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The text

Zéro-cycles sur les surfaces de del Pezzo
(Variations sur un thème de Daniel Coray)

is available on arXiv
arXiv : 2005.06876v2 (June 2020)
A version starting with a developed introduction (for the general
public) was put on my webpage yesterday.
The present presentation is a reorganized version of “online”
presentations in Paris (June 5) and in Moscow (June 11).



Introduction and statement of main results



Let X be an algebraic variety over a field k.
One lets X (k) be the set of rational points of X .
If P is a closed point of X , we denote by k(P) the residue field at
P. This is a finite extension of k . Its degree dP := [k(P) : k] is
called the degree of P.
A closed point P of degree 1 is a rational point.
The index I (X ) = I (X/k) is the g.c.d. of the degrees dP for all
closed points P of X .
It is also the g.c.d. of the degrees of the finite field extension K/k
such that X (K ) 6= ∅.
If X (k) 6= ∅, then clearly I (X ) = 1.
Naive question : what about the converse ? One classical case : yes
for quadrics (Artin 37, Springer 1952). One less classical case : yes
for intersections of two quadrics ( Amer 76, Coray 77, Brumer 78).



Zero-cycle on a k-variety X : finite linear combination with integral
coefficients of closed points

∑
P nPP, n ∈ Z

Effective cycle : all nP ≥ 0

Degree of the zero-cycle (over k) :
∑

P nP [k(P) : k] ∈ Z

Rational equivalence on the group Z0(X ) of zero-cycles :
for any proper morphism p : C → X from a normal integral k-curve
and any rational function f ∈ k(C )∗, mod out by p∗(divC (f )).
If X/k is proper, then induced degree map

CH0(X ) = Z0(X )/rat→ Z

from the Chow group of degree zero-cycles to Z.
The image is Z.I (X ) ⊂ Z, where I (X ) is the index.
The kernel A0(X ) is the reduced Chow group of zero-cycles.



Curves (zero-cycle = divisor)

Riemann’s inequality `(z) ≥ degk(z) + 1− g for a divisor z on a
smooth, projective, geometrically connected curve C/k of genus g
implies :

• Any zero-cycle of degree at least equal to g on C is rationally
equivalent to an effective cycle.

• For g > 1, if I (C ) = 1, then there exist effective zero-cycles of
degree g and of degree g + 1, hence closed points of coprime
degrees ≤ g + 1.

• If g ≥ 1 and C (k) 6= ∅, then CH0(C ) is generated by closed
points of degree at most g .

• For g = 0 and g = 1, if I (C ) = 1, then C (k) 6= ∅.



Naive questions. For X/k a smooth, projective, geometrically
connected variety over a field k , do we have similar results with a
suitable integer in place of g ?

Over k = C the complex field, only the first property is relevant.
The answer is well known to be NO in general. This is the famous
result of Mumford 1969 on a problem of Severi, expanded by
Roitman 1971, with the proof by Spencer Bloch 1979 by means of
algebraic correspondances, expanded by Bloch and Srinivas and
then by many other authors.

Theorem. Let X/C be as above. If there exists an integer N ≥ 1
such that any zero-cycle of degree at least N is rationally
equivalent to an effective zero-cycle, then H0(X ,Ωi

X ) = 0 for
i ≥ 2.





One is then led to restrict our naive questions and only consider
smooth, projective geometrically connected varieties X/k such
that, over (arbitrary) algebraically closed extensions Ω/k, the
geometry of Y := X ×k Ω is “reasonable”. In decreasing order of
generality :

(1) CH0-representable : there exists a proper curve C and a proper
morphism p : C → Y such that p∗ : CH0(C )→ CH0(Y ) is onto
(2) CH0-trivial : the degree map CH0(Y )→ Z is an isomorphism.
(3) Rationally connected varieties (Kollár-Miyaoka-Mori), e.g. Fano
varieties.
(4) Unirational varieties

For surfaces, classes (3) and (4) coincide with the class of rational
surfaces.



One special class of varieties over k of geometric type (4) is that
of smooth compactifications X of a homogeneous space E of a
connected linear algebraic group.

For such X , the question whether I (X ) = 1 implies X (k) 6= ∅ has
been much investigated.
For E a principal homogeneous space, the question is open in
general. There are positive results (Serre, Sansuc over number
fields, Bayer–Lenstra).
For projective homogeneous spaces, we have Springer’s theorem on
quadrics.
But in the general case, one may have I (X ) = 1 and X (k) = ∅
(Florence, Parimala).



In this talk, we shall concentrate on the class of geometrically
rational surfaces over a field k of characteristic zero. We shall see
that analogues of the properties for curves hold for such surfaces.



The first theorem is a substitute for the would-be statement :
I (X ) = 1 =⇒ X (k) 6= ∅. It generalizes the result for cubic surfaces
obtained by Coray (1974) in his thesis (to be discussed further
below).

Theorem A
Let X/k be a smooth, projective, geometrically rational surface.
There exists an integer N(X ) ≥ 1, which depends only on the
geometry of X , such that, if I (X ) = 1, then there exist closed
points of coprime degrees all less than N(X ).



The second theorem generalizes a result of Coray and mine (1979)
on conic bundles over the projective line.

Theorem B
Let X/k be a smooth, projective, geometrically rational surface
with a k-rational point. There exists an integer M(X ) ≥ 1, which
depends only on the geometry of X , such that any zero-cycle on X
of degree at least M(X ) is rationally equivalent to an effective
cycle. In particular, the Chow group of zero-cycles is generated by
closed points of degree at most M(X ).



Index 1 for del Pezzo surfaces of degree 3 : Coray’s thesis

In his Ph.D. thesis (Cambridge, UK 1974), Daniel Coray
(1947-2015) studied the question :

If a cubic hypersurface X in Pn
k has a rational point in a finite field

extension K/k of degree prime to 3, does it have a rational point
in k ?
That is, if I (X ) = 1, do we have X (k) 6= ∅ ?





There are two main theorems in this thesis.

Theorem (Coray). If k is the field of fractions of a complete DVR
with residue field κ, if I (X ) = 1 =⇒ X (k) 6= ∅ holds for cubic
hypersurfaces over κ in any dimension, then it holds for cubic
hypersurfaces over k in any dimension.

This is proved by a delicate study of possible bad reduction of cubic
hypersurfaces, extending earlier work of Demjanov, Lewis, Springer.

Corollary (Coray). I (X ) = 1 =⇒ X (k) 6= ∅ holds for arbitrary cubic
hypersurfaces over a p-adic field.
Indeed, it is easy to prove I (X ) = 1 =⇒ X (κ) 6= ∅ for cubic
hypersurfaces over a finite field κ.



This talk is concerned with the second main theorem in Coray’s
thesis, his method, and some improvements which lead to
Theorems A and B. Here k is an arbitrary field.

Theorem (Coray 1974)
Let X ⊂ P3

k be a smooth cubic surface. If it has a rational point in
a finite field extension of k of degree prime to 3, then it has a
rational point in an extension of degree 1, or of degree 4, or of
degree 10.
(“or ”not exclusive)



I shall describe the main points of Coray’s proof. It uses curves of
low genus lying on the surface. The basic tools are classical :
Riemann-Roch for line bundles on a surface and the formula for
the arithmetic genus of a curve on a surface. One does not know
whether the curves one produces are smooth or even irreducible.

One must then envision possible degeneracy cases. I shall then
explain a general method to dodge this part of the argument, and,
with the added flexibility, produce new results without too much
pain.
From now on, to be on the safe side, I assume char(k) = 0.



We assume that the smooth cubic surface X ⊂ P3
k has a closed

point of degree d prime to 3. Let d be the least such integer.
If d = 1, there is nothing to do. If d = 2, then taking the line
through a quadratic point and its conjugate we get a rational
point, thus in fact d = 1.
Let us thus assume d prime to 3 and d ≥ 4. Let P ∈ X be a closed
point of degree d .
On the surface X we find a closed point Q of degree 3 by
intersecting with a line P1

k ⊂ P3
k .



Let n ≥ 1 be the smallest integer such that there exists a surface
Σ ⊂ P3

k of degree n cutting out a curve Γ ⊂ X which contains
both P and Q.
On the surface X we easily compute

h0(X ,OX (n)) ≥ 3n(n + 1)/2 + 1.

(actually, equal)
Assume that the surface Σ of degree n cuts out a curve
Γ = D ⊂ X which is geometrically irreducible and smooth. On this
curve there is a zero-cycle of degree 1. One computes the genus

g = pa(D) = 3n(n − 1)/2 + 1.



If on the one hand 3n(n + 1)/2− 3 ≥ d then

3n(n + 1)/2 + 1 ≥ d + 3 + 1

and one may find a surface of degree n cutting out a curve Γ
(assumed to be smooth) passing through the closed points P (of
degree d) and Q (of degree 3).
If on the other hand d ≥ 3n(n − 1)/2 + 4, then

d − 3 ≥ 3n(n − 1)/2 + 1 = g(Γ),

thus on the smooth curve Γ, the zero-cycle P − Q is rationally
equivalent to an effective zero-cycle of degree d − 3 < d . Thus
there exists a closed point of degree prime to 3 and smaller than d ,
contradiction.



This argument works for any integer d prime to 3 which lies in an
interval

3n(n + 1)/2− 3 ≥ d ≥ 3n(n − 1)/2 + 4.

For other values of d , a complementary argument is needed.
In particular, for integers of the shape d = 3n(n − 1)/2 + 1, one
uses a curve Γ which is the normalisation of a curve Γ0 ⊂ X cut
out by a surface of degree n passing through P and having a
double point at the point Q of degree 3. The genus of the curve
drops down by 3, and the dimension of the linear system of interest
drops down by 9.



For d = 3n(n − 1)/2 + 1 with n ≥ 4, there is enough room. But
there is not enough room in the case n = 2, d = 4 and in the case
n = 3, d = 10.

CONCLUSION (up to good position argument)

On a smooth cubic surface X/k with a closed point of degree d
prime to 3, the least such d lies in {1, 4, 10}.

45 years old question : Can one eliminate 10, 4, both ?



The above argument for cubic surfaces assumes that the curves Γ
found in the linear system are geometrically irreducible and
smooth. In his paper, Coray then discusses the possible singular
and even reducible curves which may turn up, and manages to go
down to 1, 4 or 10 also in these cases.

It is clear that such cases may occur : consider the simpler
question of finding a smooth plane conic through a closed point of
degree 3 in P2

k . If the closed point happens to lie on a P1
k ⊂ P2

k ,
this is not possible.



Making the method flexible



I now explain how to avoid such a discussion of degenerate cases.
Ideas :
• When available, use results of the type : if there is a k-rational
point on a k-variety X of the type under study, then the k-rational
points are Zariski dense.
• use the Bertini theorems (not very original !)
• replace k by the “large” field F = k((t)), so that there are many
F -points on whichever smooth variety appears in the process (the
original variety, or some parameter space) as soon as there is at
least one F -point.
• For each of the problems under consideration here, to prove
a result for a k-variety X , it is enough to solve it positively for the
k((t))-variety X ×k k((t)).



Theorem (a variation on the Bertini theorems, as found in
Jouanolou’s book)

Let X be a smooth, projective, geom. connected k-variety. Let
f : X → Pn

k be a k-morphism. Assume its image has dimension at
least 2 and generates Pn

k .
Let r ≤ n be an integer. There exists a nonempty open set U ⊂ X r

such that, for any field L containing k and any L-point
(P1, . . . ,Pr ) ∈ U(L), there exists a hyperplane h ⊂ Pn

L whose
inverse image f −1(h) ⊂ XL is a smooth, geometrically integral
L-variety which contains the points {P1, . . . ,Pr}.

Here we just say : “ If there is a point in U(L), then ...”. But for a
given L, U(L) could be empty.



Let X be a smooth k-variety and m > 0 be an integer. Consider
the open set W of Xm consisting of m-tuples (x1, . . . , xm) with
xi 6= xj for i 6= j .

The symmetric group Sm acts on W , the quotient is a smooth
k-variety Symm

sepX . It parametrizes effective zero-cycles of degre m
which are “separable”.



Theorem (zero-cycles version of previous theorem)

Let X be a smooth, projective, geom. connected k-variety. Let
f : X → Pn

k be a k-morphism. Assume its image has dimension at
least 2 and generates Pn

k . Let s1, . . . , st be natural integers such
that

∑
i si ≤ n. There exists a nonempty open set U of the

product Syms1
sepX × · · · × Symst

sepX such that, for any field L
containing k and any L-point of U, corresponding to a family {zi}
of separable effective zero-cycles of respective degrees si , there
exists a hyperplane h ⊂ Pn

L whose inverse image Xh = f −1(h) ⊂ XL

is a smooth, geometrically integral L-variety which contains the
points of the supports of the cycle

∑
i zi .

Same comment as before on U(L) being possibly empty.
Note : Let s = s1 + · · ·+ st . For the proofs of Theorems A,B,C, we
use Syms1

sepX × · · · × Symst
sepX and not only Syms

sepX .



Let k be a field, char(k) = 0. Let X be a smooth, projective,
geom. connected k-variety.

In this talk, we say that X has the density property if it satisfies :
for any finite field extension L/k with X (L) 6= ∅, the set X (L) is
Zariski dense in XL.

R-equivalence on X (k) is the equivalence relation generated by the
elementary relation : A,B ∈ X (k) both lie in the image of P1(k)
under a k-morphism P1

k → X .

In this talk, we say that X has the R-density property if it satisfies :
for any finite field extension L/k and P ∈ X (L), the set of points
of X (L) which are R-equivalent to P on XL is Zariski dense on XL.

Smooth cubic hypersurfaces in Pn
k , n ≥ 3, satisfy both properties.



Theorem (Bertini for varieties with density properties)

Let k be a field, char(k) = 0. Let X be a smooth, projective,
geom. connected k-variety. Let f : X → Pn

k be a k-morphism.
Assume its image has dimension at least 2 and generates Pn

k . Let
P1, . . . ,Pt be closed points of X of respective degrees s1, . . . , st
such that

∑
i si ≤ n.

(a) If X satisfies the density property, then there exists a
hyperplane h ⊂ Pn

k defined over k such that Xh = f −1(h) ⊂ X is
smooth, geom. integral and contains effective zero-cycles z1, . . . , zt
of respective degrees s1, . . . , st .

(b) If X is satisfies the R-density property, then one may moreover
ensure that, for each i , the zero-cycle zi is rationally equivalent to
the zero-cycle Pi .



Definition (F. Pop)
A field F is said to be a large field (in French, corps fertile) if, for
any smooth geometrically connected variety X over F , if X (F ) 6= ∅
then the set X (F ) of F -rational points is Zariski dense in X .

If a field F is large, then any finite field extension of F is large.

Thus any smooth geom. connected variety over a large field
satisfies the density property.

The formal power series field F = k((t)) over any field k is a large
field.



Theorem (Bertini over a large field)

Let F be a large field, char(F ) = 0. Let X be a smooth, projective,
geom. connected F -variety. Let f : X → Pn

F be an F -morphism.
Assume its image has dimension at least 2 and generates Pn

F . Let
P1, . . . ,Pt be closed points of X of respective degrees s1, . . . , st
such that

∑
i si ≤ n.

(a) There exists a hyperplane h ⊂ Pn
F defined over F such that

Xh = f −1(h) ⊂ X is smooth, geom. integral and contains effective
zero-cycles z1, . . . , zt of respective degrees s1, . . . , st .

(b) If X is geometrically rationally connected, then one may
moreover ensure that, for each i , the zero-cycle zi is rationally
equivalent to the zero-cycle Pi .



For the proof of (a) :
The family P1, . . . ,Pt defines an F -point of the smooth, connected
k-variety Syms1

sepX × · · · × Symst
sepX . Since F is large, any

nonempty Zariski open set of that k-variety contains an F -point.

For the proof of (b), one moreover uses a result due to Kollár
(1999) (deformation method) : for any F -point P on a smooth,
projective geometrically (separably) rationally connected variety X
over a large field F , the set of F -points which are R-equivalent to
P, hence in particular are rationally equivalent to P, is Zariski
dense in X .



(Easy) Proposition
Let k be a field and F = k((t)). Let X be a proper k-variety.
(a) The gcd of degrees of closed points coincides for X/k and
XF/F .
(b) For any integer r ≥ 1, the smallest degree of a closed point of
degree prime to r , which is also the smallest degree of an effective
zero-cycle of degree prime to r , coincides for X/k and XF/F .
(c) Let I be a set of natural integers. If the Chow group of
zero-cycles on XF may be generated by the classes of effective
cycles of degree d ∈ I , then the same holds for X .
(d) Let d ≥ 0 be an integer. If every zero-cycle on XF of degree at
least d is rationally equivalent to an effective cycle, then the same
holds for X .



One may then run Coray’s proof using only smooth projective
curves in the linear systems of interest.There are two ways to do
this.

One may use the density property of smooth cubic surfaces and
apply Bertini’s theorem (a) for varieties with this property.

Or one may reduce to the case of large fields F via replacing k by
k((t)), use Bertini theorem (a) for large fields, and then use the
fact that the statement of the theorem for Xk((t)) over k((t))
implies it for X over k .



In any case, an important point has been to be able to move the
effective zero-cycles through which one wants curves of a given
linear system to pass and simultaneously be smooth.

The gained flexibility enables one to prove the next theorems by
Coray’s method without too much effort.



Index 1 for del Pezzo surfaces of degree 2



“Bertini over a large field” (a) is enough to prove :

Theorem
Let X be a del Pezzo surface of degree 2, i.e. a double cover of P2

k

ramified along a smooth quartic. If there exists a closed point of
odd degree on X , then there exists a closed point of degre 1, or 3,
or 7.

In the proof, just as for cubic surfaces, in certain cases, one needs
to blow up points on X . To apply the Bertini types of results, one
needs to know that certain invertible sheaves are very ample. Here
one may use Reider’s criteria (1988).

For del Pezzo surfaces of degree 2 with a k-rational point not in a
very special situation, k-unirationality is known. But the trick with
large fields enables us to handle our problem without using
k-unirationality.



Remark (Kollár-Mella 2017). There exist examples of del Pezzo
surfaces X of degree 2 with a closed point of degree 3, hence
I (X ) = 1, but with no rational point.

Suppose k is a field with a quadratic field extension k(
√
a)/k , a

cubic field extension and a quintic field extension.
Let C ⊂ P2

k a conic with a smooth k-point.
Let Q ⊂ P2

k be a smooth quartic with Q ∩ C = {A,B}, with A
closed point of degree 3 and B closed point of degree 5.
Let F = k(t). Let X/F be the smooth del Pezzo surface of degree
2 defined by the equation

z2 − aC (u, v ,w)2 + tQ(u, v ,w) = 0.

It has obvious points of degree 3 and 5.
However congruences modulo powers of t show it has no F -point.



Effectivity results for del Pezzo surfaces



Using either “Bertini over a large field” (b) or “Bertini for varieties
with the R-density property” (b), one proves :
Theorem

Let X ⊂ P3
k be a smooth cubic surface. Suppose X (k) 6= ∅

(i) Every zero-cycle of degree zero on X is rationally equivalent to
the difference of two effective cycles of degree 3.

(ii) Every zero-cycle on X of degree ≥ 10 is rationally equivalent to
an effective zero-cycle.

The discussion of closed points of degree d = 3n(n − 1)/2 + 1,
resp. d = d = 3n(n − 1)/2, requires the use of curves with one,
resp. two double rational points.



Theorem

Let X/k be a del Pezzo surface of degree 2. Assume X (k) 6= ∅.
(i) Every zero-cycle of degree zero is rationally equivalent to the
difference of two effective zero-cycles of degree 6.

(ii) Every zero-cycle of degree at least 43 is rationally equivalent to
an effective cycle.

The discussion of closed points of degree d = n2 − n + 1, resp.
d = n2 − n, requires the use of curves with one, resp. two double
rational points.

Since we do not know the R-density property for del Pezzo
surfaces of degree 2, the proof here relies on Bertini over a large
field (b), the combination of the reduction trick from k to k((t))
and Kollár’s result on R-density for geometrically rationally
connected varieties (proved using deformation theory).



Theorem

Let X/k be a del Pezzo surface of degree 1. It has a k-point, the
fixed point of the anticanonical system.

(i) Every zero-cycle of degree zero is rationally equivalent to the
difference of effective zero-cycles of degree 21.

(ii) Every zero-cycle of degree at least 904 is rationally equivalent
to an effective cycle.

The discussion of closed points of degree d = n(n− 1)/2 + 1, resp.
d = n(n − 1)/2, requires the use of curves with one, resp. two
double rational points.

Since we do not know the density property and even less the
R-density property for del Pezzo surfaces of degree 1, the proof
here relies on Bertini over a large field (b), the combination of the
reduction trick from k to k((t)) and Kollár’s result on R-density
for geometrically rationally connected varieties.



With some effort, one should be able to give analogous theorems
without assuming X (k) 6= ∅.
Here is one example (full details have not been written down).

Let X ⊂ P4
k be a del Pezzo surface of degree 4. Assume I (X ) = 2.

Over number fields, Creutz and Viray have recently discussed
whether this implies the existence of a closed point of degree 2.
Over an arbitary field of char. zero, using the technique described
in this talk, one may prove :
For X/k as above, if I (X ) = 2, then there exists a closed point of
degree 2d with d odd in {1, 3, 5, 7, 11}.



Putting everything together



Analogues of these theorems for conic bundles over the projective
line, the other class of geometrically rational surfaces, analogues of
the above theorems were proved by Coray and me in 1979 – the
tedious way, discussing possible degenerations. I have not
investigated whether one could simplify the argument by using the
large field trick.
The case of del Pezzo surfaces of degree 5 ≤ d ≤ 9, as usual, is
easily handled (the case d = 6 being a little more difficult).
For del Pezzo surfaces of degree 4, one has I (X ) = 1 =⇒ X (k) 6= ∅
(Amer 1976, Coray 1977, Brumer 1978). If X (k) 6= ∅, then blowing
up a suitable k-point leads to a conic bundle over P1

k .
Using the k-birational classification of geometrically rational
surfaces, one gets Theorems A and B since they do not depend on
the k-birational equivalence class.



Theorem A
Let X/k be a smooth, projective, geometrically rational surface.
There exists an integer N(X ), which depends only on the geometry
of X , such that, if I (X ) = 1, then there exist closed points of
coprime degrees less than N(X ).

Theorem B
Let X/k be a smooth, projective, geometrically rational surface
with a k-rational point. There exists an integer M(X ), which
depends only on the geometry of X , such that any zero-cycle on X
of degree at least M(X ) is rationally equivalent to an effective
cycle. In particular, the Chow group of zero-cycles is generated by
closed points of degree at most M(X ).



These results are k-birational. They are proved by a case-by-case
analysis relying on the k-birational classification of geometrically
rational surfaces (Enriques, Manin, Iskovskikh, Mori). This raises
questions.



Going home with problems



(i) Can one give a proof of Theorems A and B avoiding the
birational k-classification ?

(ii) Do these results extend to higher dimensional geometrically
rationally connected varieties ?
Favourite 3-folds : smooth cubic hypersurfaces in P4

k , conic bundles
over P2

k , quadric bundles over P1
k ?

(iii) What about geometrically CH0-trivial varieties ? Enriques
surfaces ?

(iv) What about geometrically CH0-representable varieties ?
Salberger (unpublished, 1985) proved such a theorem for conic
bundles over curves of arbitrary genus.



Going home with exercises for the class



Springer’s theorem

Let q(x0, . . . , xn), be a quadratic form over a field k. If it has a
nontrivial zero over a field extension K/k of odd degree, then it
has a nontrivial zero over k.
Proof. May assume K/k simple, K = k[t]/P(t), minimal, odd
degree d . Assume q does not represent zero. Then may write

q(R0(t), . . . ,Rn(t)) = P(t)Q(t)

with deg(Ri ) < deg(P), not all zero. LHS even degree at most
2d − 2. Then deg(Q) < deg(P) and of odd degree. Then pick up
an irreducible factor of Q of odd degree and reduce modulo this
factor. Contradiction.



Theorem A for the total space of a “constant” 1-parameter family
of quadrics of arbitrary dimension.

Let n ≥ 1 et q(x0, . . . , xn) be a nondegenerate quadratic form over
a field k . Let r(y) ∈ k[y ] be a polynomial of degree 2δ.
Assume

r(y)− q(x0, . . . , xn) = 0 (1)

has a solution in an odd degree extension K/k .
Then
– Either the leading coefficients of r is represented by q over k
(which essentially gives a rational point above y =∞)
– Or equation (1) has a solution in a field extension K/k of odd
degree d ≤ δ.



Proof. Start with a solution

r(η)− q(ξ0, . . . , ξn) = 0

in an extension K/k of odd degree. One has the tower
k ⊂ k(η) ⊂ K . By the previous result there exists a solution of

r(η)− q(ξ0, . . . , ξn) = 0

with the ξi ∈ k(η) := k[t]/P(t). Then consider the identity

r(t)− q(x0(t), . . . , xn(t)) = P(t)Q(t)

where deg(xi (t)) < deg(P(t)) and argue with parity of degrees.


