
Zentralblatt MATH Database 1931 – 2011
c© 2011 European Mathematical Society, FIZ Karlsruhe & Springer-Verlag

Zbl 0902.16021

Saltman, David J.
Division algebras over p-adic curves. (English)
J. Ramanujan Math. Soc. 12, No.1, 25-47 (1997). ISSN 0970-1249
http://www.ramanujanmathsociety.org/jrms.html

This interesting paper has already fostered further work [D. W. Hoffmann and J. Van
Geel, Zeroes and norm groups of quadratic forms over function fields in one variable
over a local non-dyadic field, Preprint (1997); R. Parimala and V. Suresh, Isotropy of
quadratic forms over function fields of curves over p-adic fields, Isaac Newton preprint
NI98006-AMG (1998)]. The paper itself contains a gap, which was pointed out and
simultaneously fixed by O. Gabber in October 1997, during a lecture given by the
reviewer. I will give the main statement, present the author’s arguments in a slightly
different guise, then report on Gabber’s contribution.
Theorem Let l be a prime number, and let p be a prime different from l. Let k be a
p-adic field containing an l-th root of unity, and let K be a function field in one variable
over k. Given any finite set of central simple algebras Ai, i = 1, · · · ,m, over K, each of
exponent l in the Brauer group of K, there exist rational functions f and g in K such
that the field extension K(f1/l, g1/l) splits each of the Ai’s. (Standard reductions then
enable one to show that for K a function field in one variable over an arbitrary p-adic
field k, and A a central simple algebra over K of exponent n prime to p, the index of
A divides n2. Examples of algebras of exponent n and degree exactly n2 are given by
W. Jacob and J.-P. Tignol in an appendix to the paper.)
Saltman’s idea is to use resolution of singularities of two-dimensional excellent schemes
(Lipman) as well as embedded resolution of singularities of curves on two-dimensional
excellent schemes (Lipman) to reduce to the following situation: There exists a regular,
noetherian, integral two-dimensional scheme X, which is projective over the spectrum
S = Spec(Ok) of the ring of integers of k, and there exist two closed regular curves
C and E (not necessarily connected) on X, which meet transversally, such that the
algebras Ai have non-trivial residues only at generic points of components of C or E.
A first lemma, which may be seen as an easy application of the general results in K.
Kato’s paper [J. Reine Angew. Math. 366, 142-183 (1986; Zbl 0576.12012)], ensures
that at any point x ∈ X, each Ai may be written as a sum of an unramified element
and of elements of one of the following shapes: (u, s), (v, t), (s, t), where u, v denote
units in the local ring OX,x, and s, resp. t, denote local equations (possibly units) for
C, resp. E, at x. Here and further below, a primitive l-th root of unity ζ ∈ O∗

k ⊂ k∗

has been fixed, and for α, β ∈ K∗, one sets (α, β) := (α, β)ζ ∈ Br(K). Let T be the
non-empty finite set of points of X consisting of the generic point of X, the generic
points of each component of C and E, and the points of supp(C) ∩ supp(E). Since X
is projective over S, one may find an affine open set U of X such that U contains all
points of T . Let A be the semi-local ring associated to this finite set T of points. This
is a regular semi-local ring, hence a unique factorization domain. Hence one may find
rational functions f , resp. g, on X such that their divisors on Spec(A) coincide with
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the restriction of C, resp. E, to Spec(A).
Saltman then considers the extension L = K(f1/l, g1/l) and claims that eachAi becomes
unramified in L with respect to any rank one discrete valuation ring R centered on X
(see the discussion on this claim further below). Now there is a classical result: Let
Y/O be a regular, flat, proper (relative) curve over the ring of integers of a p-adic field.
Then the Brauer group of Y is trivial. For a proof of this, see J. Tate [WC-groups over
p-adic fields, Séminaire Bourbaki, Exp. 156 (1958; Zbl 0091.33701)], complemented by
S. Lichtenbaum [Invent. Math. 7, 120-136 (1969; Zbl 0186.26402)]; for another proof,
see A. Grothendieck [Le groupe de Brauer III, (2.15) et (3.1), in Dix exposés sur la
cohomologie des schémas, Adv. Stud. Pure Math. 3, 88-188 (1968; Zbl 0198.25901)].
Grothendieck’s proof is rather terse; for details on the Picard functor of a singular
curve, see S. Bosch, W. Lütkebohmert, M. Raynaud, [Néron models, Ergebnisse der
Mathematik und ihrer Grenzgebiete, 3. Folge, Bd. 21, Springer-Verlag (1990; Zbl
0705.14001), section 9.2]. Using this result applied to a regular model Y (proper over O)
of the field L, one may then conclude that eachAi actually vanishes in L = K(f1/l, g1/l).
Let us detail the claim. Let divX(f) = C + F and divX(g) = E + G. Let x ∈ X be the
point where the discrete valuation ring R ⊂ L is centered. Let notation be as above,
namely let u, v denote units in OX,x, let s ∈ OX,x be a local equation for C at x and
t ∈ OX,x a local equation for E. In order to show that each Ai ⊗K L is unramified at
R, it is enough to show:
(C) Each of the algebras (u, s)⊗K L, (v, t)⊗K L, (s, t)⊗K L is unramified at R.
For this, it is enough (but not necessary) to show
(C1) Both s and t belong to the subgroup of the multiplicative group of K∗ spanned
by O∗

X,x, the elements f and g, and the subgroup K∗l of l-th powers.
If x does not belong to the support of C ∪ E, then these assertions are clear. Assume
x ∈ T . Then f/s and g/t are units in OX,x, hence (C1) holds. Assume x ∈ C,
x /∈ T ∪ supp(F ). Then t and f/s are units at x, hence (C1) holds. Similarly, for
x ∈ E, x /∈ T ∪ supp(G), (C1) holds, since s and g/t are units at x. However for
x ∈ C ∩ supp(F ) or x ∈ E ∩ supp(G), the situation is unclear (this is the situation
ignored in Saltman’s paper, see end of his section 2, which refers to Proposition 1.5).
Gabber suggests two ways out of this difficulty. Both ways involve a non-symmetrical
choice of some other rational functions f and g.
First method, assume l 6= 2. Take a function f whose divisor on the whole surface X is
C + 2E + F , where F is a divisor whose support does not contain any of the points in
T as above. Let T1 be the intersection of the support of F with the support of C + E.
Then choose g a rational function whose divisor is C + E + G, where G is a divisor
whose support does not contain any of the points in T ∪T1. We may assume x ∈ C ∪E.
If x lies in T , then s and g2/f differ by a unit, and t and f/g differ by a unit, hence
(C1) holds. If x lies on E but not in T ∪ T1, then s is a unit, and f/t2 is a unit, hence,
since l is odd, t is a product of a unit, a power of f and an l-th power: (C1) holds. If
x lies on C but not in T ∪ T1, then t is a unit and f/s is a unit: (C1) holds. Assume x
belongs to T1. Then x lies either on C or on E but not on both. At such a point, the
divisor of g is equal to C + E, and g defines the relevant component of C or E. If x lies
on C, then t and g/s are units: if x lies on E, then s and g/t are units. In both cases,
(C1) holds.
Second method (valid also for l = 2). Start with a function f whose divisor is C+E+F ,
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where F is a divisor whose support does not contain any of the closed points in T as
above. Let T1 be the intersection of the support of F with the support of C + E. The
semi-local ring of X at the points of T ∪ T1 is a regular unique factorization domain.
One may thus find a rational function g ∈ K∗ whose divisor on X is C + G, such
that the support of G does not contain any point of T ∪ T1, and such that moreover
g, at any of the finitely many closed points x where the support of F and E meet, is
not only a unit but also is a non-l-th power in the (finite) residue field κx (note that
since Ok contains the l-th roots of unity, so does κx). For x ∈ T , g/s and f/gt are
units. For x ∈ C ∪ E not in T ∪ T1, the function f is a local equation for the relevant
component of C + E. If x lies on C, then t and f/s are units: if x lies on E, then
s and f/t are units. In both cases, (C1) holds. If x lies in T1 and on C, then t and
g/s are units. Thus in all these cases, (C1) holds. If x lies in T1 and on E, then at
such a point, s is a unit. To prove (C), it is thus enough to show that for any unit
u ∈ O∗

X,x, the algebra (u, t) ⊗K L is unramified at R. Let vR be the discrete rank one
valuation associated to R and let δR: lBr(L) → H1(κR,Z/l) = κ∗R/κR

∗l be the residue
map associated to R (a primitive l-th root of unity ζ has been fixed in the ring of integers
of k, hence the last identification). One has the classical formula δR((u, t)ζ) = uvR(t)

where u is the class in κ∗R/κR
∗l of the unit u, i.e. the image of the class of u in the

residue field κx under the natural map κ∗x/κx
∗l → κ∗R/κR

∗l. Since g is a unit at x and
an l-th power in L, it is an l-th power in R. The natural map OX,x → R factorizes
through OX,x → OX,x[T ]/(T l − g) → R, hence the map κx → κR factorizes through
κx → κx[T ]/(T l − g(x)) → κR. The extension κx[T ]/(T l − g(x)) over κx is a field
extension. Since κx is a finite field, any element in κx becomes an l-th power in the field
κx[T ]/(T l − g(x)). Hence a fortiori u = 1 ∈ κ∗R/κR

∗l. The above formula now implies
δR((u, t)) = 0, hence (C) holds.
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