On the stable rationality of certain real threefolds

Jean-Louis Colliot-Thélène CNRS et Université Paris-Saclay Number Theory Web Seminar 11th december 2025

JLCT, A. Pirutka et F. Scavia, Variétés réelles semi-algébriquement connexes non stablement rationnelles, juin 2025, https://arxiv.org/abs/2505.21477

JLCT et A. Pirutka, Certaines fibrations en surfaces quadriques réelles, juin 2024, https://arxiv.org/abs/2406.00463

Let X be a smooth projective variety of dimension d over a field k. Assume that it is geometrically rational, i.e. birational to projective space over a finite field extension, and that it has at least one k-point. Is it (stably) k-birational to \mathbb{P}_k^d ?

- The quotient of the Brauer group $\mathrm{Br}(X)=\mathrm{Br}_{nr}(k(X)/k)$ by $\mathrm{Br}(k)$, more generally unramified cohomology.
- The Chow group of zero cycles $CH_0(X)$.

One must also consider the quotients $Br(X_L)/Br(L)$ and $CH_0(X_L)$ over any field L and in particular L = k(X).

If $CH_0(X_{k(X)}) = \mathbb{Z}$ holds, one says that X admits an integral "decomposition of the diagonal", or that X is universally CH_0 -trivial.

If X stably rational, then X is universally CH_0 -trivial.

In this talk, we discuss rationality questions for varieties over the reals \mathbb{R} , and more generally over real closed fields.

A real field is a field in which -1 is not a sum of squares. A real closed field F is a real field with no nontrivial real algebraic extension. Equivalently the field $F[t]/(t^2+1)$ is algebraically closed.

Example : the field $R = \bigcup_{n=1}^{\infty} \mathbb{R}((t^{1/n}))$ of real Puiseux series. We shall denote it $\mathbb{R}\{\{t\}\}$. This field is equipped with a unique order, for which t>0 is smaller than any real number in $\mathbb{R}_{>0}$.

Let R be a real closed field. A semi-algebraic set in R^n is a subset belonging to the smallest family containing sets $P(x_1, \ldots, x_n) > 0$ (with P a polynomial) and stable under finite union, finite intersection, and taking complements.

This definition is extended to the set X(R) of R-points of an algebraic variety X/R.

The closure of a semi-algebraic set is semi-algebraic.

A semi-algebraic set in $A \subset X(R)$ is called (semi-algebraically) connected if for each pair F_1, F_2 of semi-algebraic subsets closed in A with $A = F_1 \cup F_2$, either $F_1 = A$ or $F_2 = A$.

Any semi-algebraic set A in X(R) is the union of finitely many semi-algebraically connected subsets C_1, \ldots, C_s of A which are open and close in A.

[Over $R = \mathbb{R}$ the notion coincides with the usual topological notion of connectedness.]

The notion was studied by H. Delfs and M. Knebusch (1981), with later works by Bochnak, Coste, Roy (Springer Ergebnisse), and by C. Scheiderer.

For smooth, projective, algebraic varieties X over a real closed field R, the number s of s.a. connected components of X(R) is a stable birational invariant. It may be computed in various ways. Assume $X(R) \neq \emptyset$.

We have $CH_0(X)/2 = (\mathbb{Z}/2)^s$ (CT-Ischebeck 1981). We have $H^i_{nr}(R(X)/R,\mathbb{Z}/2) = (\mathbb{Z}/2)^s$ for $i > \dim(X)$ (CT-Parimala 1990, further work by Scheiderer)

Known results (Comessatti 1912)

If X/\mathbb{R} is a smooth, projective, geometrically rational surface, it is \mathbb{R} -rational if and only if $X(\mathbb{R})$ is connected.

What about higher dimensional geometrically rational varieties, such as :

- smooth intersections of two quadrics in $\mathbb{P}^n_{\mathbb{R}}$, $n \geq 5$
- fibrations into quadric hypersurfaces of dimension $n \geq 2$ over $\mathbb{P}^1_\mathbb{R}$

Definition. Over a field k of char. zero, a "good" quadric surface fibration over \mathbb{P}^1_k is a smooth connected threefold X equipped with a flat morphism $X \to \mathbb{P}^1_k$ all fibres of which are quadric surfaces, and all geometric singular fibres of which are irreducible. (In other words, the finitely many geometric singular fibres are cones over a conic.)

Over a real closed field R, "special" good quadric surface fibration over \mathbb{P}^1_R are defined by affine equations

$$x^2 + y^2 + z^2 = t.p(t)$$

with p(t) positive on R.

In CT-Pirutka 2024, we gave some sufficient conditions for universal CH_0 -triviality (more on this topic if I have time at the end of the talk).

Over the real Puiseux field $\mathbb{R}\{\{t\}\}$, there exist special quadric surface fibrations over $\mathbb{P}^1_{\mathbb{R}\{\{t\}\}}$ which are not universally CH_0 -trivial (Benoist-Pirutka 2024).

There exist "bad" quadric surface fibration $Y \to \mathbb{P}^1_{\mathbb{R}}$, whose set of real points is connected, and which are not stably rational. Here is one (CT-P 24). In $\mathbb{P}^3 \times \mathbb{A}^1_u$ with coordinates (x,y,z,t); u it is given by the following equation :

$$x^2 + (1 + u^2)y^2 - u(w^2 + z^2) = 0.$$

The geometric fibres on points other than $u=0,\infty$ are irreducible. The fibres over u=0 and $u=\infty$ break up over $\mathbb C$ into two conjugate planes, the intersection of which is a line. The only singular points on Y are conjugate complex points on each of these two lines. One easily checks that $Y(\mathbb R)$ is connected. One may write a desingularisation $\tilde Y\to Y$ with $\tilde Y(\mathbb R)=Y(\mathbb R)$, hence connected.

- (a) The map $Br(\mathbb{R}(u)) \to Br(\mathbb{R}(Y))$ is injective (because the determinant of the generic quadric is not a square).
- (b) The nonconstant class $(-1,u)\in \mathrm{Br}(\mathbb{R}(u))$ becomes unramified on \tilde{Y} .

Thus $\mathrm{Br}_{nr}(\mathbb{R}(\tilde{Y}))/\mathrm{Br}(\mathbb{R}) \neq 0$ and \tilde{Y} is not CH_0 -trivial.

One can also produce such examples among singular intersections of two quadrics in $\mathbb{P}^5_{\mathbb{R}}.$

An easy birational transformation shows that the variety Y above is \mathbb{R} -birational to the singular intersection W of two quadrics in $\mathbb{P}^5_{\mathbb{R}}$ given by the system

$$a^{2} + b^{2} + c^{2} - cd = 0,$$

 $e^{2} + f^{2} - bd = 0.$

The only singular points on W are 4 complex points. The space $W(\mathbb{R})$ is connected (birational invariance of the number of connected components). We have $\mathrm{Br}_{nr}(\mathbb{R}(W)/\mathbb{R})/\mathrm{Br}(\mathbb{R}) \neq 0$. Hence no desingularisation of W is CH_0 -trivial.

The original hope : deform these examples to good, smooth projective varieties over $\mathbb R$ with the same properties.

Let $p: \mathcal{X} \to U \subset \mathbb{A}^1_{\mathbb{R}}$ be a flat proper morphism to an open set U, with $O \in U(\mathbb{R})$. Assume that the morphism p is smooth outside of O, and that the special fibre \mathcal{X}_O has no singular real point, and that $\mathcal{X}_O(\mathbb{R})$ is connected. Ehresmann's theorem on \mathbb{C}^∞ manifolds then gives that locally around O, the fibration $\mathcal{X}(\mathbb{R}) \to U(\mathbb{R})$ is a product. In particular for any $P \in U(\mathbb{R})$ close to O, $\mathcal{X}_P(\mathbb{R})$ is connected.

Suppose we know that the special fibre \mathcal{X}_O/\mathbb{R} is not stably rational thanks to some unramified cohomology obstruction. Can we find points $P \in U(\mathbb{R})$ close to O such that \mathcal{X}_P/\mathbb{R} is not stably rational?

In complex geometry, starting some 10 years ago, a technique was started by C. Voisin, developed by CT-Pirutka and then further by S. Schreieder, to disprove stable rationality of "very general" varieties of many classes of varieties which a priori are close to being rational. One uses a fibration $p: \mathcal{X} \to U \subset \mathbb{A}^1_{\mathbb{C}}$, assumes that the special, singular, fibre $\mathcal{X}_{\mathcal{O}}$ is not stably rational thanks to an unramified cohomology obstruction, then uses specialisations of zero-cycles to deduce that the generic geometric fibre is not stably rational. The method requires that the special, singular fibre, admits a reasonable desingularisation (CH₀-trivial resolution of singularities). One then shows that over the points of $U(\mathbb{C})$ outside a countable union of proper algebraic subsets of $\mathbb{A}^1_{\mathbb{C}}$, i.e. outside a countable union of points, the fibres are not CH₀-trivial, hence not stably rational.

If one tries to mimic the argument in the real context, one only gets that the set of real points in $U(\mathbb{R})$ which one must a priori eliminate is a countable union of *proper semi-algebraic subsets* of $U(\mathbb{R})$. Typically, one would have to find a real point different from t=0 in the intersection of the intervals [-1/m,1/m] for all integers m>0.

Well, if we accept to pass from $\mathbb R$ to the Puiseux series field $\mathbb R\{\{t\}\}$ we do find a nonzero element, the infinitely small ellement t, in this intersection!

(This is not the formal argument.)

The substitute for Ehresmann's theorem.

Theorem A (on connexity)

Let $p: \mathcal{X} \to U \subset \mathbb{A}^1_{\mathbb{R}} = Spec(\mathbb{R}[t])$ be a flat proper morphism, with $O \in U(\mathbb{R})$ given by t = 0. Let $\mathcal{X}_{\eta} = \mathcal{X} \times_{U} \mathbb{R}\{\{t\}\}$. Assume that the morphism p is smooth outside of O, and that the special fibre \mathcal{X}_O/\mathbb{R} has no singular real point. Then the number of semi-algebraic connected components of $\mathcal{X}_{\eta}(\mathbb{R}\{\{t\}\})$ is the same as the number of connected components of $\mathcal{X}_O(\mathbb{R})$.

In the paper, we give two proofs, none of which is simple-minded. The first one uses a Nash-triviality theorem of Coste and Shiota (1992). (Nash functions are analytic functions which are algebraic over algebraic functions.)

The other one uses Claus Scheiderer's *Real and étale cohomology* (Springer, 1994) which develops analogues of the smooth and proper base change theorems (SGA4) in the real context.

In the real context, we have to develop a version of the specialisation method as elaborated in (CT-Pirutka 2015).

The new point in this context is described in the next two slides. The hypothesis (i) is some kind of a substitute for the notion of CH_0 -trivial resolution of singularities.

Proposition Let $p: Z \to Y$ be a proper birational \mathbb{R} -morphism of geometrically integral projective \mathbb{R} -varieties. Assume that Z/\mathbb{R} is smooth. Let $S \neq \emptyset$ be the singular locus of Y. Let $U \subset Y$ be the smooth locus. Assume $p: p^{-1}(U) \to U$ is an isomorphism, and there exists $b \in U(\mathbb{R})$. Assume :

- (i) The morphism $S \to \operatorname{Spec}(\mathbb{R})$ factorizes through $\operatorname{Spec}(\mathbb{C}) \to \operatorname{Spec}(\mathbb{R})$. [If S is finite, this means $S(\mathbb{R}) = \emptyset$.]
- (ii) The map

$$\mathrm{Br}(\mathbb{R}) o \mathrm{Ker}[\mathrm{Br}(Z) o \mathrm{Br}(Z_{\mathbb{C}})]$$

is not surjective.

Then the difference between the generic point of Y and the point $b_{\mathbb{R}(Y)}$ in $CH_0(Y_{\mathbb{R}(Y)})$ does not vanish.

Proof. Let $T=p^{-1}(S)$. One compares the localization sequences for Chow groups of zero-cycles when passing over from Y to U and from Z to $p^{-1}(U)$, over the fields $\mathbb{R}(Y)$ and $\mathbb{C}(Y)$. Let $N_{\mathbb{C}/\mathbb{R}}$ denote $\mathrm{Norm}_{\mathbb{C}/\mathbb{R}}$. Hypothesis (i) gives that the projection map

$$\Phi: \mathit{CH}_0(Z_{\mathbb{R}(Y)})/\mathit{N}_{\mathbb{C}/\mathbb{R}}(\mathit{CH}_0(Z_{\mathbb{C}(Y)})) \to \mathit{CH}_0(Y_{\mathbb{R}(Y)})/\mathit{N}_{\mathbb{C}/\mathbb{R}}(\mathit{CH}_0(Y_{\mathbb{C}(Y)}))$$

is an *isomorphism*. This map sends the generic point of the smooth variety Z to the generic point of the singular variety Y. Fix $\alpha \in \operatorname{Ker}[\operatorname{Br}(Z) \to \operatorname{Br}(Z_{\mathbb{C}})]$ nonzero, with $\alpha(b) = 0$. We have

 $\operatorname{Br}(Z) \subset \operatorname{Br}(\mathbb{R}(Z))$. Let η be the generic point of Z. There is a pairing

$$CH_0(Z_{\mathbb{R}(Y)})/N_{\mathbb{C}/\mathbb{R}}(CH_0(Z_{\mathbb{C}(Y)})) imes \mathrm{Ker}[\mathrm{Br}(Z) o \mathrm{Br}(Z_{\mathbb{C}})] o \mathrm{Br}(\mathbb{R}(Y))$$

with $<\eta-b_{\mathbb{R}(Y)}, \alpha>=\alpha_{\mathbb{R}(Y)}\neq 0\in \mathrm{Br}(\mathbb{R}(Y))=\mathrm{Br}(\mathbb{R}(Z)).$

Via the isomorphism Φ above, one concludes that the difference between the generic point of Y and the constant point $b_{\mathbb{R}(Y)}$ is a nontrivial class in $CH_0(Y_{\mathbb{R}(Y)})/N(CH_0(Y_{\mathbb{C}(Y)}))$. In particular the difference is not zero in $CH_0(Y_{\mathbb{R}(Y)})$.

Theorem B (on stable rationality) Let $U \subset \mathbb{A}^1_\mathbb{R}$ be an open set containing t=0. Let $\mathcal{X} \to U$ be a proper map with smooth generic fibre. Assume that the special fibre $Y=\mathcal{X}_0/\mathbb{R}$ satisfies the conditions of the previous theorem. Then the $\mathbb{R}\{\{t\}\}$ -variety $\mathcal{X} \times_U \mathbb{R}\{\{t\}\}$ is not universally CH₀-trivial, in particular it is not stably rational.

Sketch of proof. If it is universally CH_0 -trivial, then over some $\mathbb{R}((t^{1/n}))$ one uses specialisation of zero-cycles from $\mathcal{X} \times_U \mathbb{R}((t^{1/n}))$ to zero-cycles on Y/\mathbb{R} and deduces that the generic point of the (singular) variety Y is rationally equivalent over $\mathbb{R}(Y)$ to a point coming from $Y(\mathbb{R})$. Contradiction with the above proposition.

Starting from the singular examples earlier described and putting Theorems A and B together we get :

Theorem (CT-Pirutka-Scavia 2025)

Over the field $\mathbb{R}\{\{t\}\}$ of real Puiseux series, among each of the following classes of varieties $X/\mathbb{R}\{\{t\}\}$

- Smooth intersections of two quadrics in $\mathbb{P}^5_{\mathbb{R}\{\{t\}\}}$.
- Good, nonspecial, quadric surface fibrations over $\mathbb{P}^1_{\mathbb{R}\{\{t\}\}}$ there exist examples such that
- (i) $X(\mathbb{R}\{\{t\}\})$ is s.a. connected, and
- (ii) $X_{\mathbb{R}\{\{t\}\}}$ is not universally CH₀-trivial, and in particular not stably rational.

A refined version of the technique using $H^3_{nr}(\mathbb{R}(Y)/\mathbb{R},\mathbb{Z}/2)$ instead of the Brauer group $H^2_{nr}(\mathbb{R}(Y)/\mathbb{R},\mathbb{Z}/2)$ leads to :

Theorem (CT-Pirutka-Scavia 2025) Over the field $\mathbb{R}\{\{t\}\}$, among each of the following classes of varieties $X/\mathbb{R}\{\{t\}\}$

- Smooth intersections of two quadrics in $\mathbb{P}^9_{\mathbb{R}\{\{t\}\}}$.
- Good quadric hypersurface fibrations of relative dimension 6 over $\mathbb{P}^1_{\mathbb{P}(t+1)}$

there exist examples such that

- (i) $X(\mathbb{R}\{\{t\}\})$ is s.a. connected, and
- (ii) $X_{\mathbb{R}\{\{t\}\}}$ is not universally CH₀-trivial, and in particular not stably rational.

For smooth intersections of two quadrics $X \subset \mathbb{P}_R^n$ over a real closed field, with X(R) s. a. connected, we have :

For n = 4 (Comessatti) and n = 6 (Hassett, Kollár, Tschinkel 2022), X is rational. For n = 8, HKT also have some positive results on rationality.

There exist $X \subset \mathbb{P}^5_{\mathbb{R}}$ with $X(\mathbb{R})$ connected and X not rational (IJT obstruction, Hassett-Tschinkel, Benoist-Wittenberg, 2020).

For n = 5 and n = 9, and $R = \mathbb{R}\{\{t\}\}$, there exist X/R with $X(\mathbb{R})$ connected and X not stably rational (above, CT-Pirutka-Scavia 2025).

[In the study of smooth complete intersection of two quadrics in \mathbb{P}^n , there often is a strong difference between the case n even and the case n odd.]

Special quadric surface fibrations X **over** $\mathbb{P}^1_{\mathbb{R}}$ (CT-Pirutka 2024)

Let X over \mathbb{R} be given by affine equations

$$x^2 + y^2 + z^2 = u.p(u)$$

with p(u) strictly positive on \mathbb{R} . Projection to $u \in \mathbb{A}^1$ extends to a projection $\mathcal{X} \to \mathbb{P}^1$. Let Δ/\mathbb{R} be the curve given by the affine equation $w^2 = v.p(-v)$. Let $W = X \times_{\mathbb{R}} \Delta$. Note : u + v is a sum of 6 squares in $\mathbb{R}(W)$.

Theorem The following conditions are equivalent:

- (i) The variety X is universally CH_0 -trivial.
- (ii) u + v is a sum of 4 squares in $\mathbb{R}(W)$.
- (iii) The cup-product $(u+v,-1,-1) \in H^3(\mathbb{R}(W),\mathbb{Z}/2)$ vanishes.
- (iv) $H^3(F,\mathbb{Z}/2) = H^3_{nr}(F(X)/F,\mathbb{Z}/2)$ for $F = \mathbb{R}(\Delta)$.

The proof uses an injective cycle class map for zero-cycles into some H^3 -cohomology introduced in CT/Skorobogatov 1993.

Let us consider the case $p(u) = u^2 + au + b$. We have $b > a^2/4$. The *j*-invariant of the elliptic curve $z^2 = u.p(u)$ satisfies $j \in [-\infty, 1728]$.

Recall X is given by $x^2 + y^2 + z^2 = u.p(u)$.

Theorem A. If $b \ge a^2/3$, or equivalently if $j(\Delta) \ge 0$, then X is universally CH_0 -trivial.

Theorem B. If the curve $z^2 = u.p(u)$ has odd complex multiplication, i.e. $End_{\mathbb{C}}(E) = \mathbb{Z}[\omega]$ with $\omega^2 - d\omega + c = 0$, $c, d \in \mathbb{Z}$ and d odd, then X is universally CH_0 -trivial.

Zarhin showed : the (countable) set of *j*-invariants of such real curves is dense in $[-\infty, 1728]$.

Proof of Theorem A. We have $x^2 + y^2 + z^2 = u.p(u)$ and $w^2 = v.p(-v)$. In $\mathbb{R}(u, v)$, we have

$$up(u) + vp(-v) = (u+v)(u^2 - uv + v^2 + au - av + b) =$$

$$= (u+v)\left(\left(u + \frac{a-v}{2}\right)^2 + \frac{3}{4}\left(v - \frac{a}{3}\right)^2 + b - \frac{a^2}{3}\right).$$

We assumed $b - \frac{a^2}{3} \ge 0$. Thus

$$r(u,v) = \frac{up(u) + vp(-v)}{u+v} = \left(u + \frac{a-v}{2}\right)^2 + \frac{3}{4}\left(v - \frac{a}{3}\right)^2 + b - \frac{a^2}{3}$$

is a sum of 4 squares in $\mathbb{R}(u, v)$. In $\mathbb{R}(W)$, we have

$$x^{2} + y^{2} + z^{2} + w^{2} = up(u) + vp(-v) = (u + v).r(u, v).$$

Since nonzero sums of 4 squares are stable under multiplication and division (Euler) we get that u + v is a sum of 4 squares in $\mathbb{R}(W)$. Apply the general theorem.

Among real varieties with equation

$$x^2 + y^2 + z^2 = u.p(u)$$

with p(u) of degree 2 strictly positive on \mathbb{R} ,

- no example is known with X/\mathbb{R} rational, or already stably rational
- no example is known with X/\mathbb{R} not stably rational, or already not rational