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0. INTRODUCTION

The purpose of this paper is to construct and identify certain characteris-
tic classes naturally associated with an acyclic chain complex of holomorphic
Hermitian vector bundles

(0.1) 0L-M—N=0
i Jj

on a complex manifold B.

More precisely, let gM be a Hermitian metric on M, and let g~ and gN
be the Hermitian metrics induced by gM on L and N. For u > 0, we
consider the family of operators 9 + \/—ui i) acting on smooth sections of

A(M)®A(N™) along fibers of M, , naturally associated with the fiberwise res-
olution of the sheaf i,&, by the Koszul complex of the normal bundle N . We
then construct the corresponding Hodge theory along the fibers of M, , and
we obtain a family of elliptic operators .Z, = 9 + /—ui i T 3" - \/—_ui;(y)
along the fibers of M, . We calculate the Levi-Civita superconnection %, of
the family in the sense of Bismut [B1, §3]. In fact, in [B1], the Levi-Civita
superconnection of a fibration with compact fibers was essential in proving the
local version of the Atiyah-Singer Index Theorem for families.

The curvature 38’; of %, in the sense of Quillen [QI] is essentially a non-
trivial coupling of a harmonic oscillator on N, to the Laplacian on L, . Let
P*¥(Y,Y') be the heat kernel associated with exp(—gé’uz). The operator

exp(—ﬂfﬁ’uz) is not fiberwise trace-class. However, we prove in Theorems 4.1
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and 4.2 that the supertrace Tr,[P*“(Y, Y)] is fiberwise invariant by transla-
tions by elements of L, and decays quickly as Y € N, tends to infinity. It is
then natural to form a generalized supertrace

(0.2) Trs[exp(—gaj)] = /N Tr,[P" (Y, Y)] dvy(Y)

(2n)dlmN .

Trs[exp(—u@uz)] is a smooth form on B. It is a sort of generalized Chern
character for the family of operators .2 .

Let Td(gL) , Td(gM ), and Td(gN) be the Chern-Weil representatives of
the Todd class of L, M, and N naturally associated with the holomorphic
Hermitian connections on L, M, and N. Let ® denote the scaling map
a € A" (TyB) — (2ni) %824 € A (T4 B). We then prove in Theorems

4.6, 4.8, and 7.7 that the forms ®Trs[exp(—@u2)] are sums of forms of type
(p, p) and closed, that their cohomology class does not depend on « > 0, and
that moreover

) 2, Td(g")

lim ® Tr,fexp(~5,)) = 75 7

lim @ Tr,[exp(-Z,)] = Td(g") .

(0.3)

The family of forms (I>Trs[exp(—<%’u2)] interpolates between the form

Td(gM )/ Td(gN ) and Td(gL), and is obtained by a construction in infinite
dimensions. Quite remarkably, we prove double transgression formulas for
generalized supertraces which are formally identical to similar formulas proved
in Bismut-Gillet-Soulé [BGS1, Theorem 1.15; BGS2, Theorem 2.9] for finite-
or infinite-dimensional ordinary supertraces. Namely, we prove in Theorem 4.6
that if N, is the number operator of the complex A(N™), then we have the
identity of smooth forms on B

04) 88_u Trs[exp(—ﬂuz)] = ?;_b [Trs[exp(—gé’u2 + bNH)]] _
: 00

= = Tr [Ny, exp(-B.)].

It is then possible to integrate equation (0.4) by a zeta function technique
inspired from Ray-Singer [RS] and very similar to [BGS1, Definition 1.16 and
BGS2, Definition 2.19]. We thus obtain in §8 generalized analytic torsion forms

B(L, M, gM) on B which, by Theorem 8.3, verify the equation
39 ,_ Td(g™)
2in Td(g") "
The main purpose of this paper is to calculate the form B(L, M, gM) mod-
ulo & and @ coboundaries. In fact by a construction of Bott-Chern [BoC],

Donaldson [D], and Bismut-Gillet-Soulé [BGS1, §1f)], we know how to solve in
a natural way the equation
00 ~,

(0.6) S—Td(L, M, g") = Td(g") - Td(¢") Td(g")

L

(0.5) B(L, M, g")=Td(g
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so that if the complex (0.1) splits, ﬁ(L M, g™ ) = 0. The construction of
Td(L, M, g ) is essentially finite d1mens1ona1 In v1ew of (0.5) and (0.6), the

question arises to calculate B(L, M, g )+ Td™ ( )Td(L M,g )

We owe a word of explanation to the reader to describe the fundamental
importance of this calculation in our strategy to understand the behavior of
the Quillen metrics on the determinant of the cohomology of a complex vector
bundle by an immersion of complex manifolds. In factif i: ¥ — X is an
immersion of compact complex manifolds, and if & — i, n — 0 is a resolution
of the sheaf of sections of a holomorphic vector bundle # on Y by a complex of
holomorphic vector bundles £ on X, then the determinants of the cohomology
A(¢) and A(n) are canonically isomorphic.

If metrics are introduced on X, Y, &, and 7, then A(¢) and A(n) carry
natural metrics called Quillen metrics [Q2, BGS3]. It is then natural to compare
these metrics. In our sketched proof of the comparison formula, the form

B(TY, TX v TX“’) (where gTX is the metric on 7X) appears naturally.

This is why its explicit calculation (modulo irrelevant & and & coboundaries)
is so important. The general program of describing the behavior of Quillen
metrics by immersions has recently come to a successful conclusion in a joint
work by Lebeau and ourselves [BL1, BL2]. The results contained in the present
paper play an important role in establishing the final formula of [BL1, BL2].

We now briefly explain the main results contained in this paper. We introduce
the function of ¥ >0 and x € C:

2 )
0.7)  o(u, x) = Tsinh (EEVX TN Gop (ZXF VX HAu)
u 4 2
The function ¢(u, x) has two fundamental properties. A first property is that
sinh(x/2
(0, x) = (/ 2/ )

@(u, x) is then a one-parameter deformation of the inverse of the Hirzebruch

polynomial A(x). A second property of ¢(u, x) is that, as shown in Theorem
6.2,

+00

Uu ix u
(0.8) ¢(u,x)—ﬂ(l+2kn+4k2n2) (l_m+4k2n2) .

Let C(s, x) be the Mellin transform of —ﬂ (u, x)/o(u, x), ie., for |x| < 2xn
and 0 < Re(s) < 2,set

1 too s—1 _Qﬂ(u’ x)
0.9 Cs,x=—/ u (‘”—)du
(©9) ©2 =16 ), o(u, %)
Then C extends holomorphically at s = 0. Set
ocC
(0.10) D(x) = a(o, X).

Let D(N) be the corresponding additive class associated with the vector bundle
N, and let Td(L) be the Todd class of L. Then Td(L)D(N) is a well-defined
class of sums of (p, p) forms modulo 8 and & coboundaries.
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We then prove in Theorem 8.5 the following identity modulo 8 and &
coboundaries:

(011)  BL,M,g")=-Td '(g")Td(L, M, g") + Td(L)D(N).
Let {(s) be the Riemann zeta function. In a joint appendix with C. Soulé,
we calculate the function D(x) in the form

n

n /
012) Dx)=Y <IJ(1) 314 2M) (-mE,  xl<2n.
n>1 =g ¢(=n) n
odd
(0.12) is an extremely interesting formula. In fact in [GS], Gillet and Soulé
introduced the power series

n

n 1 CI _
(0.13) R(x)= ) (2137+2C((—:)))C(_n)%

n>1
odd

by a complicated calculation (with D. Zagier) of the Ray-Singer analytic torsion
of P"(C). Gillet and Soulé conjectured that the additive genus R(x) should
play an important role in an arithmetic version of a theorem of Riemann-Roch-
Grothendieck with metrics. It is remarkable that an entirely different construc-
tion from [GS] produces a closely related genus D(x) .

Finally in Theorem 9.13, we show that if p,(x) is the standard heat kernel
on S|, then

ox

We now say just a few words about our techniques. We use Quillen’s su-
perconnections [Q1] in an infinite-dimensional context in a rather different way
from our work [B1] on the families Index Theorem. Harmonic oscillators play a
key role in the whole paper. Local index cancellation techniques [ABP, B1, BS,
Ge] also appear in the course of the proofs. To establish our main results on the
forms Trs[exp(—ﬂuz)] , we calculate these forms in a completely explicit way
in Theorem 7.3 as the ratio of determinants of differential operators of order
two on the circle. This in turn uses Brownian motion and also some rigorous
version of fermionic integration which is developed in §5.

As shown in §9, the computations in this paper can also be understood
from the point of view of infinite-dimensional intersection theory. We show
in §9(d) that B(L, M, gM) is simply the integral along the fiber of an infinite-
dimensional Euler-Green current in the sense of Bismut-Gillet-Soulé [BGSS,
§3]. In fact, we first calculated the form B(L, M, gM ) in the path integral for-
malism, obtained formula (0.11), calculated formula (0.12) with C. Soulé, and
then reconstructed the form B(L, M, gM ) in the superconnection formalism.

Needless to say, it is of fundamental importance that the form B(L, M, gM )
can be constructed from an analytic point of view—this is the superconnection
construction—and from a geometric point of view—which is implicit in the
path integral formalism.

(0.14) D(x) = — /0 " Logr) 22r (rx)dr .
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This paper contains nine sections and an appendix. In §1, we describe the
Hodge theory of the resolution of a point in a Hermitian complex vector space.
In §2, we consider the Hodge theory for the resolution of a point in the fibers
of a holomorphic Hermitian vector bundle. In §3, we introduce the supercon-
nection %, and we prove nontrivial Bianchi identities on the curvature (925’“2 .

In §4, we construct the heat kernels exp(—@uz) and the generalized supertraces

Tr, [exp(—%f )]1. We prove the double transgression formula (0.4), and the first
identity in (0.3). In §5, we prove a time dependent version of an identity of
Mathai-Quillen [MQ] for finite-dimensional supertraces. In §6, we introduce the
function ¢(u, x) and describe its main properties. In §7, we calculate explicitly
the forms Trs[exp(—%uz + bN)] and we prove the second identity in (0.3). In

§8, we construct the form B(L, M, gM) and we prove (0.5) and (0.11). In §9,
we develop a formalism for the equivariant intersection theory for holomorphic
Hermitian vector bundles, and we relate the corresponding results with the re-
sults of §§3-8. We also prove formula (0.14). Finally, in a joint appendix with
C. Soulé, we prove formula (0.12).

We assume the reader has some familarity with superconnections. We refer
to Quillen [A1] and to the present author [B1, B5] for an introduction to the
subject. Let us just say that if 4 is a Z, graded algebra, and if f, fled,

then the supercommutator [f, f'] is defined by

(0.15) [f, f1=ff — (—1)’s e g/ o

IfE=E LOE_ isa Z, graded vector space, then End E is naturally Z, graded,
with the even (resp. odd) elements of End E preserving (resp. exchanging) E N
and E_. If 7 is the involution defining the grading, the supertrace Tr(f) of
f € EndE is by definition

(0.16) Tr,(f) = Tr(zf).
If V is another vector space, if w € A(V"), and if f € EndE, then set
(0.17) Tr(wf) = o Tr(f).

We then extend by linearity Tr; into a linear map from A(V*)® EndE into
A(V™). Throughout the paper, it is essential to take into account the natural
commutation rules on graded algebras to get the right signs.

In the sequel, if Y is a Brownian motion, dY and JdY denote respectively
its Stratonovitch and It6 differentials [IkW, Chapters II and III]. For an intro-
duction to the probabilistic techniques used in this paper, we refer to our survey
[B6].

The results contained in this paper were announced in [B12].

1. THE HODGE THEORY OF THE RESOLUTION OF A POINT

Let V' be a complex Hermitian vector space, and let (AV™, iy) be the Koszul
complex of V. In this section, we study the Hodge theory associated with the
double complex (T(A(V )RA(V™)), 8 + v —1i,). The corresponding Hodge

Laplacian is a harmonic oscillator. The form S on V,, which is a Hodge



KOSZUL COMPLEXES, HARMONIC OSCILLATORS, AND THE TODD CLASS 165

representative of the one-dimensional cohomology of the double complex, is
also described.

This section is organized as follows. In (a), we construct the double complex
(TATHRAWV™)), 8 +v=1 i,). In (b), we calculate the corresponding Hodge
Laplacian. In (c), we calculate the kernel of the Laplacian. Finally, in (d),
we relate our calculations in L, cohomology with the standard sheaf theoretic
results on the resolution of a point.

Although they are elementary, the results of this section will play an essential
role in the sequel. Also let us point out that they are formally related to similar
calculations by Witten [W] in de Rham cohomology.

(a) The resolution of a point in a complex vector space. Let V; be a real vector
space of even dimension 2n. Let J be a complex structure on V,, i.e., a linear
map in End(V,) which is such that J 2=_1.Let ¥ and V be the eigenspaces
in V,®,C associated with the eigenvalues of J +/—1 and —v/-1. As indicated
by the notation, ¥ is conjugate to V.

Let ¥, be the set of R linear forms on V,, and let ¥* and 7" be the set

of C linear formson V and V. .
The exterior algebras A(V*) and A(V') are naturally Z graded. Let Ny

and N, be the linear maps defining the Z grading on A(V") and AV, so
that N, and N, act by multiplication by p on A?(V*) and A’(V") respec-
tively. Note the identity

A(V)®, C=AVHBAV).

The algebra A(VI’; )®x C possesses a natural Z grading given by the operator
N, ®1+1® N, . Here we will instead use the grading of A(V; ) ® C by the
operator N, ® 1 — 1 ® N, (which we will also write in the form N, — Ny).

Let T be the set of smooth sections of AV )®A(V™) on V. We also grade
I' by the operator N, — N, . Let 8 be the Dolbeault operator acting on I'.
For y € V', the interior multiplication operator i, acts on ATVHBAV™). If
y€V,set Y =y+y € V. Then the operator iy acts naturally on I, with the
convention that if f €T, then (i,f)(Y) =i,(f(Y)). Both operators 0 and i
now act on I' and increase the total degree of I" by one. Moreover,

(1.1) @+v=1i,)* =0.

Let i be the embedding of complex manifolds: {0} — V.
Note that the & cohomology of {0} is concentrated in degree zero, i.e.,
H?{0} =C if ¢ =0, and H?{0} = 0 if ¢ > 0. The Dolbeault complex of

{0} 1is here simply Q(O’O){O} =C o 0, ie, 3% is the zero map. We give
3

the degree zero to Q(O’O){O} .

If we AT)BA(VY), let @° denote the component of @ in A(V)®C =
A(V"). Let r denote the map w € I’ — i*»” € C = Q® {0} . Note that if
0 e NTVHRN V), p,geN, p+g >0, then rw = 0. In particular if @
has total degree k in I', kK #0, then ro=0.
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Proposition 1.1. The map
(1.2) (T, 3+ V=T1i) - (Q*”, 3%

is a quasi-isomorphism of 7. graded complexes.
Proof. Clearly if w €T, then

(1.3) r@+vV-1i)o=0

and so r is a map of complexes. The complex (I, d + \/—liy) is a double

complex. To calculate its cohomology, we use a spectral sequence. Let Z(AV™)
be the set of holomorphic sections of AV* on Vg . By the Poincaré lemma
[GH, p. 25], we know that
- OAV*) ifg=0
1.4 HY(T,d) = { : ’
(1.4) ( ) 0 ifg>0.

The complex (F(AV"), i,) is exactly the Koszul complex of V. Let r; be the
restriction map

ro: f€d - f(0)eC
By [GH, p. 687], we have the exact sequence

0-CANV)-. ... 50V )->E6 —-C—0.

i i i ro

Equivalently,
. C ifg=0,
1. H(@AV),i)=

Also the map r, induces the isomorphism HO(@’(AV*) , i,) = C. Moreover if
w €7, then rw = ryw. The proposition follows. O

(b) The Laplacian associated with the operator § + v~1i,. Let (, ) bea J-
invariant scalar product on V. Then y, y' eV - (y,7) eC is a Hermitian
product on V. For y € V, set |y| = (y,?)l/z. To y € V, we associate
Y =y +7 € V,. Note that if |Y|*=(Y, Y), then

(1.6) ¥|* =2y
Let 6 be the Kéhler form on V,, i.e., the two-form
(1.7) X,Y—0(X,Y)=(X,JY).

Then 6 is a form of complex type (1, 1) and has total degree zero in A(V")®
AV,

Let (9/da',0/db',...,8/8a",8/8b") be an orthonormal base of V,
with 8/0b’ = J8/8a’, 1 < j < n. Let (da',db', ..., da",db") be the
corresponding dual base in V; . Set

o 1 ( o _ .0 ) o 1 ( )
— = =-VT=), == +V-1— 1,
(1.8) 9y’ 2\ad ob’ 8y 2 \ad abf

dy’ =dd’ +v=1dv’, dy’ —V=1db’ .
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Then 6 is given by
Vam R S
(1.9) 9=——2—21:dy Ady’ .
Note that if y = Y1 y'9/8y", then
2 L&~ ip
(1.10) =520
1

Let I be the set of square-integrable sections of A(_*)@)A(V*) on V. By
[GH, p. 82], the star operator * acts naturally on A(Vy)®,C = AV )®A(V").
We equip I'° with the Hermitian product

(1.11) riger’ =0 = (5 ) /f/\*g

A(VI’{ )®xC inherits a Hermitian product ( , ) from the scalar product of V.
If dv =(—6)"/n! is the volume form on Vj, then for f, g € r°

(1.12) 9= (5) [0 o

Let &  be the formal adjoint of 3, with respect to the Hermitian product
(1. 11) and let i* be the adjoint of the operator i Then the operator 8 —

V- z also acts on I', and decreases the degree in I" by 1.
We first calculate the operators 0 ++v/— 1i, and 8 —v/— zy in the coordinates

1 n
Y o, e,y .
Proposition 1.2. The following identities hold:

n n
= . —j 0 ji .
8+v—lly=Zdyj/\Tj+v—IZyjla/ay,,
(1.13) 5 —
Yy 1 ZZza/ay - Z dy A.

8 J
Proof. The first line in (1.13) is 0bv1ous. Note that
2
i2 ) o " 1

The second line in (1.13) now follows from (1.14). O

Let c(V,) be the Clifford algebra in V,. Then A(V') and A(V") are

¢(Vy) Clifford modules. In factif X € V', let X* €V be the element which
corres_ponds to X by the Hermitian product of V. Then if X € V and
X eV, set

(1.15) c(X)=V2X'A; (X)) = —V2i,.
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We then extend by C linearity the map X € V; ®, C — ¢(X). One verifies
easily that if X, X' € Ve ®& C, then

(1.16) c(X)e(X) + (X )e(X) = =2(X, X').

Similarly 1£ X €V,let X" be the corresponding elementin V*. If X € V
and X' eV, set

(1.17) eX)=—V2vV=Tiy;  &X)=-V2V=1X"A.

We extend ¢ to the whole V,®,C by C linearity. Again if X, X "e Ve®rC,
then

(1.18) eX)eX) +e(X)e(X)=-2(x, X').

Of course, we make the operators c¢(X) and ¢é(X) act as odd operators on
A(VR)®x C=AV)BAV"). If X, X' €V, ®,C, we then also have

(1.19) c(X)e(X') + (X )e(X)=0.
Let L be the operator
(1.20) a€A(Vg)®,C— La=6Aa.

Let A be the adjoint of L. Using the notations in (1.13), we find that
V=1 . . n . .
(1.21) L=—5—> dy' ndy'A, A=2\/—lzl:13/37/la/3y;.
1

Definition 1.3. S denotes the operator
(1.22) S=—(L+A).

Let ¢, ..., e,, be areal orthonormal base of V. Let A be the standard
Laplacian on V. If f € V,, then V s denotes the differentiation operator
along the vector f. We now calculate the Laplacian associated with the Her-
mitian chain complex (I'°, 3 + /=1 i)

Proposition 1.4. The following identities hold:
@+V-1i)'=0; (@ -v-1i;)’ =0,

2n
B4 VoTi, 437 = Vi = o (Y ete)V, + VTea)),
1

(1.23) g L
S = Q ; c(e)é(Je,),

2
@+v=Ti +3 V=T =-2 4 X g
y y 2 2

Proof. The first line in (1.23) is obvious. The second line in (1.23) is a conse-
quence of Proposition 1.2 and of the fact that Y =y +y. Let w,, ..., w, be
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an orthonormal base in V', let w' ,...,w" be the dual base in V", and let
w,,..., w, and Wl, ..., W" be the conjugate bases in ¥ and V" . Then
V-1

n . .
=V-1) (-0 Aw’ A+iyip)=-L-A.
1

The third line in (1.23) follows. The fourth line in (1.23) is an easy consequence
of lines two and three in (1.23). O

(c) Description of the kernel of the Laplacian. We now study the kernel of the
operator (9 + v—1i, +0 - \/——li;‘)2 .

The algebra A®™"(V,) ®, C is commutative, and so the exponential maps
AT (V) ®, C into itself. In particular, exp(6) € A”"(V,) ®, C. Note that if

we use the coordinates y1 ,..., ", we have the identity
n i —I
_ dy Ndy

(1.25) exp(6) —H(l —\/—1#)

1

Proposition 1.5. The operator S € End(A(Vy) ®, C) is self-adjoint. Its lowest
eigenvalues is equal to —n, and the corresponding eigenspace is spanned by the
form of degree zero exp(6).

Proof. By (1.21), we know that
NS . .

(1.26) S=v-1Y_ <§dy' NAF' = 2iy 50 za/ay,-> .
1

The operators in the sum in the right-hand side of (1.26) commute, so we may
as well assume that n = 1. One then easily verifies that S has three distinct
eigenvalues:

o the eigenvalue +1, the corresponding eigenspace being spanned by 1+

V=Tdy' ndy'/2;

o the eigenvalue 0, the corresponding eigenspace being spanned by d y1
and d7';

e the eigenvalue —1, the corresponding eigenspace being spanned by 1—
V=1dy' Ad7' /2.

The proposition is proved. 0O

Let I'; be the set of elements of I" which have compact support.

Theorem 1.6. The operator (0 ++/—1 i, +0" —V/=1 i;)2 is essentially self-adjoint
on T'y. Its closure has discrete spectrum and finite-dimensional eigenspaces. If
B e 0 is given by

(1.27) B =exp(6 - |Y['/2),



170 JEAN-MICHEL BISMUT

then B has total degree zero, and also

(1.28) (ilz)n/l/kﬂ/\*p’:l.

B spans the one-dimensional kernel of the operator (8 ++/—1 i+ 3 —v—=1 i; ).
Finally,

@+V-1i)B=0,
(1.29) @ - V=Ti})B =0,
((Ny —n/2)B, B) = (N, —n/2)B, B) = 0.

Proof. Let C;° be the set of C*° functions on V, with values in R which
have compact support. Let . be the partial differential operator:

(1.30) Z =LA+ |Y] -2n).

- is the harmonic oscillator on V. By [GlJ, Theorem 1.5.1], we know that
Z is essentially self-adjoint on C,°, that its closure is nonnegative, and that it
has compact resolvent. In particular, the kernel of % is one-dimensional and
spanned by the function exp(—[Yl2 /2). &£ also acts naturally on T'.

The matrix operator S commutes with ¥ . Using Propositions 1.4 and
1.5, we then find that the operator (0 + v/—1 i, + 3" - V-1 i;)2 is essentially
self-adjoint on I', and that § spans its one-dimensional kernel.

Now by (1.14), we get

(1.31) 11 —V=1dy' rd¥' 2] =2.
Also
(1.32) / exp—(|Y*)dv = "

R

From (1.31) and (1.32), we get (1.28). Since 6 has total degree zero, f also
has total degree zero. Clearly,

” .
(1.33) Y=Y’
1
Using Proposition 1.2, (1.9), and (1.33), we get
(1.34) @+V=1i))(0 - |Y*/2) =0,
and so
(1.35) @+ V=Ti)exp(d - |Y|'/2) = 0.

If n=1, still using Proposition 1.2, (1.9), and (1.33), we have
|2

(@ - V=T1i;)exp (e - I—Y2—>

(1.36) )
= (5*—¢—_1i;>(1 Y1y /\d?l)exp (ﬂ) = 0.

-5



KOSZUL COMPLEXES, HARMONIC OSCILLATORS, AND THE TODD CLASS 171

The second line in (1.29) follows when n = 1. By using the more general
formula (1.25), we get the second line of (1. 29) in full generality.

Observe that N, is a derivation on A(V, )®R(C Then since N, 0 =6, we
get

(1.37) NyB=(N,0)B=068.
Using (1.9) and (1.25), we find that

(138) 08 =- Z\/_dy Adyg(l— —dy—’z\id—y—)exp(_—g—q,

and so

(1.39) (08, B) = ( > Ez” ! "=—.

From (1.37) and (1.39), we deduce that
(1.40) (N —n/2)B, By =0
The proof that (N, —n/2)p, B) =0 is identical. O

Remark 1.7. The vector field JY = +/—1(y—¥) is a holomorphic Killing vector
field on V. Also 6 is JY invariant, i.e.,

(1.41) L,,6=0.

Let 0 be the conjugate of the operator 8 . The exterior differentiation op-
erator d is givenby d =9 + 0. Also

(1.42) @+V-T1i)* =0, (@-v-1i))’ =0.
We deduce from (1.41) that since Lj, = (d+iJY)2, then
(1.43) (@ +V=1i))(® - V=Ti)0 + (8 - V=1i)(@ + V=1i,)0 = 0.

We also easily see that

(1.44) V=1(@ +v=1i )@ - V-1i;)8 = 6 — |Y[*/2.
Therefore,
(1.45) B = exp{V-1(@ + V-1i )(d - V-1i;)8}.

As observed in our earlier work [B3], the operators 8++v/—1 i, and 9~ v-Ti;
are intimately related with the de Rham equivariant theory of V, with respect
to the action of the holomorphic Killing vector field JY . Perhaps more surpris-
ing is that the form S was also considered in an entirely different context in
[B3] in relation with localization formulas in complex equivariant cohomology,
along the lines of our version [B2, Theorem 1.3] of localization formulas in
equivariant cohomology.
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(d) The cohomology of the complex (l"o,—6_+ \/—liy). Recall that due to (1.23)
(5+\/—_1iy+5*—\/—_i* )?
=(@+V-1i) @ - V- 1 +(@ -V-= 1 )@ +V-1i)

Alsoif [, ge [, then
(1.47)

(@ +V=Ti,+8 ~V=1i))’f, g)
=(@+V=Ti,)f, @+ V-T1i)g)+ (@ - V=T1i})f, (@ - V-1i})g).
Set

(1.46)

Z={feI’,@+V-1i)f =0},
(1.48) B={fel’, 3gel’, f=@+V-Ti,)g}
H (T, 8+ V-1i)=2/B.

Then one verifies easily as in [B4, §2h)] that, using (1.23) and the proper-
ties of the harmonic oscillator, one can develop the Hodge theory for the L,

cohomology of the complex (I"O, 9+ \/—liy) which is formally similar to the
usual Hodge theory for compact manifolds. In particular, there is a canonical
isomorphism of Z graded vector spaces

(1.49) H (I, 8 +vV=1i)=Ker(@ +v~1i,+ 9 - v-1i,)’

From Theorem 1.6, we immediately deduce.
Theorem 1.8. For p #0, H’(I°, 8 +/~1i)) = {0}. dlso H'(T®, 3 + V~Ti)
is one-dimensional, and spanned by the 8 + v-li, L, cohomology class of B .

Remark 1.9. Let t € R — ||, be a smooth family of Hermitian metrics on V,
and let 1 € R — 6, be the corresponding family of Kéhler forms. Set

(1.50) B, =exp(6, - |Y['/2).
Using (1.45), we find that
(1.51) %ﬂt'-=\/_a+\/_z —V-1i ( )

(1.51) shows directly that the L, cohomology class of B, does not vary with
t. In particular, if 6 is taken as before, we get
(1.52)

%exp{\/—_l(5+\/——li (0 — V-Ti;)t6}
= V=10 + V-1i,)(8 — V-1i5)(0 exp{vV=1(0 + V-1i,)(d — V-1i;)t6}).

By integrating (1.52) from O to 1, we find in particular that £ is cohomol-
ogous in (T, 3+ v—1i) to the function 1 (which is not square-integrable!).
If we use the notation of Proposition 1.1, this is related to the fact that
(1.53) rg=1.
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We have thus shown that the complexes (I, 0 +v/— li, ) and (1'0 0 +vV- li,

have the same cohomology. Equivalently, the complex 1"0 ,0+V— ly calcu-
lates the cohomology of the point 0.
Also observe that if — denotes Fourier transform, then

_ . .
9+ vV=1i,=0" +V-1ig,
—T—
(1.54) 8 —V-Ti; =0 - V-1ig,
B=(@2n)"B.

Of course the third line in (1.54) can be viewed as a consequence of the first
two lines in (1.54).

Remark 1.10. Consider the Witten operator [W]

(1.55) d = e Mg TR

and its formal adjoint 4", and form the Witten Laplacian d'd"" + d"*d’. The
operator d’'+d"* is then given by a formula closely related to the second line of
(1.23). The formula for the Witten Laplacian is very close to the fourth line of
(1.23), and the study of the corresponding harmonic forms [W] is immediately
related to the proof of Theorem 1.6.

Still these formal analogies obscure the fact that the analysis which was pre-
viously done makes use of the complex structure of ¥, in an essential way.
This will become clearer in the sequel, where no real analogue of what is done
can be found.

2. THE HODGE THEORY ON THE FIBERS
OF A HOLOMORPHIC VECTOR BUNDLE

Let B be a compact complex manifold and let N be a holomorphic Hermi-
tian vector bundle on B . In this section, we apply the results of §1 to the fibers
of N. In particular, the form B € AN )®A(N*) is now a canonical trivial-
ization of the L, cohomology of the double complex (T(AN)®A(N)), 8 +
\/'—_liy) in the fibers of Nj.

Also if

0—-L -2 M —) N-0

is an exact sequence of holomorph1c vector bundles, where M 1s equ1pped with
a hermitian metric g which induces Hermitian metrics g and g on L
and N, then we identify the holomorphic Hermitian connection vt on A(L )
with the natural connection on the L’ cohomology in the fibers N, of the
double complex (I'(A(M )®A(N)), d +v—T1i,)

This section is organized as follows In (a ) we apply the results of §1 to
the vector bundle N. In (b), we calculate the natural connection on the L,
cohomology of the complex (N(A(M)®A(N™)), 8 +V—T1i))

(a) A double complex on a vector bundle. Let B be a compact connected complex
manifold of complex dimension k, let N be a complex holomorphic vector



174 JEAN-MICHEL BISMUT

bundle on B of complex dimension », let = be the projection N — B, and

let gN be a smooth Hermitian metric on N. For x € B, let 6 _€ A(N, ;) be
the Kéhler form of the fiber N, which we define as in (1.7).

Let V" be the holomorphic Hermitian connection on the vector bundle N .
v" induces a connection on A(Ng), which we still denote vV,

For x € B, ', denotes the set of smooth sections of A(N,’;)x ®g C on the
fiber N, . and I'?C is the set of square-integrable sections of A(N, ;)x ®z C on

the fiber N, .. We equip Fg with the Hermitian product

foseri=n=(g;) [ snes

As in [B1, §1f)], we will consider I" as an infinite-dimensional vector bundle
on B. The set of smooth sections of I' is identified with the set of smooth
sections of A(Ng) ®, C on the total space of N.

Let N, and N, be the operators which define the Z grading of A(TV_*) and
A(N"). As in §1(a), we grade A(Ny)®; C = AN )®A(N") by the operator
N, — N, . We then obtain a Z grading on I'" and re.

We now denote by 3" the Dolbeault operator acting on the fiber I' . If
y € N, the interior multiplication operator iy alsoactson I', .

The connection VV defines a complex subbundle THN of TN such that
we have the identification of C* complex vector bundles on N :

(2.1) TN=Na&T"N.

If U e TgB, let "U” be the lift of U in T4 N, so that U, € Ty N and
0,/H
n, U =U.

Definition 2.1. If % is a smooth section of I" on B and U € T;B, set

(2.2) Vyh = Voyuh.

As in [B1, §1f)], one easily verifies that V' is a connection on T.

Theorem 2.2. The curvature (ﬁr)2 of V'isa (1, 1) form on B with values

in the set of formally skew-adjoint first order differential operators acting on the
fibers T". Also

v,3" +v=1i]=0; [V',3" -v-1i]=0,
v, @ +V=1i,+3" - V=1i))’]=0.

If u=Ker(@ + V-Ti, + " - \/—li;)z, W is a one-dimensional trivial line
bundle on B which is spanned by

(2.3)

(2.4) B=exp(0—|Y/2); YeEN,.
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B has total degree zero and for any x € B

(2.5) (%) /N B A*B. =1.
Also |
Vg =0,
=N .
2.6) @ +V-1i)g=0,

@" - V=1i)g =0,
(Ny—n/2)B, B) =((Ny, —n/2)B, B) =0.
Proof. Let (VN)2 be the curvature of V" . By proceeding as in [B1, Proposition
1.11], one easily verifies that

(2.7) (V)2 = (V") = Vignpy -

(VN)2 is a form on B of type (1, 1) with values in matrix valued operators
acting on I'. (VN)2Y isa (1,1) form on B with values in N, and so
V orry isa (1, 1) form on B with values in the set of first order differential
operators acting on I'. From (2.7), we find easily that (61“)2 takes values in
skew-adjoint first order differential operators acting on I".

The fact that u. is spanned by B was proved in Theorem 1.6, together with
(2.5) and the last three lines of (2.6). (2.3) is trivial. Since v" preserves the
Hermitian metric gN, then

(2.8) Ve -1y1’/2) =0,

and so 6% = 0. Our theorem is proved. 0O

Remark 2.3. By the first line in (2.6), it is clear that the connection V" inducesa
Hermitian connection V¥ on u, whose curvature vanishes. By [AHS, Theorem
5.1], there exists a holomorphic structure on x, and V* is the corresponding
holomorphic Hermitian connection on x. From (2.6), we find that f is a
holomorphic section of x4 of norm 1, i.e.,, B trivializes u as a holomorphic
Hermitian line bundle.

By imitating the argument in [BGS3, §3], where the holomorphic struc-
ture on the determinant of a direct image was constructed by the method of
Grothendieck-Knudsen-Mumford [KM], one can prove that £ defines a holo-

morphic section of the trivial holomorphic line bundle HO(I‘0 , 5N + \/—liy) .

(b) An enlarged double complex. Let
(2.9) 0O-L->-M->N->0

i J
be a holomorphic acyclic chain complex of vector bundles L, M, and N on
the manifold B. Let /, m, and n be the complex dimensions of L, M, and
N . We identify L with a holomorphic vector subbundle of M, and N with
M/L.
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Let gM be a smooth Hermitian metric on the vector bundle M . As a vector
subbundle of M, L inherits a smooth Hermitian metric gL. We identify
N (as a smooth vector bundle on B) with the orthogonal L* to L in M.
Therefore N is equipped with a Hermitian metric gN . We then have the
identity
(2.10) M=L&®N
in the class of smooth Hermitian vector bundles on Y, but of course (2.9) is
not in general a holomorphic splitting of M .

Let PX and PV be the orthogonal projection operators from M on L
and N respectively. Let VL, VM, and V" be the holomorphic Hermitian
connections on the vector bundles L, M, and N. We still denote by vt ,

M , and vV the connections induced by vt R vM , and v" on the tensor
algebras of L, M,and N.

If f is a smooth section of L, it is clear that vt f = PityM f. We now
prove the corresponding results for \vad

Proposition 2.4. If [ is a smooth section of the vector bundle N, then
(2.11) vVf=p"v"y.

Proof. Let f be alocally defined holomorphic section of N . There is a locally
defined holomorphic sectlon g of M suchthat j(g)=/f,andsoif h=g—-f,

then h € L. Clearly, vM g=0, and so
(2.12) v h+V f=0.

Since L is a holomorphic subbundle of M, vhelL , and so from (2.12)
we deduce that

(2.13) PV r-o0.

From (2.13), we find that the connection PYVM on N is holomorphic. Since
it preserves the metric of N, it coincides with vV, o

Let °V™ = v2 @ V" be the direct sum of the connections V- and V" on
M=L&®N. Set

(2.14) A=v"_09¥
Then A is a one-form on B with values in skew-adjoint elements of End(M)
which interchange L and N.

From (2.10), we deduce the identification of smooth Hermitian vector bun-
dleson B:

(2.15) A ) = ALHBAN).
Of course the identification (2.15) depends on the metric gM . It is not an

identification of antiholomorphic vector bundles on B. From (2.15), we get
the identification of smooth vector bundles:

(2.16) AMHBRAN") = AL")S(A(Ng) ® C).
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For x € B, let E, (resp. Eg) be the set of smooth (resp. square-integrable)
sections of (A(M")®A(N™)), over the fiber Ng .- As in §2(a), we consider E
and E° as infinite dimensional vector bundles on B. Let dv n be the volume
element on N, . We equip Eg with the Hermitian product

(2.17) fogeE—~tf o= (5) [ W o).

NR,X

Let N© be the operator defining the Z grading on A(f*).
As in §2(a), N, and N, denote the operators defining the Z grading on

AN = B, A (N7 and A(N") =@,_oA’(N") respectively. The operator
N, — N, defines the Z gradlng on A(Ny) ®, C = AN )SA(N"). The Z
grading on A(L")&(A(N;) ®, C) is defined by the operator N* + N, — N, .

Let V denote the connection on A(M )RA(N*):

(2.18) v=v"e1+10V".

y denotes the general element in N and Y = y + ¥ is the corresponding
element in N, . For every x € B, the operator GG +v-1 iy and its formal
adjoint v o1 i; acton E_.

If U e TpB, *U” still denotes the horizontal lift of U in Ty N. °U" was
explicitly constructed in §2(a).

Definition 2.5. If # is a smooth section of E and U € T;B, set

(2.19) Voh=Voyuh.

~

VE is a connection on the infinite-dimensional vector bundle E .

Remark 2.6. By (2.16), we have an isomorphism of Z graded vector bundles
(2.20) J‘Z B A(i) er(’)
E" =A(L )T .

E isa A(L") graded module, and the operators 3 +v/—1i i,,and P i
are A(L") linear.

It is essential to observe that since the identification M = L & N is only
an identification of smooth vector bundles, in general the connection VE on
E = A(L")®T does not coincide with the connection vViel+1eV'.

By §1(b), A(L") is a c(Lg) Clifford module, A(M") is a c(My) Clifford
module and so A(H*) is also a c(Lg) Clifford module. The identification
A" = A(L)®A(N") is an identification of ¢(L,) Clifford modules.

From (2.20), we deduce that E and E° are c(Lg) Clifford modules.
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Theorem 2.7. For x € B, set
(2.21) v, ={h€E); heKer@" +v=T1i,+3"" - V=1i})’}.

Then the v ’s are the fibers of a complex vector bundle v, which is a c¢(Ly)
Clifford submodule of E . If we equip v with the Hermitian metric induced by
the Hermitian metric on E°, then the linear map

(2.22) v:aeAL)—afev

is an isomorphism of Hermitian Z graded c(Ly) Clifford modules.

Let Q be the orthogonal projection from E° on v and let V* be the con-
nection on v given by

(2.23) v’ =QVE.
Then
(2.24) v, (VH =Vv".

Proof. The first part of our theorem is a trivial consequence of Theorem 2.2
and of Remark 2.6. Clearly, we have the identity of connections on L

(2.25) vl =pioM,
Also, by Proposition 2.4,
(2.26) vV = ovM.

The Kihler form 6 on N liesin A(N;)®,C = AN )@A(N"). Remember
that A(N") c A(M"). So 9 will be regarded as an element of A(M )@A(N").
B is then considered as a section of A(M )®A(N*) over N R

Let o be a smooth section on B of A(L") c A(M"). Then if U € T,B

(2.27) Vi(aB) = (Via)B+aVip.

By definition,

(2.28) Via=Vina.

End(M) acts as a derivation on the algebra A(M ). From (2.14), we find that
(2.29) Vya=Via+A{U)a.

Since A(U) interchanges L and N, we get

(2.30) N,A(U)a = A(U)a.

Since NyA(U)a =0, we find that

(2.31) (Ny =Ny )A(U)a = A(U)a.

By Theorem 2.2, (N, — N, ) = 0. From (2.31) we deduce that
(2.32) (N, = Np)((A(U)a)B) = (A(U)a)B .
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By Theorem 2.2, we know that v C Ker(N,, — Ny) . From (2.32), we deduce
that since N, — N,, is a self-adjoint operator

(2.33) Q(A(U)a)B = 0.
From (2.27)—(2.29) and (2.33) we get
(2.34) QVia)B = (Via)B.

By Theorem 2.2, we know that 6{] B =0. Using (2.14) again, we obtain
(2.35) VB =AU)B.

Note that in (2.35), B is considered as an element of A(M )RA(N") and that
A(U) acts only on A(M") and not on A(N*). From (2.4), we get

(2.36) AU)B = (AU)0)B .

Since A(U) interchanges L and N, we find that
(2.37) N,A(U)6 =0; N,AU)O = A(U)6,
and so
(2.38) (N, =N, )AU)0 = —A(U)6.

Since (N, — N,)B =0, using (2.36) and (2.38), we get
(2.39) (N, = Ny)aA(U)B = —aA(U)B .
From (2.39), we deduce as before that
(2.40) QaA(U)B=0.

From (2.35) and (2.40), we obtain
(2.41) QaVi B =0.

From (2.27), (2.34), and (2.41), we get
(2.42) 0V (aB) = (Vya)B.

Our theorem is proved. O

3. THE LEVI-CIVITA SUPERCONNECTION OF AN ACYCLIC CHAIN COMPLEX

Let

0O—-L—-M->N-0
i j

be a holomorphic acyclic chain complex of vector bundles on a complex mani-
fold B. In this section, we introduce operators and superconnections naturally
associated with the embedding L — M .

Namely for u > 0, we consider the family of operators 0 + /—ui i) acting

on the smooth sections of A(M )®A(N™) over the fibers of M. If M is

equipped with a metric gM which induces metrics gL and gN on L and N,
we construct the family of Hodge Dirac operators acting on the fibers of M,
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and the associated Levi-Civita superconnection 4, in the sense of Bismut [B1,

§3]. We also calculate the curvature fé'uz of the superconnection %, , and we
establish highly nontrivial Bianchi identities.

This section is organized as follows. In (a), we introduce a family of Dirac
operators acting on the fibers of M . In (b), we construct the Levi-Civita su-
perconnection, and in (c) a twisted version of the Levi-Civita superconnection.
Finally in (d), we establish Bianchi identities for the Levi-Civita superconnec-
tion.

The Levi-Civita superconnection of a Euclidean vector bundle with connec-
tion is intimately related to Index Theory. In particular, we show in Remark
3.7 that the Levi-Civita superconnection of the tangent space TB is exactly
the operator introduced by Getzler [Ge] at the final stage of his proof of the
Atiyah-Singer Index Theorem.

(a) A family of Dirac operators on A . We now make the same assumptions
and we use the same notations as in §2(b).

Definition 3.1. For x € B, let I (resp. I 3 ) be the set of smooth (resp. square-
integrable) sections of (A(M )®A(N*)). over the fiber M, Rox-

X

The Z grading on I, is still defined by the operator N Ly N, — N, . Let

dv,, be the volume form on the fibers of M - Weequip I g with the Hermitian
product

(3.1) figel’=(f,g) = (%)M/M (. &) dvy,.

Let 3" be the Dolbeault operator acting on 7, and let 3" be its formal
adjoint with respect to the Hermitian product (3.1) on Ig. Set
(3.2) pY =" 4 g%,
The connection V* defines a natural splitting of TM into
(3.3) TM=MoT"'M.
If U e TyB, let U" be the horizontal lift of U in THM. If n is the
projection M — B, then U” is characterized by the relations
(3.4) vlerim, a2 U"=v.

Remember that V is the connection on A(M )RA(N*):
v=v'e1+10V".

Definition 3.2. If % is a smooth section of the vector bundle I and U € B,
set

1
(3.5) Vih=Vyuh.

Then ¥’ is a connection on the vector bundle 7. Note that if 4 is a smooth
section of I with compact support, then h e I°. If U e TyB,then V hel
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has compact support, and so V yh el % One then easily verifies that V is a
unitary connection on J O in the sense that if 4 and A’ are smooth sections of
I with compact support, then

(3.6) Uh, b’y = (Vyh, by + (h, V1),

Let R* " RM , and RY be the curvatures of the connections V- s vM , and
v . We still denote by RM and R" the curvatures of the connections V¥ ,

and V" on A(M") and A(N*). If R is the curvature of the connection V,
then

(3.7) R=R"® I,y + I,z ® R

If y€ M ,let y € M be the conjugate of y. y € M represents ¥ = y+7y €
My.
Proposition 3.3. If U, V € TyB, then (61)2(U , V') is the first order differential
operator on I

(3.8) (VU V)=RU, V)=V pyy-

In particular, the two-form (V')? is of complex type (1, 1). Also

(3.9) v, p"1=0; [¥,3"]1=0; [¥V',3"1=0

Proof. (3.8) follows from [B1, Proposition 1.11]. Since R and R™ are forms
of type (1,1), (51)2 is also of type (1, 1). The holonomy group of the
connection V¥ consists of linear complex isometries of M. We then find
that [V',3"]=0 and [V', 3" ] = 0. Our proposition is proved. O

Remark 3.4. If Lpu .Y denotes the Lie derivative with respect to the vector

field RM(U , V)Y, (3.8) can be rewritten in the form
(3.10) (V) = —Lguy + Iy ® RY

(b) The Levi-Civita superconnection of M. If Y € M, , then RMY is a two-
form on the manifold B with values in M.

Remember that if X € My, then ¢(X) denotes the corresponding element
in the Clifford algebra c(M, ) and by §1(b), A(M") and also A(M )®A(N™)
are c(My) Clifford modules

Let fl s---» fy beabaseof TpB, and let fl, cees f2k be the corresponding

dual base of T;B. Let c(RMY) (A(T"B)@c(M )°% be given by
(3.11) =1 /e ®( Y.

—k A

The Z grading of A(M )®A(N ) mducesacorrespondmg Z2 gradmg Then

the vector bundles I and I° splitinto 7 =1 _®I_ and =1 +€BI_ . Therefore,
we may apply to these Z, graded vector bundles the superconnection formal-
ism of Quillen [Q1]. In particular, the algebra End/ is naturally Z, graded,
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with the even (resp. odd) elements in End/ preserving (resp. exchanging) I N
and I_. The computations which follow will be done in the graded algebra
A(TxB)®EndI.

Definition 3.5. Let &/ be the superconnection on the Z, graded vector bundle
I=1 I :
+ —-—

M c(RMY)
2v2

Note that 7: M — B is a fibration whose fibers are vector spaces. Also as
pointed out in (3.3), the connection V™ defines a horizontal complex vector
bundle T7”M = 7*TB such that TM =M e T M.

We claim that &/ is exactly the Levi-Civita superconnection of the fibration
n: M — B defined in Bismut [B1, §3c)] associated with the given metric on
M, the horizontal vector bundle T”Af and the connection V" on A(N™)
(with the factor ¢ in [B1, §3c)] set equal to %) . In fact the vector bundle with
connection M is a U(m) vector bundle. The situation described here is then
a special case of the G-equivariant situation considered in [B1, §3, Remark 2].
The fact that &/ is the Levi-Civita superconnection now follows easily from
the considerations in [B1].

Since Tg M= n*TRB , we have an isomorphism of smooth vector bundles

(3.13) A(TpM) = A(TRB)®A(Mp).

Therefore if a € A(M]’;) , We may associate to o a form in A(T,M) which
we still note a. Let y be the Kéhler form of the fibers M. One then easily
verifies that

(3.14) 30y = —2iy + (RMy, 7).

From (3.14), we deduce that the fibration n: M — B is locally Kihler (at
least when 7 is restricted to bounded subsets of M), in the sense of [BGS3,
Definition 1.25]. Therefore the considerations in [BGS3] can also be used in
this situation,

Let Tr[R™] be the trace of R™ ¢ AZ(T;B) ® End M. Tr[RY] is a section

of A’ (TEB) . In the sequel, and to avoid possible confusion, we denote by R"

the action of R on AN*. R actslike 1®R" on AT )®A(N").
Let e , ..., e,, be an orthonormal base of M.

(3.12) & =V'+D

Theorem 3.6. The curvature /' of the superconnection &/ is given by
: 1 1, M LS D VA
(3.15) A== (ve +5(R"Y, e,.)> +5 TrR 1+ R".
1
Proof. (3.15) can of course be proved directly. We will obtain (3.15) as a special

case of formulas in Bismut [B1, Theorem 3.6]. Let (detTM )1/ 2 be a locally
defined holomorphic square root of the line bundle det 7M. Set

F=AM")®(detTM)™ .
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Then by [H, Theorem 2.2], F can be identified with the Z, graded Hermitian
vector bundle of T, M spinors.

As explained after (3.14), the Levi-Civita superconnection &/ is a special
case of the superconnection considered in a complex geometric setting in Bismut-
Gillet-Soulé [BGS2, §2]. As shown in [BGS2, proof of Theorem 2.2], the for-
mula of [B1, Theorem 3.6] for & 2 (with ¢ = %) can be used in this situation.
In particular, with the notation of [B1, §1], using [B1, (1.30)], T is purely hor-
izontal, i.e., if U € My, then i,T =0. Alsoif V', W € T;B and vE wH
denote the horizontal lifts of V', W in Tf M , then one gets

(3.16) Tv?, wh=R"wv, wy

By [B1, (1.28)], we find that if X € M, , then the two-form (S(X)-, -) is purely
horizontal. More precisely if V', W € T, B, we get from (3.16) that

(3.17) usx)yv?, wty = (R v, wyy, x).

To obtain (3.15), we now use [B1, Theorem 3.6] with ¢ equal to % . O

Remark 3.7. Note that by [BGS2, (1.41)], if D' is the standard Dirac operator
in the fibers M, then DM — \2DM

Assume temporarily that M, is instead an ordinary smooth Euclidean spin
vector bundle on B equipped with a Euclidean connection, and that DM
now the family of Dirac operators acting on M spinors. Let V' denote the

obvious analogue of V! . In this case, the Levi-Civita superconnection &' with

parameter ¢ =} is given by the formula

r e DM (RMY)
3.18 A=V -
(318) N

Using again [B1, Theorem 3.6], we obtain the formula

(3.19) =— diM< R Y, e>>2

Formulas (3.15) and (3.19) are very interesting. In fact if M, = T;B, the
operator in the right-hand side of (3.19) is exactly the operator introduced by
Getzler [Ge] in his proof of the local index theorem. It is remarkable that the
Getzler operator—which is the limit of rescaled squares of Dirac operators on
the manifold B—is itself the curvature of the Levi-Civita superconnection %"
associated with M = TB. Formulas (3.15) and (3.19) will be interpreted in
the context of index theory in Remark 4.11.

(c) The Levi-Civita superconnection of the double complex. Let J denote the
complex structure of L, M, or N. If y' € N, the operators Iy and i;, are

odd operators in End(A(N*)), i.e., they interchange A“*(N*) and A°*(N*).
¥ € N represents Y =y’ +3 € N,. For Y' € N, set

(3.20) v(Y')=v=1(i, - iy).
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Equivalently, with the notations of §1(b), we have

(3.21) V(Y= —‘/—_—1@ Jy’.

7
The operators iy/ , i;/ , and V(Y') also act naturally as odd operators on
AT )BA(NT) = A(L)HB(A(Ng) ® C).

Definition 3.8. For u > 0, %, denotes the superconnection on the Z, graded
vector bundle I =1 _o1_:

(3.22) B, =¥ + D" + yuv (P"y) - C(;A/IEY)
Clearly,
(3.23) DM 4 av(PYY) = 8" + v idipn, +8 — vV =uipn, .
Also
(3.24) @ +v=uipn)’=0; @ —v=uip,) =0

The connection V' splits into
V=9 +¥",

where ¥V’ and V! are the holomorphic and antiholomorphic parts of the
connection V. Set

, s pN= M
& 3y P _ R

u V2 22
(3.25)
@ o 5 Py eR"Y)
u \/f 2\/5 )

Equivalently, using (1.15) and (1.17), we have

12 ~I —M*
(3.26) B,=V + — V- 1P~ +1RMy/2,

‘%u” = % + (9 + \/—uiPNy - lRM?/Z'
Proposition 3.9. The following identities hold:
B, =B, +B,
(3.27) ,@ulz = 0; ‘@uuz = 0 ,
B =%, B
Proof. In view of the considerations in §3(b), (3.27) follows from [BGS2, The-
orem 2.6]. More directly, observe that by Proposition 3.3

(3.28) & =0, (¥)=o.
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Also, by Proposition 3.3

(3.29) ¥,8"1=0; [¥.,3"1=0

Moreover the map y e M — pY ¥ = j(y) € N is holomorphic and so
(3.30) 7", ip,1=0
Taking adjoints in (3.30), we also get
(3.31) [V PN 1=0
By Bianchi’s identities, we find that

=l S ad ok

(3.32) [V, igus]=0, [V, igu;]=0

Finally since i;M}—, (resp. i Ruy) is a holomorphic (resp. antiholomorphic)
function of y, we get

(5M + vV —uiPNy - i;{M?/Z)z =0,
— V=i, + gz )’ = 0.
(3.27) now follows from (3.28)-(3.33). O

(3.33)

Remember that 4 € A'(TxB)® End M was defined in (2.14). In particular,
for U e TyB, A(U) exchanges L and N. Let f|, ..., f,, be a real base of

T,B,and let f LS % be the corresponding dual base of T;B . Set
(3.34)  ¢(JAP'Y) Z FleaA( f)P Y) € (A(TxB)® End A(N*))™".

Our choice of signs in (3.34) takes into account the fact that ¢ should be thought
of as an odd operator.
Let e, ..., e, be an orthonormal base of M, as in Theorem 3.6. The

operator S € Endeve"( (N"Y®A(N™)) can be deﬁned as in (1.22). It obviously
extends into an even operator acting on

ADT)BANT) = A(L)RAN)RA(NT)).
From (1.23), we deduce in particular that

(3.35) Z P e;) e(IPY e;).

Theorem 3.10. For any u >0, the followzng identity holds:

2m 2 Ny 12
2 1 1, M ulP'Y|
ﬂ=—55 (Ve,+—R Y,ei)> +
1

" (
(3.36) 2 2

+vus + ¥ _\/liﬁé(JAPL Y)+ % Tr[RY]+ R".



186 JEAN-MICHEL BISMUT

Proof. If m is a section of M, such that v™m =0, then

(3.37) vPYm = —4P'm.
Formula (3.36) now follows from Proposition 1.4, Theorem 3.6, and (3.37). O

(d) Bianchi’s identities for the superconnection %, . The split connection oM
= v @ V" was defined in §2(b). 9v™ induces a connection on AMY) =
A(L)®A(N"). We still denote by v the connection V¥ @1+ 19 V" on
AM)BA(N).

The connection °V¥ defines a complex horizontal subbundle OTH pr of
TM.If UeTgB,let 'U” bethe lift of U in °T} M.

Definition 3.11. If 4 is a smooth section of I and U € TyB, set
(3.38) VL h ="Vl uh.

~

97! is a connection on 1.
If U € TyB, then L A)Y is the Lie derivative with respect to the vector

field A(U)Y. L 4y actson smooth sections of A(M) and also as a standard
derivation on smooth sections of A(N*). So L 4)y acts naturally on 7.
Let 3° and 3" be the 3 operators on L, and N, and let 3" and 3"

be their formal adjoints. These operators act on I in the obvious way. In
particular,

(3.39) v =38 +3", " =3"+3".
Set

(3.40) pt=3"+3", D"=3"4+3".
Then

(3.41) p" =p"+D".

We now prove remarkable commutation relations verified by the curvature
(@: of &, .

Theorem 3.12. The following identities hold:
1 0!

vi="'-L,,
0s 1 N Ny c(PYRMY) o]
(3.42) [V _VAY+D +ﬁV(P Y)_—Z\/i "@u =0,
L c(P*RMY) 2]
A+DF -2 = " Z* —o.
[ i 2 T

Proof. By (2.14),if U € TyB, then

(3.43) vy =0y + AU).
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From (3.43) it is clear that if U € TzB, then

(3.44) v? =" - 4y

From (3.43) and (3.44), we deduce that
=1 0l
(3.45) V="V -L,

As pointed out after (3.38), L,, acts like a Lie derivative on the algebra
A(M’) and like a standard derivation on A(N*). In particular 4 acts like
A®1 on A(M)RA(N™). Also, we have the trivial

(3.46) [B,, B1=0
Using (3.22), (3.40), and (3.45), we rewrite (3.46) in the form
N pM
["6’ -V, + D" +vuv(P"y) - —C(sz} Y) B’
(3.47) (PRYY)
+|4+DF-¢ , B =0.
[ 22 T

Remember that AGTHRANY) = AL HRANN )®A(N*). Formula (3.36)
shows that .@ preserves the partial grading in A(L ) , or equivalently that

(3.48) [,%’u , NE ]1=0
On the other hand the operator

01 N N c(PNRMY)
(3.49) V -V, +D" +VuV(P Y)__—Z—\—/—f—

also preserves the partial degree in A(Z*) while the operator
c(P*RMY)
2V2
does not preserve this partial degree. It is in fact the sum of two pieces, one
increasing the partial degree by one, and the other decreasing it by one. It

immediately follows that each of the two terms in the left-hand side of (3.47)
vanishes identically. Our theorem is proved. O

(3.50) A+D" -

Remark 3.13. The third identity in (3.42) can be proved directly. In fact, an
easy computation shows that

DL_C(PR Y) Z( LRy e>>2]=0,

pt V-1,
e

from which the third line in (3.42) trivially follows. The second identity in
(3.42) can also be proved along the same lines.

(3.51)

(A, S]+[ ¢(JAP Y)]=0,



188 JEAN-MICHEL BISMUT

Definition 3.14. For x € B, let £ (resp. jxo) be the set of smooth (resp.

square-integrable) sections of A(Ng), = (AN )®A(N®)), over the fiber
M
R,x*

Clearly, # and # O are Z, graded vector bundles on B, and moreover
(3.52) I=ANIHY®7, I'=AIH)%7°.
Definition 3.15. If 4 is a smooth section of ¥ and U € TyB, set

(3.53) OV h=Voyuh.

Clearly, 9% is a connection on S . Also by (3.53), _# is embedded natu-
rallyin 7 bythemap fe_# — 1®f e l. °V' preserves /£ and its restriction
to £ coincides with v

Moreover, as is obvious from formula (3.36), %uz can be considered as an
even section of A(T;B)®End_# , which acts like 188 on I = A(L")®.7 .
Theorem 3.16. The following identity holds:
c(P"R"Y)

2V2

Proof. Taking into account the considerations after (3.53), (3.54) is an obvious
consequence of Theorem 3.12. 0O

(3.54) V-V, + D"+ Vuv(PVY) - , Bl =0.

4. THE GENERALIZED SUPERTRACES
OF THE SUPERCONNECTION HEAT KERNELS

In this section, we construct the kernels Psx'“’b(Y , Y') on the fibers M R x
associated with the operators exp(—sg@u2 + sbN,). We prove that the forms
Trs[PSx’“’b(Y, Y)] on B are invariant by translation by elements of L,. By

integration on N, we so define generalized supertraces Trs[exp(—%f +bNy,)]
which are smooth forms on B.

We prove the key results that the forms Trs[exp(—ﬂuz)] are closed, and that
their cohomology class does not depend on # > 0. More precisely, we ob-
tain the double transgression formulas (0.4), which are the obvious analogue
of [BGS1, Theorem 1.15; BGS2, Theorem 2.9] for generalized supertraces. We
also prove that if R™ and R" are the curvatures of the holomorphic Hermitian
connections on M and N, thenas u — 0

2. Tr(-RY)
Tr,[exp(-%,)] Tr(—RN)

The proof of this result involves local index cancellations techniques. It will be

reestablished in §7 by the explicit computation of the forms Tr, [exp(—ﬁuz)] .
This section is organized as follows. In (a), we construct the heat kernels

P" “2(y,Y'). In (b), we prove that these kernels decay fast enough at infinity

+ O(u).
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on Ng. In (c), we prove the translation invariance of Tr [P, 4y, v)]. In

(d), we construct the generalized supertraces ’l‘rs[exp(—g%”u2 + bN,)], and in
(e), we establish the double transgression formulas (0.4). In (f), we study the
asymptotics of these forms on B as ¥ — 0. Finally in (g), we construct a
modified version %, of the superconnection %, .

Our assumptions and notations are the same as in §3.

(a) The heat kernel associated with exp(—st@u2 + sbNy). From now on, %’:
will be considered as a section of (A(TRB)®End #)"". Also N, lies in
(End_#)"" . Therefore for b € C, _gguZ + bN,, is a section of the bundle of

algebras (A(TzB)®End #)™". Recall that dv,, is the volume element in the
fibers M.

We now claim that there is an unambiguously defined heat equation semi-
group exp(—&@u2 +sbNy) (s > 0). More precisely there is a uniquely defined
smooth kernel Px’”’b(Y Y) s>0,x€B,Y,Y €M, ) such that if h
is a smooth bounded section of (A(TRB)®A(Ng)), , then ’

1 dv, (Y

x,u,b ’
P (Y, Y)h(Y )(27:)

s

(4.1)  exp(—s&B. +sbN,)h(Y) = /
M

R,x

In fact, if B is reduced to one point and if AMk is the standard Laplacian on
M, , then by (3.36)

AMr
(4.2) B! = - 5 +u|1D Y’ +VuS.
Since AMr = Al® 4 AN , we find that, if B is reduced to a point, then
AL ANty PVY
(4.3) B =-= +<—T+“| i +fs)

Therefore ﬂuz is the sum of half the standard Laplacian on L, and of the
harmonic oscillator introduced in Proposition 1.4 on N, . The existence and

uniqueness of the heat kernel P 5 is now standard.
More generally, since the terms (RM Y,e) and é(APL Y) contain Grass-
mann variables in A(TB), Duhamel’s formula can be used to construct the

heat kernel PS"’x’b(Y, Y') and prove its main properties. Also, we can use
stochastic differential equations techniques to construct the semigroup

exp(—s‘@u2 + sbN,) and the kernel Pf’“’b(Y, Y'). This last method will
be used in the following subsection to obtain rough estimates on the kernels

,u,b /
PE(Y, Y.

(b) The decay at infinity on N, of Psx’“‘b(Y , Y'). As we shall see in a precise
form in subsection (c), the kernel P, ’“’b(Y , Y') does not tend to 0 as |Y| —
+00,0r |Y'| = +00.
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Here we will show that if we restrict ¥ and Y’ to vary in NR ,» then

PS“’x’b(Y, Y') tends to 0 as |Y| — +oo, or |Y’| — +00. More precisely, we
have the following result.

Theorem 4.1. Let a,d' ,c € R suchthat 0 <a<ad < +o00o and 0 <c< 1,
and let k € N. There exist C, C' > 0 such that forany x € B, u€la,d],
s€lc,1], beC,and |b|< 1, forany Y,Y' € Ny , and any multi-indices
a,d suchthat |a| <k, || <k, then

glal+la’l

(4.4) “oy, Y| < Cexp(=C' (1Y) +|Y']%)).

s

aY°eay"
Proof. If B is reduced to a single point, (4.4) is a simple consequence of (4.3)
and of the fact that if p;‘(x ,x) (x, x' €R) is the heat kernel associated to the

operator A/2— u|x|2 /2 with respect to the measure dx’/v/2n , then by Mehler’s
formula [GlJ, Theorem 1.5.10]

(4.5)
pLx, x')

1 172 12
= R\ b (W““WWW +x%) - 20 ).

Now let Y, (0<s < +o00) be a standard Brownian motion in M, _ starting
at Y, C My ., let E be the corresponding expectation operator, and let U, be
the solution of the differential equation

d U
(4.6) ds

viis - Y=L e JAP'Y)-RY +bN,,|
ARG |

UO) = Iuy: gy

n (4.6), U, is an even element of A(TxB)®End A((Ng) ®,C), .
We claim that if 4 is a bounded smooth section of A(TRB)&(A(Ng) ®, C
on the fiber M r.x» then
(4.7)
exp(—s&@u2 + sbN,)h(Y,)

—E [exp{%/ (RMY,dY)—%/ |PNY,[2dt—%sTr[RM]} Ush(YS)] ,

where, in (4.7), fo R Y, dY) is a Stratonovitch stochastic integral [IkW

Chapter III; B6, §3] (which turns out to be an Ito stochastic integral since RM
takes values in antisymmetric matrices). To prove (4.7), we first show that the
right-hand side makes sense, i.e., the expression which appears under the ex-
pectation sign is integrable. In the sequel, the constants C may vary from line
to line. Clearly,

(4.8) U| < Cexp <C(1 +Vi)s + c/ |PLYt|dt> .
0



KOSZUL COMPLEXES, HARMONIC OSCILLATORS, AND THE TODD CLASS 191

Also we can write the expansion

(4.9) exp{Z/(R Y dY)}_l 2/ M+...;

the key point being that the right-hand side of (4.9) contains only a finite number
of terms.

Now by [IMK, p. 27], for any C >0

(4.10) E [exp (C sup |PLYt|>} < +00.

0<i<1
Also by [IMK, p. 27] and the Burkholder-Davis-Gundy inequalities [DeM, p.
304], the stochastic integral [J(RYY,dY) liesin N, <peioo L, (With respect
to the Brownian measure). Using (4.10) and Holder’s inequality, it is now clear
that the expectation in the right-hand side of (4.7) makes sense. Once this is

proved, equality (4.7) is now a standard consequence of formula (3.35) for %f
and of Ito’s formula, as used in [B8, Theorem 2.5].

Let ny,yl) be the probability law on #([0, s]; My ,) of the Brownian

bridge Y, such that Y, =Y and Y, =Y’ [Sil, p. 40]. Then by disintegration
of equality (4.7) as in [B1, Corollary of Theorem 4.2], we get

(4.11)

Px’“’b(Y Y') = exp(—|Y — Y'*/2s)
s b

sm

xEQvaY')[exp{l/ (RMY,dY)—E/ |PNYt|2dt—£Tr[RM]}U] .
2 J, 2/, 2 s

Using (4.8), (4.11), and Holder’s inequality we find that
(4.12)

PRty phy < SR~ YIE/29)
Ky b —_

Sm
1 [ m 3
exp —/(R Y, dY)
2 Jo
Q. 3u 1 N2
X E=.v) €Xp —7 IP Yt| dt
0

X C{EQ(:Y-Y"[
; s 1/3
« E%r.v) [exp{3C/ |P1‘Yt|dt}]} exp(C(1 +Vu)s).
0

Let w, be a standard Brownian motion in M, R.x such that w, = 0. Then
by [Sil, p. 41],if ¥, (0<¢<s) is the process

(4.13) Y, = (1—§)Y+ Y+w—§w
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then the probability law of the process ¥, (0 <7 <s) is exactly Q(SY’ y') - If £

now denotes expectation with respect to w , we deduce from (4.13) that
Qs ' 1 s M 3
E(y,Y)[ CXP{E/(R Y,dY)} ]
0
1 [¢ M t t 1 t
exp{ = R 1—--)Y+-Y +w,—-w_],
2 /o s s toss
dt 3
(Y - Y—wS)T+dwt>} ]

We now expand the exponential appearing in the right-hand side of (4.14) in
a finite power series as in (4.9). To dominate (4.14), we only need to bound a
finite number of integrals If (with 1 < p < +o00) given by

N
/ <RM((1—£)Y+£Y'+w,—£wS> ,
0 S S S

dt
Y -y - ws)T + dwt>

(4.14) =E[

(4.15) 1f=E[

]
Note that in the stochastic integral [; (RM(- -+), dw,), the term w, can be

factored out, so that the integral can be expressed by means of classical, i.e.,

nonanticipating, stochastic integrals [IkW, Chapters II and III].

We can then use the Burkholder-Davis-Gundy martingale inequalities [DeM,
p. 304] and we easily obtain the bound

(4.16) Pl <Cca+|Y?+Y'?), s<lI.
From (4.15) and (4.16) we deduce that there exist C > 0 and g € N such

that if s <1
S
exp{l/ (RMY,dY)}
2 Jo

Alsoif Y, Y € Np , under Q(SY’Y,) , PLY is a standard Brownian bridge in

L, such that Pt Y, = PLYS = 0. Therefore by [IMK, p. 27] there exists M > 0
such that if Y € N, . and s €[0, 1]

R 3
417  E%.» [ ] <SCA+[Y +]Y')).

o s
(4.18) E%r . [exp (3c/0 |PLY,[dt>] <M.

By (4.5) and (4.11), we know that if ¥, Y' € N _, then
(4.19)

_ S
EQ?Y,Y’) [exp{—ﬂ/ |PNYt|2dt}]
2 Jo
B ( (3u)'%s )"
sinh(3u)"/?s

Y — Y'|2 (3u)l/2 1/2 2 12 /
X exp{ T 2sinh((3u)'/2s)[COSh((3u) (Y| +|Y ) -2(Y,Y )]}.
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From (4.19), we deduce that there are C, C’ > 0 such thatif u,s, Y ,and Y’
are chosen as indicated in the statement of our theorem, then

|Y—Y'|2){ o <—3u/’ N2 )}"3
SN v exp (222 [ 1PYY
(4.20) exp( 25 exp|—— | 1P YTdl

< Cexp(-C'(|Y[* +|Y'1")).

When a, o' = 0, the bound (4.4) now follows from (4.12), (4.17), (4.18), and
(4.20). For general o, o' one can easily use the Malliavin calculus [Ma, B7],
to obtain the bound (4.4). This is especially easy here, since we work only with
the flat Brownian motion. Details are left to the reader. O

Another method of proof of Theorem 4.1 is to start from Mehler’s formula

(4.5) and to use Duhamel’s formula to estimate the kernel PSX *4:5 and its deriva-
tives.

(c) Translation invariance of the supertrace of the heat kernel. Forany Y € M, x
and s >0,
PO P(Y, Y) € (A(TRB)®End(A(N;)))0 .
Therefore, if we use the conventions in Quillen [Ql], the supertrace
Tr,[P“"(Y, Y)] lies in (A“(T;B)),. If Y, € Ly ,, we define c(4Y,)
as in (3.34).
We now prove a key translation invariance property of TrS[Psx’“’b(Y , Y)l.

Theorem 4.2. Forany u >0, s >0, x€ B, beC, Y,Y € M _, and

YoeLR,x, we have
AY, RMy .Yy
Px’u’b(Y+Y,YI+YO)=CXp _C( 0)_( 0 ) ,
(4.21) ’ ’ V2 2
' coub , c(4Y,) (RMY,,Y)
P (Y,Y)exp( 7 + > .

In particular, forany u>0, s >0, xe B, beC, YeMR’x,and Y€Lg

Tr,[PX (Y, V)] =Tr [PV (Y + Y, Y + V),

,u,b
SENY + Y, Y+ X))

(4.22) o
Tr,[N, P °(Y, Y)] = Tt [N, P,

Proof. As is obvious from Theorem 3.10, the operator 94?,3 is not invariant
under translations by elements of L,. So (4.21) is a nontrivial statement.

Let e/, ..., e,, bean orthonormal base of M, suchthat ¢ , ..., e,, is an
orthonormal base of Ny and e,, ,,...,€,, isan orthonormal base of Lg.
We also take f,, ..., f,, and f',..., f** asin (3.34). Then

2%k
(4.23) c(AYy) ==Y fle(A(f)Yy).
1
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Clearly,

(4.24) [c(AYy), c(e)] = 2{4Y;, e),  [c(4Y), é(e)] =0

Usmg formula (3.35) for ', we deduce from (4.24) that since AY, takes values
in N,

(4.25) [c(4Y,), S]1= —V-1¢JAY,).
From (4.24) and (4.25), we get
(4.26) [c(AY,), [c(4Y,), ST1=0

Using (4.25) and (4.26), we find that
(4.27) exp (:C_(ﬁfﬁ) Sexp (C(AY0)> S+ \/—C(JAY

V2 V2 V2
Also
M M
(4.28) 2 « "2 2
1, M
=V, + E(R (Y+Y,),e)
Let Ty, be the map
(4.29) he f —h(-+Y)er.
Set
2 2
(4.30) By, =17, B,y

Using Theorem 3.10, (4.27) and (4.28), we get

M
Y
‘@uz,yo —bN, = exp (_ C(go) (R 20, Y>>(gg’2_b )
(4.31) }
X eXp (c(,:!/;_’o) " (R )2,0, Y))

From (4.31), we immediately deduce (4.21). By [Q1], supertraces vanish on
supercommutators. (4.22) then follows from (4.21). O

Remark 4.3. Theorem 4.2 exactly says that the function
Y e My  —Tr[P (Y, Y)] € A™(T;B),

factors through the normal bundle N, i.e., Tr [P} 45y | Y)] depends only
on j(Y) € Ng

(d) A generalized supertrace. For s > 0, the operators exp(—séf?u2 + sbN,,)
and N, exp(—s@f + sbN,,) are in general not trace class. This is made es-
pecially obvious by Theorem 4.2, which indicates that Tr [P 4ty ¥)] and

TrS[NHPSx’“’b(Y, Y)] are invariant by translations in L.
Still, using Theorems 4.1 and 4.2, we can define generalized supertraces of
exp(—sﬂu2 +sbNy) and Ny, exp(—sv%”u2 +sbNy,) .



KOSZUL COMPLEXES, HARMONIC OSCILLATORS, AND THE TODD CLASS 195

Definition 4.4. For s >0, u >0, and b € C we define the generalized super-

traces Trs[exp(—&@u2 +sbNy)] and Tr [Ny, exp(—su%”u2 +sbNy)] by the formu-
las

Trs[exp(—s$u2+sbNH)] =/ TTS[P:’u’b(Y, Y)]d(1)21;,z())n’) ,
(4.32) NR.x dv (Y)
o, [N, exp(-sB; +5bNy)] = [ T[NP0, gl
NR.x

Trs[exp(—sﬁé’u2 + sbNy)] and Tr [N, exp(—s(%’,f + sbNy)] are smooth sec-
tions of A (T:B).
In the sequel, we use the notation

(4.33) POy, Y =P, Y).

Also, using the bounds (4.4), one easily verifies that Psx ’“’b(Y, Y') depends
smoothly on b € C. Set

X, u,b

(4.34) oY, Y) = [a (Y,Y)

ab b0
By using bounds similar to (4.4), one easily verifies that the form
Tr, [exp(—sﬂu2 +sbN,,)] depends holomorphically on b € C, and that

aa—b{Tr [exp(—s,%’2 +sbN)1} 0

dvy(Y )
(2m)"

(e) A double transgression formula for generalized supertraces. We establish here
a double transgression formula which can be considercd as an analogue for gen-
eralized supertraces of formulas in [BGS1, Theorem 1.15 and BGS2, Theorem
2.9], which were established for genuine finite- or infinite-dimensional super-
traces.

(4.35)

/ Tr,[QF (Y, Y)]

Definition 4.5. P? denotes the vector space of smooth differential forms on B
which are sums of forms of type (p, p). P50 s the subset of w € P? such
that there exist smooth forms «, B for which w =9a+9pf.

Theorem 4.6. For any b € C and u > 0, the forms Trs[exp(—ﬂf +bNy)] and

Tr, [N, exp(—%’:‘ +bNy)] liein PE . The forms Trs[exp(—ﬂf )] are closed and
their cohomology class does not depend on u > 0. More precisely,

(436) 2 Tr [exp(~&7)] = ‘7’;‘9 { aab Tr, [exp(—] + bN,,)],_ 0}

ou
Finally,

(437)  TrN,exp(-B2)] = %{Trs[exp(—@j + BN, -
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Proof. To prove that the forms
Trs[exp(—gé’u2 +bN,)] and Tr[N, exp(—éé’u2 + bNy)]

lie in PB we proceed as in [BGSl, Theorem 1.9]. Remember that we grade
the algebra A(N, )® rC= AN )®A(N*) by the operator N, — N, . Clearly,

\/—_16—(%)’) = V—1(igpr, = ypr,)-

As an element of A'(T;B)®Hom(L, N), 4 is of complex type (1, 0). So
Iypty € A (T B)® End(A(N )®R C) is of complex type (1, 0) and decreases
the total degree in A(N, ) ®g C by one. Similarly i APy is a one-form of type
(0, 1) and increases the total degree in A(N, ) ®z C by one. Also in formula
(3.36) for 93‘142, the terms other than \/_ Vi/V?2) )e(JAPTY) are products
of zero or (1, 1) forms with operators which preserve the total grading in
A(Ng) ®, C. By proceeding as in [BGS1, Proposition 1.8 and Theorem 1.9],
it is now clear that TrS[PSx’“’b(Y, Y)] and TrS[NHP;““’b(Y, Y)] are sums of
forms of complex type (p, p). Therefore the forms Trs[exp(—ﬁé’: +bN,)] and
Tr,[N, exp(~%, + bN,)] liein P®.

We now prove that the forms Trs[exp(—ﬂu2 )] are closed. First, let us point

out that Quillen’s superconnection formalism [Q1] cannot be used (even in
an infinite-dimensional context) as in [B1, Theorems 2.6 and 3.6], since the

forms Trs[exp(—.%uz)] are only generalized supertraces. Still, we will mimick
the strategy in [B1, Theorem 2.6].

Take x € B, and let Z° be an open neighborhood of x € B, which is
holomorphically equivalent to an open ball in ck , with O representing x. In
particular, the exterior algebra A(T,B) is canonically trivialized on 7. Let
leR—x € C* bea straight line, with x, = x . We trivialize the vector bundle
M along the line x; by parallel transport with respect to the connection VM
so that M_ is identified with M . Note that this trivialization preserves the
splitting M LoN. Slrmlarly we trivialize the vector bundle _# along the line
X, using the connection vl , SO that fx[ is identified with # . The operators

95’“2’ ., and exp(—%uz’ 5, T ONy) now lie in (A(TxB)®End _#)." and so act on
the fixed vector space 7, .

We will evaluate the kernels Px with respect to the volume element
dv M, /(2m)™ in the fiber M . By using Duhamel’s formula as in [B1, Proposi-

tion 2. 8], we find easily that

—a—P"' (Y,Y) /ds/ PNy, Y,

s U

ol s
(4.38) o
X ox dv, (Y
U, X pX M
57 AL (YY) Dk
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The rigorous derivation of (4.38) requires estimates on PS“ '* and on its deriva-
tives which say that for any given M, 0 < M < +o0,

alal+|a'|

N

X, U !
aY“aY’“'PI ¥, Y)(
(4.39)

C —lYy =Y} )
< — - < <
< o exp( r ., |Y|<Mor|Y'|<M,

which easily follows from (4.12), (4.17), and (4.18) when «a, o' =0, and from
the Malliavin calculus [Ma, B7] for general o, o' . Estimate (4.39) is needed to
make sense of the integration in (4.38) on the noncompact fiber My .

Using (4.38) and the essential fact that the connection OyM preserves the
splitting M = L & N, we deduce that
(4.40)
2
d Tr [exp(—%,)]
! ~ dv, (Y') dv,(Y)
- 4 Tr (P (Y, YV, P (Y, Y)) X N2
‘/0‘ s/ ; <N rs{ s ( ’ )[ ’ u] 1—5( > )} (2n)m (zn)n

By Theorem 3.16, we know that

c(PNRM Y) Z°

087 21 _ N N
@441 ¥ ,@u]_[VAY DY —vav(PVy) + 5%

Remember that AP'Y is a one-form with values in N z - The operator &,
given by

N N c(PNRM Y)

(4.42) _CZ VAPL -D" - ﬁV(P Y)+ ——W

is an operator of order one, which involves only differentiation in the directions
of N Rox" . By proceeding as in [B1, Proposition 2.8], while making the obvious
changes we find that

(4.43)
YI
[, PX*AY, Y) = /ds/ PMY, YIS, ﬂ?uz]Pf_’;‘(Y’,Y)%.
Let K(Y,Y') (Y,Y € NR ) be any smooth kernel on Ny _, with

KY,Y)e A(TxB)® End(A(N, 2) ®z C), which has compact support, i.e., it
vanishes for |Y|+ |Y’| large enough. Let YP**(Y,Y') (Y,Y € N ,) be
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the restriction of the kernel P"*(Y, Y') to N & - Then

(4.44)
Npx,u Npx,u dv (Y)
[ Ak - KB, ) B

Ry

_ X, U / / _ X, u d’UN(Y) d’UN(Yl)
_/N . Tr {P;"“(Y,Y)K(Y',Y) - K(Y,Y)P"" (Y, Y)} T

dvy(Y) dv,(Y')
2m)"  (2n)" -

=/ Tr {(PS (Y, Y'), K(Y', V)]
Np X Np

By [Q1], we know that
(4.45) Tr{[P (Y, Y'), K(Y', Y)]} = 0.
From (4.44) and (4.45), we get

dvy(Y)

Q-0

(4.46) /N Tr {{"P"", KI(Y, Y)}

Since the vector field APY is dlvergence free, one verifies that for any Y €

Np o £, PUYIY,Y)=[Z, "P""|(Y, Y). By approximating the oper-
ator .Z, by smooth kemels K on N r.» and taking into account the uniform
bounds (4.4), we deduce from (4.46) that

dv,(Y)
(2m)"

(4.47) /N Tr{lZ,, P"°)Y, Y)}

Rx

=0.

AP"Y is a one-form on B with values in L, . By Theorem 4.2, we know
that Tr [Px “(Y, Y)] is invariant under translatlons by elements of L, . Also,

it is clear that since 4P"Y is a one-form taking values in the set of dlvergence
free vector fields on M, then
(4.48)
Vpvy TP H (Y, )]
1 !
—/ ds/ Tr (PX (Y, Y)Y vy, BAPENY, Yy EaY )
0 My 2n)"

Therefore both sides of (4.48) vanish identically. Using this fact together with
(4.40), (4.41), and (4.47), we get

(4.49) d Tr,[exp(-&)] = 0

We now replace the manifold B by the manifold B x R' The vector bundles
L, M, and N lift trivially to B x R . The superconnectlon %, is replaced
by .@ given by

7]
!
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Clearly,
12 2 7]
(4.51) (Z,)" =B, +du 5;,%’,4 .

Although B x R: is not a complex manifold, we can easily reproduce what has
been done in (4.38)-(4.49) for the manifold B. In particular, the form w, on
B x R, given by

(4.52) w, =Tr, [exp <—%u2 - d”%‘@u)]

is closed. w, can be written in the form

(4.53) w, = Tt [exp(-B,)] + dua,, .

Since w, is closed, we deduce from (4.53) that

0 2
(4.54) M Tr,[exp(-%,)] = da,,.
From (4.54), we find that the cohomology class of the forms Tr:[exp(—ﬁuz)]
does not depend on u > 0. The form «, can be calculated using Duhamel’s

formula. We get
(4.55

)
1 X4 dv, (Y') dv,(Y)
_ X, u ! u pXsl,y! M N
%= /0 ds/MR,xzvRX R [PS YY) bV | o
Equivalently,
(4.56) 1
_1 X, U ! . ok X, U !
—_— ’ V- ) - Nt (Y , Y
Yu 2ﬁ/() ds/MRxxNRx Tr [P0 (Y, Y) 1(lPNy Epy )Py ( 1l

dv,,(Y') dvy(Y)
Qny™ @n)
We now prove (4.36). By proceeding as in (4.40), we find that

d Tr [exp(-~B, + bN,,)]

&)

1
Ju,b 0 2 Ju,b
(4.57) =‘/0 ds/M LA ¥, YOV, B1Po Y, v
RX RX

dv,, (Y") dvy(Y)
@m)™  2n)"

We rewrite (4.41) in the form
c(PYRMY)

0.f 2, _ N_ N o rRT)
Y ,%’M]—[VAY DY — Vv (P'Y) + ==

, B’ —bN
(4.58) u H

—bJulv(P"Y), N,].
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By using the same arguments as in (4.41)-(4.49), we then deduce from (4.57)
and (4.58) that

(4.59)
d Tr,[exp(—-F. + bN,))]

/ds/ Tr [P (Y, Y)bvalv (PN Y'), NP0 (Y, 1))
My ><N

de(Y ) dvy(Y)
2m)™  (2n)"

Clearly,

(4.60) [V(PYY'), Nyl = V=T(ipn, +ipn,).
Using (4.59) and (4.60), we get

(4.61)

0
a'%{Trs[exp(—gﬁu2 +bN )1} 0

1
= / ds / Tr [P (Y, Y)W =u(ipn, + ipn, )P (Y, Y)]
0 M, XNRX

d'uM(Y') dvy(Y)
@m™  (2n)* -

By using the same arguments as in [BGS1, Theorem 1.9] (which we already
used at the beginning of our proof), we can decompose (4.61) by complex type.
We get
(4.62)

8565{Tr [exp(—(gé”2 +bN )1} 0

X.u dv, (Y') dvy(Y)
_\/‘/ a’s/M . Tr,[P (Y, Y \/_z,,N,P (Y', v (27:)’" (21‘;),, ,

aﬁ{Tr [exp(—gg +bN )1} o

—\/‘/ ds/ Tr [P (Y, YW Tipn, PN, y) Lult) 4oy ()
My XNy,

2m)"  (2n)"

From (4.56) and (4.62), we get

1 ~ 9
(4.63) a,=5-(0 - 8)%{Trs[exp(—$u2 +bN ) oo -

u

From (4.54) and (4.63), we deduce (4.36).
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We now prove (4.37). By proceeding as in (4.38), we get
(4.64)

9
8bTr [exp(— .% +bN)l,o

dv,,(Y') dvy(Y)
@em™  (2n)

/ ds/ Tr [P “(Y, YN, P2UY, V)25
M ><N

IerMRx,setY Y+ YN with Y'* € Ly xandY € Np . Using
equation (4.21) and the fact that supertraces vamsh on supercommutators we
find that if YeN , and Y’ € My . » then

Tr [P (Y, Y')N, P “(Y Y)]

(4.65) X, U 1L IN
=Tr[N, PO Y'Y Yy - Y P Y - Y, YY)
From (4.64) and (4.65), we get
(4.66)
d
25¢Tr, [exp(—~B. + bN,)1} 5o
dv,, (Y') dvy(Y)

ds/ Tr,[N, PV (Y, Y)P2LY', Y
Also since PS (Y, Y) is a semigroup, we know that for 0 < s < 1 and
YeN, ,

4.67)  POUY,Y) / a’s/ POMY, Y)PRNY, Y)dz’zﬂ;()ml).

(4.37) follows from (4.66) and (4.67). o

Remark 4.7. In Theorem 4.6, we can replace N, by N, +cI (c € C). This

can be directly seen in formula (4.36), since the forms Trs[exp(—‘@u2 )] are
closed. Also observe that identity (4.37) is trivial for usual (i.e., nongeneralized)
supertraces. Finally note that (4.54) and (4.56) also make sense when B is a
C* noncomplex manifold. In the sequel, we will not keep track of the form
o, . As will be clear from Theorem 8.5, integration of equation (4.54) in the
variable u produces only standard Chern-Simons characteristic classes on B.
In this respect equation (4.36) is much more interesting.

(f) The asymptotics of the generalized supertrace as u — 0. Let w,(b) be a
family of smooth forms on B which depend smoothly on b € C. We will write
that as u — 0, w,(b) = w,(b) + O(u) if for any k € N, the sup of the norm
of the derivatives of order < k of w,(b)—w,(b) on Bx{beC;|b| <1} can
be dominated by C,u for u <1.

Recall that the Todd polynomial Td is an ad-invariant power series defined
on (p, p) complex matrices such that if C has diagonal entries x,, ... » Xy
then

(4.68) Td(C):ﬁ1 _
11-




202 JEAN-MICHEL BISMUT

Let (Td™')'(C) be the ad-invariant power series defined by

_ o _
(4.69) (Td™')(C) = 551Td ‘(c+bD),_,.
If C has diagonal entries X, , ..., X, then
St B [ l—e D
(4.70) (Td™)(C) = 55 [III X,-T]b:o'

The power series (Td_])' was introduced in [BS, Definition 4.2].

We study here the asymptotics of the form Tr:[exp(—k%’u2 +bN,)] as u—0.
Note that the result which follows will be reobtained in Remark 7.4. Let I, be
the identity on N.

Theorem 4.8. Forany beC, as u—0

Td(-RY)
4.71 T ~F*+bN,)] = +0u).
(4.71) 1 [exp(—%, )] Ta-RY b1, (u)
In particular, as u — 0
M
Tr,[exp(—B.)] = Td=R) , o),

(4.72) ~ Td(-RY)
0 2 M N N
%{Trx[exp(—%u +bN )} yo=—Td(-=R")(Td ) (-R")+ O(u).

Proof. Clearly, by (4.32), we have

x,u,b
(4.73) Trs[exp(—‘%’u2 +bN,,)] =/ Tr [P (Y/Vu, Y u)] dv

NRX (znu)n N(Y)'

Recall that 7 is the projection N — B. From (2.2), we easily deduce that
TYN = 2" TB as smooth vector bundles on N . From (2.1), we then find that

(4.74) A(TxN) = A(TxB)®A(Ny).
The grading of A(Ny) defines a partial gradingon A(TxN). If w € A(TyN),

we denote by o™ the component of @ which has top partial degree dim N R=
2n . Of course if w is a smooth section of A(T;N ) with compact support, then

(4.75) /w:/ ™.
NR NR

The key step in our proof of Theorem 4.8 is as follows.

Theorem 4.9. For any Y € N,
(4.76)

. 1 x,u,b Y Y
i g T 77 (G 77) ] don)

= Td(-R") (%)n Tr, [exp < - (v” + \/__l@(:g))z - bN,,)] -
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There exist ¢, C >0, such that for 0<u <1, [b|<1 and Y € N,

(4.77) <771t—u)n Tr, [plx,u,b <\/% %)]

Proof. We use the notation of the proof of Theorem 4.1. Set Q = Q(IO,O) . Let

< cexp(—C|Y]).

Y, be a process whose probability law is Q. By [Sil, p. 41], the law of the

process Y, =Y/\/u+Y, is exactly Q(ly/ﬁ,y/ﬁ) .
Let V, be the solution of the differential equation

av _ _v-1 _1 _R
a7 dr " [fs \/_f ¢(JAP'Y) Tr[R] R +bN,,

Vo=Inn; ®R<c.

By (4.11), we know that
(4.79)

)l (3 )
=EQ[CXP{;/ (R"Y, ) ——/ Y+ VuP"y | dz}(Tzrn[;]]

Now remember that by §1(b), A(N") is a ¢( N) Clifford module. More
precisely, let (det N )1/ 2 bea locally defined holomorphic square root of the
line bundle det N. Then if

F=AN")® (detN)™'"?
by [H, Theorem 2.2], F is the Hermitian vector bundle of N, spinors. Also if

F =A""(N)®detN)"*, F =A""N")®(detN) '

+
then F = F, ® F_ and F,_ and F_ are the vector bundles of positive and
negative N, spinors. Let e ,..., e, be an orthonormal oriented base of
Np. By [AB, p. 484], c(e))---c(e,,) .is the only monomial in ¢(Ng) whose
supertrace evaluated on F = F,_ @ F_ is nonzero, and moreover

b

(4.80) Tr,[c(e,) -~ cley,)] = (—2i)".
Recall formula (3.35) for S:
_VIY
§="5- 2 cle)

Note that in equation (4.78) for V', —/uS is the only term where Clifford
variables of the type c(e;) appear (it is very important here to distinguish c(e;)
from ¢(e;)); all other terms act on A(N”). Besides, in —/usS, the Chfford
variables c(e;) have exactly the weight /u.

Let dy',...,dy"™" be the base of Ny which is dual to e, ..., e,,. If
n € A(Ng), we define 5, € C by

max

edy' A+ Ady™ =1
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By using Duhamel’s formula, we can then expand V| into powers of Vu. By
(4.80), and by proceeding as in [B1, Theorem 4.12], we find easily thatas ¥ — 0
(4.81)

1

u 0

X exp (-% Tr[RY ]) .

The same argument shows that there exist ¢, C > 0 such that for O < u <1

1,
gcexp{C/ [PLYt|dt}
0

(we can in fact replace (4.82) by a sharper inequality since AP"Y contains
Grassmann variables in A(TzB)).

The bounds (4.17), (4.18), and (4.82) show that we can now use dominated
convergence in the expectation in the right-hand side of (4.79). We find from
(4.79) and (4.81) that
(4.83)

. 1 x,u,b Y Y
i g ™ 2 (7 )] A
1 o o
- £®lfexn s [(R*F . af) - iR ||

—2i n AN /W \/-_—1 2n i IYIZ max
X (—Z_n—) Tr, [exp(—R - ——i——zl:dy ¢Je;) — - +bNH>] .

Let A be the complex Hirzebruch polynomial. Namely, A is the ad-invariant
polynomial which is such that if the (n, n) matrix C has diagonal elements
X ,..., X,, then

(4.82)

~ " x)2
(4.84) A(€) = III ﬁ(‘f'c’/z-)

Then by a formula of P. Lévy [Le; B8, Theorem 3.17], we know that
1 o o ~
EQ[exp {%/ (R"Y, dY)}] — ARM).
0
Therefore,

(4.85) E° [exp {%(RMf’, dy) - %Tr[RM]}] — Td(-RY).

Also it is clear that
(4.86)

_21 n AN* N l- | | max
(—27) Trs [exp( Zd Je)—T bNH

N\ n 2n A 2 max
= AN N Z ic(Je) Y]
= (-2—7[> TI'S [CXp(—R d —_2—+bNH):| .
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. N\2 _ N
On the other hand, since (V" )" = R, we have

(4.87) (v”+\/—_1@(\‘;;)> R T \cf Y) ”;'

Now it is clear that
(4.88) Zd y c (Je;)

From (4.83)-(4.88), we get (4.76).
We now prove (4.77). Using (4.79) and (4.82), we obtain

(4.89) .
(ama) [ 7 (> )]
SEQ[ exp{%—/ol( RMy dlof)}
X exp { - —;—/01 |Y+\/EPN)°ft|2 dt} exp{C/Ol |PLYl|dt}] .

By Hoélder’s inequality, (4.17), and (4.18), we find that
1 " x,u,b Y Y
(z=) | |7 (2 )
1 ° 1/3
< C[EQ(exp{ - %/ Y + \/aPNY,fdt})] (1+17]%).
0
Using (4.19), we get

1
EQ[exp{ - %/ ¥+ \/EPNY,"EdtH
0

(4.90)

(4.91) = EQrvavvm [exp{ - %u/ol |P”Y,|2dz}]
_(_Bw"” " ~(3uw)'?  (cosh((3w)'*) - 1) .2
- <sinh((3u)1/2)> . {sinh((3u)1/2) u o }

From (4.90) and (4.91), it is now clear that (4.77) holds. O

Proof of Theorem 4.8 (continued). By using formula (4.23) in [B5], derived
from Mathai-Quillen [MQ, Theorem 4.5], we know that
(4.92)

2

-i\" N V-1¢(JY) -1 N
(E) /NTrS [exp <- (v + _—\/i—) +bNH>] =Td ' (-R" - b1,).
Using Theorem 4.9 and (4.92), we get

Td(—R™)

4. IimT — B 4+bN,))] = —— L.
(4.93) 3%1 r.[exp(—Z, + bNy)] Td(—RN—bIN)
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The proof that the sup of the norm of the derivatives of order < k of the
form

Td(-RY)
Td(-R" - bI,)

can be dominated by Cu as u — 0 requires more work which can be easily
done. In particular, instead of (4.83), we now must obtain an asymptotic ex-
pansion of the left-hand side of (4.83), by using essentially the same techniques
as before. This is left to the reader. So (4.71) is proved. By differentiating
with respect to b at b = 0 (this is possible by using, say, analyticity in the
variable b), we obtain the second line in (4.72). The proof of Theorem 4.8 is
complete. 0O

(4.94) Tr,[exp(~<B, +bN,;)] -

Remark 4.10. Although the cancellations which appear in the proof of Theorem
4.9 are closely related to similar cancellations which appear in the proof of the
local index theorem [BeV, B8, Ge], the situation considered here is essentially
different from [BeV, B8, Ge]. In particular, the fact that the total space of N
scales adequately plays an essential role in the proof of (4.71).

Remark 4.11. Let @ be the linear map from A™ (TR B) into itself which
sends o € A¥ (TgB) into (27i)"’a. It is tempting to consider the forms
<I>(Trs[exp(—35’2)]) as generalized Chern character forms ch(DM +Vu V(PN Y))

u
of the family DM+ Vu V(PN Y). In fact they are obtained as generalized super-
traces on an adequate von Neumann algebra. The construction of these forms
generalizes the constructions of [B1].
If N ={0}, then &, does not depend on u. From (4.60), we find that if
N = {0}, then

2 -R"
(4.95) @(Tr,[exp(-B,)]) = Td <7) .
Equivalently, if N = {0}, ®(Tr,[exp(—%.)]) = ch(D"), and so
_RE
(4.96) ch(D") = Td( = )

If ¢ is a holomorphic vector bundle on B, the Atiyah-Singer-Riemann-Roch-
Hirzebruch formula for the Euler characteristic (&) of & can then be written
in the form

(4.97) (&) = /B ch(D"?) ch(?).

Of course the computations in the proof of Theorem 4.9 are intimately re-
lated with the final stage of the probabilistic proof of the Atiyah-Singer Index
Theorem in [B1, B8]. For essentially the same reasons, the Getzler operator
(3.19) (with M = TB) also appears at the final stage of the proof of the Index
Theorem in Getzler [Ge].

Formulas (4.95)-(4.97) may be the starting point of a Chern-Weil theory in
K-homology.
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(g8) A modified version of the superconnection % . Here we introduce a new
superconnection #, , which is essentially equivalent to the superconnection %, ,
and whose curvature E;’f is also very simple. Although % will not reappear in
the sequel, some readers may find it more pleasant to use in the constructions
which will follow. (The operator ij plays an important role in another proof
of Theorem 7.7 given in [BL2, §14].)

If Y € My, we define c(APLY) as in (4.23). Let ¢/,...,¢,, be an or-
thonormal base of M.

Theorem 4.12. Let % be the superconnection

L L
(4.98) &, = exp (c(AsjY)>L%?u exp ( - C(Asz)> .
Then
2m L 2
AP"e.
zl= - % (ve + %((RM —PEAPPYY o) - c—(-\/_—e))
(4.99) A 2
Ny 2 —
+ uIPTYl+\/ﬁS+%Tr[RM]+RN.
Proof. It is clear that Z is a superconnection. Moreover,
APFY)\ (AP'Y)
4.100 &’ = < ( )@ (—c )
(4.100) . =exp(c—p " exp 7

Now by proceeding as in (4.24)-(4.27), we find that

(4.101)  exp (c(APLY)) <S + EE(JAPLY)> exp <—c(APLY)> =S.

Also
(C4P"Y), 7,1 = ~claP"e).
(4.102) [c(AP"Y), [c(4P"Y), V, 1 = ~[c(4P"Y), c(4P"¢)]

= —2(4’P'y, Pte),
[c(AP"Y), [c(AP"Y), [c(AP"Y), v,11=0.

From (4.102), we get

exp <c(A5L§Y)>Vei exp <—c(A\1;L_Y)>
=V - C(APLe,.) , PLei

1
€ V2 2
Using (4.101)—(4.103) and formula (3.36) for @uz , we obtain (4.99). O

(4.103) 2
(4°P'Y

).
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5. AN EXTENSION OF A FORMULA OF MATHAI-QUILLEN:
THE TIME-DEPENDENT CASE

In [MQ)], Mathai and Quillen used superconnections to construct Gaussian
shaped Thom forms on finite-dimensional Euclidean vector bundles. As will be
clear in §9, part of our work is related to the constructions of equivariant Thom
forms on certain infinite-dimensional equivariant vector bundles.

In particular, in our computation of §7 of the forms Trs[exp(—s‘@u2 +bNy,)],
we need a time-dependent version of a formula of Mathai-Quillen [MQ, (2.13)]
for the supertrace of exp(a+f), where « is of length two in the Clifford algebra
¢(E) of an even-dimensional Euclidean vector space E, and g € A'(F*)&c'(E)
(where F is a finite-dimensional vector space). Here we extend their formula
to the case where f is time dependent, and where exp(a + f#) is replaced by a
path-ordered exponential.

This section is self-contained.

In fact, let E be a real oriented Euclidean vector space of even dimension
2p. Lete,..., € be an orthonormal oriented base of E. Let ¢(E) be the
Clifford algebra of E. Then c(E) is naturally Z graded. If X € E, we note
by ¢(X) the corresponding element in c(E). Set

t=1"c(e)) - c(ey,).

Then 7> = 1. Let S be the Hermitian vector space of E spinors. Then c(E)
acts on S. Set

S, =(s€S; s =+s).

Then S =S ®S_ and S, and S_ are the vector spaces of positive and
negative spinors.

Let & be the Lie algebra of real antisymmetric endomorphisms of E. If
BeZ ®,C,let ¢(B) € c’(E) be given by

(5.1) ¢(B)=)_ 4(Be;, e)c(e,)c(e)).

Then Be & ®,C — c(B) € e (E) is a Lie algebra homomorphism [ABS].
End(S) isa Z,-graded algebra, with the even (resp. odd) elements of End(S)
commuting (resp. anticommuting) with 7. Also

odd odd

End(S) = ¢(E), End”(S) = ¢™(E), End®“(S) = ¢**(E).

Let F be a finite-dimensional real vector space. The algebra A(F”) is nat-
urally Z, graded. Our computations will now be done in the algebra

A(F)®EndS = A(F")&c(E).

EndS is naturally equipped with a supertrace Tr, = Tr[z-]. As in Quillen
[Q1], we extend Tr, into a linear map from A(F*)®EndS into A(F"), with
the convention that if w € A(F*) and 4 € End.S, then

Tr[wA] = o Tr[A4].
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Let 6:t€[0,1] — 6, € A'(F*) ® E be a smooth map. Then if oo,
4™ is a base of F*, we can write 6, in the form

dim F
(5.2) 0,=Y f6,,
1
with 67 € E and 1 <o < dimF. Set
dim F
*\ A ven
(5.3) c(8,) ==Y fc6, ) € (A(F)B(E)™".
1

Note that our sign conventions in (5.3) are the same as in (3.34).
Now take B € & . Consider the differential equation

dG
(5.4) a1 = G(c(B) +¢(6,)), G0)=1;.
n (5.4), G, lies in (A(F")®c(E))™".
We will now give a formula for Tr[G,]. In the case where 6, is constant,
i.e., does not depend on ¢, such a formula was already given in Mathai-Quillen
[MQ, (2.13)]. In fact if 6, = 6, then

(5.5)  Tr,lexp(c(B) + c(6))] = Tr,[exp(c(B))lexp{(B '8, 6)} .
To make sense of Mathai-Quillen’s formula (5.5), we first assume that B is
invertible. Then (B~'6, 6) € A*(F*). If B has diagonal blocks

5 o] wsiz»

(here B is calculated on an oriented orthonormal base), then by [B8, Proposi-
tion 1.2]

(5.6) TI'S[CXp ¢(B)] = fI(e—iﬂ,/Z _ eiﬂ,/Z) )
1

By expanding exp{(B_1 6, 6)} as a finite power series in A(F"), one readily
verifies that the right-hand side of (5.5) extends by continuity to the case where
B is noninvertible.

We now extend Mathai-Quillen’s formula to the case of a general time-
dependent 6, .

In the sequel, we will construct an inverse—when it exists—of the differential
operator % + B on [0, 1] with periodic boundary conditions. If t € R/Z —
f, € E is a smooth periodic function, we consider the differential equation
(5.7) L iBg=f, 80)=s0).

One readily verifies that if ¢® has no eigenvalue equal to 1, then the unique
solution g, of (5.7) is given by the formula

—tB ! sB B -1 ! sB
. = - ds .
(5.8) g =e {/Oe fids+ (e - 1) /Oe A s}
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We can also use Fourier series to calculate g, . In fact if f, has the Fourier
series expansion

(5.9) f,=Y_ f,exp(2nint),
and if e® has no eigenvalue equal to 1, then g, is given by
(5.10) g, = (2minI, +B)” £,
We now replace f, by 6,, so that
(5.11) 0,=3 6,e"".
Here for ne€ 7, 0, e AI(F*) ® E . Then if ¢® has no eigenvalue equal to 1,
d - -1, 2mint
(5.12) (dt - B) 6,=> (2minl, +B)” 6,e
and so
-1
(5.13) < (% + B) 0, e> =Y (@ninl, +B)"'0,,6_,) € A" (F").
nez
The series in (5.13) is clearly convergent.
Therefore,
d - -1
(5.14)  exp {< (dt +B> 6, e>} =[] exp((2ninI, +B)"'6,,6_,).

nez
Now when expanding each individual exponential

exp((2ninl, +B)™'6,,6_)

in A"*"(F"), it is clear that for any n € N, the expansion stops after at most
dim(F) terms. Also observe that

(5.15) sin (g) =g+w (1—%).

From (5.6) and (5.15), we find that
2

(5.16) Tr,[exp(c(B pﬁ (ﬂ ﬁ( ak*n 2))

j=1 k=1

Using (5.8), (5.10), and (5.16), it is now clear that the expression

(5.17) Tr,[exp(c(B))] exp {< (% + B>_1 6, 0>} ,

which is well defined when exp(B) has no eigenvalue equal to 1, can be extended
by continuity to arbitrary B.
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Theorem 5.1. Let G, € (A(F")®c(E))™™" be given by the differential equation
(5.4). Then

-1

(5.18) Tr,[G,] = Tr [exp(c(B))] exp {< (% + B) g, 0>} .

Proof. We first assume that ¢? has no eigenvalue equal to 1. Let R, be the
unique solution of the differential equation

(5.19) ‘fi—’f+BR=—e, R(0) = R(1).

Clearly by (5.8), R, € A'(F*)® E. Set
(5.20) C,= —(BR,, R) € N'(F").

Let H, and V, be the solutions of the differential equations

%g =H (—C (i—f)) ,  Hy=exp(—c(Ry));

& ved+c),  T=I.

Notice the obvious formula for V;:

(5.21)

(5.22) V, = exp (tc(B) + /ot C, a’s) .

Now c(dR/dt) € A (F*)&c'(E). Alsoif a, B € A'(F*)&c'(E), then [a, Bl €
A*(F*). Therefore, as explained in [B1, Theorem 1.3], A" (FH)®c(E)) ®
A*(F*) is a Heisenberg algebra, whose center contains A*(F*). A trivial ap-

plication of Campbell-HausdorfP’s formula as in [B1, equation (4.31)] shows
that

(5.23) H = exp {—c(R,) + %/0' [C(R), ¢ <‘2_f)] ds} _
Clearly,
soe v =va{Hew) O - ()}

VoH, = exp(—c(R,)).
Now since 3 [3[c(R,), c(dR/ds)]ds € A*(F*) and C € A*(F*), we have

(5.25) Ht_l(c(B) + C)H, = exp(c(R,))c(B) exp(—c(R))) + C.
Note that c(R,) € A'(F*)®c'(E). Also if X € E
(5.26) [c(R,), c(X)] = 2(R,, X).

Since 2(R,, X) € A'(F*), then
(5.27) [c(R,), [c(R,), c(X)]1 =0.
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From (5.26) and (5.27) we deduce that

(5.28) exp(c(R,))c(X) exp(—c(R,)) = ¢(X) + 2(R,, X).
From (5.28), we get
(5.29) exp(c(R,))c(B) exp(—c(R,)) = ¢(B) — c¢(BR,) + (BR,, R)) .
Using (5.25) and (5.29), we deduce that
(5.30) H '(c(B)+ C)H, = ¢(B) — ¢(BR,).
From (5.24) and (5.30), we get
(5.31) d_(l‘;t?Ht_):Vth (C(B)_c<%+BR)>’

VoH, = exp(—c(R,))-
Using (5.19) and (5.31), we find that

d(VH) _
(532) T - Vth(C(B) + C(e)) s
VoH, = exp(—c(R;)) -
By comparing with (5.4), we obtain
(5.33) G, = exp(c(R,))V,H,

e
Using (5.22), (5.23), and (5.33) we get

G, = exp(c(R,)) exp (C(B) +/01 C, ds)

X exp <—c(R0)+%/O1 [C(R), c<cz—§)] ds).

(5.35) [c(R), c <‘2—f)] =2 <R, ‘;—f> = -2C - 2(R, 6) € A (F").

Using (5.34) and (5.35), we get

(5.34)

Now

1
(5.36) G, = exp(c(R,)) exp(c(B)) exp(—c(R,)) exp ( —/0 (R, 0) dt) .

Since, by [Q1], supertraces vanish on supercommutators, from (5.36) we get

1
(5.37) Tr [G,] = Tr [exp(c(B))]exp ( —/(; (R, 6) dt) .

Of course

(5.38) —/()I(R,H)dt=<<gz+B)_10,0>.

(5.18) follows from (5.37) and (5.38).
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If certain eigenvalues of ¢® are equal to 1, we can approximate B by ele-

ments B in & such that ¢ has no eigenvalue equal to 1. The constructions
which were done before Theorem 5.1 show that we can take the obvious limit
in formula (5.18) as B’ tends to B. Our theorem is proved. O

Remark 5.2. Theorem 5.1 can also be viewed formally as the consequence of a
completion of squares in a fermionic integral.

6. A ONE-PARAMETER DEFORMATION OF THE A HIRZEBRUCH POLYNOMIAL

In this section, we prove various properties of the function ¢(u, x) which
was described in the Introduction. In particular, we show that

e ¢(0, x) is exactly the inverse of the Hirzebruch polynomial /f(x) .

e ¢(u, x) can be simply expressed as an infinite product, or more pre-
cisely as the determinant of a differential operator on S, .

e o(u, x) appears naturally in the explicit computations of certain su-
pertraces on Clifford algebras, and also in the evaluation of the trace of
a harmonic oscillator.

As explained in the Introduction, the function ¢(u, x) plays a key role in
the formulation of our final result.

This section is organized as follows. In (a), we introduce the function
¢(u, x). In (b), we construct the corresponding multiplicative genus. In (c),
we show that ¢(u, x) appears explicitly in the evaluation of certain finite-
dimensional supertraces. In (d), we obtain a similar result for the trace of a
harmonic oscillator with magnetic field. In Remark 6.7 we give a group theoretic
interpretation of the fact that two different computations give similar results.
This uses our results of §1, and also our approach [B11] to the infinitesimal
Lefchetz formulas.

Except for notation from §1, this section is self-contained.

(a) The function ¢(u, x). If z € C, /z denotes an arbitrary (but fixed) square
root of z. In the sequel, the expressions which we consider do not depend on
the choice of the square root.

Definition 6.1. For ¥ > 0 and x € C, set

2 _ 2
60 ol ) = Ssinn (TR o (VL)

x € C — ¢(u, x) is an even analytic function of x, which we can also write
in the form

1 Vx? I %)
o(u, x) = ;(e("+ XAHE_ pxm VAN,
(6.2) % (e(—x+\/x2+4u)/4 _ e(x—\/x2+4u)/4) ’

ou,x)= %(cosh (#) — cosh (%) )
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Using (6.2), one verifies easily that ¢(u, x) extends by continuity to u =0,
and that

_ sinh(x/2)

The reader will have recognized in the right-hand side of (6.3) the inverse of
the Hirzebruch polynomial A(x). In fact ¢(u, x) is a one-parameter defor-
mation of A_l(x).

Theorem 6.2. For u >0 and x € C, the following identity holds:
+o0o .
u ix u
(6.4) o(u, x) _L[l (1 + 50— 2kn 4k2n2> (1 ~ 5t ——4k2n2) :
Proof. We use the formula

+

(6.5) sinh(y) =y <1 + %) (1 - %) .

k

8

Il
—_

From (6.1) and (6.5), we get

5),
"’(“”‘)=ﬁ< <++4))(1+(x—_{‘;§+4))
y (1 _,~<x_ﬂ>)<1 4(55)6@))

4kn 4kn
- ix 2+x2+4u ((1_ ix>2+x2+4u
4kn 16k*n? dkn 16k*n?

1 + i + _u_ 1 — i + L
bl 2kn - 4k*n? 2kn - ak*n?)’

Our theorem is proved. O

=8 g

(b) The multiplicative genus ¥(u, -). Let E be a real Euclidean vector space
of even dimension 2p. Let & be the algebra of real antisymmetric matrices
in End(E). Let H, be the Hilbert space

(6.7) HE={feL2([O,1];E);/1fdt=0}.
0

We identify [0, 1[ with S| = R/Z. In particular, the operator J = < acts
naturally on distributions on [0, 1[, so that for instance

Jt=1-0,.

Then A
HE _ EB {eankt}

kez*
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is the spectral decomposition of the Hilbert space H,. with respect to the skew-
adjoint operator J . The inverse J ~! of J is a Hilbert-Schmidt operator acting
on H.

Take C € ¥ @, C. Then C acts naturally on H; as f € H, —» Cf €
H . For u > 0, the operator CJ !4 4J7? is a Hilbert-Schmidt operator in
End(Hp), which in general is not trace class. Since C € ¥ ®, C, Tr[C] =

Therefore, we can define a generalized trace of CJ 1y on H - by the
formula

(6.8) TCT v us = - Y AmE
ren 4k“n
The operator [ H, ~ cJ™ ' —uJ™? does not possess a determinant in the

sense of [Si2], since CJ ~! 4 uJ? is not trace class. Still it has a normalized
determinant. Namely, set

- C ul
(6.9)  det(, —CJ ' —us )= [T det ( i 2) :
kez”

The infinite product in the right-hand side of (6.9) converges, because as |k| —
+00

C ul C 1
(6.10) det(IE—m+an2> 1- Tr[zk ]+0(k2),

and also Tr[C] =
Since CJ~'+uJ™? is Hilbert-Schmidt, the operator I, — CJ ™' —uJ ™
has a well-defined regularized determinant det,(/ — CJ T _uJ _2) [Si2]. One

easily verifies that although CJ ~! 4 wJ™? is not trace class, one still has the
relation of [Si2, Theorem 6.2]

(6.11)
det,(I,, —CJ™ —uJ ") =det(l, —CJ ' - uJ ) exp{Tr[CJ ™" +uJ *]}.
Note that since C is antisymmetric, for k € Z*
C uly C uly,

(612) det (IE—‘zl—k’;'Fanz) det( 2k7[+m> .
Therefore det(/ "~ cJ ' —uJ _2) has a natural square root

1/2 el C ul
(6.13)  det’*(1, ~CJ uJ "’ k]é'g det ( e 3 k2n2> .

If B is a self-adjoint operator in End E , let v/B denote a square root of B
in the Banach algebra generated by B . In particular, if F C E is an eigenspace
for B, it is also an eigenspace for VB .

If Ce&,then c?+ 4ul . is self-adjoint for u > 0.
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Definition 6.3. For ¥ >0 and C € Z, set

(6.14) W(u, C) = —— det (25inh<c+ VCZ”LME)).

L @mE)/2 4

One verifies that ¥(u, C) does not depend on the square root /C 24 4ul -

If C has eigenvalues +x,, ..., +x, one deduces from (6.1) that
p
(6.15) Y(u, C) =[] e, x,).
1
If C haseigenvalues £x,, ..., +x > the Hirzebruch polynomial AA(C) is given
by
Hox,/2

1O=llwGm

1

Using (6.3), we find in particular that ¥(u, C) can be extended by continuity
at u =0 and that

(6.16) ¥(0,C)=A4""(0).
Also from Theorem 6.2 and from (6.13) and (6.14), we find that
(6.17) Y(u, C) = detl/z(IHE —cy .

Note that ¥(u, C) is an analytic function of C and so is also well defined
for CeZ@,C.

(c) A computation of certain finite-dimensional supertraces. We now use the same
notation as in §1.

Let C be a skew-adjoint element of End(?"). In the sequel, Tr[C] denotes
the trace of C € End(V). C acts as a derivation of A(V"). More precisely if

€y, ... €, isan orthonormal base of V,, C actson A(V") as C given by
(6.18) C = L(Ce;, e))é(e,)e(e;) — L TH[C].

We identify C with the corresponding real antisymmetric element in End( Ve)
(whose real trace is of course zero). Recall that the operator S was defined in
Definition 1.3.

The algebra A(VI;“ ) is naturally Z, graded. Let Tr, denote the corresponding
supertrace on End(A(Vy)).

Theorem 6.4. For any u > 0, the following identity holds:

(6.19) Tr,[exp(—vuS — C)] = u™™ ' ¥(u, C) exp{L Tr[C]} .
Proof. We may and we will assume that the matrix of C with respect to the
base e, ..., e,, has diagonal blocks given by

0 ix, .
i o] asizw.
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Set

(6.20) &(C) = §(Ce;, e)e(e,)é(e;) .
By (6.18) and (6.20), we find that

(6.21) Tr,[exp(—v/uS — C)] = exp{} Tr[C]} Tr,[exp(—v/4S — &(C))].

Consider the vector space V@ V5, which we equip with the metric which is
the orthogonal sum of the given metrics on both copies of V. Let ¢(V, @ V3)
be the Clifford algebra of V, ® V; and let B be a real antisymmetric matrix in

End(V,@ V). If f,, ..., f,, is an orthonormal base of V, &V}, set
(6.22) ¢(B) = 3(Bf;, f;)e(f)ES)) -
We now assume that B € End(V, @ V) ®, C is given in matrix form by
_ 0 —iyuJ
(6.23) B = _iyil  -C

Let Tr [exp(¢(B))] denote the supertrace of exp(¢(B)) acting on the spinors of
Vr @ Vg . We claim that

(6.24) Tr,[exp(—v/uS — &(C))] = (=1)™™" Tr,[exp(¢(B))].
Let 7 and 7' be the operators defining the Z, gradingon A(N") and A(N").

One verifies easily that

t=i"""¢c(e,) - cle,,),
v = (=)™ e(e,) - ¢(ey,).
Using (6.22) and (6.23) and the fact that 7 and 7' are the only monomials (up

to a multiplicative constant) with a nonzero supertrace when acting on A(N")
and A(N™) [AB, p. 484], we deduce (6.24). .
We now calculate Tr [exp(¢(B))] using formula (5.6). If A is an eigenvalue

of B and if (X, X') is a corresponding nonzero eigenvector, then
—iVuJX' =X,
—iVuIX - CX' =2X'.

Using (6.26) and the fact that J? = -1, we find that for u # 0, A is nonzero,
X' is nonzero, and moreover

(6.27) (C—u/i+2)X =0.
Conversely, if (6.27) holds with A, X' # 0, then (—iy/uJX'/A, X') is a nonzero

eigenvector of B associated with the eigenvalue 4. By (6.27), we find that X’
is an eigenvector of C associated with an eigenvalue x such that

(6.25)

(6.26)

(6.28) AP +ix—u=0.
Therefore,
(6.29) A= —x £ Vxl+4u

2
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For u # 0, the roots of (6.28) are nonzero. Since the matrix B is not real, we
cannot use formula (5.6). However, we can analytically continue B to u < 0.
B is then real, and we may safely use formula (5.6). Using (6.29), we find easily

that if x,, ..., x, are the eigenvalues of C acting on V', then for u # 0
X +\/x + 4u X —\/x2+4u
(6.30) Tr [exp(¢(B))] = H4smh (k—k—> sinh <%) .

From (6.1) and (6.30), we get

(6.31) Tr,[exp(é(B))] = (-)*™" [[ o(u, x,) .

1
From (6.21), (6.24), and (6.31), we get

(6.32) Tr, [exp(—v/uS — C)] = exp {% Tr[C]} utmv H o(u, x,).
1

(6.19) now follows from (6.15) and (6.32) for u < 0, and by analytic continu-
ation for u>0. O

Remark 6.5. The complex structure on V' plays an unessential role here. As is
clear from (6.22) and (6.29), (6.30) is in fact easily extendable to any arbitrary
real Euclidean oriented even-dimensional vector space. We should only replace

S by LY c(e))é(e,) .

1

(d) A computation of the trace of certain harmonic oscillators with a magnetic
field. We use the same notation as before. Recall that C is identified with a
real antisymmetric matrix in End[V}3]. For u > 0, set

2n
(6.33) Z =43V, + HCY, &) + JulY [ + 4 TH{C].
1

If x,...,x, are the eigenvalues of C, set |C|= SUD, ;< |x;] .

Theorem 6.6. Assume that u is positive. Then if |C| < 2rm, the operator
exp(—-Z,) is trace class and moreover

exp(—3 Tr[C])

34 T, €
(634 e (21 = Zamryy o)

Proof. Clearly,
Z=—IA-1v ., + W(CP 4+ ul,)Y, Y) + L THC].
Set
(6.35) M= LA+ L(CPla+ul)Y, Y).
Then since C € End V} is antisymmetric, we find that
(6.36) (4,,Vy]1=0
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Assume that C? /4 +ulg > —n?. Let Q be an arbitrary square root of

C? /4 + ul in the Banach algebra generated by C. By Mehler’s formula [GlJ,

Theorem 1.5.10], we know that for 0 < s <1, the kernel p (Y, Y') associated
with the operator exp(—s.#,) is given by

1
ps(Y’ YI) = sdimV detl/z <L)

sinh(sQ)
1 SQ 1 SQ / /
(6.37) X exp {‘EE <tanh(sQ) Y, Y> T2 <tanh(sQ) Y.y >

+% <%Y Y’>}.

From (6.36) and (6.37), we deduce that if ¢ (Y, Y') denotes the smooth kernel
associated with the operator exp(—s.Z,) for 0 <s <1, then

(6.38) q,(Y,Y")=p, (Y, Y)exp(—Ls[Tr C)).
From (6.37) and (6.38), we find in particular that
(6.39)
_ 1 1/2 sQ
o 1) = gy oot (i)

X exp {—% <Sin;—(QsQ)(cosh(sQ) - eSC/Z)Y, Y> - %s Tr[C]} .

Since C is antisymmetric, we have the obvious
(6.40)
sQ

<m(ch(sQ) &Py, Y>
= <sE%(QTQ_) (cosh(sQ) - cosh<§>> Y, Y>

_1 sQ . sC + 2sQ . sC+2sQ >
=3 <(——sinh(sQ)) 251nh(————4 ) Y, 2s1nh(—4 ) Y).
Also one easily verifies that if |C| < 2z, the operator sinh((sC + 2sQ)/4) is

invertible for s < 1 and u > 0. From (6.39) and (6.40), we find that if
|ICl<2m,for 0<s<1

dv(Y) s |
(6.41) /VR (. Y)o Samy = exp (-3 mic)) [det(2 sinh((sC + 250)/4)]
Comparing with (6.14), we find that
dv(Y) exp(—3 Tr[C])
. Y,Y - = : .
(6.42) /VR a,(Y, )(Zn)dlmy (20" (52, sC)|

Since (g,), s €[0, 1], forms a semigroup and the g, are positive, we deduce

from (6.42) that for 0 <s < % , the operators exp(—s-Z,) are Hilbert-Schmidt.
Since exp(—Z,) = exp(—-Z,/2)exp(—-Z,/2), the operator exp(—-2,) is trace
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class. Using (6.42), we obtain

exp(—3 Tr[C])

udlm Vl\I’(u, C)I :

Now if x € V-1 R, |x| < 2z, it is clear from (6.4) that ¢(u, x) > 0.

From (6.15), we deduce that if |C| < 2xn, then ¥(u, C) is positive. (6.34)
now follows from (6.43). O

(6.43) Trlexp(—2,)] =

Remark 6.7. 1t is also possible to prove directly that
exp(—3 Tr[C])
dldeet1/2(I CJ—I _ uj—z)

(6.44) Trlexp(-Z)] =

by using infinite-dimensional Gaussian 1ntegrat10n, from which (6.34) follows
via (6.17). This point of view will be developed more in §7.

Remark 6.8. The striking similarity of formulas (6.19) and (6.34) is of course
no accident. In fact note that from (6.19) and (6.34), we get
(6.45)

1 & 1 ) A
Trs[exp{§;<ve,+§(CY,ei)) -3 —ETr[C]—\/ﬁS—CH:

Observe that the operators 9 + V=ui, +9 — \/—ui; are invariant under complex

unitary transformations. In particular, e ¢ acts naturally on the graded kernel
of this operator. In view of Proposition 1.4 and Theorem 3.10, an easy adapta-

tion of the results of [B11, Theorems 1.6 and 1.9] shows that the left-hand side

of (6.45)isa nonclassical formula for the supertrace of the action of ¢~ on

Ker(0 + v— li, + 9 — V= l ), i.e., for a Lefchetz number. Now by Theorem
1.6, we 1mmed1ately find that e € acts trivially on the one-dimensional vector
space spanned by A . This entirely explains formula (6.45). In the context of

Theorem 2.2, (6.45) is directly related to the fact that # is a parallel section
of the trivial line bundle x. Also, by Remark 1.9, we know that the L, co-

homology of the complex (1"0 , 0+ —ui,) is the same as the cohomology of

{0} . Tautologically, e © acts as the identity map on the one-dimensional co-
homology of {0}. We then find that formula (6.45) is not too surprising after
all.

7. AN EXPLICIT EVALUATION OF THE GENERALIZED SUPERTRACES

In this section, we explicitly evaluate the forms Trs[exp(—ﬂu2 + bNy)] in
terms of certain infinite determinants. Although the formulas may look compli-
cated, they are strikingly similar to formulas we obtain in §9 in finite-dimensional
equivariant intersection theory. We also rederive the asymptotic result of §4
which says that as u — 0

Tr,[exp(- &, )] = — = + O(u),
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and we prove that as u — oo

2 L 1
Tr,[exp(—-%, )] = Td(-R") + O (ﬁ) .
Both proofs make use of our explicit formula for Trs[exp(—ﬂuz)] .

This section is organized as follows. In (a), we give a path integral represen-
tation of TrS[Plx’“’b(Y, Y)]. In (b) we express Trs[exp(—ﬂu2+bNH)] in terms
of certain infinite determinants and we reobtain the asymptotics of this form as
u — 0. Finally in (c), we calculate the asymptotics of Trs[exp(—%’u2 + bNy)]
as U — +0o.

The results of this section play a crucial role in the construction of §8.

We make the same assumptions and we use the same notations as in §§3-6.

(a) A path integral formula for Trs[Plx ’“’b(Y, Y)]. Let I, € End(N) be the
identity map of N. Let 11'V € End(N, ®; C) be the linear map which acts

by multiplication by 1 on N and by —1 on N. Equivalently, if J, is the
complex structure of N, , then

(7.1) Iy =—iJ,.

If E is a real vector space, H, was defined in (6.7). If V' is a complex
vector space, we use the notation H;, instead of HVR .

Definition 7.1. For Y € N, let Q(Y,Y) be the probability law on & ([0, 1]; M)
of the Brownian bridge t € [0, 1] = Y,, with Y, =Y, =Y.

Note that under Q(Y,Y) , te[0,1] — PLY, € L, is a Brownian bridge in
Ly, with P*Y, = P'Y, =0.

In the sequel, for u >0, b€ C, and |Imb| < 27, we will consider expres-
sions which are functions of Y € #([0, 1]; My) of the type
(7.2)

W(u, R" + bI,) exp {—E

2

Note that since the map ¢ € [0, 1] — Y, is continuous, Y defines an element
of L,([0,1]; My). For u>0, b€C,and |Imb| < 2m,

(P a(* = (RY +bI,)J — uIHN)_lJAPLY, Y)} .

Pra(? — (RY +b1,)J - uIHN)“‘JAPL

is an even form on B with values in the set of the continuous operators acting
on L,([0, 1]; Ni). Therefore the expression (7.2) makes sense. Incidentally
note that, with the conventions of (5.17) and (6.17), (7.2) also makes sense for
arbitrary b € C. In the sequel, the expressions we will consider are analytic in
beC.

Also note that, when writing an identity of the kind

(7.3) A(b) = E4" [B(b)],

A(b) and B(b) will be analytic functions of b, and |Imb| < 2z . It will always
be understood that differentiation under the expectation sign is feasible, so that
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for any k € N
(7.4) A® by = EQ B ).

Theorem 7.2. Forany u>0, x€B, Ye N, ., beC, and |Imb| < 2r the

Jollowing identity holds:
(7.5)

Tr,[P (Y, V)] = u

X’

SNy, RN + bI,) exp {—% Tr[R"] + %b dim N}

1 1
xEQ‘Y'”{exp{l/ (RMY,dY)—E/ \PVY| dt
2 0 2 0
_u
2

Proof. We use the notation of the proof of Theorem 4.1. Let U, be given by
equation (4.6). Using equation (4.11), we find that

(7.6)
Tr [P (Y, Y)] = exp {—% Tr[RM]}

L 2 N ! -1 L
(P A(J* — (RY +bI)J —ul, ) JAP"Y, Y)H.

1 1
W E2r 1 I:exp {% / (RMY , dY) - g Py dt} TrS[UI]] .

0 0
We now calculate Tr [U,]. One verifies easily that
(7.7) N, =-1,.
Let B A(T;B)®End(N, @ N) be given in matrix form by

7o —ival

(7.8) B= [—iﬁJ -RY - bI;V] ‘

We now temporarily consider AP" as a one-form on B with values in homo-
morphisms from L, into the second copy of N in Ny@® N, . Using (4.6) and
Theorem 5.1, we find that

Tr,[U,] = Tr,[exp(—vuS — RY - bI})]

79) xexp{—g<<%+B>_1APLY,APLY>}.

By Theorem 6.4, we know that

Tr [exp(—vuS — RY — bIy)]
(7.10) . _
= u"™ Ny (u, RV +bI}) exp {%Tr[RN] + %dlmN} .
Let now 1 € §; — K, € N be a smooth function. We consider K, as living
in the second copy of N, in N, ® Np. Set C = RY + blzlv- To calculate
(% + B)—th , we must solve the differential equation

(7.11) ‘fj—f—i\/ﬁu/:o, ‘Z—Vt/—i\/ﬂJ(p—CV/:K
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with periodic boundary conditions. From (7.11), we find that
d’ dy dy  _dK
a Ca YT

and y should also be periodic, with periodic first derivatives. From (7.12), we
get

(7.12)

(7.13) w=J-CJ- ul, )" JK
From (7.9)-(7.13), we find that
(7.14)

dim N

Tr,[U,] = u®™ " ¥(u, R" + bI}) exp {% Tr[R"] + gdimN}

X €exp {—%(PLA(JZ —(RY +bI)J —ul, ) TAPYY, 1)}
Also
(7.15) Tr[RY] = Tr[R"] + Tr(R"].

Using (7.6), (7.14), and (7.15), we get (7.5). The fact that (7.5) can be differ-
entiated as many times as needed in the variable b is an easy consequence of
the estimates in Theorem 4.1 and is left to the reader. D

(b) Generalized supertraces and infinite determinants. Set

(7.16) & = —R™ 7' —uP" 4(J* = (R" + b1’ )J—uIHN)“APLJ“

—uPVJ?
Then one verifies easily that &€ is an even form on B taking values in Hilbert-
Schmidt operators acting on H, . In general & does not take values in trace

class operators, because the operator J ~1 is not trace class.
We now proceed as in §6. In fact & has a normalized trace. Namely for

k€ Z",let & be the restriction of & to the eigenspace My ® (¥ ™Ky = R
of J. Since R™ takes values in antisymmetric elements of End(M}), then
TrMR[RM ] = 0. One then easily deduces that as |k| — +o0
Tr&,] = O(1/k%).

We now define the formal trace of & by
(7.17) Tr[&] = ) Tr[&].

kez*

Similarly, since Tr™z [RM] =0, one verifies that as |k| — o

(7.18) det(l,, +&)—1= o(1/k%).
We define the normalized determinant of I, .+ & , denoted det( u, + &) b
the formula

(7.19) det(I,, +&)= Hdetl +&).
kez®
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Let ?;;k denote the transpose of &, . Then one verifies easily that

(7.20) & =g,

From (7.20), we deduce that

(7.21) [ dett,, +&)=]]detts,, +&,).
k=1 k=1

Therefore [];-, det(/ M, T &,) is a natural square root of det(/ H, T &). We
will use the notation

oo
(7.22) detl/z(IHM +&) = [[dettt,, +&,).
k=1
If we formally make RY"-0and 4=0in & , we get
. 2dim N
det(I, +&)= sinh(v4/2) 2)> ,
Vu/2
so that det'/*(I H + &) is positive and is equal to (sinh(yv/#/2)/y/u/2)"™ " .
In the general case, det!/ 2(I u, + &) can be calculated by Taylor expansion

near RY, 4 =0 and coincides with (7.22). It is of utmost importance here to
observe that, in det'/ 2( H +&), I H, T & 1is considered as an operator acting

on the real Hilbert space H iy
With the same conventions, we deduce from (6.17) that

(7.23) detl/z( —(RY +b1) T —uI ) =¥, RY +bl).
Theorem 7.3. For any u >0 and b € C, the following identity holds:
(7.24)

Tr,[exp(—B, + bN,)]
= exp {—1 Tr{L] + = b 5 dim N} detl/z( —RY + bl —us )

x [det'/*(1 I, RMJ‘1 uPt4(J* - (RN +bI,)J - uIHN)“

1 -1

x APFJ" —uPN 7))
Proof. By (4.32) and (7.5), we find that

(7.25)

Tr,[exp(—Z, + bN,,)]

=u"" exp {—% Tr[R ] + %dim N} Y(u, R + b1

1 1
x/ EQ‘Y-Y’[exp{l/ (RMY,dY)—E/ IPNY|2dt
N 2 Jo 2 Jo

’ dv,(Y)

(PEA(” = (R + bI)T —ul, ) ‘JAPLY,Y)HW.
/4

NI:
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Take f € L,([0, 1]; My). We first calculate the expression
(7.26)

dv,(Y)
1=/ EQ‘Y‘”[CX {/ dY —uP"Y dt PNy dt}]—”.—.
v, p (f, Vu ) — I I 2n)i
Here we follow Yor [Y]. Namely, by using the Ito calculus, we know that

/l(f,dY—\/ﬁPNYdt)—E/leYFdz
0
(7.27) /<f+fP Y,8Y) - / 4 VaP YR

2/ Tk dt—— (PYY,P = |PVY,]? - dim Np).

From (7.26) and (7.27), we get
(7.28)

1
I=exp{%/ |f|2dt+4dimNR}

x | E% ”[exp{I/ (f +VuP"Y,5Y)
NR
Ny 2 va(Y)
z‘/o |f + VuP Y| dt}] (2n)dimN .

Let w be a standard Brownian motion in M, with w, =0. Given Y € Ny,
consider the stochastic differential equation
= (VuP"Y' + f)dt+ dw,

Y, =Y.

Then by using the properties of the Girsanov transformation [IkW, p. 178; B6,
§3], we know that

(7.30) EQ(Y-“[exp{/ (f+VaP"Y, 5Y) - |f+ Nriabd dt}]

is exactly the value at Y of the density of the probablllty law of Yl in (7.29)

with respect to the measure dv,,(Y)/ Qn)4mM
Now (7.29) can be explicitly integrated by the formula

Y/ L !
, =P fds+w,
0
t t
+PY (e‘/mY+e‘/m/ e Ve ds+e‘/'7'/ e_ﬁsdws) .
0 0

From (7.31), we deduce that pt Yl' and PV Y, are independent and have Gaus-
sian laws, respectively given by

(7.32) exp { 1

(7.29)

(7.31)

}de( )

)dlm L’

(continues)
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(e"-%f?‘/f 1)dimNexp{ - % ( Z\Zfﬁ 1)

Y —eVy - f/ fffdi}——dzv”)dmﬁ-

X

From (7.28) and (7.32), we get
IfPds 1
2 2

(7.33) I =exp {
0

1
’ }(2 sinh(y/u/2))4™ Vr °

From (7.26) and (7.33), we find that
(7.34)

Qr.y : 3 N u N2 dvy(Y)
/NRE( )[exp{/o (fdY - VuP"Y di) 2/0 PV dt}] el
_expl} fy 1A de— 51 fy PErar’y

Let P, be the probability law on Z([0, 1]; L) of the Brownian bridge
Y*, with YJ = Y} = 0. Let P, be the probability law on #(S,; N,) of the
Gaussian process Y" whose covariance is given by the operator

(1.35) C,=(-J+u)" ons,

u

(ie., C, = (=A+u)~" on [0, 1] with periodic boundary conditions). From
(7.34), we deduce the identity of positive measures on % ([0, 1]; My):

u Y oNo2 dvy(Y)
/NR exp{ - f/ P Y| dt}dQ(Y’y)——(zn’)VdimN
dp,(Yhdp,(Y")

From (7.25) and (7.36), we get

(7.36)

Trs[exp(—(@u2 + bNy,)]
W(u, R + bI},)
detl/z( H - uPNJ'z)

1 L, b ..
—exp{—ETr[R ]+5d1mN}
(7.37) [
xEP‘®P2[exp{§/ (RMY, dY)
0

U ’ —_
_ E<PLA(J2 — (R +bI,)J —ul, )"\ TAP"Y, Y)}]‘

Let P| be the image of P, by the map

1
Yre®([0, 1]; Ly) — YL—/ Y dse ([0, 11; Ly) N H, .
0
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Observe that [ (RYY, dY) and (PLA(J2—(RN+b1;V)J—u1HN)“JAPLY, Y)
are invariant under the maps Y € ([0, 1]; M) — Y +a € €([0, 1]; My)
(with a € My). Therefore in (7.37), we may and we will replace EN®h py
EP,'®P2 .

Let (Q,,P) be a probability space. Let (Y,,Z,),.y~ and let
X(') , (Y,: , Z,'l) nen+ D€ independent Gaussian random variables with values re-
spectively in L, and N, which have mean zero and covariance / L, and I N

respectively. Set
(7.38)

- f( )+ 32 cos(2mn) )

/
N zZ

Y = 0 +V2 < sin(2zmnt) + —”—cos(27mt)>.
\/— Z \/47r2n2 +u 4n’n* +u

Then by [IN, Theorems 4.1 and 5.1], both series converge P-uniformly on
[0, 1]. Moreover Y, = (YtL, YIN) is a Gaussian process. Inspection of the

covariance shows that under P, the probability law of Y is exactly Pl' ®FP,.
Set

Y Y 4 zZ
(739) U, ===, z . V==, n :
2nn’ \Jan*n® +u 2nn° \/4n*n® + u

Then by proceeding as in [B10, proof of Theorem 5.3], we find easily that
1 +00
(7.40) /0 (RMY, dY) =~ 4nn(R"U,, V,)
1

and the series in the right-hand side of (7.40) is a martingale which converges P-
almost surely and L,(Q, P). Using the fact that if X is a real random variable
with Gaussian distribution, then E[exp(aX 2 /2)1=(1- a)_l/ 2for 0<a<l,
and [DeM, p. 28] one finds easily that the convergence in the right-hand side
of (7.40) takes place in all the Lp(Q, P) (1<p<+).

Also the operator (J 2_ (RY + bII'V)J —ul HN)_'J is a continuous operator

acting on L,([0, 1]; M) . Since (7.38) is exactly the Fourier expansion of the
process Y, € L,([0, 1]; My), we find that

u L 2 N / -1 L
—5(P*A(* = (RY +bI)J —ul, )" JAP'Y , Y)

can also be expressed as the sum of an infinite series of terms which are quadratic
in (Y,, Z,) and which converges P-almost surely and in all the L (Q, P)

(1 € p < +00). Neither this series nor the series in (7.40) contains X(').
Set

1
(7.41) K=/ (RMY, dYy—u(P*A(J* = (R" +bI,)J —ul,, )" JAP"Y, Y).
0 N
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By the previous considerations, K is the sum of a series of terms which are
quadratic in (U, , V,) and which converges P-almost surely and in all the
LP(Q, P) (1 £ p < +o00). Let K, be the sum of the first n terms in the
series. We claim that

! K ’
(7.42) lim E"®h [exp (—”—)] = gh®h [exp <£>] .
n—-+o00 2 2

In fact since K, is of positive degree in the Grassmann variables of A( T;B) ,
the expansion

K K
. ——’l‘ = 1 ——’l— DY
(7.43) exp<2> +2+
terminates after a finite number of terms. Using the fact that K, — K P-almost
surely and also uniform integrability, we obtain (7.42).
Now K, is a finite sum of independent random variables which are quadratic

in (U, V,) (k <n). One then easily verifies that
(7.44)

1 P/®P, ( ., >]
[ITi_, (1 + u/dn’ k) em Ve [exp 5

+n
= det'/*(1,, —R”(2mik) ™' —uP" 4(-4n*k*— (RN +bI)2ink — ul,, )
My N Ng

-1
=—n
k#0
-1
x (2ink)”' AP + uP" (4n’k*) ")

From (7.42) and (7.44), we get
(7.45)

1 P/®P, K
det'/?(1 - uPNJ_Z)E [exp ( 2 )]

- [det‘/z(IHM — Ry —uPta? - RV +bI1,)J - uly, ) AP"”

1

—uPVy

Our theorem now follows from (7.23), (7.37), and (7.45). O

Remark 7.4. Theorem 4.8 is now an obvious consequence of Theorem 7.3. In
fact using (7.24), one easily verifies that as ¥ — 0

Tr,[exp(—B, + bN,)] = exp {—% Tr[R"] + -g- dim N}

(7.46) det'*(1, — (R +bL,)77")

X +O0(u).
det'’*(r,, —RYJ™) (
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Now if C € End N is skew-adjoint and has eigenvalues x, ..., x,, then by
(6.16) and (6.17)

_ " sinh(x;/2)
7.47 det'*(1, —cr ™ =T] —~4=.
From (7.15), (7.46), and (7.47), we find that as u — 0,
Td(-R™)
7.48 Tr,[exp(—B. + bN,,)] = +0(u),
(7.48) exp(- ] + BN = o+ 00

which is equivalent to (4.71). One verifies easily (by using, say, the analyticity
of the considered expressions in the variable b) that the derivatives in b verify
the obvious analogue of (7.48). The second line of (4.72) is proved as well.

Remark 7.5. The results of Theorem 4.6 are not obvious consequences of the
explicit formulas of Theorem 7.3. In §9, we will give a direct proof that the
expression in the right-hand side of (7.24) verifies the equations of Theorem
4.6 by using infinite-dimensional intersection theory.

(c) The asymptotics of the generalized supertraces as u — +oo. Recall that by
(6.1) and (6.17)

. dim N
1/2 L pN =2y sinh(y/u/2) R
(7.49) det (IHN uP'J %)= <—ﬁ/2 .
We now use the same notation as in §4(f). Namely if w,(b) and w_ (b) are
smooth differential forms on B depending smoothly on b € C, we will write
that as ¥ — +o0

(7.50) w,(b) = w_,(b) + O(1/Vu)

if for any k € N, the sup of the derivatives of order < k of w,(b)—w_(b) in
the variables (x, b) € Bx[b € C; |b| < 1} is dominated by C, //u for u>1.

Theorem 7.6. As u — +oo
(7.51)

N ry =1 -2 -2 1
det(IHN —(R"+0bly)J —uJ ")= det(IHN —uJ %) (1 +0 <ﬁ)) ,

1 1

detl/z(IHM —RMy ' —uPt A= (RY +bIy,)T - uIHN)_lAPLJ_ —uP"J7?

L -1

_ detl/z(IHN —uJ 7Y detl/z(IHL ~RFITH( + o0 /vm)).

Proof. Clearly the first equation of (7.51) is a special case of the second. Still
we give a separate proof of the first equation. By (7.23)

(7.52) detl/z(IHN RV +bI)J " —uT ) =%(u, R" +blI).

Also if xeC,as u — +oo

(7.53) %ch <——”‘22+4”) = ef <1 +0 (%)) .
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The first equation in (7.51) trivially follows from (6.2), (6.15), (7.49), (7.52),
and (7.53).

We now prove the second equation in (7.51). Remember that if C is a
square matrix written in the form

(7.54) C= <g Z)

if E is a square matrix which is invertible, then

(1.55) det C = det(E) det(H — GE™'F).
By (7.19), we may express

(7.56)

1

D =det(I, —R"J™ —uP"A(J* = (R" +bIy)J —ul, )" aP" 1™ —uP" %)

as an infinite product of finite-dimensional determinants of linear operators in
End M. Now M, = L, ® N,. We can then use formula (7.55) on each of
these finite-dimensional determinants. We get

(7.57)
D = det(l,, - ul 2 - PYRMPY 57N
x det(I, — P"RYP* ™

- P'RYPY(1, —uPy7 - P"RMPY TPV RY PEI ),

L 2 N / -1 ,—1 L
—uP" A" = (R +bI)J —ul, )™' T 4P

Of course, the determinants in the right-hand side of (7.57) are normalized
determinants in the sense of §7. By the same argument as in (7.53) and (7.54),
as U — +oo

-2 N, M_N  —1 -2 1
(7.58) det(IHN -uJ "—P 'R PJ )= det(IHN —uJ ) (1 +0 (W)) .
We now use the straightforward identity
(7.59)
L 2 N / —1 L .—
—uP"A(J" - (R +bIN)J—uIHN) AP~J

=P AP T - PP A - RY —bI)(JP = (RY + bI},)J - uly ) AP".

1

Set
K,=(J —R"=bL)(J* - (R" +bI,)J - ul, )™,

N ;=2 N M N ,—1

(.60 L,=1, —uP"J7 - P"RYP" 7,

a =P RM - 4HPry!,

p =P AK AP" + PPRYP L 'PYRM PPy
For ¢t €[0, 1], we claim that

(7.61) % Log (det(IHL —a-— tﬂ)) =-Tr[(I,;, —a- t8)”' 1.
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(7.61) can easily be derived by expressing det(I,, —a—tf)" ! as a convergent
product of finite-dimensional determinants and by using formula (7 61) in a
finite-dimensional situation. Of course in (7.61) Tr[(I, —a—1tf)" ﬁ] is also

a regularized trace in the sense of (7.17). Clearly,

(1.62)  Trl(I, —a—1tB)'B1="TriBl+Tr(l, —a—1B) (a+1B)B].

We first estimate Tr[#]. We have the inequality

| Tr[PLRM P'L; IPNRM Pt

(7.63) +oo dx Cn
<C <C / Ln
Z k2 +u tu 2/
Similarly,
| Tr[PEARY + b)) (J* = (RY + bI)J - uIHN)_lAPL]l
(7.64)

1 C7t
<Czk2 =2/

Also for x€C, |x|<1, keN",and u>0

2nik . 3 2nik
(7.65) —4n*k? - 2mikx —u —47z21522+ 2nikx —u
—8n°k x

T (Cank? — 2mikx — u)(—4n?k> + 2mikx —u)
Therefore for x € C, |x|<1,and u>1

. . 2
(7.66) i 227nk 3 i 227uk < 4Ck .
—4n°k” - 2mikx —u —4n k" +2mikx —u k™ +u
From (7.66), we deduce that for u > 1
|Tr[PLAJ(—J2 - (RN +bI)J —ul, “APL]|

(7.67) too x“dx dx 2C x2dx

<C 2C/ .

Z k4 x*+u? u 0 x4 +1
From (7.63)-(7.67), we find that for u > 1
(7.68) I TH gl < —
. <7

We now estimate Tr{([,, —a—1(f)" (a +tB)B]. Using (7.63), one verifies
easily that for ¢ € [0, 1] and u>1

| TH(l, —a—18)" (a+tB)B]
. +00 2
o {2k (7)) m))
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By using the same argument as in (7.63)—(7.68), we deduce from (7.69) that for
te[0,1] and u>1

(7.70) | Ty, —a =)™ (a+1p)p] <

\/_
From (7.61), (7.68), and (7.70), we get for t €[0, 1] and u > 1
0 C
(7.71) 31 Log[det(7, L —a= tp)] T
From (7.71), we find that
C
) —a-— —a)| < —.
(7.72) |Logdet(f; —a— B)—Logdet(I,, —a)] NG

From (7.57)-(7.59) and (7.72), and from the fact that the restriction of

PL(RM —AZ)PL to L coincides with R", we get the second equation in (7.52).
Our theorem in proved. 0O

We finally obtain the key result.

Theorem 7.7. As u — +o0
(1.73)  Tr[exp(-~2B, + bN,)] = exp (g dim N) Td(-R*) +0 <%> .
In particular, as u — +oo

2 L 1
Tr[exp(-%,)] = Td(-R") + O <\/_ﬁ) )
dlmN

1
55 Tr[exp(= B, + bN,)l, o = == — Td(-R") + 0(%)'

(7.74)

Proof. By Theorems 7.3 and 7.6, we find that as u — +oo

exp{— ‘Tr(RL)+”dimN} N ( 1 )

(7.75)  Tr[exp(— %’ +bNy)] = det'?(1,, — R*J7") Vi

N

By the same arguments as in (7.46)—(7.48), we ﬁnd that (7.75) is equivalent to
(7.73). (7.74) immediately follows. 0O

Remark 7.8. From (7.74), we find in particular that as u — oo

(7.76) 5ETr [exp (—93“2 +b <NH - d‘“‘TN»L =0 (%) :

From many points of view, the choice of N, — (dim N)/2 instead of N, is

more natural in the double transgression formulas of Theorem 4.6. We will give
a (hopefully) transparent explanation for (7.73), (7.74), and (7.76) in §9. Also

(7.76) is directly connected with Theorem 1.6 which asserts in particular that

((5-222).5)=0
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In fact by rescaling the variables in N, , the operator DY + Vi V(PN Y) is
changed into u1/4(DN + V(PN Y)), and as u — +oo only the kernel of DY+
V(P"Y) should be relevant in the evaluation of the limit of Trs[exp(——g%?u2 +
bNy)]. This roughly accounts for the fact that N, is changed into (dim N)/2
when u — +o00.

Theorem 2.7, and more precisely equation (2.24), explains partly why the
curvature R” of the connection V* appears in the limit as ¥ — +oo of the
forms Trs[exp(—.%u2 + bNy,)]. In Bismut-Lebeau [BL2, §14], such an argument
is fully exploited to give another proof of Theorem 7.7.

Remark 7.9. From Theorems 4.8 and 7.7, we find that the family of smooth
forms Trs[exp(—%uz)] interpolates between the forms Td(—RM)/Td(—RN)

(for u = 0) and Td(—RL) (for u = +00). This fact will be systematically
exploited in the sequel.

8. GENERALIZED SUPERTRACES, ANALYTIC TORSION, AND THE TODD GENUS

The purpose of this section is to construct generalized analytic torsion forms
associated with the acyclic chain complex of holomorphic Hermitian vector
bundles

! J

This is done by integrating the double transgression formulas of Theorem 4.6
by a zeta function technique. If gM is the metric on M , we thus obtain a
form B(L, M, gM) in P%.

The main result of this paper is our evaluation of B(L, M, gM) e P® / p5:°
as the sum of a standard Bott-Chern class [BoC, D, BGS1], and of an additive
class naturally associated with the derivative at 0 of the Mellin transform of
(—(0p/0x)/p)(u, x) evaluated on N.

The explicit evaluation of this Mellin transform is done in a joint appendix
with C. Soulé. The main result of the appendix is that this additive class co-
incides (up to a rather irrelevant term) with a class introduced by Gillet and
Soulé [GS].

This section is organized as follows. In (a), we construct the generalized
analytic torsion forms B(L, M, gM) , and evaluate %B(L, M, gM) . In (b),
we calculate B(L, M, gM ) modulo 8 and & coboundaries.

Our assumptions and notations are the same as in §§3, 4, 6, and 7.

(a) A construction of the generalized analytic torsion forms. We now imitate a
construction of Bismut-Gillet-Soulé [BGS1, Definition 1.16], [BGS4, Definition
2.1] to integrate the double transgression formulas of Theorem 4.6 by a zeta
function technique.
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Definition 8.1. For s € C, 0 < Re(s) < %, let A(s) be the following smooth
even form on B:

1 +00 — a
81 a0 =g [ {Gpelemw-l s o
dim N L
——5—Td(-R )} du.

Note that by Theorems 4.8 and 7.7, the integral in the right-hand side of (8.1)
defines indeed a smooth form. More precisely we find that the map s € C,
0 < Re(s) < % — A(s), extends into a meromorphic function of s which is
holomorphic near s =0.

In particular, by using Theorem 4.8, we find that the derivative A'(0) is given
by the formula
(8.2)

' (o
A(0) = /O {a—b[rrs[exp(-ﬂj + BN,

+ Td(—RM)(Td_l)'(—RN)} %
to (g dim N d
i /1 {%[Trs[exp(—.%’: +ON My — =5 — Td(—RL)} 2
+T(1) {Td(—RM)(Td_l)'(—RN) + dmz‘ N Td(—RL)} .
Note that the form which appears in (8.2) after I"(1),
(8.3) Td(—R")(Td"") (=R") + 32N 1q(_RY),

2

is closed. This is a phenomenon which was already observed in a finite-dimen-
sional context in Bismut-Gillet-Soulé [BGS4, §2].

Also by Theorem 4.6, we can replace %[Trs[exp(—@: + bN ), by
Tr [N, exp(—%uz)] in (8.1) and (8.2). This makes formulas (8.1) and (8.2)
very similar to [BGS4, (2.1), (2.3)].

Let ® be the linear map from A™“(TzB) into itself which associates

2ni)w to w e A*(T4B).

Definition 8.2. Let B(L, M, gM ) be the smooth form on B:

/

(8.4) B(L, M, g") = o(4(0)).

The notation B(L, M, gM) can be easily explained. In fact, the embedding
0 — L — M determines N . Also the metric gM induces the metrics g* and
1

gN on L and N.
In view of the formal similarity of (8.1) and (8.2) with the construction by

Ray-Singer [RS] of the analytic torsion, B(L, M, gM ) will be called a general-
ized analytic torsion form.
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If E is a holomorphic vector bundle on B equipped with a Hermitian metric
gE , if vE is the corresponding holomorphic Hermitian connection, and if RE
is the curvature of V*, we use the notation Td( gE) instead of Td(—RE/ 2im).

Recall that the spaces of forms P? and P%'° were already defined in Defi-
nition 4.5.

Theorem 8.3. The form B(L, M, gM ) lies in P% . Moreover,

39 My _oony Td(g")
(8.5) B(L,M,g )=Td(g") Td(gN) .

2in
Proof. By Theorem 4.6, it is clear that the form B(L, M, gM) lies in P%.
Since the form (8.3) is closed, using the double trangression formulas of Theo-
rem 4.6 together with Theorems 4.8 and 7.7, we get (8.5). O

(b) An evaluation of the analytic torsion forms. From (6.2), it is clear that as
U — +00

(8.6) (p(u,x)=e:E <1+0<%>) .

By using the analyticity of ¢(u, x) in the variable x € C, we deduce from
(8.6) that as u — +o0

Vi
X7 e 1
(8.7) 8—x(u, Xx) = ” o <—\/—E> .
From (8.6) and (8.7), we find that as ¥ — +o0, for |x| < 2=
op/0x ( 1 >
8.8 u,x)=0—).
(8.8) p (u, x) NG
Of course, by (6.2), we know that
00/9x  x)

_1 { (sinh(\/x2 +4u/2))x/V x% + 4u — sinh(x/2) }
2 cosh(V x+ 4u/2) — cosh(x/2)
from which (8.8) immediately follows.

Definition 8.4. For s€ C, 0 <Re(s) < ,and x €C, |x| < 27, set

(8.9) Cls, x) = —ﬁ/o cmus“(()“’(ﬁa"(u, xX)du.

From (8.8), one immediately verifies that s — C(s, x) extends into a func-
tion which is holomorphic near s = 0. Of course C(s, x) is also holomorphic
in the variable x € C, |x| < 2m. Set

(8.10) D(x) = %(o, X).
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Since ¢(u, x) is an even function of x, C(s, x) and D(x) are odd functions
of x.

It is clear that D(x) is a holomorphic function of x € C, |x| < 2z. Then
Tr[D(—RN /2im)] is a form in P% . Moreover, by Bott-Chern [BoC, 3.28], the
class of the form Tr[D(—RN /2im)] in P? / P20 does not depend on the metric
gN. We will then denote by D(N) the class of Tr[D(—RN/Zin)] in PB/PB’O.
Similarly, we will denote by Td(L) the class of the form Td(g") in P?/P"°.
This class does not depend either on the metric gL .

Therefore, the class Td(L)D(N) is a well-defined element of P? /PB’0 .

Also by [BGSI1, Theorem 1.29], to the holomorphic acyclic complex of Her-
mitian vector bundles

(8.11) 0-L—-M->N=0,
i J

we can associate a class of forms ’f&(L, M, gM) in P? /PB’0 which verifies
natural functorial properties, and which is such that
(8.12) P Ta(L, M, ¢") = Td(g") - Td(g") Td(g").

The construction of [BGS1] generalizes a construction of Bott-Chern [BoC]
and Donaldson [D].

Note that if the sequence (8.11) splits, i.e., if we have an identification of
holomorphic Hermitian vector bundles M = L&N (where the metricon L& N
is the orthogonal sum of the metrics gL and gN ) and the maps L — L&
Q and L® N — N are the canonical injection and projection maps, then
Td(L, M, g¥)=0.

We now prove the main result of this paper.

Theorem 8.5. The following identity holds:
(8.13)

B(L, M, g") = —Td " (g")Td(L, M, ¢")+ Td(L)D(N) in P*/P"°.
Proof. Let P' be the one-dimensional complex projective plane equipped with
two distinguished points {0} and {oco}, and with the meromorphic coordinate
z

By [BGS1, Theorem 1.29], or by using the Grassmann graph construction
of Baum-Fulton-MacPherson [BaFM] of which a detailed exposition is given in

[BGSS, §4], we can define a holomorphic acyclic chain complex on B x P!,
(8.14) 0-L -M >N -0,
’-l jl
which has the following two properties:
- On B x {0} = B, the complex (8.14) coincides with the given complex
(8.11).
- On B x {00}, the complex (8.14) splits, i.e., M = L'® N', and the
! / ! / ! !
maps Lg, (o} — (L'®N)pxoo and (L' ®N) gy (o0} — Nipyioo} 2TC
the canonical injection and projection maps.
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Let gMI be a smooth Hermitian metric on M’ which has the following two
properties:
- On B x {0}, g™ coincides with the given metric g¥ on M.
- On B x {oo}, the splitting M’ = L' ® N is orthogonal, i.e., L' and
N’ are orthogonal in M’ .

Let g~ and g" be the metrics on L' and N’ induced by g™ by the
construction of §2(b). Of course, on B x {0}, g" and gV coincide with g*
and gN .

On P! , we have the following classical equation of currents:

80 2

(8.15) 377 Loglzl = 8(0) = 0oy -
By equations (8.5) and (8.12), we know that

90 : ' Td(g™

SO B(L, M, ) =Ta(e") - SE),
(8.16) 3 Td(g™ )

2T, M, ¢) = Ta(e") - Ta(g" ) Ta(g™).
Set

1

8.17) B, M, g™y =B M, ¢")+Td " (g¥)TaL', M, gM).
By (8.16), we find that
(8.18) 20 ', ', ) =0.
Also
59

2 !
5-(Log|z[)B(L', M, &) - Log|z|

253 / M
. mﬂ(L,M,g )

(8.19) _ %(B(Loglzf)ﬂ(l/, M, g")
0 2= / 1M
+ m(Loglzl OB(L, M ,g")).

If a is a smooth form on B x P' ,let a, and o denote the restriction of
a to B x {0} and B x {00} respectively. Indentifying B x {0} and B x {oo}
with B, we consider «, and «_ as smooth forms on B.

Using (8.15) and (8.18), and integrating (8.19) along the fiber of the map

B><IP’1—>B,weget

(8.20) B, M, g™y - B M, g™ epP’.

Set

(8.21) BL,M,g"y=B(L,M,g")+Td"'(¢")Td(L, M, g").
Clearly,

1

(8.22) BIL, M, g" ), =BL,M,g".
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On the other hand, since the holomorphic Hermitian complex (8.14) splits
on B x {o0}, by the considerations which follow equation (8.12), we know that

(8.23) TadL', M, g")_ =0 inP?/PP°.
We now calculate B(L', M’ , g™ /)oo . We use the formulas of Theorem 7.3

on Bx{oo}, with the notation ' indicating that we are considering the complex

(8.14). Since the complex (8.14) splits on B x {o0}, RM’ can be written in the
form

u _[RY 0
R = ’
0 RY
Therefore by Theorem 7.3, we have the formula

(8.24) .
Tr,[exp(—&.” + bN,)] = exp { b d‘;“ N_ %Tr[RL ]}

det' (I, —(RY +bIy) T~ —uJ7?)
N

X ; ; on B x {c0}.
det‘/z(IHN, —RY I —uY detI/Z(IHL, —-REJTYH
By using (7.23) and (7.47), we find that
Trs[exp(—(%u'2 +bNy,)]
(8.25) i ' RY 4l
2 ¥(u, RY)

Note that in this split case, formula (8.25) could also have been derived by using
Theorems 6.4 and 6.6.

From (8.25), we deduce that
(8.26)

-895 Tr, [exp(—@;z + bNH)]bzo

_ dimN v\ 9%/3b(u, RY 400,y
2 Y(u, RV
By (6.15), the class W(u, -) is multiplicative. The class
[(8/0b)¥(u, R + bI\)],_
Y(u, RY)
is then additive. More precisely,
N’ '
I, !
[(8/0b)¥(u, R -lkb ¥ I Ty (6(p/8x)(u’ RN)
W(u, RV)

If [A(s)] denotes the form constructed in (8.1) associated with the Hermitian
complex (8.14), we deduce from (8.1), (8.10), (8.26), and (8.27), that for 0 <
Re(s) < 1

Td(—R") + Td(-R

on B x {o0}.

(8.27)

(8.28) [4(s)] = —Td(—~R")Tr[C(s, R")] on B x {co}.
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From (8.28), we deduce that
L N’
/ ' M —R R
(8.29) B(L,M,g" ), = {—Td< 3in )Tr [D<EE)] }oo
Equivalently, since D(x) is an odd function of x, we get
L N’
’ ' M —R —-R
(8.30) B(L,M,g )oo—{Td< 3im )Tr[D( >im )]}w
From (8.20), (8.22), (8.23), and (8.30), we get
B(L, M, g")= -Td '(¢")Td(L, M, g")

830 e {ra(F) e [p(EO)) e,

By the obvious analogue of (8.19), we know that

%(Loglzlz) Td (%) Ir [D<%:)]
= - (Lo =P Ta (%) I [D(_;;: )))

Using (8.15) and integrating (8.32) along the fiber of B x P' — B, we find that
(8.33)

() o) () ()] e

From (8.31) and (8.33), we obtain (8.13). O

M

(8.32)

We now state the result proved in a joint Appendix with C. Soulé, which
evaluates the function D(x) explicitly.
Let {(s) = T°° 1/n’ be the Riemann zeta function.

Theorem 8.6. For x € C, |x| <2z, D(x) is given by

_ 1 20'(=nm)\,, X"
(8.34) D(x) = g (r’(1)+§j+ &) )c( n-
n odd

Proof. This result is proved in the Appendix. O

Remark 8.7. If AA(x) = (x/2)/sinh(x/2), observe that for |x| < 2z

A'(x) _ e
(8.35) o 22:1 L=n)y -
n odd
In fact, note that C(0, x) = (—(0¢/dx)/9)(0, x). Using (6.3), we find that
(8.36) C(0, x) = 4'(x)

A(x)
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From equation (8) in the Appendix, we find that

(8.37) /g((;)) - gz( <2k7z (1 _ %))_1 _ <2k7r (1 + %))_1 ) .

Using equations (16) and (26) in the Appendix, we get (8.35).

Remark 8.8. Let R(x) be the formal power series

(8.38) -y (Zl C( n) )c( n)fT.

n>1 N j=1
n odd

The formal power series R(x) was introduced in Gillet-Soulé [GS]. Gillet
and Soulé conjectured in [GS] a Riemann-Roch-Grothendieck formula for arith-
metic varieties. In this Riemann-Roch formula, the characteristic class ZI’ R(x;)
should play a prominent role. It was obtained in [GS] by an explicit compu-
tation of the analytic torsion of the trivial line on P"(C) equipped with the
Fubini-Study metric.

By (8.34), (8.35), and (8.38), we find that

A'(x)
A(x)

(8.39) D(x)=T'(1)===L + R(x).

9. EQUIVARIANT INTERSECTION THEORY AND THE HARMONIC OSCILLATOR

The purpose of this section is to perform some explicit nontrivial computa-
tions of differential forms on an acyclic complex
(9.1) 0—»E—i>F7G—>O
of holomorphic Hermitian equivariant vector bundles on a manifold B. The
main idea is that our results of §§3-8 can be partly formulated as an infinite-
dimensional analogue of these computations, where £, F, and G are now
certain Hilbert spaces of Fourier seriesin L, M ,and N respectively, equipped
with the natural action of S, by translation in the time variable.

This fits with ideas outlined by Atiyah and Witten [A] and by the present
author [B2] according to which there is an intimate relationship of the heat
equation approach to index theory with equivariant cohomology on loop spaces.
The point of view was also expanded by us in [B3] to include the Ray-Singer
analytic torsion on complex manirolds in this framework.

So in some sense, this section gives a geometric counterpart to the supercon-
nection operator theoretic analysis of §§3 and 4, and it puts the complicated
calculations of §§7 and 8 in the right geometric perspective. As pointed out in
the Introduction, writing this section was essential in the writing of the entire
paper.

This section is organized as follows. In (a), we construct certain equivariant
differential forms on the total space of the exact sequence (9.1). By integration
along the fiber, we obtain differential forms #(u, b) which are the analogues of

the forms Trs[exp(—%'u2 +bNy)]. In (b), we calculate the asymptotics as u — 0
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and u — +oo of n(u, b). We thus recover formally Theorems 4.8 and 7.7.
In (c), we explicitly evaluate the forms #7(u, b) and we recover formally the
complicated formulas of Theorem 7.3. Finally in (d), we construct the infinite-
dimensional model which fits with the results of §§3-8. In particular, we show
that the form B(L, M, gM ) can be obtained by integration along the fiber of
an infinite-dimensional Euler-Green current in the sense of our previous work
with Gillet and Soulé [BGS5] on geometric aspects of Arakelov theory. Also we
obtain formula (0.14) for D(x).

A minor difference in the analogy with §§4-8 is that our formal infinite-
dimensional results involve the 4 genus instead of the Todd genus. The reason
for this is rather clear in view of [A]. With the notation of §3, this means
that A(M") should be replaced by A(M’) ® det(M )_1/ 2. Also we have re-
frained from explaining in depth the analogies between the finite- and infinite-
dimensional models, by simply concentrating on the extraordinary similarities
of the formulas and of the results.

Formulas of Mathai-Quillen [MQ], Bismut [B5], and Bismut-Gillet-Soulé
[BGSS5] play an essential role in this section.

(a) Equivariant exact sequences and differential forms. Let B be a compact
connected complex manifold. Let

(9.2) 0O—-E—-F—-G-0
i J

be a holomorphic acyclic chain complex of vector bundles. E will be considered
as a holomorphic subbundle of F, and G is identified with F/E.

Let gF be a Hermitian metric on F. As in §2(b), gF induces smooth
Hermitian metrics gE and gG on F and G. Let V£ s vF , and vY be the
corresponding holomorphic Hermitian connections on E, F, and G, and let
RE s RF , and RY be their curvatures.

Let JX bea holomorphic skew-adjoint section of End F, which preserves
E. Let JE be the restriction of J© to E and let J be the natural action
of J¥ on G. Then JE and JC are also holomorphic skew-adjoint sections
of EndE and End G. Moreover JE, JF, and JC are parallel with respect
to the connections V% , vF , and ve.

The connection V' defines a natural splitting of TF into

(9.3) TF=FoT"F,

where T”F is the horizontal subbundle of TF. We define T"E and TG
in a similar way.

If y € F, we identify y with ¥ =y +7 € F,. Then J"Y € F,. Using
(9.2), we consider J Fy=Jf y+J F? as a vertical holomorphic vector field on
F . If TB is equipped with a Hermitian metric, we can lift the metric of TB to
T"F . We then equip TF=F® T" F with the orthogonal sum of the metrics
on F and T?F. Then J"Y isalso a Killing vector field on F. Similarly,
JEY and JPY will be considered as holomorphic Killing vector fields on E
and G.
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E is a complex submanifold of F. The vector field JXY restricts to the
vector field JY on E. Similarly, the projection map j: F — G maps the
vector field J¥Y into JGj(Y).

If ZeTyF,let Z Ve Fy be the projection of Z on F, with respect to
the splitting (9.3) of TRF. Let (JFY)' be the one-formon F, Z € T,F —
Jty,z"y.

Similarly, we identify J© with the two-form
(9.4) Z,Z eTF - (Y, 152"y,

Let i,r, denote the interior multiplication by J Fy acting on A( T;F ) and

let L,r, be the Lie derivative operator associated with the vector field J Fy.
Then the operators d, i,r,, and L,r, act on the set of smooth sections of
A(TRF). Moreover,

(9.5) Lyry=(d+i,ey).

Let n be any of the projections £, F, G — B. If w is a form on B, we
identify @ with the form n*w on E, F,or G.

Proposition 9.1. The following identities hold:
Y
2
L) =0.
Proof. Let V be an arbitrary torsion free connection on T.B. We identify
T”F with n*TB . Then the connection V lifts to Tg F.Let V =V'@V be
the sum of the connections V* and V on T, F=F,® T}: F. Then V' maps
smooth sections of A”(TxF) into smooth sections of A'(TxF) ® A’(T,F).
By antisymmetrization in all indices, we then get an operator “V’ which maps

smooth section of A?(TxF) into smooth sections of A”*!(T;F).
By [BGSS, Proposition 3.6], we know that

(9.7) d="V'+ig,.

Since the form (J F Y)' is vertical, and since virfF=o , we deduce from (9.7)
that

1 . Font 1 F F F
9.6) —5(d+i,r ) Y) = + 3R, ¥+ ",

(9.8) dJ'yy =27 + (RF Y, J'Y).
Since V' J¥ = 0, we know that [RF , JF] =0 and so
(9.9) (RTy, Jyy=—(R"IFY, 1).

Using (9.8) and (9.9), we get the first line of (9.6). Since JEY isa Killing
vector field, we find that L -, (J F Y)' = 0. Our proposition is proved. O

Definition 9.2. Let a be the smooth even form on F,

) F 2
(9.10) a=(2n)““‘"’Fexp{— 7 2Y| +%(RFJFY, Y)+JF}.
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The form o was introduced in a different context in [B2, proof of Theorem
1.3].

We define the space of differential forms P¥ as in Definition 4.5.
Theorem 9.3. The form o lies in PF . Also
(9.11) (d+i,ry)a=0.

Proof. Since RF and JF are of type (1, 1), it is clear that o € PF. By
Proposition 9.1, we know that

(9.12) a=(2n) " Fexp{-L(d+ir)J Y)}.
Then
(9.13) d+ipy)a=—-4(d+i,) T Y))a.

Since (d + iJrY)Z = L,r,, and since LJFY(JF Y)' =0, by Proposition 9.1, we
get (9.11). O

On the total space of G, we can reproduce what has been done in (9.3). The
splitting (9.3) is now replaced by

TG=GaT"G.
Observe that since J¢ is a holomorphic skew-adjoint section of End(G), then
= . \2 N
(9.14) (6+l_,cy) =0, (a+ljay) =0.
From (9.14), and from the analogue of (9.5), we find that
(9.15) LJGY=[5+iJGy,a+iJGy]
(where [ , ] still denotes a supercommutator).

If 4 € End(Gg) ®; C is antisymmetric, we identify 4 with the two-form
U,V eTgG— (U, AV). Let I; € End(Gp) ®; C act like +1 on G, and —1
on G. I is clearly antisymmetric.

We now use the conventions of Mathai-Quillen [MQ] combined with the
conventions of Bismut-Gillet-Soulé [BGSS, §3]. The essential difference with
[BGS5] is that we will work with equivariant characteristic classes or forms.

If A € End(GR) ®; C is antisymmetric, let Pf(4) denote the Pfaffian of
A. If A is invertible, then A~" is a two-form on the fibers of Gr, and

Pf(A) exp{—| Y|2/2 + A_l} is a series of forms on the fibers of G, . By Mathai-
Quillen [MQ], this form can be extended by continuity to noninvertible antisym-

metric 4. As in usual Chern-Weil theory, we can replace 4 by J 4R+ bI'G
and get (by antisymmetrization in all indices) a form on the total space of G.

Definition 9.4. For u > 0 and b € R, let B(u, b) be the following form on
G:

2
(9.16) B(u, b) =PfJ® + R° +b1;,)exp{ - u(% +(J°+R® +b1’G)“) } .
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Set
(9.17) P =B, ), aw) = SEIB(, ).

We now recall a fundamental result of [BGS5].

Theorem 9.5. The forms B(u, b), y(u), and e(u) lie in P®. Forany u>0,

(d+i,6y)7(u)=0,
(9.18) 0 1 = . ;
5;3’(“) = ;(6 + lJGy)(a + lJGY)g(u) :

Proof. The fact that the forms B(u, b), y(u), and &(u) lie in PC is easy to
prove. The identities (9.18) essentially follow from Bismut-Gillet-Soulé [BGSS5,
Theorem 3.10], where the curvature R® has to be replaced by the equivariant
curvature J°+R%. O

Since JX isa holomorphic skew-adjoint parallel section of End F , one ver-
ifies easily that F splits holomorphically and orthogonally into

(9.19) F=6 F,.
AEA
In (9.19), A is a finite set of distinct purely imaginary complex numbers and

the F, are nonzero holomorphic vector bundles. Moreover forany A€ A, J F
acts on F, by multiplication by .
The acyclic complex (9.1) then splits into a direct sum of acyclic complexes:

(9.20) 0—>EA—17»F17G1—-»0.

Again JE and JC acton E, and G, by multiplication by 4.

We now make two basic assumptions:

(1) {0} e A;

(2) Eggy = {0}.

Observe that if Ye F, J¥Y =0, and j(Y)=0, then Y =0.

Therefore, for any u > 0 and b € R, the forms oj*B(u, b), aj*y(u), and
aj e(u) on F are Gaussian shaped, i.e., they exhibit a Gaussian like decay as
|Y| — +o0.

In the sequel, [, ¢ denotes integration along the fiber of 7: F — B.

Definition 9.6. For © > 0 and b € R, let 6(u), n(u, b), and x(u) be the
following forms on B:

(%U0M=LWWW,M%®=AW7WM,XW=AWWW

Theorem 9.7. The forms 0(u), n(u, b), and y(u) lie in P2 . The forms 0(u)
are closed and their cohomology class does not depend on u. More precisely,

(9.22) %O(u) - %Eax(u).
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Proof. By Theorems 9.3 and 9.5, it is clear that the considered forms lie in PE.
Also

(9.23) d6(u) = /F d(aj*y(u)).

Since J'Y € Fy for Y € Fy, it is clear that [, ijpy(aj*y(u)) = 0. There-
fore we can rewrite (9.23) in the form

(9.24) do(u) = /F(d+ inY)(aj*y(u)).
Now by Theorems 9.3 and 9.5, we get

(9.25) (d+iry)(ei y(u) =0.
From (9.24) and (9.25) we deduce that d6(u) =0.

Using Theorem 9.5, we know that

0

(9.26) 5-0() = % /F (@ +iyr,) 0 + i,r5)5 e(w).

Since a € PF , and since (d +i,r,)a =0 by Theorem 9.3, we find that
(9.27) (0 + iyr)a=0, (0 +i,r5)a=0.
(9.22) now follows from (9.26) and (9.27). O

Remark 9.8. Theorem 9.7 should be understood as a finite-dimensional ana-
logue of Theorem 4.6.

(b) The asymptotics of the forms 7n(u, b). Let F 1 and G* be the orthogo-
nal bundles to F{O} and G{O} in F and G. F' and G* are holomorphic
Hermitian vector bundles.

In the sequel, we will often write J instead of JE , JE or JO. Also
Pf F;_(J + RF) and PfG;(J +RO+ bI'G) denote the Pfaffians of the restric-

tions of J + R and J +RG+bI'G to FRl and G; respectively.
Theorem 9.9. 4As u — 0

028 , Pf.(J + R +bI}) o
. s = R + .
(9.28) n(u, b) PfFéL(J+RF) (u)
ASs u — 400
1 1
9.29 ,b=—+0(—>.
-2 O Ny SRRV

Proof. Using our fundamental assumptions, one verifies easily that if k is the
embedding G{O} -G

(9.30) tim n(u, b) = /FL of KB, b).

Gy
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Now by proceeding as in [B2, Theorem 1.3], we find that

—dim F,
(9.31) / L) Ry
Ft PR (J+ R
Similarly,
) 2n)4™ %o Pf. (J + RC +bI.)
(9.32) k*B(0, b) = S — <
Gy PfGR«» (R” +bly)

= 2n)™ %o Pl (J + RO +bI}).

Since dim Fioy = dim G{O} , we deduce from (9.30)-(9.32) that

Pf,.(J +R% + bIy,)
(9.33) limn(u, b) = —= -
ul0 Pf .(J +R")
Similarly,
(9.34) lim r,(u,b):/ i*a/ﬂ(l,b).
U—+00 E G
Now

9.35) "d+ir)JTY) =di*ITY) +1I5Y)
' =d(JEY) + |75V = (d +i,e)(TEY)

Then, by proceeding as in [B2, Theorem 1.3], we get

[ra- W [ew{-3@+imr]
_ 1

(2n)dlmF—dlmE PfER(J +RE) >

(9.36)

/ B(1, b) = (21)"™ .
G

Since dim E — dim F + dim G = 0, we deduce from (9.34) and (9.36) that

1
9.37 lim n(u,b)= ———.
( ) U—+00 ( ) PfER(J + RE)

The estimates of the remainders in (9.28) and (9.29) are easy and are left to
the reader. O

Remark 9.10. (9.28) is the analogue of (4.71) and (9.29) is the analogue of
(7.73).
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(c) An evaluation of the forms 7(u, b). Recall that G is identified with the
orthogonal to E in F. We then have the identification of smooth vector

bundles F = E®G. Let PE and P® denote the orthogonal projection operator
from F onto E and G. Let V' = VX @ V be the sum of the connections
vE and V¥ on F=E®G. Set

(9.38) A=V -V

A is a one-form on B with values in skew-adjoint elements of End F,
which exchange £ and G. On F L , the operator —J 2+ upPC s self-adjoint
and positive definite. If C € A®*"(T,B)®End F, RL , we can then unambiguously

define detlp/f(—J 2+uP’+C ). The same considerations can also be used on
R

Gy -

Theorem 9.11. For any u >0 and b € R, the following identity holds:

(J)dez”2 (= T2 —(RO+bI) T +ul;)
R

(9.39) n(u, b) =

dtl/z( J2—RF J+uP®—uPE A(J2+(RO+bI,) T —ul;)~ APET)
Proof. We first assume that b= 0. Clearly,

(9.40)n(u,0)=(2n)_dimF/Fexp{ l/ 2Y| 2(R Y, Yy 47 }

G2
X Pf(JG+RG)exp{ - u(lP 2Y| +j*(JG+RG)_1)}.

We will often use the splitting F = F, o @ Ft , G= G{o} ® G to express the
integral in (9.40) as a product of integrals. In particular,

n(u, 0) = d““G/ Pf, (R exp{—u(¥+(RG)_l>}
(9.41) x (2m)” 4mE” /Flexp{ 7 2Y| 2(R JEY, Y+ }

G G IPGYI2 G Gy—1
xPfoi(J” +R )exp{—u( 5 +i°(J”+R )‘)}.

By [MQ, §4]

(9.42) (27)~ 4im G /G Pig, . (R%) exp ( - u(@ + (RG)“>> =1.

Now the key point is that the vertical two-form J ¥ is calculated using the
connection V¥, while the vertical two-form j “(J ¢+ RG)_1 is calculated with
the connection V. To eliminate this discrepancy, we will proceed as in [BS,

§5].
If X € TxF, let D,Y denote its projection on F, associated with the

splitting of T,F = Fp & TfF . Similarly, the connection V' also defines a
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splitting of T,F . If X € TF, let Di‘,Y denote the corresponding projection
on Fy. Clearly,

DyY =DyY + A(n,X)Y .

In the sequel, we consider DY, D'Y as one-forms on F taking values in Fj.
Then

Jo.=4DY,J DY) onF™,
FIC+RO =4P°D'Y, (J°+R%T'P°D'Y) onF*.
Observe that the operator J© — uj “(J ¢4 RG)_l is formally invertible on F* .

From (9.43), we have the identities of forms on F~:
(9.44)

JE—uj* (7% + R%™
=Dy + 4y, T (D'Y + 4Y)) - 4«P°D'Y, (J° +R®)"'P°D'Y)
= LATY, V) + LD Y + (T - uPCIC+ RGP I ay
I =uP®I° + RO PHD'Y + (JF —uP®I° + RS THPY T I 4Y)
- NI =uP’T+ RO PO I 4y, I 4y,
Since 4 maps G, into E,, we find that
— W = uP®I° + ROPO) ' I 4PCY, JF 4PCY)
= LA J"Pr, POY).
From (9.44) and (9.45), we thus get the identity of forms on F L.
9.46)  J' —ujf I+ RH™!
= Lu(PPA((I°)? + ROJC —u1,) " aPFJ Y, PPY)
+4D'Y +(JF —uP®U°+ RO PO I Y,
(¥ —urP®° + R%7'P°)
x (DY +(J" —uP’(J° + R)™'P%) "'y  aY).

When integrating along the fiber F L, all the vertical Grassmann variables
are saturated. We deduce from (9.41), (9.42), and (9.46) that

(9.47)
100, 0)= [ exp (") + BT
F

(9.43)

1

(9.45)

+uP®A((J) + RIS —uty) ' aPPI" —uP%)yY, ¥)
+JF —uP®° + R%™'P%y Pl 79 + R°Y.
To calculate (9.47), we proceed as in [B2, proof of Theorem 1.3]. Since on
FRL , —(J F)2 is a positive operator, we find that
Pf, 1 (JF—uP®(JO+R) ™' P) Pf . 7 +RY]
R R

det‘F/j(—(JF)Z—RFJF+uPG—uPEA((JG)2+RGJG—uIG)"APEJF) ’
R

(9.48) n(u, 0) =
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Now one easily verifies that

(9.49) Pfp.(J" = uP’(J7 + R%) ™ PO) Plyu (O + RY)
= Pf(J ") det /1(~(J%) = ROT® +ul).

(9.39) now follows from (9.48) and (9.49). Replacing R® by R + bI., we
obtain (9.39) in full generality. O

Remark 9.12. The double transgression formulas (9.22) are not easily derived
from formula (9.39).
Also note that (9.39) can be rewritten in the form

sen(Pf, (J)) et} (Io+(RO+bIg) ™' ~uJ™?)
R

(9.50)  n(u, b) =

- det:ﬁ(IF+RFJ"—uPGJ"Z+uPEA(Jz+(RG+bI(';)J—uIG)_'APEJ_l) )
R

Using the fact that the determinant of a matrix coincides with the determinant
of its transpose, we get

sen(Pfy, (1)) det!/} (I;—(RO+b1g)J ™" ~uJ %)

(931)  n(u, b) = det;g_ (IF—RFJ—'_qurZfupEA(JZ—(R%bI(’;)J_ulG)"APEJ*‘) )
At this stage, the similarity of formula (9.51) with formula (7.24) for
Trs[exp(—.@u2 + bN,,)] should be obvious.

(d) Fourier series and generalized analytic torsion forms. We now use again the
notation of §§3-8. Set

2
(9.52) E=H,, F=H,eN, G=L,.

We then have an obvious exact sequence of infinite-dimensional holomorphic
Hermitian vector bundles on B:

(9.53) 0—-E—F—G—0.
i J

Also the operator J = d/dt acts as an unbounded operator on E, F,and G.

One easily verifies that the assumptions of §9(a) are verified in an infinite-
dimensional context.

The comparison of Theorems 4.6, 4.8, 7.3, and 7.7 with Theorems 9.7, 9.9,
and 9.11 should make clear that the results of §§3-8 are infinite-dimensional
analogues of well-defined finite-dimensional results. The only unsubstantial
difference is that in the infinite-dimensional analogue, spinors are considered
instead of forms, which accounts for the fact that factors like exp{—1 Tr[RL]}
do not appear.

In the context of spinors, the form Trs[exp(—<@u2 + b(Ny, — (dim N)/2))] is
the analogue of n(u, b). Using (9.42), we find that the form 4'(0) which was
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defined in (8.1) and (8.2) can then be written formally as

Pf._ (J) Fyp2
(9.54) A'(0) = —Em/ exp{— 1/ 2Y| +%(RFJFY, Y)+JF}
(27[) 1 FL

6 G G !
x <—55 {PfIJ + R+ b1

G2
x Log (lP 2Y| + (JG +R%+ bIg)_l) }b—0> .

Of course, in the context of §8, dim F = +oco.
In the terminology of Bismut-Gillet-Soulé [BGSS, §3f)]

2

-i{Pf(.JG +R® +bI.)Log (ﬂ +(J°+R+bL )")}
ob G 2 G b=0

is (up to irrelevant normalizing constants) an equivariant Euler-Green current

associated with the immersion of E in F. So in fact, it is a well-understood

object in a finite-dimensional context.

As pointed out in [BGSS5, Theorem 3.15], if G was instead a one-dimensional
line bundle, then é = Log | y|2 . Now G breaks down into a direct sum of vector
bundles, which are the eigenspaces of J .

In [BGSS, Theorem 3.20], the behavior of Euler-Green currents under direct
sums was studied. In particular, Euler-Green currents were shown to exhibit a
transitivity property.

The transitivity property is expressed in a rather hidden form in our formula
(6) in the Appendix for C(s, x). In fact, note that for k € Z* and x € C

—uY"\dY
2 2

é =

(9.55) / dikm exp{(—2n%k> + iknx)|Y|2}exp<
C

_ 2ikn
4n’k* — 2iknx +u
From formula (6) in the Appendix, we conclude that

+00
(9.56)  D(x) = -/ <Zziknexp{(—2n2k2+iknx)|y|2}> Log |y[24Y .
C 2n

keZ

The term Log| y|2 should be considered in (9.56) as the canonical one-dimen-
sional Euler-Green current.
We also deduce from (9.55) that for 0 < Re(s) < §

+00
(9.57) C(s,x)= / r’ Z 2ikm exp((—47z2k2 + 2iknx)r)dr.
0 kez

From these considerations, we will obtain interesting formulas for C(s, x)
and D(x).

Let p,(x) be the heat kernel on S| = R/Z associated with the operator e,
Here p,(x) is calculated with respect to the Lebesgue measure on S .
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Theorem 9.13. The following identities holds:

+00 _s ap 1
C(s,x)=/ r ax’(rx)dr, 0<Re(s)<§,
(9.58) 0

+00 apr
D(x) = —/0 (Logr) x (rx)dr.
Proof. Clearly,
(9'59) P,(X) — Z e—47t2kzt+2iknx )
kez

The first line in (9.58) follows from (9.57). Since D(x) = %%(O, x), we get the
second line in (9.58). O

APPENDIX
J.-M. BismMuT AND C. SOULE

The purpose of this appendix is to prove the following evaluation of the func-
tion D(x) which was defined in §8(b). Let {(s) = ]L°° 1/n’ be the Riemann
zeta function.

Theorem 1. For x € C, |x| < 2n, the holomorphic function D(x) is given by

_ N e ey
1) D= % {r“<1)+§j+ Lot en
n odd

Proof. The infinite product which defines ¢(u, x) in (6.4) is uniformly con-
vergent on compact sets of R* x C. We then deduce from (6.4) that, for u > 0
and |x| < 2m,
(2)

—(09/0x)

o X)

+00

_ ! 1 1 )

- g 2kn (1 —ix/2km + u/4k*n* 1+ ix/2kn + u/4kPn?)
Equivalently, for ¥ > 0 and |x| < 27,
—(89/8x) & 1
" (“’X)=—x22k2nz T 32 Ao

vt (1 4+ u/4k"n°)" +x°/4k"n")

By (7.67), we know that for u > 1

(3)

+oo k2 +0o0 k2

Cl
Q e R Dy ik

k=1 k=1

Similarly, for 0<u <1
+00 k2

(5) Zmﬁc

1
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From (8.9), (4), (5), and the dominated convergence theorem, we deduce that
for seC, 0<Re(s)< %,and x€C, |x|<2nm,

6) C(s, :+°o_i__1_ T s 1
(6) Cls, x) §2knl"(s)/0 u (

1 —ix/2kn + u/4k*n®

- - ! 5 2> du.
1 +ix/2kn+u/d4k"n
and that the convergence in the right-hand side of (6) is uniform on the compact
subsets of the set of variation of s and x.
Now if a € C, Re(a) > 0, and s € C, 0 < Re(s) < 1, then &' is
unambigously defined as a holomorphic function of a and s such that =

1. Then
1 ' 'du &' e u du
m/; u+a :I"(s)/o u+1”’
1 +oo 5=l gy 1 -1 -
7 L - s t(u+1)
7 ) T ST

+00 —s —t
=/ t ‘e dt=T(1-y5).
0

So from (6) and (7) we find that for s € C, 0 < Re(s) < §, and x € C,
|x| < 27,

8) C(s, x)=il(l —s)g(an)zs_l{ (1 - %>5~1 - (1 + %)s_l }

As k — 400, for |x| < 2n

R

~ —2(s — 1)ix(2kn)* 7.

From (9), we deduce that the series in the right-hand side of (8) converges
uniformly on the compact subsets of {s € C, Re(s) < $} x {x € C, |x| < 27}.
The key fact is that s = 0 is now included in the domain of convergence.

Since the series in (8) converges uniformly, and since the considered functions
of (s, x) are holomorphic on their domain of definition, we can differentiate
term by term the series in the right-hand side of (8).

For k € N*, set

(10)

. . —1
. ix ix
h(x)=1i <I'J(l) —2Log(2kn) — Log (1 + m)) (an (1 + m)) .
We then deduce from (8) that for |x| < 2n

+00

(11) D(x) =) _((x) = b (=x)).

k=1
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The series in (11) converges uniformly on the compact subsets of {x € C, |x| <
2n} . More precisely, one easily verifies that the series in the right-hand side of
(11) converges normally on compact subsets of {x € C, |x| < 2x}.

For any k € N, we can expand A4, (x) in the form

+00
(12) h(x) = ZaZx" , |x| < 2m.
n=0

By using Cauchy’s integral formula, one verifies easily that for any n € N, n
odd

+00
(13) > lag| < +o0,
k=1
and that
+00
(14) D(x)=2)_ (Za,f)x".
n>1 k=1
n odd

Clearly, for |x| < 2@

ix \\ ' i R -ix\"
(15) 1<2k7r (”'27&)) =2—k;n§(2—k;> :
By using the previous considerations and (15), we find that for |x| < 2z

(16) zl{ <2k7t (1+%>>_1—(2kn (1—%))_1}

=iy ()"

n=1

Also for Re(s) > 1

(17) {'(s)= =) k™’ Log(k).
1

From (15) and (17), we get for |x| < 2n

09 Sivosk{ (2kr (1445)) - (e (1-25)) )

k=1

Also

. ix ix
(19) iLog <1+2—;> <2kﬂ l+m>
+00
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From (19) and the previous considerations, we find that for |x| < 27

o Efum(ie ) (e (14 45)

() (e -2) )
=—%§(—1>"‘ (2:: Seen (32)"
From (10), (11), (14), (16), and (20), we get for |x| < 2n

(21) D(x)=%zl<r’(l) 2Log(27) + i} C(2n>
n= Jj=1

2n—

x (-1 (3)

Now {(s) verifies the functional equation

(22) n*PPT(s/2)¢(s) = 2~ TPI((1 - 5)/2)¢(1 - 9).
By taking logarithmic derivatives in (22), we get
1 1T(s/2)  {(s)

(23) ——2-L0g7l'+—2-—lw+ Z(s)

_1 T'(1-9/2) {1-5s)

SIETTIT(—9/2) =)
Also, by [NO, p. 21], we know that for n € N

C'(n) L

-1
1

T'((1-2n)/2)
I'((1-2n)/2)

From (23) and (24), we easily deduce that

(24) oy
=TI'(1)-2Log2+2Y —.
;2]—1

2n—1

(1) — 2 Log(27) + Z} £

(25) ;

1 20(1-2n)
< (1) + Z Ty )
Also by [S, pp. 117, 148], we know that

22n—l " 2n
(26) {(2n) = m(—l) ¢(1-2n).

From (21), (25), and (26), we get (1). O



KOSZUL COMPLEXES, HARMONIC OSCILLATORS, AND THE TODD CLASS 255

REFERENCES

[A] M. F. Atiyah, Circular symmetry and stationary phase approximation, Proc. Conf. in honor
of L. Schwartz, Astérisque 131 (1985), 43-59.

[AB] M. F. Atiyah and R. Bott, A4 Lefschetz fixed point formula for elliptic complexes. I, Ann. of
Math. (2) 86 (1967), 374-407; II, Ann. of Math. (2) 88 (1968), 451-491.

[ABP] M. F. Atiyah, R. Bott, and V. K. Patodi, On the heat equation and the Index Theorem,
Invent. Math. 19 (1973), 279-330.

[ABS] M. F. Atiyah, R. Bott, and A. Shapiro, Clifford modules, Topology 3 (1964), 3-38.

[AHS] M. F. Atiyah, N. J. Hitchin, and I. M. Singer, Self-duality in four dimensional Riemannian
geometry, Proc. Roy. Soc. London Ser. A 362 (1978), 425-461.

[BaFM] P. Baum, W. Fulton, and R. Macpherson, Riemannian-Roch for singular varieties, Inst.
Hautes Etudes Sci. Publ. Math. 45 (1975), 101-146.

[BeV] N. Berline and M. Vergne, A computation of the equivariant index of the Dirac operator, Bull.
Soc. Math. France 113 (1985), 305-345.

[B1] J.-M. Bismut, The Index Theorem for families of Dirac operators: two heat equation proofs,
Invent. Math. 83 (1986), 91-151.

[B2] ——, Localization formulas, superconnections, and the Index Theorem for families, Comm.
Math. Phys. 103 (1986), 127-166.

[B3] ——, Equivariant Bott-Chern currents and the Ray-Singer analytic torsion, Math. Ann. (to
appear).

[B4] —, The Witten complex and the degenerate Morse inequalities, J. Differential Geom. 23
(1986), 207-240.

[B5) ——, Superconnection currents and complex immersions, Invent. Math. (to appear).

[B6] ——, Transformations différentiables du mouvement Brownien, Proc. Conf. in honor of L.
Schwartz, Astérisque 131 (1985), 61-87.

[B7) ——, Martingales, the Malliavin calculus and hypoellipticity under general Hormander’s con-
ditions, Z. Wahrsch. Verw. Gebiete 56 (1981), 469-505.

[B8] ——, The Atiyah-Singer Theorems. A probabilistic approach. 1, J. Funct. Anal. 57 (1984),
56-99.

[B9] ——, Index Theorem and equivariant cohomology on the loop space, Comm. Math. Phys. 98
(1985), 213-237.

[B10] ——, Large deviations and the Malliavin calculus, Progress in Math., no. 45, Birkhéuser,
Basel, Boston, and Stuttgart, 1984.

[B11] ——., The infinitesimal Lefschetz formulas:. A heat equation proof, J. Funct. Anal. 62 (1985),
435-457.

[B12] ——., Complexe de Koszul, oscillateur harmonique et classe de Todd, C. R. Acad. Sci. Paris

Sér. I Math. 309 (1989), 111-114.

[BGS1] J-M. Bismut, H. Gillet, and C. Soulé, Analytic torsion and holomorphic determinant bundles.
I, Comm. Math. Phys. 115 (1988), 49-78.

[BGS2] —., Analytic torsion and holomorphic determinant bundles. II, Comm. Math. Phys. 115
(1988), 79-126.

[BGS3] ——., Analytic torsion and holomorphic determinant bundles. III, Comm. Math. Phys. 115
(1988), 301-351.

[BGS4] —, Bott-Chern currents and complex immersions, Duke Math. J. (to appear).

[BGS5] ——, Complex immersions and Arakelov geometry, Inst. Hautes Etudes Sci., preprint
M/88/64.

[BL1] J.-M. Bismut and G. Lebeau, Immersions complexes et métriques de Quillen, C. R. Acad. Sci.
Paris Sér. I Math. 309 (1989), 111-114.

[BL2] ——., Complex immersions and Quillen metrics (to appear).



256 JEAN-MICHEL BISMUT

[BoC] R. Bott and S. S. Chern, Hermitian vector bundles and the equidistribution of the zeros of
their holomorphic sections, Acta Math. 114 (1968), 71-112.

[D] S. Donaldson, Anti-self-dual Yang-Mills connections over complex algebraic surfaces and stable
vector bundles, Proc. London Math. Soc. 50 (1985), 1-26.

[DeM] C. Dellacherie and P.-A. Meyer, Probabilités et potentiels, Chapitre V a VIII. Théorie des
martingales, Hermann, Paris, 1980.

[Ge] E. Getzler, A short proof of the Atiyah-Singer Index Theorem, Topology 25 (1986), 111-117.
[GH] P. Griffiths and J. Harris, Principles of algebraic geometry, Wiley, New York, 1978.

[GS] H. Gillet and C. Soulé, Analytic torsion and the arithmetic Todd genus, Topology (to appear).
[GI)] J. Glimm and A. Jaffe, Quantum physics, Springer, Berlin, Heidelberg, and New York, 1987.
[H] N. Hitchin, Harmonic spinors, Adv. in Math. 14 (1974), 1-55.

[IkW] N. Ikeda and S. Watanabe, Stochastic differential equations and diffusion processes, North-
Holland, Amsterdam, 1981.

[IMK] K. Ito and H. McKean, Diffusion processes and their sample paths, Grundl. Math. Wiss., bd.
125, Springer, Berlin, Heidelberg, and New York, 1974.

[IN] K. Ito and M. Nisio, On the convergence of sums of independent Banach space valued random
variables, Osaka J. Math. 5 (1968), 35-48.

[KM] F. F. Knudsen and D. Mumford, The projectivity of the moduli space of stable curves, I
Preliminaries on “det” and “div”, Math. Scand. 39 (1976), 19-55.

[Le] P. Levy, Wiener’s random functions, and other Laplacian random functions, Proc. Second
Berkeley Symposium on Mathematical Statistics and Probability (J. Neyman, ed.), Univ. of
California Press, Berkeley, CA, 1951, pp. 171-187.

[Ma] P. Malliavin, Stochastic calculus of variations and hypoelliptic operators, Proc. Conf. on
Stochastic Differential Equations, Kyoto, 1976, Wiley, New York, 1978, pp. 195-263.

[MQ] V. Mathai and D. Quillen, Superconnections, Thom classes and equivariant differential forms,
Topology 25 (1986), 85-110.

[NO] A. Nikiforov and V. Ouvarov, Eléments de la théorie des fonctions spéciales, Mir, Moscow,
1976.

[Q1] D. Quillen, Superconnections and the Chern character, Topology 24 (1985), 89-95.

[Q2] ——, Determinants of Cauchy-Riemann operators over a Riemann surface, Funct. Anal. Appl.
14 (1985), 31-34.

[RS] D. B. Ray and 1. M. Singer, Analytic torsion for complex manifolds, Ann. of Math. (2) 98
(1973), 154-177.

[S] J.-P. Serre, Cours d’arithmétique, Presses Universitaires de France, Paris, 1970.

[Sil] B. Simon, Functional integration and quantum physics, Academic Press, New York, 1979.

[Si2] —, Notes on infinite determinants of Hilbert space operators, Adv. in Math. 24 (1977),
244-273.

[W] E. Witten, Supersymmetry and Morse theory, J. Differential Geom. 17 (1982), 661-692.

[Y] M. Yor, Remarques sur une formule de P. Lévy, Séminaire de Probabilités, no. XIV, Lecture
Notes in Math., vol. 784, Springer, Berlin, Heidelberg, and New York, 1980, pp. 343-346.

ABSTRACT. In this paper, we construct secondary characteristic classes associ-
ated with a short exact sequence of holomorphic Hermitian vector bundles.
These secondary invariants are generalized analytic torsion forms associated
with a family of elliptic operators. They are calculated in terms of Bott-Chern
forms and of a certain complicated characteristic class. In a joint calculation
with C. Soulé, we relate this characteristic class to the arithmetic Todd genus
of Gillet and Soulé.
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