More or less well known facts about quadratic forms in 4 variables, or quadric surfaces.

J.-L. Colliot-Thélène, 5th June 2021

Let k be a field of characteristic different from 2.

To a nondegenerate quadratic form q in 4 variables and the smooth quadrics $Q \subset \mathbf{P}_k^3$ it defines, one associates the discriminant $\delta \in k^*/k^{*2}$ and a quaternion class α in the Brauer group Br(K), where K/k is the trivial or quadratic extension defined by δ . As a matter of fact, if C/K is the conic associated to α , if $\delta = 1$ hence K = k then $Q \simeq C \times_k C$ and if $\delta \neq 1$ then $Q = R_{K/k}(C)$ (Weil restriction of scalars).

The quadric Q has a rational point $(Q(k) \neq \emptyset)$ if and only if it is k-rational, i.e. k-birational to projective space.

The quadric surface Q has a rational point if and only if Q has a K-rational point.

Let F := k(Q) denote the function field of Q. The kernel of the restriction map $Br((K) \to Br((F))$ is zero, unless $Q(k) = \emptyset$, and $\delta = 1$. In that case, the kernel is Z/2, spanned by the class $\alpha \in Br(k)$, which is nonzero.

Proposition. If two smooth quadric surfaces Q_1 and Q_2 without a k-rational point are k-birational to each other then one of the following statements holds:

(i) $\operatorname{Ker}[\operatorname{Br}((k) \to \operatorname{Br}((F_1))] = \operatorname{Ker}[\operatorname{Br}((k) \to \operatorname{Br}((F_2))]]$, and this group is nonzero.

(ii) Each of Ker[Br((k) \rightarrow Br((F₁)] and Ker[Br((k) \rightarrow Br((F₂)] is zero, and $\delta_1 = \delta_2 \in k^*/k^{*2}$.

Les Q_1 and Q_2 be two smooth quadric surfaces which are k-birational to each other.

If one of the quadrics has a k-rational point, then so has the other, each of them is k-birational to \mathbf{P}_{μ}^{2} , they are k-birational to each other.

Suppose now that the sets of rational points $Q_1(k)$ and $Q_2(k)$ are empty.

Since Q_1 and Q_2 are k-birational to each other,

$$\operatorname{Ker}[\operatorname{Br}((k) \to \operatorname{Br}((F_1))] = \operatorname{Ker}[\operatorname{Br}((k) \to \operatorname{Br}((F_2))])$$

Let us call this group B.

If $B \neq 0$, then $\delta_1 = 1$ and $\delta_2 = 1$ and the group B is spanned by the class α attached to a quaternion algebra, defining a conic C over k, then $Q_1 \simeq C \times_k C \simeq Q_2$.

If B = 0, then $\delta_1 \neq 1$ and $\delta_2 \neq 1$. Suppose $\delta_1 \neq \delta_2 \in k^*/k^{*2}$. Let us go over to the field K_1 . We have $Q_1(K_1) = \emptyset$ hence $Q_2(K_1) = \emptyset$. The kernel of $\operatorname{Br}((K_1) \to \operatorname{Br}((K_1(Q_1)))$ is Z/2. The kernel of $\operatorname{Br}((K_1) \to \operatorname{Br}((K_1(Q_2))))$ is 0 since $\delta_{2K_1} \neq 1$. Since Q_1 and Q_2 are birational over k hence over K_1 , this is not possible.

Suppose B = 0 and $\delta_1 = \delta_2 \in k^*/k^{*2}$ and this element is not 1. Let K/k be the corresponding quadratic exension. Since Q_1 is k-birational to Q_2 , this also holds over K, and we have $\alpha_1 = \alpha_2 \in Br((K))$, thus $C_1 \simeq C_2$ over K, thus $Q_1 \simeq R_{K/k}(C_1) \simeq R_{K/k}(C_2) \simeq Q_2$.

Conclusion :

Proposition. Two smooth quadric surfaces Q_1 and Q_2 are k-birational to each other if and only if either

(a) Q_1 and Q_2 both have a rational point. An then there are k-birational to \mathbf{P}_k^2 .

(b) none has a rational point, $disc(Q_1) = disc(Q_2) = d \in k^*/k^{*2}$ and in $Br((k(\sqrt{d}))$ the associated Brauer classes α_1 and α_2 coincide. And then $Q_1 \simeq Q_2$.

References

Théorème 2.5 in:

J.-L. Colliot-Thélène and A.N. Skorobogatov, Groupe de Chow des zéro-cycles sur les fibrés en quadriques, K-Theory 7 (1993), no. 5, 477–500.

§3 in:

A. Auel, J.-L. Colliot-Thélène, R. Parimala, Universal unramified cohomology of cubic fourfolds containing a plane, in Brauer groups and obstruction problems: moduli spaces and arithmetic (Palo Alto, 2013), Asher Auel, Brendan Hassett, Tony Várilly-Alvarado, and Bianca Viray eds., Progress in Mathematics, vol. **320**, Birkhäuser Basel, 2017, pp. 29–56.