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k a global field, kv , v ∈ Ω, the set of all completions
For X a homogeneous space of a connected linear algebraic group
G over k, does the local-global principle hold, namely, do we have∏

v∈Ω

X (kv ) 6= ∅ =⇒ X (k) 6= ∅

Particular interest in the case of principal homogeneous spaces
under a group G , they are classified by the cohomology set
H1(k ,G )
One then asks whether the set

X(k,G ) := Ker[H1(k,G )→
∏
v

H1(kv ,G )]

is reduced to one point.

Answer : No in general, yes under specific conditions



Counterexamples of the following type

• Norm equations
NormK/k(ξ) = c

with c ∈ k∗ (principal homogeneous space of the torus
NormK/k(ξ) = 1)
for K/k Galois with group (Z/p)2

• Principal homogeneous spaces of some semisimple linear
algebraic groups (neither simply connected nor adjoint)



k = Q, c ∈ Q∗, D/Q the Hamilton quaternions
Euler’s theorem :

Local-global principle for

c = x2 + y2 + z2 + t2

principal homogeneous spaces under the group SL(1,D), which is
Q-rational (Diophantos) and semisimple simply connected.

Local-global principle for homogeneous quadrics

cw2 = x2 + y2 + z2 + t2



More generally, positive answer for :

• Quadrics (Hasse), more generally projective homogeneous
varieties (Harder).

• Norm equations c = NormK/k(ξ) for K/k cyclic (principal
homogeneous space of the torus 1 = NormK/k(ξ).

Principal homogeneous spaces of :

• simply connected semisimple groups (very long history, basic for
all results on other semisimple gorups)

• adjoint (semisimple) groups

• absolutely almost simple semisimple groups

• k-rational groups (function field k(G ) purely transcendental)
(Sansuc)



The following theorem covers these various cases.

Theorem (Sansuc, Borovoi). Let k be a number field and X a
homogeneous space of a connected linear algebraic group. Assume
that the stabilizers are connected. Let Xc be a smooth
compactification of X . The Galois module Pic(X c) is a lattice.

If H1(k ,Pic(X c)) = 0, then the local-global principle holds for
rational points of X .

[Note : For X as above, Br(Xc)/Im(Br(k)) = H1(k ,Pic(X c)).]

The proof uses Galois cohomology and class field theory to reduce
to the basic case of principal homogeneous spaces of semisimple
simply connected groups, where the proof is, as of to-day, case by
case.



Let k be a number field. If kv is a nonarchimedean completion,
then any quadratic form over kv in at least 5 variables has a
nontrivial zero. As a consequence of the Hasse principle, over a
number field any totally indefinite quadratic form in at least 5
variables has a nontrivial zero.

A field F is called Ci if any homogeneous form of degree d in
n > d i variables has a non trivial zero. Serge Lang studied the
behaviour of the Ci -property under extensions of the ground field
(adding one variable, going over to a finite extension, completing
for a discrete valuation).



Suppose K is a p-adic field and F = K (C ) is the function field of a
curve. Associated to integral proper models of F there are
completions Fw of F with respect to a family of obvious discrete
valuations w of rank one of two types (trivial on K or not). Their
residue fields are of two types : a p-adic field, or the function field
of a curve over a finite field (the latter by Lang’s theorems). Over
the completions Kw , any quadratic form in 9 variables has a
nontrivial zero. Can one conclude that any quadratic form in 9
variables over F has a nontrivial zero ?
Given a field L, one writes u(L) for the maximum rank of an
anisotropic quadratic form over L. The question is thus :

Is u(F ) = 8?



This question was solved affirmatively by Parimala and Suresh (for
p 6= 2) (1998, 2010). They used arithmetical results of Kato and
Saito on higher class field theory, along with Merkurjev’s theorem
on K2. A very different proof (also for p = 2) was later given by
D. Leep, who built in an essential manner on a result of
Heath-Brown and on ideas going back to Lang.

A very different proof of a more general result was given by
Harbater, Hartmann and Krashen (2009). They replaced the p-adic
field by the field of fractions K of an arbitrary complete discrete
valuation ring R.
The function field over a curve over such a field K is called a
semi-global field.



Theorem (HHK 2009) Let K be a complete dvr with residue field k
of char. different from 2. Suppose :
1) Any quadratic form of rang > n over a finite extension of k has
a nontrivial zero.
2) Any quadratic form over the function field of a curve over k of
rank > 2n has a nontrivial zero.
Then any quadratic form of rang > 4n over the function field of a
curve over K has a nontrivial zero.

A special case is : u(F ) = 8 for the function field of a curve over a
nondyadic p-adic field. Then k is a finite field, and one takes n = 2.



The HHK method : The patching set-up

R a complete dvr, k its residue field, assumed perfect, K its
fraction field, t ∈ R a uniformizing parameter.
X/R a regular, proper, integral curve over R.
F = K (X ), referred to as a semi-global field
Y /k the special fibre
Y red = ∪i∈IYi with each Yi/k smooth. One assumes normal
crossings.
P a finite set of closed points of Y containing all the singular
points of Y and at least one point of each component Yi .



For each connected component U of Y red \ P, one denotes
RU ⊂ F the ring of functions regular on U, then R̂U its
t-completion, and FU the field of fractions of R̂U . There is a
surjective map R̂U → k[U].
For P ∈ Y ⊂ X one lets FP denote the quotient of the complete
local ring R̂P = OX ,P .
For a closed point P ∈ X in the closure of U, one considers the
local ring of R̂P = OX ,P at the codimension 1 point defined by U,
completes it, and calls FU,P the field of fractions of that DVR.
One calls such a pair (U,P) a branch. There are inclusions
FU ⊂ FU,P and FP ⊂ FU,P . The field FU,P is in a sense built out of
the fields FU and FP .
The original field F = K (X ) is the inverse limit of the entire
system {FU ,FP ,FU,P}.



Simplest case X = P1
k[[t]].

F = k((t))(x)
U = Spec (k[x−1]) = A1

k ⊂ P1
k

P = P1
k \ A1

k

FP = k((t, x))
FU = k(x)((t))
FU,P = k((x))((t)).



Let G/F be a linear algebraic group, X/R and P as above, let
XP(F ,G ) be the kernel of the finite product of maps :

H1(F ,G )→
∏
P

H1(FP ,G )×
∏
U

H1(FU ,G ).

Theorem (HHK 2015). There is a bijection of pointed sets between
XP(F ,G ) and the double coset

∏
P

G (FP)

∖∏
U,P

G (FU,P)

/∏
U

G (FU)

Theorem (HHK 2009) If G is a connected reductive group and its
underlying F -variety is F -rational, then this double quotient is
reduced to one point.



One thus gets local-global statements with respect to the finite set
of overfields {FU ,FP}.
The case of number fields would suggest investigating other
local-global statements, namely with respect to completions of a
field F = K (X ) at all discrete valuation rings of F . Let us write
Xdvr (F ,G ) for the corresponding kernel.
The relation between Xdvr (F ,G ) and the various XP(F ,G ) for
varying P is not simple.



One has :
XP(F ,G ) ⊂Xdvr (F ,G )

If moreover G/F comes from a reductive group over a given regular
model X (“G/F has good reduction over X”), one also knows⋃

P
XP(F ,G ) = Xdvr (F ,G )

and to compute the latter set it is enough to look at the kernel
Xdvr ,X (F ,G ) associated to just the local rings at codimension
one points of any given model X .



In some cases it has been possible to deduce local-global principles
with respect to discrete valuation rings from the patching result of
HHK.

Theorem (CT, Parimala, Suresh 2012). Let F = K (C ) be the
function field of a curve over the field of fractions of a complete
discrete valuation ring of residue characteristic not 2. If a
nondegenerate quadratic form of rank at least 3 over F is isotropic
over all completions of F with respect to discrete valuations, then
it is isotropic over F .

Note : this is wrong for quadratic forms of rank 2.



In the classical case of a number field k, the basic theorem is
X(k ,G ) = 1 for G a semisimple simply connected group over k .
And the triviality of X(k,G ) for G k-rational is ultimately a
consequence of that fact.
In CPS12, for F = K (C ) the function field of a curve over the field
of fractions of a complete dvr R with residue field k a finite field
(i.e. K p-adic), we asked whether the various sets X(F ,G ) are
trivial if G/F is simply connected, and we proved it under certain
hypotheses (using properties of the Rost invariant and arithmetic
results of K. Kato).
One may ask the same question without the restriction on the
residue field k .



To start with, it turned out to be difficult to produce even some
connected linear algebraic group G with one of these X(F ,G )
nontrivial.
In CPS16, we found the first examples, with XP(F ,G ) 6= 0 and
Xdvr (F ,G ) 6= 0 for G a torus over the function field F of an
elliptic curve over K = C((t)). The elliptic curve has bad
reduction, there is a loop in the special fibre of a regular model
X/R. The method did not use HHK. It used the Brauer group of
the generic fibre of X/R and the Bloch-Ogus complex on the
2-dimensional regular model X/R.
One can also produce a toric counterexample over the function
field of P1

C((t)).
In these examples, the torus has bad reduction over the regular
model.



Question 1 : Are there counterexamples to the local-global
principle over the field of functions F of a regular proper relative
curve X/R (with R complete dvr) for a principal homogeneous
space (over F) of an X -torus, in particular of an R-torus ?
Question 2 : What about the situation for principal homogeneous
spaces of simply connected groups ?
It has now turned out that under a good reduction hypothesis on
the group G over the model X , using the HHK approach it is
possible to produce precise estimates for the size of XP(X ,G )
leading to
• new cases where the local-global principle holds
• new, simpler counterexamples to the local-global principle for
homogeneous spaces of tori
• counterexamples for homogeneous spaces of simply connected
groups, thus producing the first examples of this kind over a
semi-global field.



Tori

Reminders (Voskresenskĭı, Endo-Miyata, CT-Sansuc in the 70s).



Given a torus T over a field k , there exists a “nearly canonical”
exact sequence of k-tori

1→ S → Q → T → 1

with Q a quasitrivial torus and S a flasque torus. By definition this
is a torus S whose cocharacter group is H1-trivial as a Galois
lattice over k .

One way to get such a resolution is to take a smooth
compactification X of T over k and to consider the dual of the
exact sequence of Galois lattices

0→ ks [T ]∗/k∗s → Div∞(X ×k ks)→ Pic(X ×k ks)→ 0.



Flasque tori over a field have the remarkable property that a
principal homogeneous space of S over an open set U of a smooth
k-variety extends to the whole of X : there is no ramification
(CT-Sansuc).
The theory of flasque tori and flasque resolutions extends to tori
over noetherian schemes.
In particular if X is a regular scheme and S/X a flasque torus, for
any open set U ⊂ X the restriction map H1

et(X , S)→ H1
et(U,S) is

surjective : principal homogeneous spaces under S extend.



Given an algebraic group G over k , the group G (k)/R is the
quotient of the group G (k) of rational points by R-equivalence,
which is generated by the elementary relation : for any k-morphism
V → G with V ⊂ P1

k all points in the image of V (k) are related.

For a k-torus T , a flasque resolution

1→ S → Q → T → 1

induces an isomorphism T (k)/R ' H1(k ,S) (CT-Sansuc thesis) –
in a functorial way.



For G reductive over F , the HHK theorem is :

XP(F ,G ) '
∏
P

G (FP)

∖∏
U,P

G (FU,P)

/∏
U

G (FU) .

For an arbitrary connected reductive group G over F , the pointed
set XP(F ,G ) admits the pointed double coset

∏
P

G (FP)/R

∖∏
U,P

G (FU,P)/R

/∏
U

G (FU)/R

as a quotient.



For a torus T over F and a flasque resolution

1→ S → Q → T → 1

one can do better. One has isomorphisms of abelian groups

XP(F ,T ) '
∏
P

T (FP)/R

∖∏
U,P

T (FU,P)/R

/∏
U

T (FU)/R

and

XP(F ,T ) '
∏
P

H1(FP ,S)

∖∏
U,P

H1(FU,P ,S)

/∏
U

H1(FU , S)



Using the good properties of flasque tori over regular local rings,
one proves :
Theorem. If T is a torus over X , and P is as above, then one has

XP(F ,T ) = Xdvr (F ,T ) = Xdvr ,X (F ,T ).

Using the double coset formula, we shall now discuss how to
compute this group.
One must get some control on the individual maps
H1(FP , S)→ H1(FU,P ,S) and H1(FU , S)→ H1(FU,P ,S), and
then combine this with the properties of the graph of components
of the special fibre of X/R.



Here are some of the key points.

Let 1→ S → Q → T → 1 be a flasque resolution of the X -torus
T .

Let κ(P) denote the residue field at a (schematic) point P of X .



The map H1(FP , S)→ H1(FU,P , S) for a given branch (U,P)

Both fields FP and FU,P are fields of fractions of complete regular
local rings. Using the fact that S is flasque, one shows :

• At any point P ∈ P there is a natural specialisation map
H1(FP , S)→ H1(κ(P),S) and it is an isomorphism.

• At any branch (U,P) we have natural isomorphisms

H1(FP ,S) ' H1(FU,P ,S) ' H1(κ(P), S).



The map
H1(FU , S)→

∏
(U,P) H

1(FU,P ,S) '
∏

(U,P) H
1(κ(P),S)

for a given U, with P running through all points P ∈ P in the
closure of U.
If U ⊂ Y red denotes the smooth integral projective curve over k
which is the closure of U and k(U) its field of fractions, the image
of the above map coincides with the image of specialisation maps

H1(k(U), S)→
∏

(U,P)

H1(κ(P), S)

and even better

H1(U,S)→
∏

(U,P)

H1(κ(P), S)



Let us give easy consequences.

Proposition A. Let X/R be as above. Assume that the residue field
k of R has cohomological dimension at most 1. If T is an X -torus,
then Xdvr (F ,T ) = 0.

Indeed the hypothesis on k implies H1(κ(P),S) = 0, hence each
H1(FU,P ,S) = 0.

Note that in the CPS16 counterexample the residue field k is the
complex field. But there the torus T over F had bad reduction
over X .



Theorem B. Let X/R be as above. Assume that the special fibre
Y /k of X/R is a simple normal crossing divisor all reduced
components of which are isomorphic to P1

k and that these
components intersect at k-points. Assume that T is an R-torus,
and let 1→ S → Q → T → 1 be a flasque resolution of T over R.
Let Γ denote the reduction graph associated to the special fibre.
Let m denote the number of cycles of that graph, i.e. the rank of
H1(Γtop,Z). Then

X(F ,T ) ' H1(k ,S)m.



If we drop just the hypothesis that the components intersect at
rational points, we still have a nice formula.

Theorem C. Assume that the special fibre Y /k of X/R is a simple
normal crossing divisor all components of which are isomorphic to
P1
k and that T is an R-torus. Then there is an exact sequence

0→ Hom(H1(Γtop,Z),H1(k, S))→X(F ,T )

→
∏
P

[H1(κ(P),S)/H1(k, S)]→ 0.



Suppose we are given a field k and a k-torus T0 with a flasque
resolution

1→ S0 → Q0 → T0 → 1,

such that T0(k)/R ' H1(k ,S0) 6= 0.
To produce examples of X ,T/R such that X(F ,T ) 6= 0 it is then
enough to take X/R a model as in Theorem B (all reduced
components P1

k , transversal intersections defined over k) with a
loop in the reduced fibre, and to take for T/R the obvious lift of
the k-torus T0.
It is well known how to choose T0/k as above. One may produce a
biquadratic extension of number fields, or even of p-adic fields `/k
with T0 = R1

`/kGm such that T0(k)/R 6= 0. Note that here we

have cd(k) ≥ 2.
One variant of this construction provides examples over a big field
k with X(F ,T ) infinite.



The previous results are detailed in a recent preprint on arXiv.
Another result (CHHKPS 2018), to be included in a future paper,
is :
Theorem There exists a field k, a semisimple simply connected
group G over k and a regular proper curve X over R = k[[t]], with
function field F , such that Xdiv (F ,G ) 6= {∗}.

More precisely, we may take
k = C((a))((b))((c))((d))
G = SL(1,D) with D = (a, b)⊗ (c , d) (tensor product of
quaternion algebras)
X/R a regular model with special fibre Y /k consisting of two P1

k ’s
intersecting transversally in two k-points.

Note that cd(F ) = 6.



Proof. For an arbitrary connected reductive group G over F , recall
that the pointed set XP(F ,G ) admits the pointed double coset

∏
P

G (FP)/R

∖∏
U,P

G (FU,P)/R

/∏
U

G (FU)/R

as a quotient. We assume that G comes from an anisotropic
reductive group over k, and that the special fibre Y /k is a
(reduced) union of P1

k ’s meeting transversally at k-rational points.
We then prove that there are surjective specialisation maps
spP : G (FP)/R → G (k)/R
spU : G (FU)/R → G (k)/R
spU,P : G (FU,P)/R → G (k)/R
which are compatible with the maps G (FP)→ G (FU,P) and
G (FU)→ G (FU,P).



To prove this, one lemma is :
Let G/k be an anisotropic reductive group.
Let θx ,y denote the composition of G (k((x , y))) ⊂ G (k((x))((y)))
with the series of specialisation maps (at the obvious points)

G (k((x))((y))) = G (k((x))[[y ]])→ G (k((x))) = G (k[[x ]])→ G (k)

and finally the map G (k)→ G (k)/R.
And let θy ,x denote the map obtained by permuting x and y . Then
θx ,y = θy ,x .

This uses the fact that in iterated blow-ups at a k-point P of a
smooth k-surface all k-points on the exceptional divisor are
R-equivalent.



One then finds that XP(F ,G ) has a natural quotient of the shape

∏
P

G (k)/R

∖∏
U,P

G (k)/R

/∏
U

G (k)/R

where all maps G (k)/R → G (k)/R are identity maps.
If for instance the special fibre consists of two P1

k ’s intersecting
transversally at two k-rational points, then one finds that elements
of the shape (a, b, c , d) ∈

∏
U,P G (k)/R (in a suitable order)

which do not satisfy a.d−1.b.c−1 = 1 represent nontrivial elements
in the quotient.



To produce the required counterexamples to the local-global
principle for a simply connected group over the field
F = C((a))((b))((c))((d))((t))(x), it remains to recall the
following results from the 70s.

(Platonov) Let k = C((a))((b))((c))((d)). Let D = (a, b)⊗ (c , d)
(tensor product of two quaternion algebras). Then the quotient
SK1(D) of D∗1 (elements of reduced norm 1) by the commutator
subgroup is non-zero.

(Voskresenskĭı, using a result of Platonov) Let D/k be a central
simple algebra over a field k. Let G = SL(1,D). Then
SK1(D) = G (k)/R.


