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Diophantine equation: a system of equations

fi(x1, . . . , xn) = 0, i = 1, . . . , r

where the fi are polynomials in n variables with coeffi-
cients in Q.

Questions

Existence
Does there exist at least one solution with coordi-

nates in Q ?

Weak approximation (in a special case)
Are such solutions dense (for the real topology) in

the set of solutions with coordinates in R ?

Zariski density
For any polynomial g(x1, . . . , xn) which does not

vanish identically on the set of complex solutions of
the above system, can one find at least one solution
(a1, · · · , an) of the system with coordinates in Q, such
that moreover g(a1, . . . , an) 6= 0?
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The language of algebraic geometry

A system of equations

fi(x1, . . . , xn) = 0, i = 1, . . . , r

where the fi are polynomials in n variables with coef-
ficients in a field k, defines an (affine) algebraic variety
X over the field k.

For any field F containing k one denotes by X(F )
the set of solutions of the system with coordinates in F .
This is the set of F -rational points of the k-variety X.
One often refers to X(k) simply as the set of rational
points of the k-variety X.

For most purposes, it makes more sense to reduce
oneself to the search of rational points on nonsingu-
lar varieties (locally, the jacobian matrix is of maximal
rank).

It is also useful to consider projective varieties (de-
fined by a system of homogeneous equations) rather
than affine varieties.

Finally, a k-variety X is called geometrically irre-
ducible if for any field F containing k, the variety XF

(same variety as X, but considered over the field F ) is
irreducible (not the union of two proper, closed subva-
rieties).
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First necessary conditions for the existence of
Q-rational points

There is no Q-rational point on the affine conic

1 + x2
1 + x2

2 = 0,

because there is no solution over R.
Given any variety X/R, one may decide in a finite

amount of time whether X(R) 6= ∅.
There is no Q-rational point on the affine conic

x2
1 + x2

3 − 3 = 0.

Proof : congruences modulo suitable powers of 3
(or powers of 2). More abstract version, parallel to case
of reals : there is no solution in the 3-adic field Q3 (and
there is no solution in Q2).

For each prime p, one defines the nonarchimedean
p-adic valuation vp and its associated absolute value
on Q, the completion is the p-adic field Qp, which is
equipped with a natural topology.

Hensel’s lemma implies that given a variety over
Qp, one can in a finite amount of time decide whether
it has a Qp-point. Given a diophantine equation, one
may in a finite amount of time decide if it has Qp-
solutions for all p (Lang-Weil estimates for the number
of rational points of a variety over a finite field).
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The space of adèles

Given an absolute value v on Q one denotes by Qv

the completion (it is either R or Qp). Let Ω denote the
set of (inequivalent) absolute values on Q.

Given a nonsugular, projective, absolutely irredu-
cible Q-variety X, the product

X(AQ) :=
∏

v∈Ω

X(Qv)

is called the set of adèles of X. Each X(Qv) may be
equipped with the topology induced by that of Qv. We
equip X(AQ) with the product topology.

The obvious diagonal inclusion

X(Q) ⊂ X(AQ)

encapsulates the obstructions to existence of Q-rational
points on X discussed on the previous transparency.
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Weak approximation
One says that weak approximation holds for X/Q if

the closure of X(Q) under the above embedding is the
whole of X(AQ). This is equivalent to requiring density
of the diagonal embedding X(Q) ⊂ ∏

v∈S X(Qv) for
any finite set S ⊂ Ω.

One says that a class of algebraic varieties over Q
satisfies weak approximation if any variety in the class
satisfies it. This is a distinctly stronger requirement
than the

Local-global “principle” (“Hasse principle”)
One says that a class C of projective varieties over

Q satisfies the local-global principle, or Hasse principle,
if for any X in C, X(AQ) 6= ∅ ⇒ X(Q) 6= ∅.

For nonsingular, projective, absolutely irreducible
varieties, the validity of each of these two properties
only depends on the function field of the variety: these
properties are “birationally invariant”.

Weak approximation trivially holds for projective
space Pd

Q.
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Theorem
If X/Q is a projective variety which is a homoge-

neous space of a connected linear algebraic group over
Q, then weak approximation holds for X.

(Legendre, Minkowski, Hasse, Eichler, Landherr,
Kneser, Harder, Tchernousov)

The hard part is the Hasse principle. If such a va-
riety has a Q-rational point, it is Q-birational to pro-
jective space over Q, hence weak approximation holds.
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Examples
Conics (Legendre, Hilbert); more generally
Quadrics (H. Minkowski, H. Hasse)
Severi-Brauer varieties (F. Châtelet)

Birational invariance of the local-global principle
(and weak approximation) leads to the proof of these
properties for seemingly different looking vareties.

Norm equations

NK/Q(Ξ) = c

when K/Q is a cyclic extension (Hasse).

Nonsingular cubic surfaces over Q with a special
Galois action on the 27 lines (Selmer, Cassels,
Swinnerton-Dyer, Châtelet). Example:

ax3 + by3 + cz3 + dt3 = 0

when ab
cd is a cube in Q.
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Quadrics: proofs

Let q(x1, . . . , xn) =
∑n
i=1 aix

2
i be a quadratic form

in n ≥ 3 variables over Q. We want to show that if
there is a nontrivial zero for q in each Qv, then there is
one in Q. We may assume all ai ∈ Z.

The case n = 3 was handled by Legendre using the
geometry of numbers. Let us mention an important fact
(a special case of a recriprocity law): for a conic C/Q,
the (finite) number of v ∈ Ω with C(Qv) = ∅ is even.

Case n = 4 (Hasse’s proof). If the quadratic form
has nontrivial solutions in all Qv, then for each v ∈ Ω
one may find cv ∈ Q∗v such that the system

a1x
2 + a2x

2
2 = cv = −a3x

2
3 − a4x

2
4

has a solution in Qv. Let S ⊂ Ω be a finite set con-
taining the real absolute value and all the vp for with
p | 2a1a2a3a4. Using Dirichlet’s theorem on primes in
an arithmetic progression, one finds a rational number
c ∈ Q∗ which is very close to cv for each v ∈ Sfinite,
has the sign of c∞, and has absolute value 1 at all
other v except one, say vl. Then each of the conics
a1x

2
1 + a2x

2
2 − c = 0 and c + a3x

2
3 + a4x

2
4 = 0 has so-

lutions in all Qv except possibly Ql, hence also in this
last one by the above mentionned fact, hence in Q by
the 3 variables case.

Hence q = 0 has a nontrivial solution over Q.
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The case n ≥ 5 is easier. Here is a more general
statement ([CT/Sansuc, 1982]).

Theorem
Let P (t) 6= 0 ∈ Q[t] be a polynomial, and

∑3
i=1 aix

2
i

a nondegenerate quadratic form with coefficients in Q.
Then the local-global principle holds for the equation

P (t) =

3∑

i=1

aix
2
i 6= 0.

One may assume that all ai are in Z. Let S be the
union of the real absolute values and the absolute value
vp for p | 2a1a2a3. Over Qp for p not in S, the form∑3
i=1 aix

2
i represents any element in Q∗p. For v ∈ S,

one chooses tv ∈ Qv such that P (tv) 6= 0 is represented

by
∑3
i=1 aix

2
i over Qv.

Weak approximation in Q at the places in S now
produces t0 ∈ Q such that P (t0) is represented by∑3
i=1 aix

2
i over each Qv, hence over Q by the theorem

for quadratic forms in 4 variables.

The proof yields weak approximation for the vari-
ety considered in the theorem.
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Here is a general statement.

Theorem Let X/Q be a nonsingular, projective,
absolutely irreducible variety and let p : X → P1

Q be a
dominant morphism with absolutely irreducible generic
fibre.

Assume :
(i) The nonsingular fibres of p above points of

P1(Q) satisfy the Hasse principle (resp. weak approxi-
mation).

(ii) The fibres of p above points of
P1(C) are irreducible and of multiplicity one.

Then X satisfies the Hasse principle (resp. weak
approximation).

The proof is essentially the same as Hasse’s proof
for quadratic forms in 5 variables starting from the 4
variables case – except that instead of elementary facts
on quadrics one uses the Lang-Weil estimates for the
number of points of absolutely irreducible varieties over
a finite field.
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One can relax the second condition sligthly.

Theorem
Let X/Q be a nonsingular, projective, absolutely

irreducible variety and let p : X → P1
Q be a dominant

morphism with absolutely irreducible generic fibre.
Assume :
(i) The nonsingular fibres of p above points of

P1(Q) satisfy the Hasse principle (resp. weak approxi-
mation).

(ii) The fibres of p above points of
A1(C) are irreducible and of multiplicity one.

(iii) The fibre of p above ∞ ∈ P1(C) contains a
component of multiplicity one.

Then X satisfies the Hasse principle (resp. weak
approximation).

In the proof, one replaces weak approximation in Q
by strong approximation (a special case of which is the
Chinese remainder theorem). Roughly speaking, one
replaces the projective line P1

Z by the affine line A1
Z.

Freedom (lack of control in the approximation) at one
prime is required; this is afforded by a conjunction of
hypothesis (iii) and the Chebotarev theorem.
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The circle method

Hardy, Littlewood, Davenport, Birch, Skinner, ...

Theorem
Let F (x0, · · · , xn) = 0 define a nonsingular hyper-

surface X of degree d in Pn
Q. Assume n ≥ (d − 1).2d.

Then X(Q) is dense in X(AQ).

The theorems are actually more precise: they eval-
uate how the number of solutions in a “box” varies as
the size of the box goes to infinity. In short, one counts
the number of solutions.

There are such theorems for a system of forms, and
also over a number field. However, the circle method
generally requires that the number of variables be fairly
large with respect to the degree.

For instance, under the hypothesis of the above
theorem, for n ≥ 4, one could dream of a local-global
principle as soon as n ≥ d.

For nonsingular cubic hypersurfaces in Pn
Q, there

are good results: for n ≥ 9 there is always a Q-rational
point (Heath-Brown), and for n = 8 the local-global
principle holds (Hooley). The latter is however widely
conjectured to hold for n ≥ 4.
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There are many counterexamples to the Hasse prin-
ciple (and weak approximation)

Homogeneous spaces of connected linear algebraic
groups (nonprojective)

– Norm equations

NK/Q(Ξ) = c

for K/Q Galois with group Z/2× Z/2 (Hasse, Witt)
– Principal homogeneous spaces under (nonsimply-

connected) semisimple groups (Serre)

Homogeneous spaces of abelian varieties
(projective)

– Curves of genus one (Reichardt, Lind)

3x3 + 4y3 + 5z3 = 0 (Selmer)

Cubic surfaces (Swinnerton-Dyer)

5x3 + 9y3 + 10z3 + 12t3 = 0 (Cassels−Guy)

One-parameter families of conics

y2 + z2 = (3− x2)(x2 − 2) (Iskovskikh)
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Reciprocity

In all previous examples, the set of adèles X(AQ)
is not empty, but X(Q) is. There are also examples
where X(Q) is not empty but not dense in X(AQ).

In the proofs, reciprocity laws such as Gauß’s qua-
dratic reciprocity law are used.

Let F be a field. The Brauer group of F was de-
fined by R. Brauer as the group of isomorphism classes
of central simple algebras of finite dimension over F ,
when one decrees that matrix algebras be trivial, and
addition in Br(F ) is induced by tensor product of alge-
bras.

Let more generally k be a number field, Ω the set
of its places (inequivalent absolute valuations).

For each v ∈ Ω, there is a natural embedding

invv : Br(kv) ⊂ Q/Z

which is an isomorphism if v is nonarchimedean.
There are many aspects of the reciprocity law in

class field theory. One version of it, in commutative
class field theory, is the following fundamental exact
sequence:

0→ Br(k)→ ⊕v∈ΩBr(kv)→ Q/Z→ 0.
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There is a general formalism, due to Manin (1970),
which subsumes the technique employed in the coun-
terexamples listed in the last but one transparency.

This uses the Brauer group Br(X) of a scheme X,
as defined by Grothendieck. This is a generalization of
the Brauer group of a field. This notion is “functorial”,
given an algebraic variety X over a field F , there is a
natural pairing

X(F )× Br(X)→ Br(F )

(M,A) 7→ A(M)

Let X be a nonsingular, projective, geometrically
irreducible variety over a number field k. The above
pairing induces a pairing

X(Ak)× Br(X)→ Q/Z

({Mv}v∈Ω, A) 7→
∑

v∈Ω

invv(A(Mv)).

Let X(Ak)Br ⊂ X(Ak) denote the left kernel of this
pairing.
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Manin’s basic observation (1970) is that the diag-
onal inclusion X(k) ⊂ X(Ak) factorizes as

X(k) ⊂ X(Ak)Br ⊂ X(Ak).

This is an immediate consequence of the reciprocity se-
quence for the Brauer group of k.

More precisely, the topological closure of X(k)cl of
X(k) in X(Ak) is contained in X(Ak)Br.

One gets a counterexample to the Hasse principle
if X(Ak)Br = ∅ and X(Ak) 6= ∅.

One gets counterexamples to weak approximation
as soon as X(Ak)Br is a proper subset of X(Ak).

Can one effectively determine the set X(Ak)Br ?

This depends on the complexity of the quotient
group Br(X)/Br(k). This group need not be finite, for
general X we do not know if there is a finite procedure
to decide whether or not X(Ak)Br = ∅.

If X is geometrically unirational, or more gener-
ally if X is geometrically rationally connected, then
Br(X)/Br(k) is finite.
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Basic problem

To produce classes C of varieties such that for any
X in C

X(k)cl = X(Ak)Br

or at least

X(Ak)Br 6= ∅ implies X(k) 6= ∅

Warning
We never hoped that this could be true for all (non-

singular, projective) varieties.

The first unconditional example with X(Ak)Br 6= ∅
and X(k) = ∅ is due to Skorobogatov (1999).

(More on this later)

There is however a substitute with zero-cycles of
degree one which might hold for all (nonsingular, pro-
jective) varieties.

(More on this later)
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Classes of varieties X for which one has proved

X(k)cl = X(Ak)Br.

Nonsingular projective models of homogeneous
spaces of connected linear algebraic groups, when the
geometric stabilizer is either connected or finite and
commutative (Sansuc when the stabilizer is trivial;
Borovoi under these more general hypotheses).

Conic bundles over the projective line P1
k with at

most 5 geometric degenerate fibres
(CT/Sansuc/Coray, CT/Sansuc/Swinnerton-Dyer,

Salberger, CT, Salberger, Salberger/Skorobogatov)

Nonsingular projective models of irreducible com-
plete intersections of two quadrics in Pn

k if n ≥ 8
(CT/Sansuc/Swinnerton-Dyer)

Cubic hypersurfaces with three singular points in
Pn
k (n ≥ 3) (CT/Salberger)

Nonsingular cubic hypersurfaces in Pn
k (n ≥ 3)

containing a k-rational line (Salberger/Skorobogatov;
Harari)
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Theorem (D. Harari)
Let X/k be a nonsingular, projective, geometrically

integral variety and let p : X → P1
k be a dominant k-

morphism with geometrically irreducible generic fibre.

Assume
(i) All geometric fibres of p above A1

k are irre-
ducible and of multiplicity one.

(ii) The geometric generic fibre is rationally con-
nected (e.g. unirational).

(iii) For P ∈ P1(k) with nonsingular fibre XP , we
have XP (k)cl = XP (Ak)Br.

Then X(k)cl = X(Ak)Br.

Tools used in the proof are Hilbert’s irreducibility
theorem, strong approximation, Tchebotarev’s density
theorem, and a formal lemma relative to ramified cen-
tral simple algebras over the function field of X (more
on this later).

There is a similar theorem over Pn
k , n ≥ 1. When

the fibration admits a section, an easy application of the
result gives a proof of Sansuc’s result : For a smooth
compactification X of a connected linear algebraic
group, X(k)cl = X(Ak)Br. The idea here goes back
to a paper of Kunyavskǐı and Skorobogatov.
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Classes of varieties X for which one has condi-
tional proofs of

X(k)cl = X(Ak)Br.

Theorem
Let X/k be a nonsingular, projective, geometrically

integral variety and let p : X → P1
k be a dominant k-

morphism with geometrically irreducible generic fibre.
Assume
(i) For each closed point P ∈ P1

k, the fibre XP over
the residue field k(P ) contains a multiplicity one com-
ponent whose field of definition is an abelian extension
of k(P )

(ii) Weak approximation holds for the nonsingular
fibres of p above points in P1(k).

(iii) Schinzel’s hypothesis is true.
Then X(k)cl = X(Ak))Br.

(CT/Sansuc, Serre, Swinnerton-Dyer, CT/Swinnerton-
Dyer, CT/Skorobogatov/Swinnerton-Dyer)

We do not know whether the abelianity condition
in (i) can be gotten rid of.
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Schinzel’s hypothesis

(H) Let fi(X) ∈ Z[X], i = 1, · · · ,m be irreducible
polynomials. Assume their leading coefficients are posi-
tive, and assume that the g.c.d. of all

∏
i fi(n) for n ∈ Z

is equal to 1. Then there exist infinitely many integers
n such that each fi(n), i = 1, · · · ,m is a prime.

It is the natural generalization of the conjecture on
twin primes. Special cases of the conjecture were put
forward by Bouniakowsky and by Dickson.

The only known case is that of one polynomial of
degree one: this is Dirichlet’s theorem on primes in an
arithmetic progression.

Dirichlet’s theorem was used by Hasse in his proof
of the local-global principle for quadrics of dimension 2.
The starting point for the proof of the theorem is to use
Schinzel’s hypothesis in place of Dirichlet’s theorem.
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Conjecture
Let X/k be a nonsingular, projective, geometrically

integral variety and let p : X → P1
k be a dominant k-

morphism. Assume that the generic fibre of p is irre-
ducible, and contains an open set which is a homoge-
neous space of a connected linear algebraic group (over
the function field k(P1)). Assume that the geometric
stabilizer for this action is connected. Then

X(k)cl = X(Ak)Br.

One would like to combine

(a) Borovoi’s theorem on homogeneous spaces over
a number field

(b) the proof of Harari’s theorem
(c) the proof of the theorem depending on Schin-

zel’s hypothesis

to get a conditional proof of the conjecture, i.e. one
depending on Schinzel’s hypothesis.

Unfortunately the abelianity condition in the pre-
vious theorem prevents us from achieving this.
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A simple class of equations, a hard problem

Let K/Q be a finite field extension of degree m,
K = ⊕mi=1kei, and let P (t) ∈ Q[t] be a nonzero polyno-
mial of degree d.

One would like to be able to describe the existence
and density properties of the rational solutions of

P (t) = NormK/Q(x1e1 + · · ·+ xmem) 6= 0.

For a nonsingular projective model X of this variety,
does one have X(k)cl = X(Ak)Br ?

For d = 0, the answer is yes (class field theory,
Tate-Nakayma).

For d = 1, the answer is trivially yes.
For d = 2, when P has two distinct rational roots,

the answer is yes (Heath-Brown/Skorobogatov; a result
coming from the circle method is used).

For d = 3, and [K : Q] = 3, the answer is yes
(CT/Salberger 1989).

For d ≤ 4 and [K : Q] = 2, the answer is yes
(CT/Sansuc/Swinnerton-Dyer 1987).

For d arbitrary and K/Q cyclic, if one accepts
Schinzel’s hypothesis, then the answer is yes.

If K/Q is Galois with group Z/2 × Z/2 and P is
of degree 3, the answer is unclear (abelianity problem).
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Homogeneous spaces of abelian varieties

Theorem (Manin, L. Wang)
Let X be a principal homogeneous space under an

abelian variety A. Let us assume that the Tate-Shafa-
revich group of A is a finite group. Then

(i) If X(Ak)Br 6= ∅, then X(k) 6= ∅
(ii) Assume that k-rational points of A are dense

in the neutral component of the product of the A(kv) for
all archimedean places v of k. Then X(k)cl = X(Ak)Br.

The proof is an algebraic computation which re-
duces this statement to arithmetic duality theorems of
Cassels and Tate.

That Tate-Shafarevich groups of abelian varieties
should be finite is a well-known conjecture.

In dimension one, the varieties X in the theorem
are exactly the (nonsingular, projective) curves of genus
one.

One may then go on and investigate one-parameter
families of curves of genus one. This will be the topic
of the second lecture.
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Classes of varieties X for which it is very unlikely
that X(k)cl = X(Ak)Br.

Let X ⊂ Pn
k be a nonsingular hypersurface of di-

mension at least 3 and of degree d.
Then Br(X)/Br(k) = 0. The above hypothesis

would thus imply X(k)cl = X(Ak). In particular, if
X(k) 6= ∅, the k-points would be dense in the kv-points
for any place v, hence they would be dense for the
Zariski topology. But for d > n this would contra-
dict the higher dimensional analogue of Mordell’s con-
jecture.

One can show by examples (Lang-Sarnak, Poonen)
that the implication X(Ak)Br 6= ∅ ⇒ X(k) 6= ∅
would also contradict the higher dimensional analogue
of Mordell’s conjecture.

Note: such hypersurfaces have a trivial geometric
fundamental group.
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Classes of varieties X for which one can show
X(k)cl 6= X(Ak)Br.

Skorobogatov’s unconditional example

This is a surface over Q with affine model given by
the system

y2 = g(t)(x2 + 1), z2 = g(t)(x2 + 2)

with g(t) = 3(t4 − 54t2 − 117t− 243).

Here X(AQ)Br 6= ∅ but X(Q) = ∅.
The associated nonsingular projective surface is a

hyperelliptic surface X, the quotient of a product C×E,
where C (y2 = g(t)) and E (y2 = x2+1, z2 = x2+2) are
two curves of genus one, by a fixed point free involution
τ = (ρ, σ), where ρ is the hyperelliptic involution on C
and σ is the translation by a rational 2-torsion point on
the elliptic curve E.

A key point here is that the geometric fundamen-
tal group of X is not trivial. But even more to the
point is the fact that the geometric fundamental group
of X is not abelian. This was stressed by Harari, who
showed that under this hypothesis one may in a system-
atic fashion produce counterexamples to weak approx-
imation which cannot be accounted for by the Brauer
group – i.e. by Manin’s scheme.
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Technique I : The descent method

This in essence goes back to Fermat. It was partic-
ularly developed for curves of genus one (Weil, Selmer,
Cassels ...). One starts with a curve C of genus (at least)
one. Using factorization arguments one produces a fi-
nite set of curves Ci together with morphisms
fi : Ci → C such that any k-point of C comes from
a k-point of one of the Ci’s. There is a commutative
finite k-group scheme µ such that each fi : Ci → C is a
principal homogeneous space over C under µ. One then
iterates the process with the Ci’s.

What Sansuc and I systematically developed is a
similar procedure when C is replaced by a higher di-
mensional variety X and the finite k-group scheme µ
is replaced by a k-torus S (a k-group which over an
algebraic closure becomes isomorphic to a product of
multiplicative groups).

When the geometric Picard group is free of finite
type (example: the variety X is geometrically unira-
tional) there is no need to iterate the process, there is a
best S, whose character group is the Picard group. The
question then arises whether the correspondingXi’s sat-
isfy the local-global principle and weak approximation.

The hypothesis X(Ak)Br 6= ∅ ensures that there is
such an Xi with points in all completions (this is the
main theorem of descent theory).

28



          

Technique II : The fibration method

We saw it at work in Hasse’s proof for quadratic
forms in 4 and 5 variables.

To prove Harari’s theorem, or to prove the theo-
rem conditional on the Schinzel hypothesis, one needs
more elaborate versions which exploit the hypothesis
X(Ak)Br 6= ∅.

A crucial technical tool is Harari’s

Formal lemma
Let X/k be a nonsingular, projective, geometrically

irreducible variety and let ∅ 6= U ⊂ X be an open set.
Let B ⊂ Br(U) be a finite subgroup. Let {Pv} ∈ U(Ak).
If for all α ∈ B ∩ Br(X)

∑

v∈Ω

α(Pv) = 0

then for any finite set S of places of k there exists
{Mv} ∈ U(Ak) such that Mv = Pv for v ∈ S and

∑

v∈Ω

β(Mv) = 0

for each β ∈ B.
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One may naturally combine the two techniques.
This is indeed how we (CT/Sansuc/Swinnerton-Dyer)
proved: A positive rational number may be written as a
sum a2 + b2 + c4 with a, b, c ∈ Q if and only if it can be
written as such a sum over Q2.

Other technique : Zero-cycles of degree one
In extremely favourable circumstances, the exis-

tence of a zero-cycle of degree one implies the existence
of a rational point. One may then apply theorems con-
cerning zero-cycles of degree one (more on this last topic
later) (Salberger and Skorobogatov).

Other technique : The circle method
This method does prove the local-global principle

and weak approximation when the number of variables
is big with respect to the degree. In one special case, one
has managed to combine this with the descent method:
the number of variables is not big enough in the dio-
phantine equation of interest, but descent reduces the
problem to a situation where the circle method applies
(Heath-Brown and Skorobogatov)

Other technique: Descent using torsors under non-
commutative group schemes (Skorobogatov, Harari)
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A very general conjecture on algebraic cycles

Let X/k be a nonsingular, projective, geom. irre-
ducible variety over a number field k, let d = dim(X),
let i be an integer, 1 ≤ i ≤ d, and j = d+ 1− i.

Let CHi(X) be the Chow group of cycles of codi-
mension i on X modulo rational equivalence.

Over any field F containing k there are cycle maps
cln : CHi(XF )→ H2i

ét (XF , µ
⊗i
n ) for each n ≥ 1.

Class field theory (Poitou-Tate) combined with (ge-
ometric) Poincaré duality leads to exact sequences

. . . H2i
ét (X,µ⊗in )→∏

v∈ΩH
2i
ét (Xkv , µ

⊗i
n )→

→ Hom(H2j
ét (X,µ⊗jn ),Q/Z)→ . . .

(S. Saito)

One thus obtains a pairing∏
v∈Ω CH

i(Xkv )×H2j
ét (X,Q/Z(j)))→ Q/Z

and the diagonal image of CHi(X) in the product∏
v∈Ω CH

i(Xkv ) is in the left kernel of this pairing.

For i = d, this is a statement on zero-cycles which is
a direct extension of Manin’s observation on the pairing
between rational points and the Brauer group.
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Conjecture
Let {zv} ∈

∏
v∈Ω CH

i(Xkv ). Assume that for each

ξ ∈ H2j
ét (X,Q/Z(j)) one has

∑

v∈Ω

(zv, ξ) = 0.

Then for each n > 0 there exists zn ∈ CHi(X)
such that for each finite place v

cln(zn)|v = cln(zv) ∈ H2i
ét (Xkv , µ

⊗i
n ).

For i = 1, this is a conjecture on classes of divisors.
If the Tate-Shafarevich group of the Picard variety of X
is finite, then the conjecture holds.

For i = d, this conjecture implies: if there is a
family of zero-cycles zv, v ∈ Ω, each of degree 1, such
that for each α ∈ Br(X) one has

∑
v∈Ω α(zv) = 0, then

there exists a zero-cycle of degree 1 on X.
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If X is a curve, the result for i = 1 is just a rein-
terpretation by Manin of results of Cassels and Tate.

For rational surfaces and i = 2, the conjecture was
put forward by CT/Sansuc in 1981. Some general, re-
lated conjectures were then suggested by Kato and Saito
in 1986. For i = d a closely related question was raised
by S. Saito in 1989.

For conic bundles over the projective line and i = 2,
the conjecture was proved by Salberger in 1988. Sal-
berger’s result has been extended in two directions.
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Theorem
Let X/k be a nonsingular, projective, geometrically

integral variety and let p : X → P1
k be a dominant k-

morphism with geometrically irreducible generic fibre.
Assume
(i) For each closed point P ∈ P1

k, the fibre XP over
the residue field k(P ) contains a multiplicity one com-
ponent whose field of definition is an abelian extension
of k(P ).

(ii) The Hasse principle holds for the nonsingular
fibres of p above closed points of P1

k.
(iii) There is a family of zero-cycles zv, v ∈ Ω,

each of degree 1, such that for each α ∈ Br(X) one
has

∑
v∈Ω α(zv) = 0.

Then there exists a zero-cycle of degree 1 on X.

(CT/Swinnerton-Dyer 1994, CT, Skorobogatov and
Swinnerton-Dyer 1997)

When the generic fibre is a Severi-Brauer variety
of prime index, the whole conjecture for i = dim(X) is
proved.

Note: No Schinzel !
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Theorem
Let k be a number field, C/k a geom. irreducible,

nonsingular curve, X/k an absolutely irreducible, non-
singular variety which is a conic bundle over C: there
exists a dominant k-morphism p : X → C whose gene-
ric fibre is a conic.

Assume that the Tate-Shafarevich group of the ja-
cobian of C is finite.

Then the conjecture holds for zero-cycles on X.

(CT 2000, Frossard 2002, van Hamel 2003)

For C = P1
k, this is Salberger’s 1988 result.

The theorem more generally holds for X → C
whose generic fibre is a Severi-Brauer of square-free in-
dex.
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Key ingredient: Salberger’s device

This is a clever but elementary substitute for
Schinzel’s hypothesis. Ideally, one would wish that any
“theorem” which one proves for rational points upon
use of Schinzel’s hypothesis yield an actual theorem for
zero-cycles of degree one.

The twin primes case

Proposition
For any integer N ≥ 2, there exist a field extension

K/Q of degree N and an integer θ ∈ K such that one
has prime ideal decompositions

(θ) = pp2

(θ + 2) = qq2

with p2 and q2 above 2.

Proof For general p, q primes and R(t) ∈ Z[t]
monic polynomial of degree N − 2, the polynomial
P (t) := R(t)t(t + 2) + qt + p(t + 2) is irreducible.
Let K = Q[t]/P (t). Then NK/Q(θ) = ±2p and
NK/Q(θ + 2) = ±2q.
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