9) 

is H’(K, M) -+ H’(I?, M) surjective? (10) 
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In a less general set-up, these are the questions studied in [30] and 
[31]: for M=b/n, (8) (resp. (10)) is the lifting (resp. approximation) 
problem for Galois extensions with group Z/n, and for a suitable A-torus 
M, (8) turns out to be the lifting problem for crossed products with a given 
group. 

Questions (7), (8), (9), (10) are very closely related. This relationship is 
made clear by means of resolutions of a type different from (3). Namely, if 
A4 is an X-group of multiplicative type over a sensible scheme X, there exist 
exact sequences of X-groups of multiplicative type (Sect. I), 

l+M+F,+P,+l, (11) 

1 +M+PZ+Q2+ 1, (12) 

where P, and P, are quasitrivial tori, F, is a flasque torus, and Q, is a 
coflasque torus (see Sect. 1 for the definition), and F, and Q2 are well 
defined up to multiplication by a quasitrivial torus. 

If T is a torus over a field k, the following conditions are equivalent: T is 
a k-birational direct factor of a k-rational variety, there exists a k-torus T, 
such that T xk T, is a k-rational variety, any F associated to Tin a flasque 
resolution (3) is an invertible torus (direct factor, as a torus, of a quasi- 
trivial torus): see [8] or 7.4 (a k-rational variety is one which is 
k-birational to an affine space over k). It is a consequence of a theorem of 
Endo-Miyata (0.5) that these conditions are fulfilled by any k-torus which 
is split by a “metacyclic” Galois extension K/k (= K/k is finite and all 
Sylow subgroups of Gal(K/k) are cyclic). Since F invertible implies 
H’(k, F) = 0, sequences (3), ( 1 1 ), ( 12) easily yield positive answers to 
questions (7) (8), (9), (IO) in the,following cases: T, is a direct factor of a 
k-rational variety, T, is split by a metacyclic extension; F,, or QzK in (11) 
or (12) are invertible k-tori, M, is split by a metacyclic extension; Tg is a 
direct factor of a K-rational variety, Tk is split by a metacyclic extension of 
K; F,k or Qzk in (11) or (12) are invertible K-tori, Mk is split by a 
metacyclic extension. 

Let p be a prime, n be an integer, and let M= (Z/P~)~ in (8), with p 
invertible in A. The k-group of multiplicative type M, is split--as a group 
of multiplicative type-by the cyclotomic extension IC(~~)/K. If p is odd, this 
extension is cyclic, and we recover the lifting property for abelian exten- 
sions of odd degree. For p = 2, we recover the lifting property under the 
usual condition: K(~~.)/K is cyclic. Using Theorem 5.3 of [30], one thus 
gets a simple proof of Theorem 2.1 in this same paper of Saltman. 

Let us now start with a field k, a k-torus T, and a k-group of mul- 
tiplicative type M. In [30] and especially [3 11, Saltman studies the 
question: if (7) or (9) hold universally (i.e., for any local ring A with k c A, 
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or any K with kc K), what does it imply on T? and he also studies the 
similar question for M and (8), (lo), at least for M= Z/n (see also 
Proposition 7.7 below). The answer is simple: T must be a k-birational 
direct factor of a k-rational variety, more precisely there must exist a 
k-torus T, such that T xk T, is a k-rational variety ( [31, 3.8 and 3.141 for 
question (7); Proposition 7.4 below for (7) and 8.1 for (9)). As for (8) 
(lo), and M, the answer is: any F, or Q, in sequences (11) or (12) must be 
an invertible k-torus (7.6; 8.4(iii)). 

In simple terms, the answer for (9) is: the k-tori which universally satisfy 
weak approximation are the obvious ones. 

Let k be a field, let C be a finite abelian group of order prime to char k. 
A special case of a problem of Emmy Noether, to which Swan and 
Voskresenskii gave a negative answer, asked whether the field of invariants 
KC of K=k(.xY)REC., under the obvious action of C on the algebraically 
independent variables xx, is a purely transcendental extension of k. 
Voskresenskii’s approach realizes KC as the function field of a (coflasque) 
k-torus Q,, which is part of a sequence of type (12): 

I-C,+P,+Q,-1. (13) 

The original example of Swan and Voskresenskii was k = Q and 
C= Z/47. In this case, the Q-torus Q, is split by the cyclic extension 
Ki!(p4,)/Qp, hence, as recalled above, is a direct factor of a @rational 
variety. It was later noted by Endo-Miyata, Lenstra and Voskresenskii 
that k = Q and C = Z/8 provide a smaller negative answer to Noether’s 
problem; in this case, Q, is not even a direct factor of a @rational variety 
(cf. the discussion after 7.10). Later, Saltman [30] obtained a very simple 
proof of this last fact. Up to the torus-theoretic language, he noted that 
Wang’s counterexample to Grunwald’s theorem implies that Q,,,(Q) is not 
dense in Q&Q,) (for the &P,-adic topology). He then went on [30, 313 to 
analyse the relation between the failure of weak approximation, or of the 
lifting problem (7), for an arbitrary Qc, and the failure of the weakened 
Noether problem: is Qc a direct factor of a k-rational variety? We recover 
most of his results in Sections 7 and 8, and show: Qc is a direct factor of a 
k-rational variety (i.e., the weakened Noether problem for C has a positive 
answer) if and only if abelian extensions with group C are universally lif- 
table (i.e., (8) is surjective for any local ring A with k c A, and M = C,), if 
and only if abelian extensions with group C are universally approximable 
(i.e., (10) is surjective for any discretely valued field K with k c K). 

Our approach to these results is self-contained and in places more 
general than that of [30, 311, and we hope that this generality clarifies the 
results of [30] and [31], but we would like to stress our debt to Saltman’s 
ideas. In particular, although we stubbornly refused to use the concept of 
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retract rationality [31, Theorem 3.81 in any crucial fashion, the proof of 
Proposition 7.4 was inspired by [31]. 

We conclude Section 7 with some remarks to the effect that the failure of 
Noether’s problem does not totally ruin this approach to the construction 
of Galois extensions of a given number field with a given Galois group. 

Let k be a field, and let Z,(r) be the centre of the generic division algebra 
UD(k, n, r) of r generic n x n matrices, as described in [ 171 and [29]. It is 
an open question whether Z,,(r) is purely transcendental over k. This centre 
was described as the function field of a certain torus by Formanek [ 173. In 
Section 9, we use this description to recover Saltman’s result [31]: if n = p 
is a prime, and Y is an integral k-variety with function field k(Y) = Z,,(r), 
then Y is retract rational. Formanek’s description together with a 
systematic use of tori and their flasque resolutions [8, 371 also enable us to 
recover-at least for char k = @-another result of Saltman [32] whose 
proof also depended on Formanek’s description: for arbitrary n, if X is a 
smooth proper k-variety with function field equal to Z,(r), the Brauer 
group of X is trivial, i.e., coincides with the Brauer group of k. 

0. PRELIMINARIES 

0.1. We denote by G, (resp. 6,) the multiplicative group Spec 
Z[t, t -‘] (resp. the additive group Spec Z[t]), and by G,., (resp. GU,x), 
the X-group schemes G, xSpecL X (resp. 6, xSpecZ X) over a scheme X. For 
simplicity, by an X-group scheme of multiplicative type we shall mean a 
finite type isotrivial X-group scheme of multiplicative type [SGA3, X]: if 
M is such an X-group scheme, there exists an Ctale cover (cover = finite 
locally free morphism) X’ + X such that Mx, = M xx X’ is isomorphic to 
2 ~~~~~~~~~~~~~~~ G,,y) for a suitable finitely generated abelian group A. If 
A is torsion-free, M is called an X-torus (hence our X-tori are isotrivial). 
When X is connected, a splitting cover X’ -+ X as above may be chosen 
connected and principal Galois over X. By a twisted constant X-group we 
shall mean an isotrivial twisted constant X-group with finite generation. 
Associating to an X-group scheme of multiplicative type its character group 
hTr= xum,m,,(M, G m,x) defines an antiequivalence of categories between 
X-groups of multiplicative type and twisted constant X-groups: the natural 
map M + &~~.,,(fi, Gm,,) is an isomorphism. 

0.2. Assume X is connected, and let X’ + X be a connected prin- 
cipal Galois cover with group G. Associating &f(r) to M induces an anti- 
equivalence of categories between X-groups of multiplicative type split by 
X’ + X and G-modules of finite type. M is smooth over X if and only if the 
torsion of &(X’) is of order prime to the residue characteristics of X, and 
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M is an X-torus if and only if &(X’) is torsion-free. The reverse anti- 
equivalence transforms exact sequences of finitely generated G-modules 
into exact sequences of X-groups of multiplicative type, inducing exact 
sequences of fppf sheaves on X. 

0.3. Let p: X’ + X be a morphism of schemes, and let A be a 
twisted constant X-group. The natural map p,*1 A + A,. = A xx X’ is an 
isomorphism of &ale sheaves on X’, as may be seen by reducing to the con- 
stant case. 

Let M be an X-group of multiplicative type. Reducing to M 
diagonalisable, one checks that the natural diagram of Ctaie sheaves 

M , P*et MY 

I I 
(0.3.1) 

~4Q, G,,,) - ~TYM? P*et~m,x.) 

commutes, and that the vertical arrows are isomorphisms. 

0.4. Let p: X’ + X be a cover, and let G be an affine X-group 
scheme. Restriction from X’ to X defines an afline X-group scheme R,.,,G. 
If H is an afline X-group scheme, we simply write R,,,H = R,~,,(Hx~). 
Assume G commutative. Since p is finite, the ttale sheaves R;,,,(G) are 
zero for i>O [SGA4, VIII, 5.5 and 5.31. One thus obtains [SGA3, XXIV, 
8.51 canonical isomorphisms 

H’(Xet 9 Rr,, G)r H’(X;,, G) (i>,O). (0.4.1) 

If G is a commutative afline X-group scheme and X’/X is a cover, one 
denotes N,,,,: Rx,,, G + G the “trace” morphism of X-group schemes 
defined in [SGA4, XVII, 6.3.13.21, and by R:.,,G the X-group scheme 
which is the kernel of N,,,,. For G = G,,, (resp. G = Ga,x), N,,,, induces 
the usual norm S,(X’) + G,(X) (resp. the usual trace S,(X) + GJX)) 
on X-points. If p: X ’ -+X is of constant rank n, the composite morphism 
G + Rr,, G % G, where the first map is the natural one, is multiplication 
by n [SGA4, XVII, 6.13.151. Finally, norm being compatible with arbitrary 
base change Y+X [SGA4, XVII, 6.13.151, so is the functor R$,,. 

Assume X’ -+X is a connected &ale cover, and let X” -+X be a 
majorizing connected Ctale cover, principal Galois with group G. Let H be 
the subgroup of G corresponding to the cover X” -+ X’. If M is an X-group 
of multiplicative type (resp. an X-torus), so are R,.,,M and Rk.,,M, and 
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both are split by X” if M is. Let JGIH (Jo if H = { 1 }) be the finitely 
generated torsion-free G-module defined by the exact sequence 

O+E NGIH, H[G/H]+J,,+O, (0.4.2) 

where N,, = xx E G/H x. Under the same assumptions for M, there is an 
exact sequence of X-groups of multiplicative type 

1 -+ R&I4 + RX,,, MN”‘x-M+l (0.4.3) 

which in the case A4 = CD,,, is dual (= antiequivalent) to (0.4.2) by means 
of M I--+ A( X”). 

0.5. Let G be a finite group, and let .,4& (resp. &) denote the 
category of finitely generated (resp. finitely generated torsion-free 
(= Z-free)), G-modules. The category YG is antiequivalent to itself under 
the duality A H A0 = Hom,(A, Z). A module in YG is called a permutation 
module if it admits a Z-basis stable under G. A module in D-LG is called 
invertible if it is a G-direct summand of a permutation module. A module F 
in YG is called flasque if any of the following equivalent conditions is 
satisfied: 

(i) I?-‘(H, F) = 0 for any subgroup H of G; 

(ii) ExtjJF, P) (= H’(G, Hom,(F, P))) = 0 for any permutation 
module P; 

(iii) ExtL(F, A) (= H’(G, Hom,(F, A))) = 0 for any invertible 
module A. A module Q in YG is called coflasque if it satisfies: 

(iv) H’(H, Q) = 0 for any subgroup H of G. 

The duality A H A0 transforms flasque modules into coflasque modules. It 
preserves permutation modules, hence also invertible modules. An inver- 
tible module is flasque (and coflasque). An important theorem of Endo and 
Miyata [ 15, Theorem 1.5; 8, Proposition 21 studies the converse: anyflus- 
que G-module is invertible if and only if G is a “metacyclic” group ( = all its 
Sylow subgroups are cyclic). 

We shall need the following extension to J$‘~ of known facts about ZG 
(cf. [8, 15, 161): 

LEMMA 0.6. For any A in AG, there exist exact sequences of G-modules 

O+Q,-P,-,A+O, (0.6.1) 

O+P,+F,-+A+O; (0.6.2) 
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for any A in Ipc;, there exist exact sequences of G-modules in go: 

0 + A ---f P, + F, + 0, (0.6.3) 

O+A+Q4-P,+O. (0.6.4) 

Here F; (resp. Q ;) (resp. Pi) denotes a flasque (resp. cofasque) (resp. per- 
mutation module). Moreover Q,, F,, F,, Q4 in the above sequences are well 
defined up to addition of permutation modules. 

Proof. Let A be in A&. For each subgroup H of G, choose a torsion- 
free G-module of finite type B, together with a surjection B, -++ AH 
(AH = invariants under H). Take P, = CHc G Z[G/H] @z B” (with trivial 
action of G on BH) and the natural map P, ++ A. This gives a sequence 
(0.6.1). Using A H A’, one then obtains (0.6.3). Now take any exact 
sequence 

O+A,-+P,+A+O, 

with P, a permutation module, apply (0.6.3) to A,, and form the push-out 
diagram: 

A,- PI---+ A 

I I II 
P,-R-A 

I I 
F ,=F3. 

Since Ext,!Jl;,, P, ) = 0, we get a G-isomorphism R r P, 0 F,, hence R is 
flasque, and the middle horizontal row if of type (0.6.2). Using A H A0 
once more, we get (0.6.4). That the Qi and F, in the lemma are well defined 
up to addition of permutation modules is proved as the standard 
Schanuel’s lemma by forming suitable push-outs and pull-backs and using 
the defining properties of flasque and coflasque modules (cf. [S, 
Lemme 51). 

For more details, we refer to [S, 15, 161. 

0.7. Finally, constant use is made of the fact: if X is a scheme and 
G/X is a flat finitely presented afhne X-group scheme, the set H’(Xa,r, G) 
classifies the torseurs ( = principal homogeneous spaces) over X under G. 
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1. FLASQUE TORI 

This notion was introduced in [S] in the case of a base field. It will now 
be extended to the case of an arbitrary base. 

LEMMA 1.1. Let X be a connected scheme, let X0 be a closed subscheme 
with the same underlying space, let T be an X-torus, and let X’ -+ X and 
X” -+ X be two connected &ale covers, principal Galois with respective groups 
G’ and G”, which both split T. Set Xh = X,, xx x’. The following conditions 
on T are equivalent: 

(i) T(X’) is a flasque (resp. cof7asque), (resp. permutation) (resp. 
invertible) G’-module; 

(ii) T(X”) is a flasque (resp. cofasque), (resp. permutation) (resp. 
invertible) G”-module; 

(iii) F(X&) is a fl as ue q ( resp. coflasque), (resp. permutation) (resp. 
invertible) G’-module. 

Proof There exists a connected ttale cover of X which majorizes both 
coverings (use the induced scheme on a connected component of 
X’ x,X”). To prove the equivalence of (i) and (ii) we may thus assume 
that X” -+ X majorizes X’ + X, hence G’ is the quotient of G” by a normal 
subgroup H. The equivalence of (i) and (ii) then follows from the following 
proposition, applied to A = f(X”) = f(X’): a module A in 6pc,,IH is flasque 
(resp. coflasque) (resp. permutation) (resp. invertible) if and only if it is 
flasque (resp. coflasque) (resp. permutation) (resp. invertible) as a module 
in 9&. [8, Sect. 1, Lemme 21. Since XA, as X’, is connected, there is a 
G’-isomorphism f(X’) % f(XA), hence (i) and (iii) are equivalent. 

DEFINITION 1.2. Let X be a scheme and T be an X-torus. T is called 
flasque (resp. coflasque) (resp. quasitrivial) (resp. invertible) if for any con- 
nected component Z of X there exists a connected &tale cover Z’ + Z, prin- 
cipal Galois with group G, which splits T, and such that f(Z’) is a flasque 
(resp. coflasque) (resp. permutation) (resp. invertible) G-module. 

Lemma 1.1 and [SGA3, X, Sect. 21 imply that the choice of the closed 
subscheme structure on Z is irrelevant. Also, if T is flasque, for any connec- 
ted component Z of X and any connected &tale Galois cover Z” + Z with 
group G’, splitting T, the G’-module p(Z”) is flasque (and similarly for 
coflasque, permutation, invertible). 

When X is connected, one easily checks that a quasitrivial X-torus is 
none but a finite product of X-tori of the shape R,;,,6,, for ttale connec- 
ted covers Xi +X; it may also be written as R,.,,G, for a not necessarily 
connected Ctale cover X’ -+ X. An invertible X-torus is a direct factor (as an 
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X-torus) of a quasitriviai X-torus; it is fiasque (and coflasque) but in 
general there exist other flasque tori (cf. 0.5 and [8]). 

PROPOSITION 1.3. Let X be a scheme, and assume that the connected 
components of X are open, for instance, that X is locally noetherian or that X 
is the spectrum of a semilocal ring. Let M be an X-group of multiplicative 
type, and let T be an X-torus. There exist exact sequences of X-groups of 
multiplicative type: 

1 -+M+ PI -Q, -, 1, (1.3.1) 

l+M+FZ-‘Pz+l, (1.3.2) 

1+F,+P3+ T -1, (1.3.3) 

1 -+P, -Q4- T-+1, (1.3.4) 

where P,, Fi, Qi denote, respectively, quasitrivial, flasque, cojlasque, tori. 
Moreover the Pi and Qi in the above sequences are well defined up to a 
product by a quasitrivial torus. 

Proof: We may assume that X is connected, and choose a connected 
Ctale Galois cover X’ --* X, with group G, which splits M, or T. The 
existence of sequences (1.3.1) to (1.3.4) now follows from 0.2 and 
Lemma 0.6. To show “uniqueness,” one may again assume X connected, 
and choose a connected Ctale Galois cover of X with group G, splitting all 
X-groups of multiplicative type involved in two given exact sequences of 
the same type (1.3.i). By 0.2, we are then reduced to the “uniqueness” 
statement in Lemma 0.6. 

As in [S], a sequence of type (1.3.3) will be called aflasque resolution of 
the X-torus T. 

PROPOSITION 1.4. Let Y -+ X be a morphism of schemes. Zf T is a f7asque 
(resp. coflasque) (resp. quasitrivial) (resp. invertible) X-torus, so is T,. In 
particular the pull-back of a sequence of type (1.3.i) is of the same type. 

Proof We may assume that X and Y are connected and ([SGA3, X, 
Sect. 23 and Lemma 1.1) reduced. By definition there exists a connected 
&ale Galois cover X’ + X, with group G, which splits T and such that 
f(X’) is a flasque (resp. coflasque) (resp. permutation) (resp. invertible) 
G-module. Now choose a connected component 2 of X’ xx Y. Since 
X’ xx Y -+ Y is an ttale cover, principal Galois with group G, the induced 
map Z -+ Y defines a connected ttale cover, Galois with group H for H a 
subgroup of G, and T, is split by 2 -+ Y. Since Fy(Z) is none but the 
G-module f(X’) viewed as an H-module, it is a flasque (resp. coflasque) 
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(resp. permutation) (resp. invertible) H-module, and T, is flasque (resp. 
coflasque) (resp. quasitrivial) (resp. invertible). 

PROPOSITION 1.5. Let X be an integral scheme, let K be its field of frac- 
tions, and let T be a jlasque K-torus. There exists a Zariski open set U c X 
and a jlasque U-torus S such that S x o K 2 T. 

Proof We may assume X afhne, say X= Spec A. Let L/K be a (finite) 
Galois extension of fields, with group G, which splits T. Write 
L = K[ T]/P( T) for P(T) a separable polynomial. Replacing X by an aftine 
open set, we may assume that the coefficients of P are in A. Now 
A = hi,, Ai, for Ai running through subrings Ai of A which are of finite 
type over Z (hence noetherian), regular, which contain all coefficients of P, 
and which satisfy: if Ki is the field of fractions of Ai, the extension 
L, = Kj[ T]/P(T) is Galois with group G. Since LJKi is separable and Ai 
normal noetherian, the integral closure Bi of Ai in Li is finite over Aj [3, 
Chap. V, Sect, 1, No. 61. By [EGA IV, 18.2.41 there existsf, E A, such that 
the restriction of BJA; to A ;, f, is &tale. This restriction defines a connected 
Ctale Galois cover with group G. Define S, as the Spec A,,,-torus split 
by B,,/A,, with Si(B,J = T(L). Pulling back Si to Spec A, produces a 
flasque torus of the required type. (The same proof goes for coflasque 
and quasitrivial tori.) 

2. COHOMOLOGICAL PROPERTIES OF FLASQUE TORI 

In this section, the cohomology we use is Ptale cohomology. We 
therefore denote by H’(X, . ), Ext’,( ., . ), and &;( ., . ) Ctale cohomology 
groups, etale Ext groups and etale dz:t sheaves of Ctale sheaves on 
a scheme X. Note, however, that for an X-torus, and more generally 
for a smooth commutative X-group M, there are canonical isomorphisms 
[GB III, Thtoreme 11.71, 

H’(X,,, w s fm&,f , w (i30). (2.0) 

By Z, (or by Z if there is no ambiguity) we denote the etale sheaf on X 
associated to the constant presheaf E. 

KEY LEMMA 2.1. Let X be a scheme and let T be a jlasque X-torus. 

(i) Zf X is connected and geometrically unibranch, then 

Ext:( f, Z,) = 0. 
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(ii) If A’ is quasicompact and quasiseparated, and if { il}jeJ is a family 
of morphisms i,: A’, -+ X with each Xj connected and geometrically unibranch, 
then 

Extk(f, @ ij*Z,)=O. 
jtJ 

Proof Let us first recall that a normal scheme is geometrically unibranch 
L-EGA IV, O,,, 23.2.11, i.e., all its strictly local rings are irreducible 
[EGA IV, 18.8.151, that a connected geometrically unibranch scheme is 
irreducible and that a scheme is quasicompact and quasiseparated when it 
is a finite union of afline open sets and the intersection of two affine open 
sets is a finite union of affine open sets, which is certainly true if X is 
noetherian. 

Let us prove (i). Let X’ + X be a connected &tale Galois cover, with 
group G, which splits T. The assumption on X implies that X’ is irreducible 
and geometrically unibranch, hence [SGA4, IX, 3.61 

H’(X’, Z) = 0. 

Now T,, is trivial, i.e., isomorphic to G;,x, for some integer n, hence 
F’x, 7 Z;., and 

Ext;( &,, Z,.) = (Ext;.(L, Z))n N (Hi(X’, Z))” = 0. 

The Hochschild-Serre spectral sequence 

HP(G, Ext$.( TX,, Z)) 3 Ext”,( f, Z) (2.1.1) 

gives rise to the short exact sequence of terms of low degree, 

0 + H’(G, Hom,(F(X’), Z)) + Ext!Jp, Z) + Ext!Jfx., Z) (=O). (2.1.2) 

Since T is flasque, F(X’) is a flasque G-module (cf. 1.2 and 1.1 ), and the 
left-hand-side group is zero (OS(ii)). Hence (i). 

(ii) Since f is of finite generation and X is quasicompact and quasi- 
separated, Ext!J f, . ) commutes with arbitrary direct sums (cf. SGA4, VII, 
3.3, IX, 2.7.3). It is thus enough to prove the statement for one morphism 
i: Y -+ X with Y connected and geometrically unibranch. There is a 
straightforward injection 

Extk(f, i,Z) 4 Extb(i*F, Z) 

which may be seen as the edge map E$O 4 E’ in the spectral sequence 

Ext$(f, R4i,Z) *Ext”,(i*F, Z). (2.1.3) 
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Since T, is a flasque Y-torus (Proposition 1.4) the Ctale sheaves 
isomorphism i*T% F,, (0.3) together with (i) imply Ext\(i* f, Z) = 0, and 
the above injection now implies Ext&( p, i,Z) = 0, hence (ii). 

THEOREM 2.2. Let X be an integral noetherian scheme. Assume that its 
strictly local rings are factorial, e.g., X is regular. Let K be the field of frac- 
tions of X, and let U c X be a nonempty open set. Let T be aflasque X-torus. 

(i) The restriction maps 

H’(X, T) -+ H’(U, To) and H’(X, T) -+ H’(K, T,) 

are onto. 

(ii) The restriction maps 

H*(X, T) + H2(U, T,) and H2( X, T) + H2(K, TK) 

are injectiue. 

Note that (ii)U trivially follows from (ii), and that by [SGA4, VII, 5.93, 
(i)K follows from (i)U for all U, and (ii), follows from (ii)U for all U. 
Statement (i)U lead us to call such tori “flasque”: they should really be 
called torseur-flasque. Statement (ii)K, as indeed the following proof, is an 
extension of Grothendieck’s result [GB II, Corollary 1.81 for the 
cohomological Brauer group H*(X, G,), itself an extension [GB II, 
Corollary 1.101 of the Auslander-Goldman result that the “usual” Brauer 
group of a regular integral ring injects into the Brauer group of its field of 
fractions. 

Let us recall: the strict local rings of X are the strict henselizations of its 
local rings; if hsA is the strict henselization of a noetherian local ring A, A is 
regular if and only if hsA is regular [EGA IV, 18.8.131; if this is the case, 
then A and hsA are factorial (Auslander-Buchsbaum [EGA IV, 21.11.11); 
hsA factorial implies A factorial [EGA IV, 21.13.121. 

Proof of Theorem 2.2. Let first X be an arbitrary scheme and let 9 and 
Y be two abelian &ale sheaves on X. There is a local-to-global spectral 
sequence [SGA4, V, 6.11, 

W(X, drct$(S, 9)) = Ext”,(F, 9). (2.2.1) 

Let 8, = 8,(X; 9, Y) be its edge map ,?Z?O -+ F, i.e., 

8,: H”(X, i%m,(9,F2)) + Ext”,(F, %), (2.2.2) 
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Let T be an arbitrary X-torus. We have already mentioned (0.3.1) that the 
natural map 

T+ *m,(f’> G,n,x) (2.2.3) 

is an isomorphism of &ale sheaves. On the other hand, 

ady,( F, G,,,) = 0 for q>O, 

a statement which may be checked locally (for the &tale topology 
boils down to the obvious case where T= Z,. 

(2.2.4) 

) hence 

For 9= T and g=G,,,,., the spectral sequence (2.2.1) completely 
degenerates by (2.2.4) and yields canonical isomorphisms 

0,: H”(X, i%mx( F, G,,,)) r Ext”,( f, G,,,). (2.2.5) 

Let i: Y + X be a morphism of schemes. For each n > 0, there is a com- 
mutative diagram 

H”(X,%“om,(f,G,,x))- H”(Y,~nnmv(i*~,,i*G,.x)- H”( Y,2f&my(i*T,Gm,Y)) 

I 
0” 

I 
% 

I 
0. 

Ext”,(t G,,,,) - Ext”,(i* F, i*G,,,,) - Ext”,(i* f, G,,,). 

(2.2.6) 

Here the horizontal maps in the left-hand square are the natural maps 
induced by i and those in the right-hand square are induced by the 
canonical morphism i*G,,X -+ G,, y. Functoriality of (2.2.1) in X and 9’ 
implies that the diagram is commutative. 

The adjunction formula and the spectral sequence of composite functors 
give rise to the spectral sequence 

Ext$(f, RYi*G~,Y)*Ext$(i*~, S,,.) (2.2.7) 

whose edge maps E;s’ -+ E” define maps 

(P”: Ext”,(j;i,G,,,)~Ext”,(i*~,,*,,). (2.2.8) 

Using the identification of ttale sheaves i*fz F’y (0.3) and putting 
(2.2.6) and (2.2.8) together, we get the diagram 

H”(X, T) L WY, TY) 

(2.2.9) 
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where I,, is induced by the canonical map G+--) i,G,,., and where pn 
and CJ,, are the natural maps induced by i. We have seen that the square is 
commutative. That the triangle commutes up to a sign may be checked by 
tedious but standard homological algebra [lo]. 

Assume i satisfies 

R’i*G,,.=O. (2.2.10) 

Then @’ = 0 in spectral sequence (2.2.7), so that ‘p, is an isomorphism and 
(p2 is an injection. Diagram (2.2.9) for n = 1 and n = 2 now gives: 

p1 onto 0 I, onto; p2 injective 0 A2 injective. (2.2.11) 

For X as in Theorem 2.2, and i = i,: Spec K + X or i = i, : U + X, let us 
check (2.2.10). The &tale sheaf R1i,G,,y is the sheaf associated to the 
presheaf X’ H Pic( Y x xX’) [SGA4, V, 5.11. When Y = Spec K and i = iK, 
this presheaf is already zero by Hilbert’s Theorem 90. When Y = U and 
i=i,, the assumption on X implies that the local rings of X’ are factorial, 
hence the restriction maps Pit X’ -+ Pit U’ for U’ = U x x X’ are onto 
[EGA IV, 21.6.111. Since the sheaf associated to X’ H Pit X’ is zero so is 
the sheaf associated to X’ H Pit U’. 

We are thus reduced to study I, and 1,. Since X is noetherian and its 
strictly local rings are factorial, there is a canonical exact sequence of ttale 
sheaves on X 

O+G,,,+i,G,,.+ @ i,,Z,+O (2.2.12) 

for Y=SpecKand i=i,or Y=Uand i=i, [GBII, Sect. l(2) and (3)]. 
Here x runs through the codimension 1 points of X outside Y, the sheaf Z, 
is the “constant” sheaf Z on the spectrum of the residue class field K(X) of X 
at x, and i,: Spec K(X) -+ X is the canonical morphism. From (2.2.12) we 
deduce the exact sequence 

--% Ext$( F, i*S,,,.), 

where the extreme maps are precisely A, and &. Now, since T is a jlasque 
torus, Lemma 2.l(ii) (with ii= i,, and Xi= Spec K(X), the spectrum of a 
held!) implies that the middle term Extk(p, 0, i,,Z,) vanishes. Hence A1 
is onto and 12* is injective, which by (2.2.11) completes the proof. 

Remark 2.3. In view of Proposition 1.4, statement (i). appears as a 
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generalization of Proposition 9 of [S], which handled the case of a smooth 
variety X over a field k and an X-torus coming from a flasque k-torus. 

LEMMA 2.4. Let A be a normal integral noetherian ring. Let S be an 
A-group of multiplicative type. The natural map 

where t denotes an indeterminate, is an isomorphism. 

Proof This is well known for S= CD,,,~. Since the units A* of A coin- 
cide with the units A[t]* of A[ t], the analogous result for the group pL,,A 
of nth roots of unity (n positive integer) follows from taking the 
cohomology of the Kummer sequence. Hence the result holds for a split 
A-group of multiplicative type. For a general S, let B/A be a finite Ctale 
integral Galois extension, with group G, which splits S. Writing the first 
four terms of the exact sequence of terms of low degree for the Hochschild- 
Serre spectral sequence 

H”(G, WB~ppr, S,)) = WA.,,, S) (2.4.1) 

and comparing it with the analogous sequence for B[t]/A[t] now yields 
the result. 

Remark 2.5. When A is regular and the characteristic of the fraction 
field of A is zero, the same result holds with Hz in place of H’ [9]. 

COROLLARY 2.6. Let A be a regular integral domain, and let F be a flas- 
que A-torus. Let U be a nonempty open set of the n-dimensional affine space 
AnA. The composite map 

H’(A, F)+H’(A”,,F)-rH’(U, F) 

is a surjective map, and it is a bijection tf A is a field. 

Proof The surjectivity assertion follows from 2.2(i), and 2.4. If A = k is 
a field, either k is infinite and U(k) is not empty, hence the composite map 
has a section, or k is finite and H’(k, T) = 0 for any k-torus T by Lang’s 
theorem. 

LEMMA 2.1. Let A be a regular ring offinite type over E, and let S be an 
A-group of multiplicative type. The group H’( AfppI, S) is an abelian group of 
finite type. 

Proof We may assume that A is connected, i.e., integral. Let B/A be a 
finite &tale integral Galois extension with group G, which splits S. The ring 
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B is regular and of finite type over Z, hence B* and Pit B are abelian 
groups of finite type by the Dirichlet unit theorem and the Mordell-Weil- 
N&on theorem (Roquette, cf. [S, Sect. 31). The same therefore holds for 
S,(B) and H1(Bfpp~, S,). The result now follows from writing down the 
first three terms of the exact sequence of terms of low degrees of the spec- 
tral sequence (2.4.1) (i.e., the restriction-inflation sequence). 

COROLLARY 2.8 [8, Sect. 3, theoreme 11. Let K be afield offinite type 
over the prime field. Zf F is a flasque K-torus, the group H’(K, F) is a finite 
group. 

Proof: Since K is of finite type over its prime field, K is the field of frac- 
tions of a subring A which is regular and of finite type (as algebra) over Z. 
This follows from a result of Nagata [EGA IV, 6.12.61. Here is a simple 
proof: write K as a finite separable extension of a field K, which is purely 
transcendental over the prime field, KO = k(x, ,..., x,), with k = Q or k = [F,. 
Write A,= Z[x, ,..., x,] or A,= F,[x ,,..., x,], and let A, be the integral 
closure of A, in K. As in 1.5, inverting some element of A, in Al produces a 
suitable A. Now by 1.5 we may assume, after inverting another element in 
A, that F comes from a flasque A-torus F,. The restriction map 

H’(A, F,) + H’(K, F) 

is onto by Theorem 2.2 (i)k, the left-hand-side group is of finite type by 
Lemma 2.7, and the right-hand-side group is torsion, hence the result. 

3. R-EQUIVALENCE ON TORI 

Let k be a field. R-equivalence on the set X(k) of k-rational points of a 
k-variety X is the coarsest equivalence relation for which two points A and 
B of X(k) are in the same class if there exists a k-morphism f: U -+ X with 
U open in Ai such that A and B belong to f (U(k)). 

THEOREM 3.1 [8, Theorem 2, p. 1993. Let k be a field and T be a 
k-torus. Zf 1 -+ F + P + T--f 1 is a jlasque resolution of T, it induces an 
isomorphism of abelian groups 

T(k)/R r H’(k, F); 

if k is of finite type over the prime field, T(k)/R is finite. 

Proof: Let Tc X be a smooth k-compact&cation of the torus T. Such 
compactifications may be constructed by the method of toroidal embed- 
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dings (Brylinski [4]). Since F is flasque and X is smooth, the torseur over 
T under F defined by P -+ T extends (up to isomorphism) to a torseur Y 
over X, by Theorem 2.2(i). Taking libres of F defines a map 
X(k) + H’(k, F) whose composite with T(k) + X(k) coincides (up to a 
sign) with the coboundary map 8 in the ttale (or Galois) cohomology 
sequence of the flasque resolution. Now since X/k is proper, the map 
X(k) + H’(k, F) factorizes through X(k)/R: any f: U+ X as in the 
preliminaries of the theorem extends to a k-morphism f: Ai + X, and 
H’(k, F)rH’(AL, F) for F as for any k-torus by Lemma 2.4. Since P is 
quasitrivial, P(k)/R = 1 because P is an open set in an alline space over k, 
and H’(k, P) = 0 by Hilbert’s Theorem 90 (cf. 0.4.1). The cohomology 
sequence thus yields an isomorphism T(k)/im(P(k)) 3 H’(k, F) which fat- 
torizes through T(k)/R. Hence the first statement of the theorem. The 
second now follows from Corollary 2.8. 

Remark 3.2. The proof of Theorem 3.1 given in [S] did not use the 
extension theorem for torseurs, but it used a special case of Corollary 2.6. 
For yet another proof, using a natural construction of Y-/X, we refer 
to [12]. 

As an example that the extension property is by no means a general fact, 
let us consider the exact sequence 

1 - R&&n, - &,~~rn 
NC/W 

’ Gm,*- 1. 

The induced surjective coboundary map 

R* + H’(R, R&G,) = Z/2 

does not factorize through R-equivalence (clearly trivial on G,,,(R)). 
Hence the torseur over G,,w which this sequence defines is not isomorphic 
to the restriction of a torseur over Pk (for a similar situation of a torseur 
which is “ramified at infinity,” think of the Kummer sequence). 

4. GOING OVER FROM A REGULAR LOCAL RING TO ITS FIELD OF FRACTIONS 

In contrast with Section 2, the cohomology used in this section is the 
fppf topology, and we write H’(X, M) = Hi(Xfppf , M). For M/X smooth, 
e.g., A4 a torus (see 0.2), these groups coincide with the Ctale cohomology 
groups (2.0). 

THEOREM 4.1. Let X be an integral noetherian scheme and let K be its 
field of fractions. Assume that the strictly local rings of X are factorial, for 
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instance that X is regular. Let A4 be an X-group of multiplicative type, and 
let x’ + X be a connected &tale Galois cover which splits 44. 

The restriction map 

p,: H’(X, M) + H’(K, MK) 

is injective in any of the following cases: 

(i) X = Spec A and A is a semilocal ring ; 

(ii) X is an open set of an affine space 14; over an integral noetherian 
semilocal ring A, the strictly local rings of A are factorial, and M = N x A X 
for N an A-group of multiplicative type; 

(iii) any subcover X” + X of X’ + X satisfies Pit X” = 0. 

Proof (ii) clearly generalizes (i). Let us show that (iii) generalizes (ii). 
Let B/A be an integral etale cover, Galois with group G, which splits N. As 
X’ + X we may take the connected etale cover Xx A B + X, which is Galois 
with group G. Any subcover X” + X is then of the type Xx c A --) X for 
C/A an Ctale subcover of B/A. Since A is noetherian semilocal, so is C, 
hence Pit C = 0 [3, Chap. 2, Sect. 5, No. 3, Proposition 51. Since C is nor- 
mal noetherian, Pit C = Pit A; (this was used in Lemma 2.4; cf. [3, 
Chap. 7, Sect. 1, Nos. 9, 10, Proposition 18; EGA IV, Err,,, 21.4.131). 
Thus Pit A”, = 0. Since the strictly local rings of A are factorial, so are 
the local rings of the noetherian scheme A;, hence the restriction 
map Pit A; + Pic( X x A C) is surjective [EGA IV, 21.6.111 and 
Pic(X x A C) = 0. 

It is thus enough to prove (iii). Assume first that M is a torus T, and let 

l+F+P+T-+l 

be a flasque resolution (1.3.3) of T, built as in Proposition 1.3, i.e., with P 
and F split by X’ -+ X. This resolution yields a commutative diagram 

H’(X, P) - H’(X, T) - H*(X F) 

I PI 

I 

P2 

H’(K Td - H2W, F,J 

with exact first row. Now the quasitrivial torus P is isomorphic to a finite 
product of tori R,..,,G,, for X” +X etale subcovers of X’+ X. 
Assumption (iii) together with (2.0) and (0.4.1) then implies H’(X, P)=O. 
The general assumptions of the theorem together with (2.0) and 
Theorem 2.2(ii) imply that p2 is injective. That pr is injective now follows 
from the diagram. 
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If M is an arbitrary X-group of multiplicative type, there is an exact 
sequence of X-groups of multiplicative type, 

where T is a torus and p is a finite X-group scheme, and T and ,u are split 
by X’ + X. Indeed it is enough to define p by taking for fi(X’) the torsion 
subgroup of &(X’) (cf. [SGA3, VIII, 3.11 in the diagonalizable case). This 
exact sequence induces an exact sequence of fppf sheaves on X, hence the 
following commutative diagram of exact sequences 

AX) - H’(X, T) - H’(X, M) - fox P) 

Since X is locally factorial hence normal and since p is finite over X, 0: is 
a surjective map [EGA II, 6.1.141, and is thus an isomorphism. Similarly, 
since any X-torseur under p is representable by a finite X-scheme, and X is 
normal, any rational section of such a torseur extends to a section: fl is 
injective. Since T is split by X’, we already know that PT is injective. 
Chasing through the diagram yields p;” injective. 

COROLLARY 4.2. With the same assumptions and notations as in 
Theorem 4.1, if M is a ji’asque X-torus, the restriction map 

p, : H’(X, M) -+ H’(K, MK) 

is an isomorphism in cases (i), (ii), (iii). 

This follows immediately from the above theorem and Theorem 2.2(i),. 
The same result also holds for H’(X, M) + H’( U, M) for U nonempty 
open in X. 

THEOREM 4.3. With the same assumptions and notations as in 
Theorem 4.1, the restriction map 

p*: P(X, M) + H2(K, MK) 

is injective in all cases (i), (ii), (iii). 

Proof: Let 

l-+M-+F+P+l 

be an exact sequence of X-groups of multiplicative type of type (1.3.2), i.e., 
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with F a flasque X-torus and P a quasitrivial X-torus, both split by X’ + X. 
This gives the commutative diagram of exact sequences 

H’(X, P) - H2(X, M) - H*(x, F) 

I 
PY 

I 

PZF 

H2W, MA - H2W, F,v). 

As already seen in the proof of Theorem 4.1, we have H’(X, P) = 0, and ~2” 
is injective by Theorem 2.2(ii). Hence ~2” is injective. 

Remark 4.4. For less farfetched proofs of 4.1 and 4.3, see [9]: one can 
first prove 4.1 and 4.3 and then deduce 2.2. 

5. NORM FORMS 

Letting B/A be a cover of rings, we shall use the A-group scheme 
Ri,,G, (cf. 0.4) to illustrate Theorem 4.1 when B/A is &ale and A is for 
instance regular, and to give counterexamples when these assumptions are 
weakened. 

LEMMA 5.1. Let B/A be a cover of rings. There is a natural injection 

(51.1) 

where N= N,,, which is functorial in A. In particular, when A is integral 
with field of fractions K, there is a commutative diagram with injective 
horizontal maps (here L = B oA K): 

A*IW*) - H’(Arp,r, Rb,/, Gm) 

I 
P 

I 

PI (5.1.2) 

K*INL*) - H’(Krppf> R~K,An). 

Proof: Let us show that N,, . . R,, 6, + Gm,, is a faithfully flat 
morphism of finite presentation. We may assume that B/A iso! constant 
rank n, in which case the composite map G,,, -+ R,, 6, - G,,, A is 
multiplication by II, hence finite, hence surjective. Flatness may be checked 
fibrewise [EGA IV, 11.3.111, hence is reduced to the case A is a field, 
where it is easy to prove since G,,, is then of dimension 1. We thus get an 
“exact sequence” 

1 - R&d%n- &,,Gm Nil/A ’ ~?n,, - 1 (5.1.3) 



170 COLLIOT-THkLkNE AND SANSUC 

which turns R,,G, into an fppf torseur over G,,, under R&,G, and 
defines an exact sequence of abelian fppf sheaves on X. Taking the 
cohomology sequence yields the injection (5.1 .l ). Functoriality follows 
from the fact that norm is compatible with base change. 

LEMMA 5.2. Let B/A be a cover. The A-group scheme Rh,AGm is flat of 
finite presentation. It is smooth tf and only if B/A is tamely ramified in at 
least one point of each fibre of Spec B + Spec A. It is a torus if and only tf 
B/A is &ale. 

Proof. We have already proved the first statement. Let us recall that 
Y/X = Spec B/Spec A is tamely ramified at y E Y with image x E X when the 
residue extension K( y)/~(x) is separable and the length of the artinian ring 
c”, )‘ @Cf., K(X) is prime to the characteristic of the residue field K(X). 

Smoothness may be checked Iibrewise [EGA IV, 17.5.lb], so we may 
assume A is a field. Since the tangent linear map, at the origin, of 
N: R,,, 6, + Gm,, is the trace map R,, G, + Ga,A, smoothness of the 
A-algebraic group RZA G, amounts to the non-vanishing of this trace map 
(i.e., cf. [3, Sect. 12, Proposition 61) to the existence of ye Y where 
Y + Spec A is tamely ramified. 

We already know (0.4.2 and 0.4.3) that Rh,,G,,, is a torus if B/A is &tale. 
Conversely, simply note that it is not a torus when A is a field and B is a 
nonseparable artinian algebra, finite over A. 

PROPOSITION 5.3. Let A be an integral semilocal ring whose strictly local 
rings are factorial, for instance regular. Let K be the field of fractions of A, 
let BJA be an &tale cover, let L = BOA K, i.e., the field of fractions of B if B 
is integral. If an element of A* is a norm of an element of L*, it is a norm of 
an element of B*. 

The proof immediately follows from Theorem 4.1 and Lemma 5.1. 

PROPOSITION 5.4. Let A and K be as in 5.3. Let BJA (i = l,..., n) be 
integral ttale covers with fields offractions Li, let ai (i= l,..., n) be integers, 
and set Nj = NB8,, , Zf an element of A* may be written as JJ= I N,(xyl) with 
X,E LT, it can also be written as such a product with X~E BF. 

Proof. One may assume that none of the ai is zero. The proof is then 
similar to the proof of 5.3. One applies Theorem 4.1 and Lemma 5.1 to the 
A-group of multiplicative type defined as the kernel of the map 
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{xi>i= 1,...,n H fi Ni(xi)a’. 

i= 1 

Using Theorem 4.l(ii) rather than 4.1(i) it is easy to extend the above 
two propositions. Let us simply state: 

PROPOSITION 5.5. Let B/A be an itale cover of regular integral semilocal 
rings and let L/K be the induced extension of fraction fields. Let n be a non- 
negative integer, and let g be a nonzero element of the polynomial ring 
A Ct, ,..., t,]. If an element f l A[t , ,..., t,]: (g is inverted) is a norm for the 
extension of fields L( t 1 ,..., t,)/K( t , ,..., t,), then it is a norm of an element of 

Ntt,..., &I,*. 

(Recall that if A is regular, so is Act,,..., t,].) 
When B/A is Galois, and f E ACtI,..., t,], is not necessarily a unit, a 

similar result holds; the following proposition extends results of Choii 
Lam-ReznickkRosenberg [6]. 

PROPOSITION 5.6. Let B/A and LfK be as in 5.5, and assume that B/A is 
a Galois cover with group G. Let g be as in 5.5. If f E A [t, ,..., t,], is a norm 
of an element of L(t ,,..., t,), it is a norm of an element of B[t, ,..., t,],. 

Proof: Let us denote U = Spec A[t, ,..., t,], and V = Spec B[t, ,..., t,],. 
As usual, X1 is the set of codimension 1 points of a scheme X. We shall use 
compatibilities between the norm at the function and divisor levels which 
may all be found in [EGA IV, 211. We have 

div.(f) = div,(N(h)) = N(div,,(h)) = N 
L > 

C my y 

with my E Z zero for almost all y. Now, since V/U is Galois with group G, 
the various y E V’ above a given x E U’ are transitively permuted by G; in 
particular for such y and X, there exists a positive integer rX depending only 
on x such that N(y) = r,x. Now, 

c n,x=divJf)= 
XE cl’ 

hence for each x E U’, 

n,= 
( > 

C my b 
Y-X 
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From n, > 0, we conclude pr = CYc x my 2 0, and 

%X = NPX Yx) for a fixed but arbitrary y, E I” above x. 

The assumptions of the proposition imply that V is regular and Pit I/= 0. 
Thus there exists h, E B[t, ,..., t,], with 

div dk) = px Y,. 

Upon (finite) summation, we find h, = n,, ul,p,+O h, E B[ti,..., t,], with 

div.(f)=N(div,(h,))=div.(N(h,)). 

Hence f/N(h,) is in A[t, ,..., t,],*, and by assumption it is a norm at the 
function field level. By 5.5, there exists h, E B[fi,..., t,],* such that 
f/N(h,) = N(h,). Hence f is the norm of h, h, E B[t, ,..., t,],. 

Remark 5.7. Let A be an integral noetherian semilocal ring, let K be its 
field of fractions, let B/A be a cover, and let L = BOA K. Let us first list 
cases when the natural map 

p: A*/N(B*) -+ K*/N(L*) 

is an injective map. By 5.3, this is true if 

(i) A is regular and B/A is ttale. 

The map p is also injective under the sole assumption 

(ii) B is a discrete valuation ring. 

Under this assumption, A is automatically a discrete valuation ring, and 
the statement follows from considering the commutative diagram of exact 
sequences 

l-B*- L* --+DivB-0 

IN IN IN 
l-A*- K* ----+DivA-0 

since N: Div B + Div A simply reads as multiplication by the integer 
[B: A] on Z. Finally, p is also injective under the sole assumption 

(iii) B is regular integral, and A = BG for G a finite group of 
automorphisms of B. 

In this case, A is regular [EGA IV, 15.4.21. Note that this is a quite 
natural case: it occurs for instance when B/A is a cover of semilocal regular 
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integral domains such that L/K is a Galois extension of fields with group G. 
The proof in this case is as follows. Consider the exact sequence of 
G-modules 

l-+B*-,L*+DivB-+O 

(this uses Pit B = 0). The G-module Div B is a permutation module, since 
B is regular. By Shapiro’s lemma, the Tate cohomology group 
fi- ‘(G, Div B) therefore vanishes. The cohomology sequence associated to 
the above sequence of G-modules now yields the injection 

@‘(G, B*) 4 EjO(G, L*), 

hence the result by identifying N,, with noEG 0, which may be checked at 
the level of L/K. 

EXAMPLE 5.8. Even for A and B local integral domains, the map p, and 
a fortiori the map p, (51.2) need not be injectiue under the mere 
assumption 

(iv) A is normal and B/A is &ale. 

Indeed, let A be the local ring at (0, 0,O) of the normal alline R-surface 
defined by x2 + y* +z* = x3 in the afIine space A&. Take B= A[-]. 
The element f = x - 1 E A* coincides with (y’ +z2)/x2 E K*, hence is a 
norm for L/K. But it is not a norm for B/A, since f(0, 0,O) = -1 is not a 
norm for C/R! Hence neither 4.1 nor, as is well known, 2.2(ii) holds under 
the mere assumption X normal (local). 

EXAMPLE 5.9. For A and B local integral domains, p and a fortiori pi 
(cf. 5.1.2) need not be injectioe under the mere assumption 

(v) A is regular. 

Let indeed A be the local ring at the origin of the shine line Spec R[x], 
and let B be the local ring at the double point of the cubic curve defined by 
y2 =x2(x + 1) in the affine plane Spec R[x, y]. Let Spec B-+ Spec A be the 
projection map (x, y) H x. The function f = -x - 1 is in A*. It is also in 
N(L*), since it is the norm of (v/x) EL*. But it cannot be the norm of 
gE B*, which would imply - 1 =f(O) = (g(0, O))2. 

Hence the assumption in (ii) cannot be replaced by the same assumption 
on A. This example also shows that even for X regular local, Theorem 4.1 
does not hold for an arbitrary smooth X-group scheme: in Example 5.9, 
R&,G,,, is smooth by Lemma 5.2, and of relative dimension 1. Note, 
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however, that the generic fibre (over A) of this group scheme is a torus, 
hence connected, but that the special fibre is pLz,R x R CD,,, hence is not 
connected. 

6. QUADRATIC FORMS 

This section elaborates on [ 111 and [6 3. The results, as well as 
Proposition 5.6, were announced in [6]. 

PROPOSITION 6.1 [ 11, Proposition 4.3.21. Let A be an integral semilocal 
noetherian domain whose strictly local rings are factorial, e.g., A is regular. 
Let K be the field of fractions of A, assume 2 E A*, and let f be a non- 
degenerate quadratic form over A, with rank <4. Iff is isotropic over K, it is 
also isotropic over A, i.e., it has a primitive zero in A. 

Proof. A primitive zero is a zero whose coordinates span A. Since A is 
semilocal and 2 E A *, a nondegenerate quadratic form over A, of rank n, is 
equivalent over A to a form C;= i aixf with aiE A* for all i. Also, for 
aFA*, isotropy off amounts to isotropy of af If n = 1, the statement is 
obvious. For n = 2, we may assume f =x2 - ay2 with aE A*, and the 
statement follows from the fact that A is a normal ring. For n = 3, we may 
assume f = x2 - ay2 - bz2 and exclude the trivial case when a is a square. 
Let B/A be the Ctale quadratic cover A[v/;;]/A and let L = BOA K be the 
field of fractions of B. If f is isotropic over K, the element b E A* is a norm 
of an element of L*, hence of an element of B* by 5.3, and f has a primitive 
zero of the shape (x,, y,, 1) in A. For n = 4, we may assume 
f = (x2 - ay’) - c(z2 - bt2) and exclude the trivial case when a or b (or c) is 
a square. The result then follows on applying Proposition 5.4 to the &ale 
quadratic covers B,jA = AC&]/A and B,JA = A[&]/A, with 
a, = -a, = 1: if f is isotropic over K, the element c E A* may be written as 
N,(x, )/N,(x,) with xi E L,?, hence also, according to 5.4, with xi E B,? ; from 
N,(x, ) E A* follows readily that the zero off we obtain is primitive. 

Remark 6.2. Let us detail the case n = 4 from the point of view of tori. 
Take f as above, and let us exclude the trivial cases when a or b or ab is a 
square (the last case reduces to the three variables case). Consider the &ale 
Galois (connected) covers B,/A = Al&]/A and B/A = A[&, fi]JA. 
This last cover is Galois with group (Z/Z)’ = (u, t ), with rr(,,&) = Jd and 
r(d) = &. Let T be the A-torus defined by the exact sequence 

1 - T- &,,/iGmx~ &WAG, Y G,,-+ 1 (6.2.1) 
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with v(xl, x2) = N,(x,)/N,(x,). Here is an explicit flasque resolution (1.3.3) 
for T, 

1 - &3$4~m A &,,G,x, Gn,,+ T- 1, (6.2.2) 

with z(x) = (x, N,(x)) and X(X, y) = (x0(x)/y, xr(x)/v). Via (6.2.1), c E A* 
defines an element in H’(A, T) which goes over to 0 E H’(K, T). The con- 
clusion follows from the fact that p1 : H’(A, T) + H’(K, T) is an injection, 
as may be read on (6.2.2): one uses the vanishing of Pit A and Pit B, 
together with the injectivity of Brauer groups H’(B,, Gm)q H2(L,, Gm) 

(use is made of (0.4.1)). Note that B, = A [&I, for d the discriminant off: 
The approach in [ 11, 4.3.21 is none but a computational transcription of 
the above torus-theoretic approach. 

Remark 6.3. As pointed out in [ll, 2.3.3 and 4.3.31, taking A to be the 
local ring at the origin of [W[tl,..., t,]/(t:+ ... + tt) andf=x:+ ... +xi 
for n > 5 (an example due to Craven-Rosenberg-Ware) shows that 6.1 
does not extend verbatim to rankf 2 5. For A regular, the question is open 
(cf. [ 111); results for A regular of dimension 2 have been obtained by 
Ojanguren [26], who also handled the weaker problem of isomorphy of 
forms (as opposed to isotropy) in a very general manner ([25, 241; see also 
Pardon [27, 281). 

Let us consider the question of representation of elements of a ring A, 
which we assume semilocal, integral and normal, with fraction field K, by a 
nondegenerate quadratic form f: 

If aeA* is represented by f over K, is it represented 
byf over A? (6.3.1) 

[f aE A is represented by f over K, is it represented 
byf over A? (6.3.2) 

Standard considerations [ 11, Proposition 1.23, reduce (6.3.1) to the 
isotropy question in dimension one more than that off: Hence 6.1 gives a 
positive answer to (6.3.1) for A as in 6.1 and rank f < 3. An analysis of the 
proof of 5.6 shows that at least in the case n = 0 of 5.6, the statement still 
holds for A as in 6.1. Now 5.6 yields a positive answer to (6.3.2) for such A 
when rank f < 2 (cf. [6, Theorem B]). (Even for A regular, (6.3.2) does not 
hold when rank f 24 [6, 3.53; the rank 3 case is open.) When A is a semi- 
local Dedekind domain (hence a principal ideal domain), for instance a 
discrete valuation ring, and also when A is an arbitrary valuation ring, the 
isotropy problem for nondegenerate quadratic forms of arbitrary rank has 
an easy positive answer; hence also (6.3.1); we shall now see that even 
(6.3.2), where a is not assumed to be a unit, has a positive answer. The 

481/106/1-12 
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following proposition was given an alternative proof by M. Kneser [6, 
Theorem 4.51: 

PROPOSITION 6.4. Let A be an arbitrary valuation ring, with 2 E A*, and 
let f be a nondegenerate quadratic form over A. If a E A (not necessarily a 
unit) is represented by f over the fraction field K of A, it is represented by f 
over A. 

Proof We may assume f = I:=, ai$ with a, E A* for all i. The case 
a E A* is known (see above) hence we may assume 

a$A*. (6.4.1) 

By hypothesis, there is an equality: 

at2 = f aixf (6.4.2) 

with t and all xi in A. Since A is a valuation ring, we may assume that at 
least one of the elements t, xi,..., x, (not all zero!) is in A*. If t is in A*, we 
are done. Upon renumbering the variables, we may therefore assume: 

Now let 

t$A* and x1 E A*. (6.4.3) 

x, = 
x,(1 +a;‘a)-2ar’t 

T= 
t(1 +a;‘a)-22x, 

I-a;‘a ’ 1-a;‘a . 

By (6.4.1) and (6.4.3), Xi is in A (in fact in A*) and T is in A* (this is the 
important point). Now the equality 

at2-a,x:=aT*-aa,g (6.4.4) 

implies, since T is in A*, that a is represented by f over A. This equality 
actually comes from the formal identity 

X,+~T=(x,+@t)[(l-fi)/(l+@)] 

which was used to produce X, and T (in a classical set-up, i.e., over a field, 
the same idea of letting elements of norm 1, i.e., rational points of a 
suitable torus R’G,, act is used to produce zeros of quadratic forms none 
of which components vanishes). 

Proposition 6.4 admits the following extension, which applies for 
instance to a semilocal Dedekind domain with 2 E A*, thus improving on 
[6, Theorems C and 4.11. 
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PROPOSITION 6.5. Let K be a field, and let A be the intersection in K of 
finitely many proper independent valuation rings Aj (j E J). Assume 2 E A*. 
Let f be a nondegenerate quadratic form over A. If a E A is represented by f 
over K, it is represented by f over A. 

Proof: For the basic properties of such rings, see [3, Chap. 6, Sect. 71. 

Step 1. Let v be a proper valuation on a field K. Let q be a regular 
quadratic form over K of rank 2 3, and let h be a nonzero linear form in 
the same variables. Let XE K” be a nontrivial zero of q. There exists a 
solution of q(Y) = 0 with h( Y) # 0 in every neighbourhood of X-for the 
product topology on K” and the topology defined by v on K [3, Chap. 6, 
Sect. 5). This is proved by mimicking [S, p. 62, Lemma 2.81. 

Step 2. Let vj be the valuation associated to Ai. Let q(xl,..., x,) be a 
nondegenerate isotropic quadratic form over K in n 2 3 variables. For each 
j, let Xj = (xi,,} E K” be a nontrivial zero of q. There exists a nontrivial zero 
X= {xi} of q in K” such that 

Vi, Vj, vj(x;- x,,) > 0. 

This is proved by mimicking [S, p. 89, Lemma 9.11. We use Step 1 
together with the weak approximation theorem [3, Chap. 6, Sect. 71. 

Step 3. For f of rank one, the statement of Proposition 6 is trivial. Let 
rank f > 2. We may assume f in diagonal form XI= 1 a,xf. Set 

q(t, XI ,..., x,) = at2 - i aixf. 
i=l 

According to Proposition 6.4, for each j, there is a zero (t, X1,..., X,) of q 
with coefficients in Aj and t E A,?. It then remains to apply Step 2. 

7. GOING OVER TO THE RESIDUE CLASS FIELD OF A LOCAL RING 

The aim of this and the following section is to unravel the torus-theoretic 
mechanism underlying Saltman’s papers [30] and [3 11. Extensive use is 
made of flasque tori and of their cohomological properties. Following 
Saltman and Swan [35], we then discuss the relation between the 
Grunwald-Wang theorem and the Noether problem. 
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LEMMA 7.1. Let A be a semilocal ring, let tci be the residue class fields at 
the maximal ideals of A, and let P be an invertible A-torus. The natural map 

f’(A) + n f’(ui) 

is a surjective map. 

Proof It is enough to prove the result for a quasitrivial torus, and even 
for a torus of the shape R,, G, for B/A an &ale cover. Since B is semilocal 
and B/A is finite &ale, the statement follows from the Chinese remainder 
theorem, as applied to B and its maximal ideals. 

LEMMA 7.2. Let A be a semilocal ring, and let tci be the residue class 
fields at the maximal ideals of A. Let T be an A-torus, and let 

l+F+P+T+l (7.2.1) 

be an exact sequence of A-tori, with P a quasitrivial A-torus. The following 
statements are equivalent: 

(i) T(A) maps onto the product ni T(tci); 

(ii) U(A) maps onto the product l-Ii U(tc,) for any open set U of T 
with U, # @for each i; 

(iii) there exists an open set U of T with U, # 0 for each i such that 
U(A) maps onto the product l-Ii U(tci); 

(iv) H’(A, F) maps onto the product Hi H1(tci, F,,). 

(for X an A-scheme, we denote X,, = Xx specA Spec ui, and X(K,) = X,jrci).) 

Proof We have a commutative diagram of (Ptale or fppf, cf. 0.2) 
cohomology sequences 

P(A) - T(A) - H’(A,F) - 0 

(7.2.2) 

i i i 

since H’(A, P) and H~(K~, P,,) vanish by (0.4.1), Proposition 1.4 and 
Grothendieck’s version of Hilbert’s Theorem 90. Lemma 7.1 and this 
diagram show that (i) and (iv) are equivalent. That (i) implies (ii) follows 
from the fact that any element of T(A) whose image in T(tci) (for each i) 
belongs to U(tc,) necessarily belongs to U(A). As for (ii) implies (iii), this is 
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trivial. To show that (iii) implies (iv), it is enough to prove: for each i, the 
composite map 

is surjective for any U with U, # 0. Let us drop the index i. Either IC is 
finite, in which case H’(lc, FK) = 0 since FK is a torus, or IC is infinite, which 
we now assume. The surjectivity assertion then follows from the exact 
sequence 

P(K) + T(K) + H’(K, F,) + 0 

and the remark: for CY E T(k), the inverse image of cc-’ . U under P + T is a 
nonempty open set of P, itself rc-isomorphic to an open set of an afline 
space over IC, hence this open set of P contains a K-rational point. 

EXAMPLE 7.2.1. Although Proposition 7.4 will yield many theoretical 
examples of tori T over a discrete valuation ring (A, K) such that T(A) does 
not surject onto T(K), we want to give a concrete example. Let A = QD,[l](,, 
be the localization at the prime ideal (t) of the polynomial ring in one 
variable t over the 3-adic field Qp3. Let B = A [fi, u], where u = m. 
Then B is a discrete valuation ring with uniformizing parameter t, and B/A 
is &tale Galois with group G = Z/2 x Z/2. The residue extension is the 
Galois field extension ICJIC~ = a,(&, ,/T)/O,. Let K (resp. L) denote the 
fraction field of A (resp. B). Let T be the A-torus RL,AGm (cf. Lemma 5.2). 
According to [8, Propositions 1 and 151, we can find a sequence (7.2.1) 
such that the map H’(A, F)+~?(Ic,,,, F,,) simply reads &‘(G, B*)+ 
fi- ‘(G, ~2). That T is the announced example now follows from the follow- 
ing (a) and (b) together with Lemma 7.2. 

(a) fi- ‘(G, rcg*) = Z/2. Indeed, local class field theory shows that 
&‘(G, rcg*) is dual to H3(G, H), and this last group is Z/2 by the Kiinneth 
formula. 

(b) fi-‘(G, B*) =O. First, the uniformizing parameter t yields a 
G-isomorphism of L* with B* 0 Z, hence &‘(G, B*) = I?-‘(G, L*). Now 
let F= Cl,($), so that L = F(U). One may write any element f s L* in a 
unique way as a product 

where c E F*, n E Z, and p runs through the irreducible manic polynomials 
in F[u], and p # U. This decomposition identifies the G-module L* with the 
direct sum of an infinite permutation G-module (the free abelian group on 
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the above p’s) and of the abelian semidirect product M= F* x Z, where G 
acts on F* and Z in the obvious way. Hence &‘(G, L*)=k’(G, M) by 
Shapiro’s lemma. The exact sequence 

l-+F*-+M+Z-+l 

shows that k-‘(G, M) is a quotient of fi- ‘(G, F*). But this last group is 
easily identified with { + 1) n NFIQ3 (F*), hence with {l}, since (- 1) can- 
not be written as x2 - 3y2 with x and y in Q,. 

PROPOSITION 7.3. Let A be a semilocal ring, and let ui be the residue 
class fields at the maximal ideals. Let T be an A-torus, and assume that for 
each i, either cd tci < 1, or T,, is u,-birationally a direct factor of a tci-rational 
variety, or T, is split by a metacyclic extension of tci. Then the natural map 

T(A) + n T(d 

is a surjective map, and the same statement holds for any open set U of T 
with U,, # /zr for each i. 

Proof After Proposition 7.2, it is enough to show: if 

l-+F+P-+T-+l (7.3.1) 

is aflasque resolution (1.3.3) of the torus T, then H’(K,, FJ =0 for each i 
(note this is certainly true if the cohomological dimension cd rci is at most 
one). Let us drop the index i. By Proposition 1.4, the sequence 

l+F,+P,+T,+l 

is a flasque resolution of T,. As can be read from [S] (see the following 
Proposition 7.4), T, is a direct factor of a K-rational variety if and only if 
F, is an invertible torus. If T, is split by a metacyclic extension K’ of K, 
there exists a flasque resolution of T,: 

with F, (and PI) split by K' (cf. proof of Proposition 1.3). Now the Endo- 
Miyata theorem quoted in 0.5 shows that F, is an invertible K-torus. By the 
same Proposition 1.3 (or by the above assertion), there exist quasitrivial 
K-tori P, and P, and an isomorphism of K-tori: 
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hence F, is also an invertible K-torus, and the third possibility in the 
proposition is none but a special case of the second possibility. In all cases, 
we conclude H’(K, F,) = 0. 

PROPOSITION 7.4. Let k be afield, let T be a k-torus, and let 

l-+F+P+T+l (7.4.1) 

be a flasque resolution of the torus T. The following statements are 
equivalent : 

(i) F is an invertible k-torus; 

(ii) for any field K with kc K, H’(K, FK)=O; 

(iii) the equivalent statements in Lemma 7.2 hold for any local ring 
(A, K) with kcA; 

(iv) they hold for any regular local domain (A, IC) with k c A ; 
(v) they hold for any discrete valuation ring (A, IC) with k c A ; 

(vi) there exists a k-torus T, such that T xk T, is a k-rational 
variety, i.e., k-birational to an affine space over k; 

(vii) T is a (k-birational) direct factor of a k-rational variety, i.e., 
there exists an integral k-variety Y such that T xk Y is a k-rational variety; 

(viii) T is “retract rational”, i.e., [31, Sect. 31 there exists a nonempty 
open set U of T such that the identity morphism U s U factorizes (as a 
k-morphism) through an open set of an affine space over k. 

(In (iii), (iv), (v), one uses the flasque resolution of T, gotten by pulling 
(7.4.1) back to A, via Spec A -+ Spec k.) 

Note that since any k-torus F is easily seen to be part of an exact 
sequence (7.4.1), the equivalence of (i)-(v) is a statement about flasque tori. 

/ 
Proof The implications (i) * (ii) = (iii) * (iv) * (v) and (vi) * (vii) 

are obvious. Also (viii) implies (iii): for U as in (viii), U(A) maps onto 
U(K) for any local ring (A, K) since this is certainly true for an open set of 
an afhne space. For an infinite field k, it is easy to show (vii) implies (viii) 
for an arbitrary k-variety T (using, e.g., [3 1, Sect. 33) but we shall not use 
this implication. 

Let us assume (iv). Let TG A; be a closed k-immersion of T into an 
affine space, i.e., write the affine ring k[T] of T as a quotient k[x, ,..., x,1/p 
for some polynomial ring and some prime ideal p. Let A be the regular 
local ring of A; at the generic point of T, i.e., A = k[x, ,..., xnjp. The 
residue class field of A coincides with the field of rational functions on T. 
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Let e E T(k) be the neutral element, and let OT,p be the local ring of T at e. 
Let us consider-and construct-the diagram: 

Spec O,,- T 

The lower level is clear. Each q is a torseur under F, and the vertical 
squares are Cartesian squares, i.e., pull-backs of torseurs. The torseurs 5 
are constructed as follows. First, TO -+ T is none but the torseur given by 
P -+ T in 7.4.1, and Yi and Yz are the mere pull-backs of TO. Since the 
statements in Lemma 7.2 are supposed to hold for the regular local domain 
A, the map H’(A, F) -+ H’(K, F) is surjectiue, and there exists a torseur Y3 
over Spec A whose pull-back over Spec K is Yz (we should really argue up 
to isomorphisms of torseurs, but this does not matter here). Since F is flus- 
que, the torseur Y3 extends to a torseur .Y4 over A; by Theorem 2.2(i). 
Finally, rs and Y6 are the pull-backs of rd. 

By Lemma 2.4, there exists a torseur & over Spec k under F (i.e., a prin- 
cipal homogeneous space) such that Y4 is the pull-back & x k A; of gO 
under the projection A; -+ Spec k. Hence F5=Foxk T, and 
F6 = PO x k Spec O,, . But the restrictions of Y1 and & to the field of frac- 
tions K of the regular local ring O,, are the same (namely Yz). By 
Theorem 4.1, the torseurs q and Y6 are isomorphic. The libre of Yi at e is 
trivial, since this is clearly so for & = P. Hence so is the libre of Y6, which 
as seen above is none but &: we conclude that & is the trivial torseur F 
under F over k. Now Y5 = F x k T, and the torseurs P + T and F x k T over 
T coincide at the generic point Spec K of T, hence also [SGA4, VII, 5.93 
over a nonempty open set U of T. That is, there is an isomorphism of tor- 
seurs over U under F (hence also of k-varieties): 

Px,UzFx,U. (7.4.1) 

Since P x T U is an open set of P, itself open in some alIine space, this 
shows (iv) = (vi), (iv) 3 (vii), and (iv) 3 (viii), since the identity morphism 
of U clearly factors through F x k U. 

That (vi) implies (i) is proved in [8, Proposition 6, p. 1891. The proof of 
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(vii) =s- (i) is analogous and will be left to the reader (use [8, Lemmas 10 
and 11 and Proposition 51). 

It only remains to show that (v) implies (iv), i.e., that surjectivity 
H’(A, F) -+ H’(K, F) for all discrete valuation rings (A, K) with kc A 
implies surjectivity for regular local domains (A, K) with kc A. The proof 
is by induction on the dimension of the regular local domain A. Let p be a 
height one prime ideal of A. The dimensions of the regular local rings A, 
and A/p are strictly less than the dimension of A, and the residue class field 
K, of the first is the fraction field of the second. The residue class field of 
A/p coincides with the residue class field K of A. Consider the diagram 

H’(A, F) - H’(A/p, F) 1 H’(K, F) 

* 
I 

B 
I 

H’(A,, F) P ff’(K, 9 F). 

The maps 2 and p are surjective by the induction hypothesis, and u and 
b are isomorphisms, since F is flasque (4.2). Hence the result. 

PROPOSITION 7.5. Let A be a semilocal ring, and let ICY be the residue 
class fields at the maximal ideals of A. Let A4 be an A-group of multiplicative 
type, and assume that for each i, either M, is split by a metacyclic extension 
of ICY, or cd K, < 1. Then the reduction map in fppf cohomology 

is surjective. 

Proqf: Let 

be an exact sequence of A-groups of multiplicative type of type (1.3.2), i.e., 
F is flasque and P is quasitrivial. This sequence induces a commutative 
diagram of exact sequences of fppf cohomology groups 

P(A) - H’(A, M) - H’(A,F) -0 

I I I (7.5.1) 

II P(Ki) - n fJ1(Ki, J’ftc,) - n ff’(Ki, FK,) - 0 
I I I 

since H’(A, P) and H~(K~, P,,) vanish, as seen in the proof of 7.2, whose 
arguments immediately adapt to the situation under consideration. 
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PROPOSITION 7.6. Let k be a field, and let M be a k-group of mul- 
tiplicative type. Let 

l-+M-+F-+P-+l 

be an exact sequence of type (1.3.2) over k. The following conditions are 
equivalent : 

(i) H’(A, M) + H’(K, M) is surjective for any local k-algebra (A, K); 

(ii) H’(A, M) -+ H’(tc, M) is surjective for any regular local k-algebra 

(A, ~1; 

(iii) H’(A, M) + H1(tc, M) is surjective for any discrete valuation ring 
(A,K) with kcA; 

(iv) F is an invertible k-torus; 

(v) there exists an exact sequence of k-groups of multiplicative type 

l+M+P,+F,+l 

with P, quasitrivial and F, invertible. 

Proof. For any local k-algebra (A, K), Lemma 7.1 and diagram (7.5.1) 
show that H’(A, M) -+ H’(K, M) is onto if and only if H’(A, F) + H’(K, F) 
is. The equivalence of (i), (ii), (iii), (iv) now follows from Proposition 7.4. 
Let F2 be a k-torus such that F xk F, = P, is a quasitrivial torus. To 
produce a sequence as in (v), it is enough to multiply F and P in the 
sequence of type (1.3.2) by F2, hence (iv) * (v), and the proof of the con- 
verse is similar. 

As a first application of the general results, let us show 

PROPOSITION 7.7 [31, Theorem 3.181. Let L/k be a finite Galois exten- 
sion of fields, with Galois group G. The following conditions are equivalent: 

(i) G is a metacyclic group; 

(ii) for any local k-algebra (A, K) and any Ctale cover B/A, principal 
Galois with group G, the restriction map 

Br(B/A) + Br(B@, K/K) 

is surjective; 

(iii) for any local k-algebra (A, K), the restriction map 

Br(L@, A/A) + Br(L@, K/K) 

is surjective. 
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Proof Let B/A be as in (ii). Let us first define Br(B/A): 

Br(B/A) = Ker(H*(A, G,) + H*(B, Gm)). 

Since Pit B = 0 (because B is semilocal), the spectral sequence (2.4.1) 
shows that this group is none but H*(G, B*), hence coincides with the 
similar group defined via the Azumaya-Brauer group. Let us consider the 
obvious exact sequence of A-tori: 

l-*G,,,~R,,6,~T,,,~l, (7.7.1) 

where TBIA is the quotient of the “diagonal” map. The etale cohomology 
sequence together with Pit B = 0 and (0.4.1) yields the basic isomorphism 

H’(A, TBIA)rWB/A), (7.7.2) 

and this isomorphism, just as (7.7.1), is functorial in the local ring A (and 
holds more generally for A semilocal). Now (i) => (ii) appears as a special 
case of Proposition 7.5: since T,,, is split by the etale Galois cover B/A 
with metacyclic group G, and since any subgroup of a metacyclic group 
also is metacyclic. Statement (iii) is a special case of (ii). Assume (iii), hence 
(7.7.2) assume that H’(A, TLIL) + #(K, TLIk) is a surjective map for all 
local k-algebras (A, K). We may now apply Proposition 7.6, or rather its 
proof, which shows that there exists an exact sequence of k-tori split by L/k 

(7.7.3) 

with P, quasitrivial and F, invertible. Let us now go over to character 
groups, i.e., torsion-free G-modules (0.2). Dualizing (7.7.1) resp. (7.7.3) 
yields: 

0-I,-Z[G]-4rZ-0, 

O-F,- PI--+I,-0, 

(7.7.4) 

(7.7.5) 

where E is the augmentation map, P, is a permutation module and F, an 
invertible module. The dual under A H A0 = Hom(A, Z) (0.5) of ZG is J,, 
as defined in (0.4.2). But the dual under A H A0 of (7.7.5) is a flasque 
resolution of J, 

with e invertible, and Endo and Miyata have shown [ 15, Theorem 1.5; 8, 
Proposition 21 that such a resolution exists if and only if G is a metacyclic 
group. 
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Remark 7.8. (a) The main point in the above proof is the isomorphism 
(7.7.2), which reduces a problem which looked like a problem on Brauer 
groups to a problem on the H’-cohomology of a torus. For another 
analogous example, cf. [7, Sect. 2, Example a]. 

(b) There are various ways in which to conduct the rest of the proof: 
one may indeed give other equivalent conditions in 7.6 and 7.4, in terms of 
the other exact sequences in Proposition 1.3 (those which involve coflasque 
tori). This is left to the reader. 

Proposition 7.7 was devoted to the lifting of crossed products with a 
given group. The second application of the general results will be to the 
lifting of abelian coverings, as studied in [30] and [31]. Let C be a finite 
abelian group. It defines a constant group scheme C, over any scheme X, 
and H’(X, C) = H’(Xrppf, C,)= H’(X,,, C,) (recall 2.0: C, is clearly 
smooth) classifies the etale covers of X which are principal Galois under 
C,, in short the abelian Ctale extensions of X with group C. If the exponent 
of C is prime to the residue characteristics of X, the group C, is of mul- 
tiplicative type (and smooth), but it need not be split as an X-group of 
multiplicative type: this is where the roots of unity come in. 

The following result, which was also pointed out to us by A. S. 
Merkur’ev, was proved in [30] for k-algebras (k a field): 

PROPOSITION 7.9. Let A he a semilocal ring, and let C be a finite abelian 
group whose exponent is prime to the characteristics of the residue class 
fields ki of A at its maximal ideals. Let 2’= e*(C) be the highest power of 2 
which divides the exponent of C. For each i, assume that either cd ~~ < 1, or 
that the field tc&) obtained by adjoining the 2’th roots of unity to tci is a 
cyclic extension of ki. Then the restriction map 

H’(A, C) + n HL(tci, C) 

is surjective. 

Proof. Since H’( A, . ) is additive, we may assume C = Z/p” for p prime. 
For arbitrary p and i, the extension rci(pLpn)/rci splits the rci-group of mul- 
tiplicative type (b/p”),. Either cd ICY < 1 or this extension is cyclic: this is 
clear for p odd, and has been assumed for p = 2. The statement now 
appears as a special case of Proposition 7.5. 

Let k be a field, k a separable closure of k, and g = Gal(k/k). Let C be a 
finite abelian group of order prime to char k, let 

Xc= Co(R) = Hom,(C, k*) = Hom,(C, ,uL,(k)) 
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be the character group of C, viewed as a g-module. Let k,-/k be the smallest 
(finite) cyclotomic subextension of k/k such that Gal(k/k,) acts trivially on 
X,, and let G = Gal(k,/k). View Xc as a G-module. There is a standard 
resolution of X, of type (0.6.1): 

o-+$,+P,+x,-,o. (7.10.1) 

One simply takes p, to be Z[X,], the free abelian group on the elements 
of Xc, and the map Z[X,] + X, sends C, a,X to n, x0x. The G-module 
tc- is a permutation module, and for any subgroup Hc G, the map 
Pp -+ XF is clearly surjective, hence the kernel Qc is a coflasque G-module. 
As explained by Voskresenskii ([36, Theorem 11, see also Kervaire [21, 
Sect. 1 ] ), the dual exact sequence of k-groups of multiplicative type 

l+C+P,+Q,+l (7.10.2) 

defines a k-torus Q, whose function field is none but the field of invariants 
of the obvious action of C on k(x,),,,: this is Voskresenskii’s torus- 
theoretic approach to the Noether problem for abelian groups. Applying 
the exact sequence of Ext,( ., Z) to (7.10.1) yields an exact sequence of 
G-modules (use Ext&(Xc, Z) = Hom,(X,., Q/Z) z X,. (noncanonically) as 
G-modules), 

0+&+&+x,+0 (7.10.3) 

with l?, = PO, permutation and E, = 00, flasque, i.e., a sequence of type 
(0.6.2). 

PROPOSITION 7.10. With notations as above, the following conditions are 
equivalent : 

(i) the restriction map H’(A, C) + H’(K, C) is surjective for any 
local k-algebra (A, K); 

(ii) it is surjective for any discrete valuation ring (A, K) with kc A; 

(iii) the k-torus Q, is invertible; 

(iv) the k-torus Q, is a direct factor of a k-rational variety (i.e., 
Q, xk Y is k-birational to A? for some m and some k-variety Y). 

In particular, if the universal lifting property (i) fails, the Noether 
problem has a negative answer for k and C. 

(This last fact is Saltman’s basic remark in [30].) 

Prooj: The exact sequence of k-groups of multiplicative type dual to 
(7.10.3) is of type (1.3.2). It now follows from Proposition 7.6 that (i) or 
(ii) are equivalent to P invertible, hence Qc invertible (since P, = &‘$), i.e., 
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(iii). If Qc satisfies (iv), P roposition 7.4 shows that there exists an exact 
sequence of G-modules 

o+&&LP+o 

with p permutation and fi invertible. Since &. is coflasque, this implies 
that the sequence splits, hence Q,@ fl= p and Qc is invertible. 

Swan [34] and Voskresenskii (see [37, Chap. VII] found the first 
negative answer to the Noether problem: 

For k = Q and C= Z/n with n = 47, the k-torus Q,, = Qz,, is not a 
k-rational variety. It was later shown by Endo-Miyata [ 141, Voskresenskii 
[36], and Lenstra [22] that k = Q and n = 8 also yield a negative answer. 
For k arbitrary and n = 2”, it is known [36, Sect. 6; 37, Chap. VII, 
Sect. 41 that Q, is k-birational to an afline space if and only if k(p*,)/k is 
cyclic, and that if this is not the case, then Qn is not even a direct factor of 
a k-rational variety. Another approach to this last fact is given in [31]. It 
can also be proved as follows. For i > 0 an integer, and M a G-module, let 

II.I:JG, M) = Ker H’(G, M) -+ n H’( (g), M) . 
RfG 

One easily checks III,2,(G, P) = 0 for an arbitrary permutation G-module P 
[33, Sect. 11. If Q,, is a direct factor of a k-rational variety, then as seen 
above, Q, and f,, are invertible G-modules. From (7.10.3) we conclude 

mk(G, Pzm) = 0, (7.10.4) 

with G = Gal(k(pl,,)/k). Assume that G is not cyclic. Then G c’p 
Aut(/+) = (Z/2”)*? Z/2x Z/2 mp2 is generated by two elements s and t, 
with q(s) = -1 and q(t) = 5’. Any cyclic subgroup of G which contains s 
coincides with (3). If H c G is a cyclic subgroup different from (s), 
Voskresenskii shows by direct computation [36, Sect. 6; 37, Chap. VII, 
Sect. 41 H’(H, p2-) = 0. Hence IIIf,(G, p2”,) = Ker[H’(G, pzrn) -+ 
H’( (s), P~“~)] = H’(G/(s), nf,), and pim = { f 1 }, hence IIIf,,(G, pzm) = 
Hom(G/(s), f 1) = Z/2 # 0, contradicting (7.10.4). 

Let k be a number field. As Hilbert first showed, if K = k(t, ,..., t,) is a 
purely transcendental extension of k, and if there exists a finite Galois 
extension of fields L/K with group G, then there exists a Galois extension 
of k with group G-and there are many ways in which one may specialize 
the variables ti in k so that the specialized extension still makes sense, and 
is Galois with group G (such values of the variables are Zariski-dense in 
A;). A positive answer to Emmy Noether’s question: If G is a finite group, 
is the field of invariants of k(x,),, G under the obvious action of G purely 
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transcendental over k? would have implied the existence of a field exten- 
sion of k, Galois with group G. 

On the occasion of Emmy Noether’s centenary, there has been a number 
of papers devoted to her work and problems (e.g., [35]). The following 
remarks seem to us relevant. 

Remark 7.11. Although the Noether problem has a negative answer for 
abelian G = C, it is well known that there are field extensions of a number 
field k which are Galois with group C, and this may be proved with the 
Hilbert approach. Let 

l+C+F,+R,+l (7.11.1) 

be the exact sequence of k-groups of multiplicative type dual to (7.10.3) (or 
to any resolution of X, of type (0.6.2)). The map Fc + R, is an etale cover 
of k-tori, Galois with group C, hence the generic fibre of this morphism 
defines a Galois extension of function fields k(F,)/k(R,), Galois with 
group C. Since R, is a quasitrivial torus, the function field k(R,) is purely 
transcendental over k, and Hilbert’s approach applies (this proof works for 
any Hilbertian field k). 

Remark 7.12. Had we tried to apply a similar argument to 

l+C+P,+Qc-l, (7.10.2) 

we would have run into the problem that Q, need not be a k-rational 
variety (= k-birational to some AT). When Q, is a direct factor of a 
k-rational variety (say C= Z/47), this can easily be obviated since Hilbert’s 
argument extends in a straightforward manner for such k-varieties, but as 
seen above Q, need not be a direct factor of a k-rational variety. It is all 
the more striking that Hilbert’s approach can be extended to this case: 
simply apply the following Corollary 7.14 to the k-torus Qc. 

Let V/k be a geometrically integral variety over a Hilbertian field k. We 
shall say that V/k is of Hilbert type if the following statement holds: 

(H) If L/k(V) is a finite extension field of the field k(V) of rational 
functions of V, Galois with group G, the set of points of V(k) at which the 
specialized extension makes sense and is a Galois extension of k with group 
G is Zariski-dense in V. 

Mike Fried tells us that the following proposition is implicit in the work 
of Uchida: 

PROPOSITION 7.13. Let k be a Hilbertian field, and let f: W + V be a 
dominant k-morphism of geometrically integral k-varieties. Assume that the 
generic fibre off is geometrically integral, i.e., that the extension of function 
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fields k( W)/k( V) is separable (e.g., char k = 0) and that k(V) is algebraically 
closed in k(W). Jf W is of Hilbert type, so is V. 

Proof If L/k(V) is a Galois extension of fields with group G, so is 
LOkCVj k( W)/k( W). Shrinking V, we may assume that L/k(V) is the 
generic fibre of an Ctale Galois cover VI/V with group G with V, integral 
and k( V,) = L. Since shrinking W clearly does not modify (H) for W, the 
set U c W(k) where the specialized extension of V, x k WJ W is a field exten- 
sion with group G is Zariski-dense in W, and f (U) c V(k) is Zariski-dense 
in V and has the same property for VJV. 

COROLLARY 7.14. Any k-torus T over a Hilbertian field k is of Hilbert 

we. 

Proof Any k-torus T may be included in an exact sequence of k-tori: 

l+T,-tP+T+l (7.14.1) 

(use a surjection of a permutation module onto p, cf. also (1.3.3)) with P a 
quasitrivial torus. Since P is quasitrivial, it is a k-rational variety, hence 
satisfies (H) by Hilbert’s theorem, and since T, is connected and smooth 
over k, the extension k(P)/k(T) satisfies the assumptions of the previous 
proposition. Hence T is of Hilbert type. 

COROLLARY 7.15. Any connected reductive k-algebraic group G over a 
Hilbertian field k is of Hilbert type. 

Proof For GJk as above, it is known [SGA3, XIV, 6.51 that the 
function field k(G) coincides with the function field of a K-torus T, for K a 
purely transcendental extension of k (K is the function field of the variety of 
maximal tori of G). Let us write a sequence (7.14.1) for T over K. The field 
K(P) is purely transcendental over K, hence over k, and the extension 
K( P)/K( T) = K( P)/k(G) satisfies the assumptions of Proposition 7.13. 
Hence G is of Hilbert type. 

It would certainly be of interest to discuss the existence of k-unirational 
varieties which are not of Hilbert type. 

8. GOING OVER TO THE COMPLETION OF A DISCRETELY VALUED FIELD 

This section closely parallels Section 7. Many of its results could be 
extended to arbitrary real valuations. If (A, K) is a discrete valuation ring 
with field of fractions K and residue class field K, we denote by 2 (resp. &) 
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the completion of A (resp. K). Recall [GB III, 11.71 that for any smooth 
A-group scheme M there is a natural Hensel isomorphism: 

PROPOSITION 8.1. (i) Let TfA be a torus over a discrete valuation ring A. 
Then 

T(a) T(K) = T(K). 

(ii) For T/A as in (i), T(K) is dense in T(K) if any of the following 
conditions hold: T, is split by a metacyclic extension of K, or cd K 6 1, or T, 
is tc-birationally a direct factor of a k-rational variety. 

(iii) Let T/K be a torus over a discretely valued field K. If TR is split 
by a metacyclic extension of K, or if Tk is K-birationally a direct factor of a 
K-rational variety, T(K) is dense in T(K). 

(iv) Let T/k be a torus over a field k. If f or any discrete valuation ring 
A with k c A, the group T(K) is dense in T(K), then there exists a k-torus T, 
such that T xk T, is a k-rational variety. 

Thus the k-tori which “universally” satisfy weak approximation are the 
obvious ones. 

Proof Consider a flasque resolution of the A-torus T: 

l+F+P+T+l. 

It induces a commutative diagram of exact sequences: 

(8.1.1) 

P(A) - T(A) - H’(& F) - 0 

I I I 
(8.1.2) 

pm 
1 

A T(K)- H’(k, F) - 0. 

Since FA is flasque over the discrete valuation ring A, the map H’(A, F) + 
H’($ F) is surjective by Theorem 2.2(i) and the above diagram then gives 
T(K) = T(A). z(P(K)). But P, is a K-rational variety, hence P(K) is dense 
in P(K). Since P(A) is an open subgroup of P(K), this gives 
P(K) = P(A) * P(K), hence (i) on combining the last two equalities. 

Let us consider (ii). The flasque resolution (8.1-l) induces a similar 
resolution of T, over K (1.4). In all the cases considered in (ii), we have 
H~(K, FK) = 0. This is clear if cd K < 1 and was proved in 7.3 (or rather its 
proof) and 7.4 for the other cases. By (8.0) we conclude H’(A, F) = 0, and 
the first line of (8.1.2) now implies that P(A) surjects onto T(A). The result 
now follows from (i) and the density of P(K) in P(K). 

481/106,1-13 
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As for (iii), if we take a flasque resolution (8.1.1) of T over K, it induces 
a flasque resolution of TR over K. Just as above, the assumptions imply 
H’(K, F) = 0, hence P(K) surjects onto T(k) and we conclude using the 
density of P(K) in Z’(K). 

Let T/k and (A, rc) be as in (iv). The residue class field of A is IC. The 
natural map T(a) + T(K) is surjective by Hensel’s lemma, and the inverse 
image of any element of T(K) is open in T(a), hence in T(k). (This is clear 
for a split torus, cf. [3, Chap. 6, Sect. 51, can then be proved for a quasi- 
trivial torus, and then for an arbitrary torus by using a sequence as (8.1.1).) 
Since T(K) is dense in T(k), we conclude that the map T(A) -+ T(x) is sur- 
jective, whence (iv) by Proposition 7.4. 

EXAMPLE 8.1.1. The A-torus of Example 7.2.1 had a flasque resolution 
with H’(K, F) = 0 and H'(K, F) # 0, hence H’(K, F) # 0 by arguments used 
above. Since rr(p(k)) is open in T(R) by the implicit function theorem, the 
exact cohomology sequences associated to (8.1.1) over K and K show that 
T(K) is not dense in T(R). 

Remark 8.2. Result 8.1(i) is given a different proof by Nisnevich in 
[23], where he also extends the result to an arbitrary reductive A-group 
scheme G. In the same Note, this extended result is used in a crucial way to 
prove the analogue of 4.1 for G/A when A is a discrete valuation ring. 

Remark 8.3. Let A be a discrete valuation ring with finite residue class 
field K, and with fraction field K. Let T be a K-torus (not necessarily an 
A-torus). Abuse notations and write T(a) for the maximal compact sub- 
group of T(g). Bruhat and Tits have asked whether statement 8.1(i) still 
holds. Using a flasque resolution of T as in (8.1.1), one checks that A(T), 
the quotient of T(k) by the closure of T(K), coincides with the cokernel of 
the map H’(K, F) + H’(K, F) (this last group is finite): see [S, 
Proposition 18, p. 2191. Hence the above question has a positive answer if 
the composite map T(a) + T(R) + H’(K, F) is surjective. Let L/K be a 
finite Galois extension which splits T (which may be assumed ramified, 
since otherwise T/K extends to an A-torus), let B be the integral closure of 
A in L, let fi=B@, A and L=L@,k, and let G=Gal(L/K). Then 
T(a) = Horn&f, fi*) and T(R) = Hom,( f, 2*). Using a flasque resolution 
of T which splits over L, we get the commutative diagram of exact sequen- 
ces: 

T(j) - Ext&+, B*) - Ext;(p., #*) 

I I 
T(g) - Ext#, E*) (=I?(& F)). 
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The right vertical map is surjective, because L*/b* is a permutation 
module, hence Extk(F, E*/B*) = 0. We conclude that the above question 
has a positive answer if P may be taken of the shape Z [ G] i for some i. This 
does not always happen, but in the usual counterexample for weak 
approximation, namely T = Ri,k G, for L/K a Galois extension, this is the 
case, cf. [S, Proposition 11. Hence a positive answer to the Bruhat-Tits 
question for such rs.. 

PROPOSITION 8.4. (i) Let (A, tc) be a discrete valuation ring, and let M 
be an A-group of multiplicative type. If M, is split by a metacyclic extension 
of K, or $cd K < 1, the natural map H’(K, M) + H’(K, M) is surjective. 

(ii) Let K be a discretely valuedfield, and let M be a K-group of mul- 
tiplicative type. If MR is split by a metacyclic extension of K, the map 
H’(K, M) + H’(K, M) is surjective. 

(iii) Let k be field and let M be a k-group of multiplicative type. 
Assume that for each discrete valuation ring A with kc A, the natural map 
H’( K, M) + H’(K, M) is surjective. Then for any exact sequence of k-groups 
of multiplicative type of one of the following types 

l+M+P+Q+l (1.3.1) 

l-+M+F+P+l (1.3.2) 

the k-tori Q and Fare invertible. In particular there exist such sequences with 
Q and F invertible. 

(iv) Conversely, tf there exist such sequences with either Q or F inver- 
tible, then H’(K, M) -+ H’(K, M) is surjective for any discretely valued field 
K with kc K. 

Proof Let us consider an exact sequence of type (1.3.2): 

I-+M-+F-+P+l 

over A in case (i) and over K in case (ii). In both cases, this sequence 
induces a commutative diagram of exact sequences 

P(K) - H’W, W 

I I 
F(K) - P(K) - H’(K, M) - H’(I?, F). 

As in the proof of (ii) and (iii) in Proposition 8.1, the assumptions imply 
H’(K, F) =O. Since the image of F(K) in P(K) is open by the implicit 
function theorem, and since P(K) is dense in P(K) because P is quasitrivial, 

481/106!1-13’ 
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the composite map P(K) -+ P(R) -+ H’($ M) is surjective, hence also 
H’(K, M) -+ H’(& M). 

As for (iii), let us consider an exact sequence of type (1.3.1) for a change 
(cf. Remark 7.8(b)). For A as in (iii), it induces a commutative diagram of 
exact sequences 

P(K) - Q(K) - H’(K, M) - 0 

1 1 1 
P(R) - Q(R) - H'($ M). 

From the surjection H’(K, M) -+ I?(&, M) and the density of P(K) in 
P(k), we conclude with the above diagram that Q(K) is dense in Q(g). We 
may now apply 8.l(iv) to Q: there exists a k-torus Ql such that Q xk Qr is 
k-birational to an affine space. By 7.4, (vi)=(i), this implies the existence 
of an exact sequence of type (0.6.3): 

with P permutation and P invertible. Since Q is coflasque, this sequence 
splits, hence Q is invertible. As in 7.6(v), this implies the existence of an 
exact sequence of type (1.3.2) with F invertible, and (iii) now follows from 
the “uniqueness” of such sequences (cf. 1.3). 

As we have just seen, the existence of (1.3.1) with Q invertible amounts 
to the existence of (1.3.2) with F invertible, and any such sequences then 
have Q and F invertible, hence in particular H’(k, I;) = 0. The proof of (iv) 
is now identical with the proof of (ii). 

We now recover Saltman’s approach [30, 311 to the Grunwald-Wang 
theorem. Let C be a finite abelian group, let e be its exponent, and let 
e,(C) = 2’ be the highest power of 2 which divides e. 

COROLLARY 8.5. (i) Let (A, K) be a discrete valuation ring, let K be its 
jiaction field and I? be the completion of K. The natural map 

H’(K, C) + H’(& C) 

is surjective, and abelian extensions of I? with group C are approximable, in 
any of the following cases: 

(a) the characteristic of K is prime to e, and Z&,)/R is cyclic; 

(b) the characteristic of K is prime to e, and either cd K 6 1, or 
K(p*,)/K is cyclic. 
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(ii) Let k be afield f h o c aracteristic prime to e. Assume that for any 
discrete valuation ring A with k c A, the map H’(K, C) + H’($ C) is surjec- 
tive. Then the k-torus Q, in 7.10 is invertible, in particular it is a direct fac- 
tor of a k-rational variety. Conversely, if this last property of Q, holds, then 
H’(K, C) -+ H’(K, C) is surjective for any discretely valued field K with 
k c K. 

Proof: The conditions under which C, or C, define a group of mul- 
tiplicative type have been discussed in the preliminaries to 7.9. Part (i) 
immediately follows from 8.4(i) and (ii) (cf. the proof of 7.9). The direct 
assertion in (ii) follows from 8.4(iii) and (7.10.2). The converse property is 
a special case of 8.4(iv). 

As pointed out by Saltman [30], taking k = Q and C = Z/8 then trans- 
forms Wang’s counterexample to Grunwald’s theorem into a negative 
answer to Noether’s problem. 

9. ON THE CENTRE OF THE RING OF GENERIC MATRICES 

When studying the centre of the ring of p x p generic matrices for p 
prime, we shall use the following proposition. 

PROPOSITION 9.1. Let K/k be a separable extension of fields of prime 
degree p, and let T= R&G,,, be the k-torus of norm 1 elements for K/k. 
There exists a k-torus T, such that T xk T, is a k-rational variety. 

Proof: Step 1. If K/k is Galois, hence cyclic, the k-torus R&G, is 
k-isomorphic to R,, G,JS,,,, which is clearly k-rational [37, 4.81. 

Step 2. In the general case, there is a diagram of field extensions 

L 

m 

i\ 

P 

K M 

\/ 
k 

where L/k is the Galois closure of K/k, and M is the fixed field of a chosen 
Sylow p-subgroup G, of G = Gal(L/k). Since G is a subgroup of the sym- 
metric group 6,,, we have G, N E/p and the degree m = [L : K] = [M: k] 
is prime to p. 



196 COLLIOT-THkLI?NE AND SANSUC 

Step 3. If K/k and M/k are two extensions of coprime degrees p, m, 
and a, b E Z are such that up + bm = 1, and T is a k-torus, composing the 
morphisms of k-tori : 

where i,, and iMlk are the diagonal maps and the second map sends (x, y) 
to (N&x))~. (N,,,,k( JJ))~, yields the identity map on T; cf. 0.4 (it is easy to 
give a direct proof by going over to G-modules). In particular, the k-torus 
T is a direct factor, as a k-torus, of the middle torus. 

Step 4. Let k’/k be a finite separable extension of fields, and let X be a 
k’-rational k’-variety. Then R,.,,X is a k-rational variety: indeed R,, com- 
mutes with open immersions, and Rkslk(A;,) z A;“’ as k-varieties, for 
m = [k’: k]. 

Step 5. For T as in 9.1 and L, M as in Step 2, the M-torus T, is none 
but R’ L,MG,,, (0.4 or direct check) hence is an M-rational variety according 
to Step 1. 

Step 6. Recall (0.4.2) that the G-module f may be defined by the exact 
sequence of G-modules 

0-z NG’H b Z[G/H] - f’- 0, 

where H = Gal(L/K). Projecting Z[G/H] onto Z. 1,. H defines an 
H-retraction of NGIH, hence the sequence splits as a sequence of 
H-modules. This gives a K-isomorphism of K-tori: 

and this last K-variety is clearly K-rational. 
Step 7. From Step 3 there exists a k-torus T,, and a k-isomorphism of 

k-tori 

hence also 

and Steps 4, 5, and 6 show that the right-hand-side k-torus is k-rational. 

Remark 9.2. Here is some help for the algebraically inclined reader. If 
L/k is a finite Galois splitting field of a k-torus T, and if Elk is a subexten- 
sion, and G= Gal(L/k) and H = Gal(L/E), the character group of the 
k-torus REIk( TE) is the G-module Z[G] OrCH, f, where ? is viewed as an 
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H-module, and the action of G is by left multiplication on Z[G]. There is a 
G-isomorphism 

gQm-gQgm, 

the left G-module structure on Z[G/H) Or ri being given by g(x@ m) = 
gx 0 gm. 

Remark 9.3. The conclusion of 9.1 is equivalent to: for any flasque 
resolution (0.6.3) of f, i.e., 0 + p -+ P + E + 0, the module P is invertible. 
As a first consequence, T(k’)/R = H’(k’, F) =0 for any overtield k’ of k 
(cf. Sect. 3). As a second consequence, if k is a number field, and k’/k a 
finite extension, Tks satisfies weak approximation and principal 
homogeneous spaces under Tks satisfy the Hasse principle. This follows 
from the exact sequence 

(Voskresenskii [37, 6.381; [S, Proposition 191). In particular, if an element 
of k is everywhere locally a norm for K/k, it is a norm for K/k; this last fact 
has already been noticed by various authors, and lead us to 
Proposition 9.1. Note that T in 9.1 need not be stably k-rational [S, R4, 
p. 186 and bottom of p. 2241. 

Let n 3 2 and r 2 2 be natural integers, and let k be an arbitrary field. We 
refer to [29] and [17] for the definition of the generic division ring 
UD(k, n, r) of r generic n x n matrices over k. Let Z,(k, r) = Z,(r) denote its 
centre. A basic question is whether the field Z,(r) is purely transcendental 
over k. Procesi has shown that Z,(r + 1) is purely transcendental over 
Z,(r). Hence, to a great extent, the crucial case is Z,(2), on which we shall 
now concentrate. Extending work of Procesi, Formanek [ 171 gave a 
description of Z,,(2) as the function field of a torus over a purely transcen- 
dental extension of k. Let us recall this description. 

Denote G=6, and H=6,-,. Let E: H[G/H] -+ Z be the augmentation 
map gH H 1. Let ZGIH be its kernel. The G-homomorphism 

yl: Z[G/Hx G/H] -+ H[G/H] 

defined on generators by 

WA g’W H gH-- g’H 

has image equal to ZGIH. Let A be the kernel of q: we have the exact 
sequence of finitely generated Z-free G-modules: 

O-A- Z[G/HxG/H] ‘1 ZGIH - 0. (9.2.1) 
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Let us denote by k(R) the function field of the group algebra (over k) of a 
finitely generated torsion-free abelian group R. Consider the diagram of 
field extensions: 

L=K(A)=k(Z[G/H]@A) 

,k=k(Z[G/H]). 

F=KH 

KG= E / 

I 

(9.2.2) 

Let us identify G/H with {I,..., n} equipped with the natural action of G 
(i.e., identify H= 6,_, with the isotropy subgroup of G = 6, at 1). Then 
K= k(t ,,..., t,) for independent variables ti, and E is the purely transcen- 
dental field k(~~,..., on) for a, the elementary symmetric functions on the 
t,‘s. Now G = Gal(K/E), and LG is the function field of the E-torus T, split 
by K, whose G-module of characters is A. Note dim,T= rank,A = 
n* -n + 1. We have the important: 

PROPOSITION 9.3 (Formanek [ 171). The centre Z,(2) of the generic 
division algebra UD(k, n, 2) coincides with the field LG, i.e., with the function 
field of the E-t orus T, = T whose G-module of characters is A. 

We shall need the following notations and easy lemma from [S, Sect. 11. 
For A~po, we denote by p(A) (resp. s(A)) the class, up to permutation 
modules of F3 (resp. Q,) in a resolution (0.6.3) (resp. (0.6.1)). 

LEMMA 9.4. (i) For AE 6/)G, s(A’)= [p(A)]‘; 

(ii) ifO-+P+A-tB-,Oisanexactsequencein~G,andPisaper- 
mutation module, then s(A) = s(B); 

(iii) for a fi’asque G-module, F invertible o s(F) invertible (oF= 

-s(F)). 

As for tori, we shall use 

PROPOSITION 9.5. Let KJE be a finite extension of fields, Galois with 
group G. Let T he an E-torus which is split by K, and let T’E -rz?, be its 
character group. Then : 
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(i) The following conditions are equivalent: 

(a) p(p) is invertible; 

(b) there exists an E-torus T’ such that T x E T’ is an E-rational 
variety; 

(c) there exists an E-variety Y with T x E Y an E-rational variety. 

(ii) Assume char E =O. Let X be a smooth E-compactification of T. 
Then : 

Br X/Br E = H’(G, p( ?)) 

Proof. For (i), see 7.4. In (ii), Br X denotes the &tale cohomological 
Brauer group of X, but one easily checks that for such an X it is the same 
as the Azumaya-Brauer group (use Br(Xx E E) = 0). It was Voskresenskii’s 
insight (cf. [37] or [8, Proposition 61) that p(f) = [Pit X,]. Standard 
arguments (see [S, Sect. 73) then yield the first equality in (ii). As for the 
second, which seems to appear for the first time here (but see [33, 
Proposition 9.81) simply use a flasque resolution 

of ?, and use H’(G, P) = 0 and IUi(G, P) = 0 for any permutation module 
P together with H’((g), F)-k’((g), F)=O (since Fis flasque). 

COROLLARY 9.6. Let T be the E-torus of Proposition 9.3, assume 
char E = 0, and let X be a smooth E-compactification of T. Then 

Br X= Br E. 

Proof Let gE G = 6, be the cyclic permutation (l,..., n). Taking the 
G-cohomology and the (g)-cohomology of 0 + ZGIH + Z[G/H] + Z --f 0 
gives the commutative diagram of exact sequences 

z . NW - Z - Z/n = H’(G, IGIH) - 0 

II II II 1 
77 ’ NG,H - z- W=H’((g), Zc,H)- 0 

which shows IIIk(G, ZGIH) = 0. Using H’(G, P) = 0 and LUi(G, P) = 0 for 
the permutation module P = Z[G/H x G/H], we conclude IIIi(G, A) = 0 
from (9.2.1), hence the result by 9.5(ii) (since T(E), hence X(E), is not 
empty, Br E injects into Br X). 
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In characteristic zero, the previous results now enable us to recover the 
main result of Saltman’s paper [32]: 

THEOREM 9.7. Let Y/k be a smooth proper model of the function field 
Z,,(r), where Z,(r) is the centre of the generic division ring UD(k, n, r) over a 
field k of characteristic zero. Then the Brauer group of Y is trivial, i.e., 
Br Y=Brk. 

Proof: Since Z,(r + 1) is purely transcendental over Z,(r) by Procesi’s 
result, the birational invariance of the Brauer group [GB III, 7.43 and its 
triviality over a projective space (or even, since we are in characteristic 
zero, over an affrne space) reduce the problem to r = 2. Let T/E be as in 
9.3, and let X/E be a smooth E-compactification of T. Recall that E/k is 
purely transcendental, i.e., is the function field of 04;. By Hironaka’s 
theorem, there exists a smooth proper model Y/k of Z,,(2) = E(T), equip- 
ped with a proper k-morphism p2: Y -+ P;, and such that X/E is the 
generic fibre of p2: 

x “Y 

p’i p21 
Spec E 12 uy. 

(9.7.1) 

Let s, : Spec E + X be a section of p1 (e.g., the section given by the neutral 
element in T(E) c X(E)). Since p; is smooth, hence regular in codimen- 
sion 1, and since pz is a proper morphism, si extends to a k-morphism 
s2 : U + Y with U an open set of Y which contains all codimension 1 points 
of Pi: there is a commutative diagram 

X&Y 

(9.7.2) 

i2 

Since U contains all codimension 1 points of the smooth scheme Pi, the 
purity theorem [GB III, 6.11 asserts that it : Br [FD; + Br U is an 
isomorphism. Let GI be in Br Y. We have the chain of equalities: 

i:(a) = p:s:il*(cr) because Br X= Br E (9.6) 

= p: i:s:(ol) by (9.7.2) 

=pTi:i,*(/I) for some /I E Br P; by purity 

= p:iW) by (9.7.2) 

= il* PW) by (9.7.1). 
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Now since Y/k is smooth, hence Y regular, if is injective (indeed Br Y 
injects into Br k( Y) = Br E(X), see [GB II, Sect. l] or 2.2(ii)). Hence 
CI = p;(p) for PE Br P’;: and this last group is none but Br k. Since 
s2( U(k)) c Y(k) is not empty, we conclude Br Y = Br k for the specific Y 
used in the proof. The conclusion for an arbitrary smooth proper model of 
Z,(2) now follows from the birational invariance of the Brauer group, 
already mentioned above. 

Remark 9.8. The characteristic zero hypothesis is used in many places 
in the proof of 9.7. There is nevertheless some scope for extending this 
proof in arbitrary characteristic, and showing, as Saltman does [32], that 
the “unramilied” Brauer group of Z,,(r) is trivial, or at least that the 
theorem holds up to p-torsion, for p=char k. Indeed, smooth compac- 
tilications of tori exist in arbitrary characteristic [4] and Br P; = Br k over 
an arbitrary field k (cf. [32]; the crucial case is n = 1, and follows from 
[GB III, 5.83). 

Remark 9.9. Theorem 9.7 shows that one of the suggested approaches 
[29] to the would-be non-k-rationality of Y, i.e., the would-be nonpurity of 
Z,(r), completely fails. Subtler k-birational invariants than the Brauer 
group are needed. For n= 2, Procesi showed that Z,(2) (hence Z,(r)) is 
purely transcendental over k. This easily follows from 9.3, since the E-torus 
T= T? is then split by the quadratic extension K/E, and the structure of 
torsion-free finitely generated H/2-modules shows that any such E-torus is 
an E-rational variety. For n = 3, Formanek [ 171 showed that T, is an 
E-rational variety. Since 6, = D, is a metacyclic group, results of Endo and 
Miyata (cf. [S, Proposition 2 and Remark R5]) already show that T, is a 
stably rational E-variety, i.e., T, x E A> is E-birational to A; for some n, m. 
Thus the function field of T3 x k A;: is purely transcendental over k. In other 
words, Z,(2), which is the function field of T3, becomes purely transcen- 
dental over k provided one adds a few transcendental variables; the same 
therefore holds for Z,(r) for any r > 2. Formanek’s result [ 171 is that Z,(r) 
itself is purely transcendental over k. 

As noted by Snider (mentioned in [ 18, p. 3191) this approach to the 
k-rationality of Z,(2) already fails for n = 4, namely T4 is not E-rational 
(Formanek however shows [18] that Z,(r) is purely transcendental 
over k). Here is a proof of Snider’s result, which shows that T4 is not even 
(E-birationally) a direct factor of an E-rational variety. 

Let G’ c G = G4 be the subgroup isomorphic to V4 = H/2 x Z/2. Arguing 
as in 9.6, we find H’(G’, p(A))=BIL(G’, A)=I.Bk(G’, IGIH). Let g = 
(1, 2)(3, 4) E G4 be a typical nontrivial element of G’. As in 9.6, we have a 
commutative diagram of exact sequences: 
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H. NW Z - Z/4 = H’(G’, ZGIH) - 0 

I _(I I I 
z~(t,+t,)OZ~(t~+t.J- Z - ifI/2 = H’( (g), ZGIH) - 0. 

Writing similar diagrams for the other nontrivial elements g E G’, we con- 
clude: 

H’(G’, p(A)) = LU;(G’, ZGIH) = 2/2. 

Hence p(A) is not an invertible G-module, T4 is not a direct factor of an 
E-rational variety, and if char k = 0 and E, denotes the fixed field of K 
under G’, Br E, # Br XE, for any smooth E-compactification of T4 (use 

9.5(ii)). Thus 9.6 may fail to hold after a finite extension of the ground 
field E! 

PROPOSITION 9.10. The torus T= T,, in 9.3 is E-birationally a direct fac- 
tor of an E-rational variety (resp. is stably E-rational), if and only if the 
E-torus RL F,EG,,, enjoys the same property. 

(See 7.4 and [S, Proposition 63 for equivalent properties.) 

Proof. Let 0 -+ JGIH + P + F -+ 0 be a flasque resolution of the 
G-module J GIH = Z&H (cf. (0.4.2)). Dualizing (R H R”) the sequence (9.2.1), 
we form the push-out diagram: 

0 0 

I I 
J 

O-J G/H - Z [G,H’@ G/H] 0 -A-O 

I I II 

o- P-M +A’-0. 

I I 
F F 

I I 
0 0 

The following equality now follows from Lemma 9.4: 

(P(A))‘=s(A’)=s(M)=s(F) 
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hence 

P(A) = km)o (=Afv. 

Now T, is a direct factor of an E-rational variety if and only if p(A) is 
invertible (7.4), hence if and only if c(F) is invertible, hence by 9.4(iii) if 
and only if F is invertible, hence by 7.4 if and only if Rk,,G, (whose 
character group is J,,, ) is a direct factor of an E-rational variety. The 
same proof goes for stable rationality. 

Remark 9.11. Although the middle vertical sequence in the above 
diagram splits, we cannot produce a kind of E-birational equivalence 
between T and RklE G,; indeed the last equality connects p(A) and p(p), 
not p(F). 

COROLLARY 9.12. If n = p is a prime, the E-torus T= T, in 9.3 is a 
direct factor of an E-rational variety; in fact there exists an E-torus TL such 
that T, x E TL is E&rational to some aff;ne space over E. 

Pro05 This follows from 9.1, 9.10, and 7.4. 
We thus get a more explicit proof of Saltman’s result [31, 

Corollary 5.31: 

COROLLARY 9.13. If p is prime, the centre Z,,(r) of UD(k, p, r) is retract 
rational over k. 

ProoJ According to Procesi’s result, Z,(r + 1) is purely transcendental 
over Z,(r) for r 3 2. So it is enough to prove the result for r = 2, i.e. 
(Proposition 9.3) for the function field E( T,). Let TL be the E-torus in 
Corollary 9.12. Since E is purely transcendental over k, the function field of 
T, x E TL is purely transcendental over k. We may find an integral afine 
k-variety X with function field E such that T, and TL are the restrictions 
over E of X-tori Tp and p; (see the proof of Proposition 1.5). The function 
field of the integral affme k-variety Tp x X FL coincides with the function 
field of T,, x E Ti, hence is purely transcendental over k, and the identity 
map of the integral affine k-variety Fp (whose function field is Z,(2)) fac- 
torizes through Fp x X TA: 

TpA Tpx T:’ x P PIT 
P’ 

where i sends c1 to (c(, e’) for e’ the zero section of the X-torus TL, and p1 
denotes the projection onto the first factor of the fibre product. 

Remark 9.14. Saltman’s proof uses his lifting criterion for retract 
rationality [31, Theorem 3.83. 
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