Local-global principle for constant reductive groups over arithmetic curves

Jean-Louis Colliot-Thélène (CNRS et Université Paris-Saclay)

TIFR, Mumbai (online) 9,10,11 August 2021 Conference for the 80th birthday of Professor Raghunathan August 11th

After joint works with

Ξ.

イロト イヨト イヨト イヨト

- D. Harbater
- J. Hartmann
- D. Krashen
- R. Parimala
- V. Suresh

Semi-global field

R a complete dvr, *K* its field of fractions, κ its residue field. Example of original interest : *K* a *p*-adic field, κ finite residue field. *X*/*K* a smooth, projective, geometrically integral curve. F = K(X) is called a semi-global field. Such a curve admits regular, projective integral models \mathcal{X}/R . A normal crossings model (NC model) of such a curve *X*/*K* is a 2-dimensional, regular, projective scheme \mathcal{X}/R with generic fibre *X*/*K* and with special fibre *Y*/ κ such that *Y*_{red} is a union of regular connected curves over κ which intersect transversally. Such models exist. Valuations and completions of a semi-global field.

 $\Omega_{\mathcal{X}}$ denotes the set of codimension one points of \mathcal{X} . Two types of such points : closed points of the generic fibre X/K (residue field finite extension of K) and generic points of the components of the special fibre (residue field function field of a curve over κ). To any such a point is associated a discrete valuation v. We let F_v denote the completion of F wrt to v.

$$\Omega_F = \bigcup_{\mathcal{X}} \Omega_{\mathcal{X}}$$
 for all NC models \mathcal{X}/R of X/K .

[In this talk we do not consider other valuations of F.]

Let G/F be a reductive group.

We are interested in

$$III_{\mathcal{X}}(F,G) := \operatorname{Ker}[H^{1}(F,G) \to \prod_{\nu \in \Omega_{\mathcal{X}}} H^{1}(F_{\nu},G)]$$

and

$$\operatorname{III}(F,G) = \operatorname{Ker}[H^1(F,G) \to \prod_{v \in \Omega_F} H^1(F_v,G)]$$

which express the possible lack of a local-global principle for principal homogeneous spaces under G over F

Motivation

Analogy with local-global problems over number fields

Natural intermediate problem on the way to local-global problems for function fields of varieties over number fields

Already presents challenges :

• Find classes of groups G/F such that $\operatorname{III}(F,G) = 1$

• Produce counterexamples to the local-global counterexamples in this context.

Many results for F/K with K a p-adic field, cf. Parimala's talk.

The HHK (Harbater, Hartmann, Krashen) method (2009) : **The patching set-up**

R a complete dvr, κ its residue field, *K* its fraction field, $t \in R$ a uniformizing parameter.

 \mathcal{X}/R a regular, proper, integral curve over R.

 $F = K(\mathcal{X})$ function field, referred to as a *semi-global field* Y/κ the special fibre

 $Y^{red} = \bigcup_{i \in I} Y_i$ with each Y_i / κ smooth. One assumes normal crossings.

 \mathcal{P} a finite set of closed points of Y containing all the singular points of Y and at least one point of each component Y_i .

For each connected component U of $Y^{red} \setminus \mathcal{P}$, one denotes $R_U \subset F$ the ring of functions regular on U, then \hat{R}_U its *t*-completion, and F_U the field of fractions of \hat{R}_U . There is a surjective map $\hat{R}_U \to \kappa[U]$.

For $P \in Y \subset \mathcal{X}$ one lets F_P denote the quotient of the complete local ring $\hat{R}_P = O_{\mathcal{X},P}$.

For a closed point $P \in X$ in the closure of U, one considers the local ring of $\hat{R}_P = O_{\mathcal{X},P}$ at the codimension 1 point defined by U, completes it, and denotes $F_{U,P}$ the field of fractions of that dvr. One calls such a pair (U, P) a branch. There are inclusions $F_U \subset F_{U,P}$ and $F_P \subset F_{U,P}$. The field $F_{U,P}$ is in a sense built out of the fields F_U and F_P .

The original field $F = K(\mathcal{X})$ is the inverse limit of the entire system $\{F_U, F_P, F_{U,P}\}_{P \in \mathcal{P}}$.

$$\begin{array}{l} \text{Simplest case } \mathcal{X} = \mathbb{P}^{1}_{\kappa[[t]]}.\\ F = \kappa((t))(x)\\ U = \operatorname{Spec}\left(\kappa[x^{-1}]\right) = \mathbb{A}^{1}_{\kappa} \subset \mathbb{P}^{1}_{\kappa}\\ P = \mathbb{P}^{1}_{\kappa} \setminus \mathbb{A}^{1}_{\kappa} \end{array}$$

 $F_{P} = \kappa((t, x))$ $F_{U} \text{ is the field of fractions of } \kappa[x^{-1}][[t]]; \text{ this is a subfield of }$ $\kappa(x)((t)).$ $F_{U,P} = \kappa((x))((t)).$

イロト イヨト イヨト --

E 990

 $F_U \subset F_{U,P}$ $F_P \subset F_{U,P}.$

Let G/F be a linear algebraic group, \mathcal{X}/R and \mathcal{P} as above, let $\operatorname{III}_{\mathcal{P}}(F, G)$ be the kernel of the finite product of maps :

$$H^1(F,G)
ightarrow \prod_P H^1(F_P,G) imes \prod_U H^1(F_U,G).$$

Theorem (HHK 2015). There is a bijection of pointed sets between $III_{\mathcal{P}}(F, G)$ and the double coset

$$\prod_{P} G(F_{P}) \left\langle \prod_{U,P} G(F_{U,P}) \middle/ \prod_{U} G(F_{U}) \right\rangle$$

This comes from a closer analysis of the proof of :

Theorem (HHK 2009) Let F be an arbitrary semi-global field. If G is a connected reductive group and its underlying F-variety is F-rational, then this double quotient is reduced to one point.

This gives local-global statements with respect to the finite set of overfields $\{F_U, F_P\}_{P \in \mathcal{P}}$.

This was used by HHK to reprove and extend the Parimala–Suresh theorem that quadratic forms in 9 variables over F with κ finite are isotropic.

For G/F reductive and $\mathcal{P} \subset \mathcal{X}$ as above, one proves :

$$\operatorname{III}_{\mathcal{P}}(F,G)\subset\operatorname{III}(F,G)\subset\operatorname{III}_{\mathcal{X}}(F,G)$$

If G/F comes from a reductive group over a given regular projective model \mathcal{X} ("G/F has good reduction over \mathcal{X} "), one also knows

$$\bigcup_{\mathcal{P}} \operatorname{III}_{\mathcal{P}}(F,G) = \operatorname{III}(F,G) = \operatorname{III}_{\mathcal{X}}(F,G)$$

If G comes from a reductive group over R, we have

$$\mathrm{III}_{\mathcal{P}}(F,G) = \mathrm{III}(F,G) = \mathrm{III}_{\mathcal{X}}(F,G).$$

In the classical case of a number field k, the basic theorem is III(k, G) = 1 for G a semisimple simply connected group over k. And the triviality of III(k, G) for G k-rational is ultimately a consequence of that fact.

Question (cf. CPS12). Let F = K(X) be a an arbitrary semi-global field (no restriction on the residue field κ). If G/F is a semisimple simply connected group, is III(F, G) = 1?

For curves X over a *p*-adic field, i.e. residue field κ finite, this has now been proved in many cases, see Parimala's talk.

In CHHKPS20 (case of tori) and CHHKPS21, we have obtained results on III(F, G) over arbitrary semi-global fields F/K (i.e. arbitrary residue field κ) in the case where the reductive group G/F is obtained by base change $R \to F$ from a reductive group over the complete dvr $R \subset K$.

Theorem A. Let K be a complete discretely valued field, R its ring of integers. Let F = K(X) be a semi-global field over K and \mathcal{X} a regular projective NC model of F over R. Assume that the residue field κ of R is of characteristic zero; that the closed fiber Y/κ of \mathcal{X} is reduced; and that the reduction graph associated to Y is a tree and remains a tree under all finite extensions κ'/κ . Then for any reductive group G over R we have III(F, G) = 1.

The proof is rather elaborate. One first proves that a torsor over F with class in III(F, G) may be represented by a torsor over \mathcal{X} under G which is trivial when restricted to the (reduced) closed fibre. One then invokes a recent result of P. Gille, Parimala and Suresh to conclude that it is trivial over F.

Recall the notion of R-equivalence.

Given a connected algebraic group G over a field k, the set of points $P \in G(k)$ such that there exists an F-morphism $\phi : U \to G$ with U open in \mathbb{P}^1_k and both e_G and P in $\phi(U(k))$ build up a normal subgroup of G(k). The quotient by this subgroup is denoted $G(k)/\mathbb{R}$.

For a connected reductive group G/k and $cd(k) \le 1$ we have G(k)/R = 1.

There are *tori* T over a field k with cd(k) = 2 and $T(k)/R \neq 1$.

For G/k semisimple simply connected, G(k)/R = 1 if cd(k) = 2 is known in many cases. Whether G(k)/R = 1 if cd(k) = 3 is an open question. There exist G/k with cd(k) = 4 and $G(k)/R \neq 1$ (see below).

Theorem B. Let K be a complete discretely valued field, R its ring of integers. Let F = K(X) be a semi-global field over K and \mathcal{X} a regular projective NC model of F over R. Let G be a reductive group over R. If the closed fiber Y/κ of \mathcal{X}/R is reduced and consists of copies of \mathbb{P}^1_{κ} meeting at κ -points and forming m cycles, and if char(κ) is not one of the bad primes for the reductive group G_{κ} then $\mathrm{III}(F, G)$ is in bijection with the quotient of $(G(\kappa)/\mathbb{R})^m$ by simultaneous conjugation by $G(\kappa)$:

$${}^{g}(g_1,\ldots,g_m):=(gg_1g^{-1},\ldots,gg_mg^{-1}).$$

If $G(\kappa)/R$ is commutative, this quotient is nothing but $(G(\kappa)/R)^m$.

Using Theorem B, one gets a negative answer to the above question on semisimple simply connected groups :

Theorem (CHHKPS21) There exists a field κ of cohomological dimension 4, a semisimple simply connected group G over κ and a geometrically connected curve X over $K = \kappa((t))$, with function field F, such that $\operatorname{III}(F, G) \neq 1$.

More precisely, we may take
$$\begin{split} &\kappa = \mathbb{C}((a))((b))((c))((d)) \\ &R = \kappa[[t]], \ K = \kappa((t)) \\ &D = (a,b) \otimes_{\kappa} (c,d) \text{ (tensor product of quaternion algebras) and} \\ &G = SL(D)/\kappa \text{ defined by equation } \operatorname{Nrd}_D(\xi) = 1 \\ &X/K \text{ a curve with } \mathcal{X}/R \text{ a regular model with special fibre } Y/\kappa \\ &\text{consisting of a triangle of } \mathbb{P}^1_{\kappa} \text{'s intersecting transversally in rational} \\ &\text{points.} \end{split}$$
 To produce the required counterexamples to the local-global principle for a simply connected group over the field $F = \mathbb{C}((a))((b))((c))((d))((t))(X)$, it remains to recall the following results from the 70s, which gives a group G = SL(D) over κ with $G(\kappa)/\mathbb{R}$ commutative and $G(\kappa)/\mathbb{R} \neq 1$.

(Platonov) Let $\kappa = \mathbb{C}((a))((b))((c))((d))$. Let $D = (a, b) \otimes (c, d)$ (tensor product of two quaternion algebras). Then the quotient $SK_1(D)$ of D^{*1} (elements of reduced norm 1) by the commutator subgroup of D^* is non-zero.

(Voskresenskii, using a result of Platonov) Let D/k be a central simple algebra over a field k. Let G = SL(D). Then $SK_1(D) = G(k)/R$.

On the proof of Theorem B

For an arbitrary connected reductive group G over F we have

$$\operatorname{III}_{\mathcal{P}}(F,G) \simeq \prod_{P} G(F_{P}) \left\langle \prod_{U,P} G(F_{U,P}) \middle/ \prod_{U} G(F_{U}) \right\rangle$$

The pointed set $\coprod_{\mathcal{P}}(F, G)$ admits the pointed double coset

$$\prod_{P} G(F_{P})/\mathrm{R} \left\langle \prod_{U,P} G(F_{U,P})/\mathrm{R} \middle/ \prod_{U} G(F_{U})/\mathrm{R} \right\rangle$$

as a quotient.

Now assume that *G* is induced by a reductive group over *R*, also denoted *G*, and that the special fibre Y/κ is a (reduced) union of \mathbb{P}^1_{κ} 's meeting transversally at κ -rational points. One then proves that there are **specialisation maps** for R-equivalence classes $sp_P : G(F_P)/\mathbb{R} \to G(\kappa)/\mathbb{R}$ $sp_U : G(F_U)/\mathbb{R} \to G(\kappa)/\mathbb{R}$ $sp_{U,P} : G(F_{U,P})/\mathbb{R} \to G(\kappa)/\mathbb{R}$ which are compatible with the maps $G(F_P) \to G(F_{U,P})$ and $G(F_U) \to G(F_{U,P})$, and one proves that the induced map from

to

$$\prod_{P} G(F_{P}) \left\langle \prod_{U,P} G(F_{U,P}) \middle/ \prod_{U} G(F_{U}) \right| \\
\prod_{P} G(\kappa) / R \left\langle \prod_{U,P} G(\kappa) / R \middle/ \prod_{U} G(\kappa) / R \right\rangle$$

is a bijection.