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2 Local index theory, eta invariants, and holomorphic torsion

The purpose of this paper is to survey various recent developments in
local index theory, including applications to eta invariants, Quillen metrics
on determinant bundles, and analytic torsion forms. In this refined index
theory, the construction of secondary objects plays an important role. On
the analytic side, these will be the 77 forms (which are extensions of eta invari-
ants), analytic torsion forms (which extend the Ray-Singer torsion). These
objects refine on the construction of the index bundle [A], [AS2]. On the
geometric side, they include Chern-Simons forms [ChSi], Bott-Chern forms
[BoCh] and Bott-Chern currents [BGS4,5], which refine on the classical

cohomological objects of index theory like A, Td, ch. The ultimate purpose
of the new theory is to relate the analytic secondary invariants to corre-
sponding geometric secondary invariants.

This line of thought is most clearly illustrated by the Riemann-Roch
formula in Arakelov geometry of Gillet-Soulé [GS3,4], which applies to
arithmetic varieties. In its simplest form, it evaluates the artihmetic degree
of a determinant bundle (whose evaluation involves Quillen metrics at places
at infinity) in terms of integrals of arithmetic characteristic classes [GS1,2]
(whose construction involves Bott-Chern classes and Bott-Chern currents at
places at infinity).

Needless to say, we will always work here in the context of real or
complex geometry. Still the idea that the above objects fit “naturally” in
an algebraic context has been a powerful motivation for their development.

Let us now briefly discuss in more detail the content of this survey.
As we said before, this paper is organized around the local index theorem
[P1,2], [Gil,2], [ABoP]. Let Z be a compact even dimensional Riemannian
oriented spin manifold, let DZ be a Dirac operator acting on smooth sections
of the twisted spinors ST4 ® £. The Atiyah-Singer index theorem [AS1]
asserts that the index Ind (DZ) € Z of DZ (which is DZ restricted to
twisted positive spinors) is given by

(0.1) Ind (D7) = / A(TZ) ch(e)
Z

where the right-hand side is an integral of a characteristic class, which is a
cohomology class.

Let P;(z,y) be the heat kernel for exp(—tD%?2). The Mc-Kean Singer
formula [McKS] says that for T > 0,

(0.2) Ind (D) = Trs [exp(~tD?%?)] = /Z Trs [Pi(z, z)] dvz(z)

(in (0.2), Trs is our notation for a supertrace, which is a graded trace).

The local index theorem, conjectured in [McKS] and proved in [P],
[Gil1,2], [ABoP], asserts that as ¢ — 0, we have “fantastic” cancellations
in Trs [P;(z,z)] (which means that as ¢ — 0, Trs [P;(z,z] is non singular),
and that

(03)  Tr [Pz, 2] dvx(s) > {AT2,97%) cb(¢, )},
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where in (0.3), the corresponding characteristic forms in Chern-Weil theory
are calculated using the Levi-Civita connection V7Z on TZ, and the given
connection V¢ on £. Of course, from (0.2), (0.3), we recover (0.1).

In the above form, the local index theorem was used in [ABoP] to give
a new proof of the Atiyah-Singer index theorem.

In [APS1], Atiyah-Patodi-Singer developed an index theory for man-
ifolds with boundary. If Z is a compact even dimensional oriented spin
manifold with boundary, the index problem on the Dirac operator DZ on Z
imposes global boundary conditions on 0Z. The index formula of [APS1]
takes the form

(0.4) Ind(Df):/X(TZ,VTZ)ch(g,vf)—'ﬁDaz(o).
zZ

In (0.4), 7P az(s) is a meromorphic function of S, which is calculated in
terms of the spectrum of a Dirac operator D?Z on the boundary 8Z . The
quantity 7° 62(0) is called a reduced eta invariant. To establish (0.4), the

local index theorem plays an essential role. In fact, the first term in the
right-hand side of (0.4) is the integral of a closed differential form.

Formula (0.4) is quite important. In effect, / ;{\(TZ, VTZ) ch(¢, V) is
z

a Chern-Simons invariant. On the other hand, 7 . (0) is a global spectral
invariant of 0Z, which is a prototype of the analytic secondary invariants
which will be considered later. Then (0.4) implies that mod(Z), ﬁDaz (0)
is equal to a Chern-Simons invariant. This is a simple prototype of a re-
fined index theorem. Such a theorem was formulated first in the context of
differential characters by Cheeger and Simons [CSi].

Section 1 is devoted to a short exposition of local index theory and eta
invariants.

Let now w : X — B be a fibration with compact fibres as before. Let
(D#)vep be the corresponding family of Dirac operators. In [AS2], Atiyah
and Singer have shown how to associate to this family an (analytic) index
bundle Ind (Df) € K°(B). They also defined a topological index, and they
proved a corresponding families index formula. When mapping K°(B) in
H(B,Q) by the Chern character ch, the formula of [AS2] takes the form

(0.5) ch(Ind (D%)) = m, [Z(TZ) ch(g)] in H(B, Q).

The local index theorem of [B2] refines on the right hand-side of (0.5),
by replacing it by an explicit geometrically constructed differential form

m[A\(TZ, VTZ) ch(¢,V¢)]. When Ind (D?) is a honest vector bundle, the
theory of [B2] replaces the analytic index by an analytically constructed

differential form ch(ker D%, Vker DZ’“). Then an essential by-product of
[B2], [BeV], [BeGeV], [BC1] is the construction of an explicit differential
form 7 on B such that

(06) dﬁ = T« [Z(TZ, VTZ) ch(é"vg)] _— Ch(kerDZ, vker Dz,u) )
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Quillen’s superconnections [Q1] are an important tool to obtain the above
results. Superconnections provide a useful extension of Chern-Weil theory
to Zs-graded (and possibly infinite dimensional) vector bundles. In [B2],

the form m, [A\(TZ, V7TZ) ch(¢,V4)] is produced by refining the local index
theorem (0.3) in a relative context, hence its name of a local families index
theorem.

Equation (0.5) has been extended in [BC2,3], [MeP1,2] to a families
index theorem for Dirac operators on manifolds with boundary, by using
either the techniques of Cheeger [C1,2,3] on manifolds with conical sin-
gularities, or the b-calculus of Melrose [Me]. The important concept of a
spectral section [MeP1,2] has emerged in this context.

If (E, gF) is a holomorphic Hermitian vector bundle on a complex man-
ifold, E is naturally equipped with the holomorphic Hermitian connection
VE. We will denote by Td(E, gF) the form Td(F, V¥). It is a sum of forms
of type (p, p).

If 7 : X — S is a holomorphic submersion with compact fibre Z, if TZ
is equipped with a Hermitian metric ¢7%, and, if (£, g¢) is a holomorphic
Hermitian vector bundle on X such that Rw.£ is locally free, a natural
equation related to (0.6) is

(0.7) %T = ch(Rm.&,¢""¢) — m, [Td(TZ,g77) ch(¢,9°)] ,

where gF7-¢ is the metric on Rm,¢ obtained from ¢7%, g¢ by Hodge theory

along the fibres.

Assume that X is Kihler and let w* be the corresponding Kéhler from.
When ¢7Z is obtained from wX by restriction to T'Z, the forms T(w*, g¢)
were constructed in [BGS3], [BK] and were called analytic torsion forms,
because in degree 0, T(9(wX, g¢) coincides with the Ray-Singer analytic
torsion [RS] of the corresponding Dolbeault complex.

In fact of special interest are 77(!) and T(®. In [BF1,2], [BGS3], 7V
appears as a connection form on the determinant line bundle (det ker DZ)~1,
and T (wX, g¢) is the natural correction to the obvious Hodge metric on
the line bundle (det Rm,£)~! introduced by Quillen [Q2] to construct the
Quillen metric on (det Rm,£)~!. When suitably interpreted, in degree 2,
equations (0.6) and (0.7) appear as curvature theorems for natural connec-
tions on the line bundles (det ker DZ)~! and (det Rm,£)~!. Of course, one
of the points of [BF1,2], [BGS3] is that such curvature theorems still hold
without any assumption on ker D or Rm,¢.

Objects like 7 and T'(w™, g¢) are secondary invariants which refine on
the family index theorem of Atiyah-Singer [AS2] or on Riemann-Roch-
Grothendieck. These last theorems are naturally functorial, in the sense
they are compatible to the composition of maps. It is natural to ask whether
77 or T(wX, g%) have related functorial properties.

A first simple question is to ask how T(w*,¢%) depends on w*,g¢. It
was shown in [BK] that T(wX, g¢) depend on w”, g¢ via obvious Bott-Chern
classes [BoC], [BGS1].

Another question is related to the behaviour on 7 or T'(wX, g¢) by the
composition of two submersions. This question was solved in [BC1], [BeB],
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[D], [Ma], using the idea of adiabatic limits. Let us give an elementary
application of this idea. In fact, if

(0.8) 0-L—->M—>N=0
J

is an exact sequence of holomorphic vector bundles, and if g™, g% are Her-
mitian metrics on M, N for € > 0, set

1 -k
(0.9) M =gM + = gV

Then if Q) is any characteristic polynomial, one can easily show that if g is
the metric on L induced by ¢,

(0.10) Q(M,g") = Q(L,g")Q(N,gY).
Now (0.10) can be applied to the exact sequence
0>TZ—->TX -7TS > 0.

Following a terminology introduced by physicists [W], studying geometric
or spectral objects depending on a metric g7* = ¢7X + In*gT5 as e — 0
is called passing to the adiabatic limits.

As was observed in [BF2], there is an analogue of (0.10) for the Levi-
Civita connection of a fibered manifold.

On the other hand, the Leray spectral sequence for the de Rham or Dol-
beault complexes of a fibered manifold makes the left-hand side of Riemann-
Roch-Grothendieck compatible with the composition of submersions.

The behaviour of 77 and T'(wX, ¢%) under composition of submersions
was obtained by adiabatic limit techniques. In [BC1], [D], [BerB], the
case where the last submersion maps to a point was considered, and the
results were expressed as results on the adiabatic limit of eta invariants, or
on Quillen metrics. In [Mal], corresponding results were obtained for the
composition of arbitrary holomorphic submersions. The above results also
rely on an observation of Mazzeo-Melrose [MazMe] relating the adiabatic
limit of the spectrum of the Dirac operator to the Leray spectral sequence.

Similar questions can be asked in the case of embeddings. We will
explain the problem in the context of complex geometry. Let ¢ : Y — X be
an embedding of complex manifolds. Let n be a vector bundle on Y. If X
is projective, there is a resolution of 7,7 by a complex (£, v) of holomorphic
vector bundles on X. Then by definition, the direct image 41n € K(X) is
given by

(0.11) im = [¢] in K(X),

the point being to show that [¢] does not depend on {. Now by Riemann-
Roch-Grothendieck,

(0.12) ch(am) =4, (Td ™" (Ny/x) ch(n)) in H***(X,Q),
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so that
(0.13) ch(¢) = 4. (Td™'(Ny,x) ch(n)) in H***(X,Q).

Let g¢,g", g"V¥/x be Hermitian metrics on &, 7, Ny, x. By analogy with
(0.7) it is natural to ask whether one can refine (0.13). Namely one can ask
for the existence of a current 7'(¢, ¢¢) on X such that

90 _
(0.14) %T(ff,gf) = Td ™' (Ny,x,9""/*) ch(n, g")dy — ch(¢,g%).

The current T'(£, g¢) has been constructed in [B3], [BGS4]. Again it is
natural to study the compatibility of the currents T'(£, g¢) to the composition
of embeddings. This has been done in detail in [BGS5].

Having now constructed objects T'(w”X, g%) and T'(¢, g¢) associated to a
submersion or an embedding, which are compatible to the composition of
submersions or of embeddings, the last obvious final step is to study the
compatibility of these objects to the composition of an embedding and a
submersion. This has been done in [BL] when the submersion maps to a
point, and in [B5,6] in the general case. In [BL], the main result is formu-
lated naturally in terms of Quillen metrics. In the proof of [BL], [B5,6],
a mysterious secondary invariant associated to a short exact sequence of
holomorphic Hermitian vector bundles appeared, whose construction was
somewhat puzzling. A preliminary step for the proof of [BL], [B5,6] was
the explicit evaluation of this class in [B4].

The most elaborate formula in [B5,6] expresses a combination of ana-
lytic torsion forms as a sum of integrals along the fibre of analytic torsion
currents and of Bott-Chern classes. This indicates that the refined objects
introduced above fit in a refined Riemann-Roch algebra. As explained be-
fore, Gillet and Soulé [GS3] have explained how, in the case of arithmetic
varieties, these results can be used to prove a Riemann-Roch-Grothendieck
formula in Arakelov geometry. They have proved such a formula in [GS4]
for the first Chern class, and their proof for higher Chern classes is pending.

This paper is organized as follows. Section 1 is devoted to the local
index theorem and the eta invariant. In Section 2, we review various results
on the local families index theorem and the 7 forms. Finally, in Section 3,
we consider analytic torsion forms and analytic torsion currents.

Part of the material contained in this survey already has been reviewed
in [B7].
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I. The local index theorem and the eta invariant.

In this Section, we review a few well-known results on the local index
theorem for Dirac operators closed manifolds, on the index theorem for
manifolds with boundary, and we also give related results on eta invariant.

This Section is organized as follows. In a), we state the local Atiyah-
Singer index theorem for closed manifolds of Patodi [P1,2], Gilkey [Gil,2],
Atiyah-Bott-Patodi [ABoP]. In b), we state the Atiyah-Patodi-Singer in-
dex theorem on manifolds with boundary [APS1] and we introduce the
associated eta invariant. In c), we give the formula for the signature of a
manifold with boundary obtained by Atiyah-Patodi-Singer [APS1]. In d),
we describe result by Cheeger [C1,2] and Chou [Ch] on the index theorem
on manifolds with conical singularities. In e), we recall the result by Cheeger
[C3] on the L, signature of such manifolds. Finally in f), we review briefly
the approach by Melrose [Me] to the Atiyah-Patodi-Singer index theorem,
using the b-calculus.

For a detailed approach to the local index theorem, we refer to Berline-
Getzler-Vergne [BeGeV].

a) The local Atiyah-Singer index theorem for Dirac operators on
closed manifolds.

Let Z be an even dimensional compact oriented spin manifold. Let 7%
be a Riemannian metric on TZ. Let §T% = S_{Z @ STZ be the Hermitian
Z,-graded vector bundle of (T'Z, g7?) spinors.

Let VT2 be the Levi-Civita connection on (T'Z, gTZ). Let V5"~ be the
connection induced by VTZ on STZ. Let (£, g%, V4) be a Hermitian vector
bundle equipped with a unitary connection. Let v5"78¢ be the obvious

connection on ST¢ ® ¢.
Let ¢(TZ) be the bundle of Clifford algebras of (T'Z, g7%). It is gener-
ated over R by 1, X € TZ, and the commutation relations

(1.1) XY +YX = -2(X,Y) .

Then STZ is a ¢(T'Z)-Clifford module. If X € TZ, we denote by ¢(X) the
action of X € ¢(TZ) on STZ. Then ¢(X) acts like ¢(X)® 1 on STZ ® ¢.

Let D? be the Dirac operator associated to (¢7%,V%). If e1,..., e, is
an orthonormal basis of TZ,

n
(1.2) D% = Zc(ei)VfiTZ@’f.

1

Then DZ is an odd operator, i.e. it exchanges C*®(Z, STZ®¢) and C*(Z,ST4
€). Also D? it is a first-order self-adjoint elliptic operator. Let DZ be the
restriction of DZ to C*°(Z, ST% ® £), so that

(1.3) D% = [Dof Dog] .

Since Df is elliptic, it is a Fredholm operator. By definition, the index
Ind (D%) € Z is given by

(1.4) Ind (D) = dimker(DZ) — dimker(DZ).
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Put
i) = z/2
(1.5) Alw) = Sinfglﬂ(a:/2) ’
Td(z) = et

We identify A and Td with the corresponding multiplicative genera, the
Hirzebruch genus and the Todd genus. Similarly the Chern character ch is
the additive genus associated with the function exp(z).

If #: F = Z is a complex vector bundle, and if P is a real invariant
polynomial, let P(F) € H*®"**(Z,R) be the corresponding characteristic

class. If V¥ is a connection on F, and RF = V2 is its curvature, we denote
_pF

by P(F,VF) the closed even form P ( 5 ) on Z, which represents P(F')
s

in cohomology.
Then, by the Atiyah-Singer index theorem [AS1],

(1.6) Ind (D%) = / A(TZ) ch(€).
z
If E=FE, & E_ is a Zy-graded vector space, let 7 = +1 on EL define
the Z,-grading. If A € End (F), we define its supertrace Trs [A] by
(1.7) Trs [A] = Tr[TA].

The algebra End (F) is naturally Z,-graded, the even (resp. odd) elements
commuting (resp. anticommuting) with 7. If A, B € End (E), we define the
supercommutator {4, B] by the formula

(1.8) [A,B] = AB — (—1)de4dee By,
By [Q1], if A,B € End(E),
(1.9) Tr, [[A, B]] = 0.

Observe that since D is elliptic, for ¢ > 0, exp(—tD?*?) is trace class.
We then have the formula of Mc Kean-Singer [McKS].

Proposition 1.1. Fort > 0,

(1.10) Ind (Dy) = Trs [exp(~tD%?)] .
PRrROOF : By spectral theory,

(1.11) Jim T [exp(~tD??)| = Ind (DZ).
Also we have the “Bianchi” identity

(1.12) [D?,D??] = 0.

Using (1.9), (1.12), we get

2 Tr, [exp(—tDZ’Q)] = — Ty [DZ’2 eXP(—tDZ’Q)] =

(113)

— 1 Tr, [[D?,D? exp(-tD?%?)]] = 0.

Note that in the last steps of (1.13), one should express the various quantities
in terms of smooth heat kernels to justify the use of (1.9). d
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Let P,(z,y) be the smooth kernel of exp(—tD?%?) with respect to the
Riemannian volume dy . Then by (1.10),

(1.14) Ind (Df):/ZTys [Py(z, z)] de .

Put n = dim Z. By general results on elliptic differential operators, we
know that for z € Z, as t — 0,

p
(1.15) Trs [Pi(z,2)] = Y acpyopr ()t 73R 4 O (17124941
k=0

and O (t7"/>*P+1) is uniform in = € X. Moreover the a;(z) only depend
on the complete symbol of DZ near z. By (1.14), (1.15),

/a]-(m)dx:O for j #£ 0,
(1.16) Z
/Zao(a:)da: = Ind (Df)

Let VT2 be the Levi-Civita connection on (T'Z, g7%). In [McKS], Mc
Kean and Singer conjectured that “fantastic cancellations” should occur in

(1.16) so that for the considered operator DZ,
a; =0,7 <0,

(1.17) ao(z) = {A\(TZ, vTZ) ch(&,Vg)}max .

Needless to say, (1.16), (1.17) would imply the index formula (1.6).
Theorem 1.2. Equation (1.17) holds.

PROOF : There are two kinds of proofs of (1.17).

e The algebraic proofs of Patodi [P1,2], Gilkey [Gil,2], Atiyah-Bott-Patodi
[ABoP] describe explicitly the a; (; < 0) as polynomial functions of the
metric g7Z, the connection V¢ and their derivatives. For j < 0, arguments
of Gilkey show that there are no such polynomials other than 0. Also ag is
shown to be a universal combination of certain Chern-Weil forms. One then
only needs to verify the identity (1.17) for ag on sufficiently many examples,
given by the P"(C).

e The direct proofs of Getzler [Gel,2], Bismut [B1], Berline-Vergne [BeV].
These proofs were stimulated by arguments by Alvarez-Gaumé [Al], using
functional integration, which suggested that there should be some explicit
algebraic mechanism forcing the above local cancellations.

The proof of Getzler [Ge2] uses a powerful rescaling technique on the
Clifford algebra. It is explained in detail in [BeGeV, Chapter 4]. Of par-
ticular importance is the Getzler operator [Gel,2], [BeGeV, Proposition
4.19], which appears when doing the Getzler rescaling on the Clifford alge-
bra. This operator is an harmonic oscillator, and its heat kernel produces
the genus A in (1.17).

Theorem 1.2 is often called the local index theorem for Dirac operators.

O
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b) The Atiyah-Patodi-Singer index theorem.

Let Z be a compact manifold of dimension n with boundary ¥ = 0Z.
Let 0Z x [0, 1] be a tubular neighborhood of 8Z in Z, u being the inward nor-
mal coordinate. Let g7% be a Riemannian metric on T'Z, which is product
near 07, i.e.

(1.18) g% = g"% +|dul® .

Let E, F be complex Hermitian vectors bundles on Z, which, near Y,
are pull-backs of vector bundles on Y. Let D : C®(Z,E) - C*(Z,F)
be an elliptic first order differential operator. Let o : E|y — Fjy be a
bundle isometry. Let A : C°(Y,E|y) — C*(Y,Fy) be an elliptic first
order differential operator, which is self-adjoint with respect to the obvious
Ly Hermitian product. We assume that on 0Z x [0, 1],

(1.19) D=0<;—u +A> .

Let P>q (resp. P<g) be the orthogonal projection operator on the direct
sum of the eigenspaces of A associated to nonnegative (resp. negative)
eigenvalues.

Let C*(Z, E, P) be the vector space of smooth sections of E over Z,
such that

(1.20) Psofiy =0.

In [APS1], Atiyah-Patodi-Singer showed that D defines a Fredholm
operator. More precisely for £ > 0, let H¢(Z, E) be the £** Sobolev space of
sections of E, and for £ > 1, let HZ(Z,E,PZO) be the set of s € HY(Z, E)
such that Pygsjy = 0. Then in [APS1], the authors proved that for any
¢>1,D:HYZ E,P) » H*"Y(Z,F) is Fredholm.

By definition, the index of D is given by

(1.21) Ind (D) = dimker D — dim coker D.

Let D* be the formal adjoint of D. We make D* act on C*(Z, F, P.y) or
on HYZ,F,P;). Then

(1.22) Ind (D) = dimker D — dim ker D* .

Let Ry, S; be the heat kernels of exp(—tD*D), exp(—tDD*) acting on the
smooth sections of E, F' over the double of Z. If z € Z\ 0Z, as t — 0, we
have the asymptotic expansion

(123) Tr [(Rt — St)(l', 15)] = i a_n/2+k (I)t_n/2+k + Oz(t—n/2+p+1) .

k=0

Observe that the a_y, o4« (z) vanish identically near 0Z. Also the constant
coefficient ag(z) in the expansion (1.24) vanishes if n is odd.
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Let Sp(A) be the spectrum of the operator A. For s € C, Re(s) >
dimY, put

sign (A
(1.2 ACEID M 8
AESp(A)
A0

Then 7 (s) is holomorphic in s on its domain of definition, and moreover

A 1 e (s—1)/2 tA?
1.2 = - [ - .
(1.25) 14 (s) F(%)/o t Tr [Ae ]dt
Ast—0,
2 L dim Y
(1.26) Tr [Ae—“‘ ] = 3 b gyt D
k=0

From (1.26), we deduce that n“(s) extends to a meromorphic function of
s € C, with simple poles. In particular 0 appears to be a simple pole of

A
n°(s).
Now we state the index formula of Atiyah-Patodi-Singer [APS1, The-
orem 3.10].

Theorem 1.3. The function n(s) is holomorphic at 0. Moreover

(1.27) Ind (D) = /Z ao(@)dz — L (4(0) + dimker(A)) .

PROOF : The proof of both statements in [APS1] is briefly sketched. The
proof can be divided into three main steps :

e The construction of a parametrix on 0Z x [0, +oo[ for + 33—” +A

By using the spectral decomposition for A, one constructs a parametrix
for :i:% + A with the required boundary conditions. The operator A is then
replaced by a scalar A € R in Sp(A) , and the point is to show that these
finite dimensional parametrices patch into a global parametrix Q.

By patching these parametrices with an inner parametrix for D and D*,
Atiyah-Patodi-Singer construct a parametrix for D, which demonstrates the
Fredholm property of D.

o The heat equation method on Z

By patching the heat kernel for DD* and D*D on 8Z x [0, +oc[ (which
is explicitly obtained by the functional calculus) with the heat kernel on the
double of Z, one obtains a global heat kernel on Z, from which one obtains
a Mc Kean-Singer formula for Ind (D). Namely for ¢ > 0,

(1.28) Ind (D) = Tr[exp(—tD*D)] — Tr[exp(—tDD™)] .
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Using the corresponding heat kernels, one gets

(1.29) nd(D) = [ (Te[Pe,2)] - T(Qu(e,2)])

One then makes ¢ — 0 in (1.29). By taking the constant term in /
Z\8Zx[0,1]

as t — 0, one obtains the easy term ag(z)dz. The contribution
Z\0Zx[0,1)

of / as t — 0 is obtained from the explicit form of the heat kernel on
8Zx[0,1]

dZ x [0,+o0[. In particular, in [APS1], the holomorphy at 0 of 74(0) is a
consequence of the heat equation formula (1.29). The quantity —%(T)A(O) +

dimker(A)) is shown to be the contribution of/ to Ind (D). O
8Zx[0,1]

Let Z, g7 be as before. We assume that Z is even dimensional, oriented
and spin. Let STZ = S$Z ® STZ be the Hermitian Z,-graded vector bundle
of (TZ,gT%) spinors. Let (£, 9%, V¢) be a complex Hermitian vector bundle
with unitary connection.

Let VTZ be the Levi-Civita connection on (T'Z, 97%). Then VTZ lifts
to a unitary connection on 7% = SIZ @ STZ. Let V5" “®¢ be the obvious
connection on ST% ® ¢.

We orient T0Z so that if e;,...,e,—1 is an oriented basis of T0Z,
(61, ey €n—1,

%) is an oriented basis of T'Z5z.
Let ST9Z be the Hermitian vector bundle on 8Z of the (T9Z,g7%%)

spinors.Then ST%Z ~ SI?{;Z ~ Srflzaz. The bundle $79Z @ §|oz is naturally

equipped with a connection V5~ ®€oz
Let D? be the Dirac operator associated to the metric g4 and the
connection V&. We can write DZ as a matrix operator,

z [0 DZ
(1.30) D "[Df R

Also D? is an elliptic first order differential operator.

Let D%Z be the Dirac operator associated to g72Z and V¢. Then D?Z
acts on C®(0Z,879% ® ¢) as a self-adjoint first order elliptic operator.

To the operator D = Df, we can apply the general approach of Section
1 b), with A replaced by D%%. So DZ is restricted to act on C*°(Z, 5177 ®
€, P>0) and DZ on C*(Z,57% @ ¢, P<o).

Let nDaZ(s) be the eta function of D9%.

As an application of Theorem 1.3, Atiyah-Patodi-Singer [APS1, The-
orem 4.2] obtain the following result.
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Theorem 1.4. The fonction nDaz(s) s holomorphic at 0. Moreover

. Ind (DZ) = /ZX(TZ, VTY) ch(¢, V€)

— 1(nP"* (0) + dimker(D??)).

PRrROOF : By using the “fantastic cancellations” conjectured by Mc Kean-
Singer in [McKS], it is shown in [APS1] that in (1.23),

(1.32) ao(z) = { A(T2,v7?) ch(g,vf)}mx .

Theorem 1.4 follows from Theorem 1.3. O

REMARK 1.5. The local index theorem, Theorem 1.2, has been used by
[ABoP] as a tool to prove the Atiyah-Singer index theorem for Dirac op-
erators, which by an argument of K-theory, is enough to prove the full
Atiyah-Singer index theorem. However the “locality” of the index does not
appear in the final answer. This is in dramatic contrast with Theorem 1.4,
where A(TZ,VTZ) ch(¢, V¢) is viewed as a form, and not as a representative
of a cohomology class.

¢) The signature of manifolds with boundary.

Let Z be an oriented manifold with boundary of dimension 4k. Let
H(Z), H(Z,0Z) be the absolute and relative cohomology groups of Z.
Then by Poincaré duality, H?*(Z) and H?*(Z,8Z) are Poincaré dual.

Let H(Z) be the image of H(Z,8Z) in H(Z). Then H?*(Z) is naturally
equipped with the symmetric intersection form

(1.33) (o, B) GﬁQk(Z)—)/Za/\,B.

Let sign (Z) be the signature of this form.

Let (V,g") be a real euclidean vector space of odd dimension 2¢ — 1.
Let SV be the vector space of (V,g") spinors.

The star operator *¥ induces an isomorphism A €Ve" (V*) ~ A°dd(V*),
Moreover

(1.34) AR (V) ~ A0 (V) ~ SV @ SV

Since SV and SV are ¢(V)-Clifford modules, A¢Ve"(V*) ~ A°dd(V*) are left
and right Clifford modules, and the corresponding Clifford actions commute.
More precisely if « € AP(V*), e € V, if e* € V* corresponds to V by the
metric, put

DVer AxV — *Ve*/\) o,

cle)o = J+p(p-1) ((_
J((-D)Ver AV ++Ve* ) a.

+p(p—1 (

1.35
(1.35) cle)a=1
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Then c(e), c(e) induce the left and right Clifford module structure on A(V*).

They both preserve A¢ve®(V*) and A°44(V*). Let p be the one to one map
from A(V*) into itself such that if @ € AP(V'*),

(1.36) pla) = i¢PCP-1 4V o e AZ-1-P(VY),
Then p exchanges A°**(V*) and A°%¢(V*) and moreover

cle)p = pelc)
(30 Ble)p = pole).

Let Y be an oriented manifold of odd dimension 2¢— 1. Let DY be the
operator acting on C®°(Y, A(T*Y")) such that if o € C*(Y,AP(T*Y)),

(1.38) DY a = i+P=D ((—1)Pd +TY —+TY §) a.

In view of (1.35), it is clear that DY is a Dirac operator acting on C®(Y, A(T*Y)).
Moreover it preserves C° (Y, A¢Ve® (T*Y)) and C*®(Y, A°%4(T*Y)). By (1.36),

it DY splits into two equivalent operators, DY = DY:even g DY-odd - AJg
one verifies easily that ker(f)y) consists of the harmonic forms, i.e.

(1.39) ker DY ~ H (Y).

EY, even

Let 7 (s) be the eta function of DY>even,
Let £ be the multiplicative genus associated to

T
tanh(z)

(1.40) L(z) =

We then have the signature formula of [APS1, Theorem 4.14] for sign(Z).

Theorem 1.6. The following identity holds,

562, even

(1.41) sign (2) = / L(TZ,VTZ) — g (0).
VA

PROOF : The proof of [APS1] consists in first using Theorem 1.4 with
¢ = STZ. In a second step, the kernel of the corresponding Dirac operator
D7 is related to the kernel of the Dirac operator on Z |Jz, 8Zx] — 00,0],
which is Z extended by an infinite cylinder. d
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d) Manifolds with conical singularities : the index theorem of
Cheeger and Chou.

Let Y be a smooth manifold equipped with a Riemannian metric g7¥
onTY. Let C(Y) = Y x]0, +oo[ be the metric cone equipped with the metric

dr?+12gTY. Then C(Y) can be compactified into a honest cone with vertex
§. Let CI%9(Y) be the truncated cone {z = (r,y) € C(Y),0 < r < £}.
Let Z be a smooth manifold with boundary ¥ = 0Z, taken as in Sec-

tion 1 ¢). Let Z, = ZUYx{e} Cl%4(8Z) be the manifold Z with the cone

Cl%4(9Z) attached. Let gTZ‘ be a metric on Zp, which coincides with the

conical metric dr? + 77 gTaZ on C1%4(52).
Assume that Z is oriented, even dimensional and spin. Put n = dim Z.

Let STZ¢ = ST_Z‘ ® STZ¢ be the Hermitian vector bundle of (T/Z\g,gTE‘)
spinors. Let Si’:az be the vector bundle of (T9Z, g7%%) spinors. Then over
O[O’Z](BZ), STZI ~ ST@Z D STBZ.

Let (£,¢%, V%) be a Hermitian vector bundle with unitary connection
on Z, which is product near 8Z. Then it extends to Z,.

Let D?¢ be the formally self-adjoint Dirac operator on Z* associated to

(977, V¢).

To simplify the exposition we will assume that D?Z is invertible. Let
¢ > 0 be large enough so that for any A € Sp(D?%%),£|)\| > 1.

Then by following ideas of Cheeger [C1, 2], Chou showed in [Ch]
that D, extends to a self-adjoint operator with domain the first Sobolev

space Hl(Zg STZ‘ ® £). Moreover for p > 1, D is a Fredholm operator
H?(Z,, SZ‘ ®¢) = HP=1(Z,, S ® ¢) and

1.42 Ind (DZ) = dimker DZ — dim ker D?¢ .
(1.42) n

Let Df be the Atiyah-Patodi-Singer operator considered in Section 1
e).
Proposition 1.7. The following identity holds

o~

(1.43) Ind (DZ) = Ind (D%).

ProOF : If s is a H! section of SIZ‘ ® £ such that Df‘s = 0, then on
cl04(5z),

o n—1 ¢D% g
' = =0.
(1.44) <3T+ o )3+ -

Write s in the form

(1.45) s = Z sx(r), D%Zsy = Xsy.
A€ESP(D?7)
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From (1.44), one deduces easily that since / |h|2 r"ldrdz < 4oo, if
[0,6]xZ

> %, then s, = 0. Recall that if A € Sp(D?%%),£|\| > —é— So if D%ts = 0,

then PZOSIBZ =0.

We then find that ker DZ ~ ker Df”. Similarly, one proves that ker DZ ~
ker DZ¢. Our Proposition follows. O

REMARK 1.8. Proposition 1.7 asserts the remarkable fact that while Atiyah-
Patodi-Singer conditions are global on 0Z, the apparently “local” Ly con-
ditions of Cheeger and Chou imposes on the kernels and cokernels of D%
the global boundary conditions of Atiyah-Patodi-Singer. This is because
any neighborhood of the vertex § encodes the global geometry of the cross
section.

Cheeger[C1,2] and Chou [Cho] apply the heat equation method to the
index problem considered above. In particular the functional calculus over
cones introduced by Cheeger allows an explicit evaluation of the heat kernel
on C(0Z). A direct computation shows that

(1.46) Ind D% = /A A(TZ,V7%) ch(g,VE) — 1027 (0).

In (1.46), $7(0) appears as the contribution of the vertex 4 to the index. Of
course given Proposition 1.7, this result fits with Theorem 1.4.

e) The L, cohomology of manifolds with conical singularities.
Let Z = Z; be taken as before. Let d be the de Rham operator on Z,

let d* be the formal adjoint of d with respect to the metric g7Z.

For simplicity, assume that Z is even dimensional. In [C3], Cheeger
calculated the L, cohomology of a class of manifolds with singularities, the
riemannian pseudo-manifolds, whose simplest version is the above manifold
Z. In this case the strong closures of d and d* are adjoint to each other,
and so the L? cohomology exhibits Poincaré duality. This remarkable fact
raised the question of the connection between the Ly cohomology and the
intersection cohomology of the corresponding spaces of Goresky and Mc
Pherson. For a history of the subject, we refer to [KI].

For our Z considered above, if H ) (2 ) denote the Ly cohomology of A ,
by [C1], [C2, p. 132, 133],

: ; . _dimZ
H(z)(Z):HZ(Z) for i < 2 5
. i . i . dim Z
(1.47) = the image of H'(Z,0Z) in H'(Z) for i = 5

= H(Z,0Z) for i > d“gz.
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In particular if sign,(Z) is the Ly signature of Z,

(1.48) sign,(Z) = sign(Z).
Put
(1.49) D=d+d".

In this case, Cheeger showed that the operator D is essentially self-adjoint
on its obvious domain, and that ker D ~ H (2)(2).

The L, signature sign,(X) can be shown to be equal to Ind (D). By
using a heat equation formula for the signature, Cheeger [C2] obtains the
formula

(1.50) signz(Z)z/ZE(TZ,VTZ)—n

562, even

0).

In view of (1.48), it is natural that formula (1.50) coincides with the Atiyah-
Patodi-Singer formula for sign (Z). In [C2], Cheeger used (1.50) as a start-
ing point for the construction of the £-classes of pseudo-manifolds in terms
of the eta invariants of the links.

The explicit computation of the L, signature for more general spaces
is of considerable interest [Mii2], [St]. Formula (1.50) for the Ly signature
of Z appears as the prototype of such formulas.

When Z is odd dimensional, there is an obstruction to Poincaré duality,
which lies in the middle dimensional cohomology of 8Z. When sign (0Z) =
0, Cheeger [C1] has shown how to restore Poincaré duality by imposing
x-invariant boundary conditions.

f) The b-calculus of Melrose.

To attack the index problem of Atiyah-Patodi-Singer from a different
point of view, Melrose has developed a new machinery, the b-calculus. In

2

[Me], Melrose introduces the idea of a b-metric %~ + g% on the cylinder
10, +00[xY (which differs from the conical metric dr? +r2¢7Y by the factor
3). V

Let us assume for simplicity that D?Z is invertible. If Z is the mani-
fold Z with the cylinder of Y = 87 attached, Melrose considers the index
problem for the Dirac operator associated to a corresponding b-metric. The
operator D is still Fredholm, but the corresponding heat kernels are no
longer trace class. Still they have a b-trace, i.e. a renormalized trace.

In [Me], Melrose shows that in the appropriate context, if,

(1.51) a; = b-Tr [exp(—thDf_)] —b-Tr [exp(—thDf)] :
then
. _ Z
t_lgrnoo a; = Ind (DY),
(1.52) R
lim oy = / A(TZ,VTZ) ch(¢,VE).
t—0 7

The fundamental fact is that in (1.52), oy is non constant. The eta invariant

@ then appears as a formula for — / E?dt'
0
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I1. The local families index theorem, adiabatic limits and the 7
form.

In this Section, we review various results connected with a refinement of
the families index theorem of Atiyah-Singer [AS2], the local families index
theorem [B2].

In a) and b), we briefly state the families index theorem of Atiyah-Singer
[AS2], [APS2] in its cohomological form. In c) and d), we introduce one
essential technical tool, the superconnections of Quillen [Q1], which provide
a refinement of Chern-Weil theory. In e), when the fibres Z of the fibration
m : M — B are even dimensional, we construct the corresponding Levi-
Civita superconnection, and we state the local families index theorem of
[B2]. Also we obtain an associated odd form 7] on B, which transgresses
the families index theorem [AS2] at the level of differential forms. In f),
we review the results of [Q2], [BF1,2] on determinant bundles. In g), we
give the local families index theorem of [BF2] when the fibres Z are odd
dimensional, and we construct an associated even 7 form on B. In h), we
relate the eta invariant to the component of degree 0 of 7. In i), we state
the holonomy theorem [BF2], [C4] in the form suggested by Witten [W].
In j), we give results of [BC1], [D] on the adiabatic limit of eta invariants.
Finally in k), we state the families index theorem for families of manifolds
with boundary [BC2,3], [MeP1,2].

a) The case where Z is even dimensional.

Let # : X — B be a submersion with compact fibre Z. Assume that
the fibres are oriented and spin. Let g7 be a metric on the relative tangent
bundle TZ, and let ST# be the vector bundle on Z of the (T'Z, g7%) spinors.

Let (£, ¢%, V%) be a Hermitian vector bundle on X, equipped with a
unitary connection.

For b € B, let DZ be the Dirac operator acting on C®(Z, (STZ ®¢)z,).
Then (Df Joes is a family of elliptic self-adjoint operators.

Assume first that the fibres Z are even dimensional. Then §7% = §T%¢g
STZ. Also D interchanges C*°(Zy, (ST? ®¢),z,) and C®(Zy, (STZ ®§), Z,)-
Let D¥ , be the restriction of DZ to C®(Zy, (S1% ®£)|z,). Then (DZ ,)seB
is a famlly of Fredholm operators over B.

By Atiyah-Singer [AS2], the family (D ;) defines an element Ind D, €
K°(B). When ker D | is of locally constant dimension,

(2.1) Ind (DZ) = [ker DZ — ker D?] in K°(B).

In the general case [AS2], one can perturb the family (DZ) by a family of

fibrewise regularizing operator so as to represent Ind (DZ) by an explicit
difference bundle on B.

In [AS2], Atiyah and Singer have calculated the index of a general fam-
ily of elliptic operators in terms of the principal symbol of these operators.
Recall that the Chern character map K°(B) ®z Q — H°**(B,Q) is an
identification of Q-modules. In [AS2], Atiyah-Singer obtain the formula

(2.2) ch(Ind DZ) =, [Z(TZ) ch({)] in H°(B, Q).
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When B is reduced to a point, Ind D, € Z, and (2.2) reduces to the Atiyah-
Singer index theorem [AS1],

(2.3) Ind (D?) = / A(TZ)ch(€) in Z.
Z

b) The case where Z is odd dimensional.
If Z is odd dimensional, (D%),¢cs is a family of self-adjoint operators.
By [AS3], [APS2, Section 3], it defines an element Ind (D) € K(B).
Again there is a Chern character map ch : K}(B)®z Q — H°44(B, Q)

which is compatible with Bott periodicity. Then the obvious analogue of
(2.2) still holds.

¢) Superconnections : the Z,-graded case.
Let A be a Zj-graded algebra. If a,b € A, we define the supercommu-
tator [a, b] by

(24) [(1,7b] = ab _ (_1)degadegbba.

Let 7 : E = Ey @ E_ — B be a complex Z,-graded vector bundle. As we
saw in Section 1 a), the bundle of algebras End (F) is Zo-graded.

Consider the Zjy-graded bundle of algebras A(T*B)® End (E). We
extend the supertrace Trs : End (F) — C defined in (1.7) to a map :

A(T*B)® End (E) — A(T*B), by the formula
(2.5) Trs (wA] =w Trs (A), w € A(T*B),A € End(F).

Using (1.9), one verifies that Trg still vanishes on supercommutators in
A(T%B)® End (E).
The vector bundle A(T*B)®E is naturally Z,-graded.

DEFINITION 2.1. A superconnection A is an odd differential operator acting
on C®(B,A(T*B)®F) such that if w € C*°(B,A(T*B)), s € C*(B, E),

(2.6) A(ws) = dws + (—1)%8“w As.

Let VE = VE+ @ VE- be a connection on E preserving the split-
ting E = EL, @ E_. Then if S = A - V¥, S is a smooth section of
(A(T*S)® End (E))°4. Conversely, any superconnection can be written
in the form A = V& + S.

DEFINITION 2.2. The curvature of the superconnection A is the operator
A2,

Since A is odd, one verifies easily that A? is a tensor, so that A? €
C*(B, (A(T*B)® End (E)) ).

One has the Bianchi identity

(2.7) [4,A4%] =0.

Let ¢ be the endomorphism of A(T*S) Ve : w — (247)~ 98«/2y,
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DEFINITION 2.3. Let ch(E, A) be the even form
(2.8) ch(E, A) = ¢ Trs [exp(—A?)] .

Now we have the result of Quillen [Q1].

Theorem 2.4. The even form ch(E, A) is closed and its cohomology class
[ch(E, A)] is given by

(2.9) [ch(E, A)] = ch(E).

PrOOF : Using the Bianchi identity (2.7), and the vanishing of Trs on
supercommutators, we get

(2.10) d Trg [exp(—A?)] = Tr, [[A, exp(-A4%)]] = 0.

Therefore the form ch(F, A) is closed. By universality, we find that [ch(E, A)]
does not depend on A. Taking A = V¥ as before, we get (2.9). O

EXAMPLE. Let w : E — B be a real oriented even dimensional spin vector
bundle. Let g€ be an Euclidean metric on V. Let S¥ = Sf ® SZ be the
vector bundle of (E, g¥) spinors.

If Y € E, let c(Y) denote the Clifford action of Y on S®. Then
vV—1c(Y) is a self-adjoint odd endomorphism of S&.

Let VZ be an Euclidean connection on E, let V5 be its lift to SE.
Put

(2.11) A=rV5" 4 V/=1e(Y).
Then A is a superconnection on 7*S¥.
Clearly
(2.12) A2 =V2 4 /"1 [VSE,C(Y)} LIYE.

The form ch(E, A) on the total space of E is gaussian-shaped along the fibres
of E . Therefore ch(E, A) represents a cohomology class in H V" (E, Q), the
cohomology with compact support in E. By Mathai-Quillen [MQ, Theorem
4.5 and 4.10],

(2.13) ch(E, A) = (—1)4mE/ 2 A-1(E T E)y

where w is a closed form on E representing the Thom class of E.
Note that in (2.13), one cannot make ¢(Y) = 0, if we want to produce
a class in H2V*(V, Q).
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Let 7 : E = E, & E_ — B be a Zy-graded complex vector bundle.
Let gF = g+ @ ¢®- be a Hermitian metric on E such that E, and E_ are

orthogonal in E. Let VE = VE+ @ VE- be a split unitary connection on
E=FE .9 F_.

Let V € C(S, End °¥(E)) be self-adjoint. For t > 0, let A; be the
superconnection

(2.14) A, =VE VIV,

We extend ¢ to a map A(T*B)®r C — A(T*B) ®r C.
DEFINITION 2.5. Put

ar = ¢ Trs [exp(—A7)] ,

(2.15) 1 [8At
@ lrg

Br = Qi) -—8t—exp(—Af)} .

One verifies easily that, the forms «, ; are real. Also by Theorem 2.4,
a; is closed, and [@;] = ch(F). By an obvious extension of Chern-Simons
theory to superconnections,

0
(216) aat - —dﬁt .
Clearly
(2.17) ag = ch(E,VE).

Assume that ker V has locally constant dimension, i.e. kerV is a Zo-
graded smooth vector subbundle of E. Then

(2.18) [E] = [ker V] in K°(B).
Let V¥V be the orthogonal projection of VE on ker V.

Now we state a result by Berline-Vergne [BeV, Theorem 1.9], [BeGeV,
Theorems 9.2 and 9.7].

Theorem 2.6. Ast — +o0,
1
a; = ch(ker V, V¥V) + O <%> ,

1
=0 ().

DEFINITION 2.7. Put

(2.19)

+o00

(2.20) 7= Budt.
0
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Theorem 2.8. The form 7 is real and odd, and moreover

(2.21) dfj = ch(E,VF) — ch(ker V, V¥V),

PROOF : This follows from (2.16), (2.17), (2.19). O

DEFINITION 2.9. We will say that (E, g%, VEZ, V) splitsif E = ker V&Im V,
if the connection V¥ preserves ker D and Im V, and V is a unitary odd
section of End (Im V') preserving V™ V.

Now we state a result characterizing the form 7 uniquely. This is an
obvious analogue of corresponding results for Bott-Chern classes in [BGS1].

Theorem 2.10. There exists a unique way to associate to (E,gE,VE,V)
an odd form 7 in C®° (B, A°%4(T*B))/dC>(B, A®**(T* B)) having the fol-
lowing three properties

a) 7 is functorial.
b) If (E,gF,VEZ V) splits, then 7j = 0.
c) The following identity holds

(2.22) dij = ch(E,VE) — ch(ker V, V¥ V),

ProOF : If (E, g%,V V) splits, then

(2.23) A7 =VE2 4 tpimY
and so
(2.24) B, =0.

It follows that if 77 is taken as in (2.20),
(2.25) 7=0.

So the form 7 of Definition 2.9 has properties a), b}, ¢). To establish unique-
ness, one verifies easily that over S x [0, 1], one can deform (E, g%, VE V) at

s =0 into a split object at s = 1. Let (E’, g, VE, 17) be the corresponding
object on S X [0,1]. Then if 7 is taken as in our Theorem,

(2.26) 7= / (ch E, VE) — ch(ker v, Vkerv)) modulo coboundaries,
[0,1]

which characterizes the class of 77 uniquely. O
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d) Superconnections : the odd case.

Let now 7 : E — B be a Hermitian vector bundle on B.

Let o be an odd variable such that 02 = 1. Then E ® C(0) is a Z»-
graded vector bundle, and End (E) ® C(0) is a Z,-graded algebra. Let Tr’

be the functional from A(T*B)®(End (E) ® C(o)) into A(T*B) such that
ifwe A(T*B), A € End (E),

(2.27) Tr’(wA) =0.

Tr’ (wAo) = w Tr(4).
Again Tr° vanishes on supercommutators.

DEFINITION 2.11. A superconnection is an odd differential operator acting
on C*®(B, A(T* B))®(E ® C(0)) such that (2.6) still holds

Let A2 be the curvature of A. Then A2 € C*(B, (A(T*B)®(End (E)®
C(o.))even)_

Now we have the result of Quillen [Q1, Section 5].
Proposition 2.12. The odd form
(2.28) a = Tt [exp(—A?)]
is closed and ezact.
PROOF : By proceeding as in the proof of Theorem 2.4, we see that a is

closed. Moreover, we find that [o] does not depend on A. Also if A = VE,
a = 0. The proof of our Proposition is complete. O

Let 7 : (E,g9F) — B be a complex Hermitian vector bundle. Let V¥

be a unitary connection on (E, g¥).
Let V € C*(B, End (FE)) be self-adjoint. For ¢ > 0, let A; be the
superconnection

(2.29) A =VE +Vtve.

DEFINITION 2.13. Put

ar = (20)! /%0 Tr" [exp(—A7)] ,
(2.30) 1 » [04, )

Be = ﬁ‘.OTf [_at_ eXP(—At)] ,

As before, the forms oy, 8; are real and by Proposition 2.12, the form
a4 is closed and exact. Again as in (2.16),

aat _
(2.31) = = —dfe.
Clearly
(232) Qp = 0.

Assume that ker(V) is of locally constant dimension, so that ker V' is a
vector subbundle of E. Let V¥'(V) be the orthogonal projection of V¥ on

ker V.
By [BeV, Theorem 1.9], [BeGeV, Theorems 9.2 and 9.7], we have
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Theorem 2.14. Ast — +oo,

1
-o().
t
(2.33) \/1_
B,=0 (m) .
DEFINITION 2.15. Put
+o0
(2.34) n= Bedt .

0

Theorem 2.16. The even form 7 is real and closed.

PrOOF : By (2.32), (2.33)

(2.35) 0y =0, ae =0.
Using (2.31), we find that
(2.36) dp=0.

O

Let Eso (E<p) be the direct sum of the eigenspaces of E associated to
positive (resp. negative) eigenvalues of V. Put Ey = ker V. Then FE splits
orthogonally as

(237) E = E>0 (35 E<0 &) EQ .
The following result was proved in [BC, Theorem 2.43].

Theorem 2.17. The cohomology class [7)] of 7 does not depend on VE.
More precisely

(2.38) [ = 3 (ch(E>o) = ch(Eco)) -

PROOF : Using Theorem 2.16 and the universality of 7, it is clear that [7]
does not depend on the metric g¥, the connection VZ or V as long as the
splitting is kept fixed and orthogonal.

By deforming V' into l_“;l (which acts like 0 on Ey), we may and will
assume that V is +1 on E5qg, —1 on E.y and 0 on Ej, and suppose that
V¥ is a split connection VE = VE>0 @ VF<0 @ VFo, Then we get

1 - | Vo
(2.39) Bi = Z=¢ T | Sz exp (= (V®? + 11 0em.0))
so that
(2.40)

7= 3¢ T° [Voexp(=VF?)] = 3 (ch(E>o, VF>°) = ch(Eco, VF<?))
from which we get (2.38). a
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REMARK 2.18. Observe that
o~ 1 T 1 E 2
(241) 7= m/ 712 Tr [Vaexp (— (V + \/EVU) )} dt.
0

In particular
IR
(2.42) 7 = ﬁ/o t2 Tr [V exp (—tV?)] dt.

We discover that the expression for 7(®) is formally exactly the same as the
one in (1.25) for 1n“(0). By (2.38) or by (2.42),

(2.43) 7 = 1 (tk(Eso) — rk(E<o)) -

Of course in (1.25), 2n(0) is a renormalized version of (2.42). This formal
analogy will be very important in the sequel.

e) The local families index theorem : the even dimensional case.
We now make the same assumptions as in Section 2a). For b € B, put

(2.44) Hyy=C>(Z,(ST? ®¢)z,)

Then H = H; @ H_ is an infinite dimensional Z,-graded vector bundle on
B.

Let TH# X be a smooth vector bundle of TX such that TX = T X@TZ.

We claim that (T#X,g7T%) determines a canonical Euclidean connec-
tion VT2 on (TZ,g7%4) [B2, Theorem 1.9]. We give two descriptions of
VTZ  In fact, if g% is a metric on TX such that T# X is orthogonal to
TZ and that g7Z is the restriction of g7% to T'Z, if VTX is the Levi-Civita
connection on (7°X, g7%), then

(2.45) vTZ = pTagTX,

Another description of V7Z is as follows [BC, Section 4] :
e Fibrewise, V77 is the Levi-Civita connection of (Z, g7%).
e IfU e TB,if U¥ ¢ TEX lifts U, if V is a smooth section of TZ,

(2.46) VEEV = [UH, V] + § (Lyng™?) V.

Let ¢78 be a Riemannian metric on g75. Let VT2 be the Levi-Civita
connection on (T B, gT8). Then VT2 lifts to a connection vT*X on THX.
Let T be the torsion of the connection of the connection vTiX g vTZ
onTX =THX ®TZ. Then by [B2, Theorem 1.9], T does not depend on

gTB. More precisely
e T vanishesonTZ xTZ.
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o IfUVeTB,
(2.47) TWH,vH)=-pPT2 [U" vH].
o fUeTB,VeTZ
(2.48) TWUH,V)=LtLyug™?V.
Let V'TX be the Levi-Civita connection on (TX,m*¢g72 @ ¢g7%). Put
(2.49) S =vTX _yTXx,
Since V/TX is torsion free, if U,V, W € TX,
(2.50) 2(S(U)V, W)+ (T(U,V), W)+ (T(W,U),V) - {(T(V,W),U) .

Then by (2.50), the tensor (S(.).,.) does not depend on g7B.
The connection VT2 lifts to a unitary connection V° = v eV
on §72 = STZ ¢ STZ_ Let VS"?®¢ he the obvious connection on STZ @ ¢.
Let dvz be the Riemannian volume form along the fibres Z. If U is

a smooth section of T'B, the Lie derivative operator Lyus acts on tensors
along the fibre Z. Put

STZ

Lyudvz(z)

(2.51) divz(U) = =50

Then one verifies easily that divz(U) is a tensor.
In the sequel, we identify smooth sections of H on B to smooth sections
of ST2 ® ¢ on X.

DEFINITION 2.19. Let V¥ be the connection on H such that if U € T'S, if
h is a smooth section of H on S,

(2.52) Vs = v, 8.
Put
(2.53) Vit =VE + Ldivz(U).

Then one verifies easily that V%% is a unitary connection on H, pre-
serving H, and H_. Moreover the curvatures of V# and V#* take their
values in first order differential operators acting along the fibres Z.

Let fi1,...,fm be a basis of TB, let f1,..., f™ be the dual basis of
T*B. Set

(2.54) o(T) = 3 ffPe(T (s, £4)) -

Then ¢(T) € (A(T*B)® End (H)) %4,
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DEFINITION 2.20. For ¢ > 0, let A; be the superconnection on H,
c(T)
vk
| Observe that A7 is fibrewise elliptic, so that exp(—A?) is fibrewise trace
class.

(2.55) Ay =VHE 4 \tD?

DEFINITION 2.21. Put

oy = ¢ Trg [exp(—AD)] ,
(2.56) 1 9A ,

B = @iz’ Trs [—(9? eXP(—At)] :

Now we have the local families index theorem of [B2, Theorems 3.4, 4.12 and 4.16].

Theorem 2.22. The forms oy and B; are real and the form o is closed.
The cohomology class (o] of oy is constant and

(2.57) [a¢] = ch(Ind D?) in H®**(B, Q).
Also
Ja

Finally ast — 0,
a = . (,Z(Tz, vTZ) ch(¢, V¢ )) +O),
B =0(1).

REMARK 2.23. The fact that oy is closed follows from the arguments in
Theorem 2.4. The most difficult result is (2.59). In fact the main point of
[B2] was to produce the “right” superconnection A; such that a result like
(2.59) would hold.

Observe that, in general, (2.59) does not hold for the “simpler” super-
connection V-4 + \/tDZ.

Needless to say, from [B2, Theorem 2.22], we recover the cohomo-
logical form of the families index theorem of Atiyah-Singer [AS2] given in
(2.2). Still our proof [B2] is completely local on the basis B, hence the fact
Theorem 2.22 is called a local families index theorem. Still to prove (2.59),
we use the fibrewise heat kernel for exp(—A?), and prove a corresponding
convergence result which is local on the fibre Z.

Let g7 be a metric on TB. For ¢ > 0, let gZX be the metric on
TX =THX ®TZ,

(2.59)

1
(2.60) grX = - g BegTe.

Assume that X and B are compact and that B is even dimensional, oriented
and spin. Then X is also even dimensional, oriented and spin. Let STZ be
the vector bundle of (T'B, g72) spinors. For € > 0, let DX be the Dirac
operator acting on C*°(X, STX ® ¢), associated to (g7 X, V¢).

Let Pf(z,7') (z,7' € X) be the smooth heat kernel for exp(—tDX?)
associated to the volume dv(z’). In view of Theorems 1.2 and 2.22, it is
natural to ask whether, given ¢t > 0, as ¢ = 0, Trg [Pf(z,z)] has a limit.
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Let Q:(z,z’) be the smooth fibrewise kernel of exp(—A?). Following a
terminology introduced by physicists [W], the idea of studying the limit of
certain quantities as € — 0 is called passing to the adiabatic limit.

A first result in that direction is as follows [B2, Theorem 5.3].

Theorem 2.24. Fort > 0,

(2:61)  lim T, [PE(22)) = {p T [Qu(o, )] ATB,972) )"

PrOOF : In [B2], the idea is to view (2.61) as a consequence of the local
index theorem over B with coeflicients in the infinite dimensional Z,-graded
vector bundle H.

Put

*STBRsTZ .
(2.62) D =3 e(fa) (V3T 2 %6 4 L aiv(s))
Then a simple computation [BC, eq. (4.26)] shows that
(2.63) DX = D? + VeD¥ — eqe(fa)e(fo)e(T(F3, £5)) -

At least formally, (2.61) follows easily from local index theoretic techniques
over B. g

Let V'TX be the Levi-Civita connection on (T'X,g7X). Put
(2.64) S, =Vv'TX _yTX,
Then by (2.50), we find that

PTZSE — PTZS,

(2.65) PT"Xg, =¢pT"Xg.

From (2.64), (2.65), we find that as € — 0, the connection VI has a limit.
More precisely,
(2.66) VX 5 vT* 4 P,
From (2.66), we find [BF2, eq. (3.196)] that as ¢ — 0,
(2.67) A(TX,V'TX) 5 A(T2,VT%)n* A(TB,VTE).
Now while A\(TX , V'TX) ch(¢, V¢) appears naturally when applying the

local index Theorem 1.2 to the operator DX over X, A(TZ, VTZ) ch(¢, V¥E)
appears naturally in the local families index theorem stated in Theorem 2.22.
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Given Theorem 2.24, the “local in the fibre” version of the local families
index Theorem of [B2] stated in Theorem 2.22 is just the assertion that the
following diagram commutes

{A(TX,V'TX)

(2.68) Trs [P (2, 2)] 50 ch(g, V¢ }max(X)

e—0 LE—*O

A{(p Trs [Qi(z, z)] {{Z(TZ, VTZ) ch(€, VE)}max(2)
A(TB, VTB)}max(B) t—0 A\(TB, VTB)}max(B)

Needless to say, the explicit form for 4; in (2.55) was found by trying
to make the above diagram commute by brute force. The comparison of
formulas (2.55) and (2.63) for A; and DX provides overwhelming evidence
that A; is the “right” superconnection.

Finally observe that given Theorems 1.2 and 2.24, and also (2.66), a
proof of Theorem 2.22 can be given, which makes the commutativity of the
above diagram a tautology, by showing that the convergence as ¢ — 0 in the
upper row is uniform in € €]0, 1].

Assume that ker DZ is of locally constant dimension. Then ker(D?)

is a smooth subbundle of H. Let VkerP”.¢ be the orthogonal projection of
VH¥ on ker DZ.

The we have the following result of Berline-Getzler-Vergne (BeGeV,
Theorems 9.19 and 9.23], which extends Theorem 2.6 to an infinite dimen-
sional situation.

Theorem 2.25. Ast — +oo,

1
=ch kerDZ,VkerDz’“ +0 (———) )
1227 ( ) \/Z

1
=0 ()

DEFINITION 2.26. Let 77 be the odd form on B

(2.69)

+oo
(2.70) 7= Bedt .
0

By (2.58), (2.59), (2.69) we get the following result.
Theorem 2.27. The odd smooth form 1 on B is such that

(271)  dij =7, |A(TZ,V7%)ch(¢, vf)] _ ch(ker DZ, vker D%y
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REMARK 2.28. From equation (2.71), one deduces easily how, modulo

coboundaries, 7 depends on (TH X, gTZ ¢%). This is because any two sets
of such data can be deformed into each other.

f) The determinant bundle.

We make the same assumptions as in Section 2 e).

Complex lines form a group under the ® operation. In particular, if A is
a complex line, let A~! be the dual line, so that A® A~! = C, the canonical
complex line.

If E is a complex vector space, put

(2.72) det £ = A™**E.
It E=F,®FE_ isa Zy-graded vector space, set

(2.73) det E = det By @ (det E_)~".
DEFINITION 2.29. For b € B, set

(2.74) Xp = (detker DZ) ™"

Then in [Q2], Quillen has shown how to glue the Ay’s into a honest line
bundle A, even though, in general, the dimension of ker Dib is not locally
constant. The idea is as follows. For a > 0, let U, be the open set

(2.75) U, = {b €B,a¢ Sp(DbZ’z)} .

Let H[%9] be the direct sum of the eigenspaces of Dbz 2 for eigenvalues u < a.
Put

(2.76) A0l — (det H[O’“]) -

Then A%4 is a smooth line bundle on U,.
Given 0 < a < o/, let H[%%] be the direct sum of eigenspace of DbZ’2
for eigenvalues p € [a,a’]. Set

(2.77) Aol = (det Hlo2'1)-1

Then A®%] has a canonical nonzero section det Df’[a’a ], which is smooth

on U*NU®. Also on U* N U,
(2.78) Al0:0T o pl0.0] @ ylaa]
Since Al®a] i canonically trivialized, on U?% N Ue

(2.79) Al0e] ~ \[00]
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DEFINITION 2.30. The inverse determinant bundle ) is the line bundle
which restricts to Al%¢l on U2,

By (2.79), we find that for any b € B,
(2.80) Ap = (det ker D,,Z)_1

By the Atiyah-Singer family index theorem [AS2] (see eq. (2.2)),

N )
(2.81) a(\) = -, [A(TZ) ch(g)] .
In [Q2], [BF1,2], Quillen and Bismut and Freed have shown how to equip
A with a smooth metric | ||, and a unitary connection V* such that
~ (2)
(2.82) a(\ V) = —m, [A(TZ, VTZ) ch(¢, vﬁ)] .

Here we will concentrate on the construction of the imaginary part
of the connection V* [BF1,2]. Assume first that ker DZ is of locally
constant dimension. Then (detker DZ)~! is a smooth line bundle and
A = (det ker DZ)~1,

The connection V¥ P%:¢ induces a connection 1V* on A. Put

(2.83) 2V =1V + +2imV).
Clearly

1o Z oker DZ,un ]
(2.84) (A 1VY) = — [ch(kerD , yker D7, )] .

From (2.84), we deduce that

(2.85) 10,2V = — [ch(kerDZ,VkerDz’“)] @G,
By (2.71), (2.85), we find that

(2.86) c1(A,2VH) = —, [A(Tz, vT2) ch(f,Vf)] @

The connection V* in [BF1,2] of differs from !V* by an exact real
form, so that (2.82) follows from (2.86).

The remarkable fact is that even if ker DZ is not of locally constant di-
mension, in [BF1,2], it is possible to define the connection 2V* by formulas

similar to (2.83). The idea is to construct over U® a connection yAe by a
suitable modification of (2.83), and to establish that the connections VA[M],

suitably modified, define a connection V* on A, for which (2.82) still holds.

g) The local families index theorem : the odd case.
Now we assume that the fibres Z are odd dimensional. Put

(2.87) Hy = C* (Z, (572 ®€)y2,) -

Then (D?) is a family of self-adjoint operators acting on H.
Take o as in Section 2 d).



32 Local index theory, eta invariants, and holomorphic torsion

DEFINITION 2.31. For £ > 0, put

c(T)o
4/t

(2.88) Ay =VHEY 4 VTD%5 -

Again, exp(—A?) is fibrewise trace class.
DEFINITION 2.32. Put
ar = (20)/%0 Te? [exp(—A7)]

(2.89) 1 . % (A2
b= o |Gt exp(-47)]

ot
Now we state a result of [BF2, Theorem 2.10].

Theorem 2.33. The forms a; and B; are real, and the form ay is closed.
The cohomology class [oy] of oy is constant, and

(2.90) [a¢] = ch(D?) in H°¥(B, Q).
Also
da

Finally ast — 0

a = [Z(Tz, vTZ) ch(¢, V¢ )] +O@),
By = O(1).

(2.92)

Assume now that ker DZ is of locally constant dimension. Then ker D?
is a vector bundle on B.
We have the obvious analogue of Theorems 2.14 and 1.25.

Theorem 2.34. Ast — +oo,

mo(l)

1
ﬁtzo(ﬁ)'

DEFINITION 2.35. Let 77 be the even form

(2.93)

+o0

(2.94) 7= Bydt .
0
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Theorem 2.36. The even form 7 is such that
(2.95) i = . [E(TZ, vTZ) ch(e, vf)] .

PrOOF : This follows from (2.91)-(2.93). O

h) The odd local families index theorem and the eta invariant.
Observe that

(2.96) (0) ﬁ Tr [l\)—;- exp(—tDZ’z)} .

By (2.92), as ¢t — 0,
(2.97) © = 0(1).

Now by (1.25), (2.97) guarantees that the eta function nP”(s) is holomor-
phic at 0. Note that this result extends Theorem 1.4 to the case where Z
does not necessarily bound. This result is also a consequence of [APS3,
Theorem 4.5].

By (2.94), (2.96),

1 +0o0
o) 70=g= [V D% exp(—tD7] ar
T Jo

Using (1.25), (2.97), (2.98), we get
(2.99) 7 = £nP"(0).

Moreover in degree 1, (2.95) specializes to
~ 1)
(2.100) di7® =, [A(TZ, VTZ) ch(€, V¢ )] .

In view of (2.99), formula (2.100) gives a local expression for d3n(0), which,
when the fibres Z bound, can also be derived from the index theorem of
Atiyah-Patodi-Singer [APS1).

When B is a point (i.e. in the case of a single fibre), the condition that
ker(D?) is of locally constant dimension is empty. However in general, this
condition is non empty, since it implies that the family (D%) is trivial in
K(B).

Set

(2.101) ﬁDZ (s)=13 (nDz(s) + dimkerDZ) .

Then ﬁDz (0) is called the reduced eta invariant of DZ. In [APS3, Section

2], 7P Z(O) is shown to define a smooth function with values in R/Z, and
the general form of (2.100) is

(2.102) ai?” (0) = v | A(TZ,v77) ch(é,Vf)}m :



34 Local index theory, eta invariants, and holomorphic torsion

i) The holonomy Theorem.
Now we use the assumptions and notation of Sections 2 ) and 2 f).
Let s € S — ¢; € B be an oriented smooth curve to B. In [W],

Witten raised the question of calculating the holonomy of a connection V*
on A in terms of the eta invariant of the odd dimensional oriented compact
spin manifold M = 7=1(C).

Let ¢7X be a Riemannian metric on TX, let g7 be a metric on T'B.
Put

1
(2.103) gIX = gTX 4 —qgT8.
€

Let g7 be the metric on TM induced by g7 on TM.

We equip §; with the non trivial spin structure. Then since T'Z is spin,
TM inherits an obvious spin structure. Let DM be the Dirac operator on
M associated to g7 M, V¢,

Let 70 € S; be the parallel transport with respect to the connection
V* along s € S; — c,.

Then we have the following result by Bismut-Freed [BF2, Theorem
3.16] and Cheeger [C4].

Theorem 2.37. The limit ase — 0 ofﬁDy (0) € R/Z exists, and moreover

(2.104) 0 = exp(=2ir lim 727 (0)).
e—0
PROOF : Assume first that ¢ bounds A in B. Then by (2.82)

(2.105) 70 = exp (-m/ A(TZ,VvT?) ch(g,v€)> .
n=1(A)

On the other hand, by the index Theorem of Atiyah-Patodi-Singer [APS1]
(see Theorem 1.3),

(2.106) 72" (0) :/ A(TM, g™ ) ch(¢,VE) in R/Z.
m=1(A)
As in (2.67), one verifies easily that as ¢ — 0,

(2.107) ATM, gT™) - A(TZ,V7?).

From (2.106), (2.107), we find that as ¢ — 0,
(2.108) 7P (0) - / A(T2,977) ch(¢, V¢) in R/Z.
n-1(a)

By (2.105)-(2.108), we get (2.104) in this case. In general, using (2.102) and
(2.107), one finds easily that li_ﬂr(l) ?]'D;M (0) € R/Z exists. The main point of
&€
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[BF2], [C4] is to extend (2.104) when ¢ does not bound in B. Then if for

b € C, DZ is invertible, a direct study of the formula (2.98) for ﬁDéM (0) by
the methods used in the proof of (2 68) shows that as £ — 0,

(2.109) ) = /n,

from which (2.104) follows easily. When ker DZ is nonzero and not even a
vector bundle over ¢, a non trivial perturbation argument shows that (2.104)
still holds. a

REMARK 2.38. Theorem 2.37 is one of the motivations for studying adia-
batic limits of eta invariants, when instead of the circle ¢, the base of the
fibration is arbitrary.

j) Adiabatic limits of eta invariants.

Assume first that B is an odd dimensional compact oriented spin Rie-
mannian manifold. Let E = E, ® E_ be a Z,-graded Hermitian vector
bundle as in Section 2 ¢), and let V € End (E) be a self-adjoint section of
End °% (E), such that ker V' is of locally constant dimension. Let Vi be the
restriction of V' to E1. In the sequel, the assumptions of Section 2 ¢) will
be in force. In particular VZ = VF+ @ V- is a split unitary connection
on E = E, ® E_, and V¥V is the orthogonal projection of VZ on ker V.
Also the odd form 7 was defined in Definition 2.7.

Let DB-Fx pDBkerVi he the Dirac operators associated to the above
data, acting on smooth actions over B of STB @ E., ST @ ker V1. Let

7P ®.Bx (0), 7P oker v (0) be the corresponding reduced eta invariants.

Theorem 2.39. The following identity holds
(2110) 7777 () - 777~ (0)

— ﬁDB’ker Vi (0) _ ﬁDB,kET V- (0) + / A\(TB, VTB);I\ in R/Z.
B

PROOF : In view of (2.21), (2.102), it is clear that both sides of (2.110)
vary in the same way. By a simple deformation argument, we may as well
assume that Ey = Ey 4 @ F, E_ = Ey_ @ F, V is the identity on F and
vanishes on Ey @ Fy —, VE+ = VEo+ g VF VE- = VEo- g VI, In this
situation, by Theorem 2.10, 7 vanishes, and (2.110) is a trivial identity. O

Assume now that B is instead even dimensional, that F is a Hermitian
vector bundle, that V is a self-adjoint section of End (E) such that ker V is
a vector bundle, and V¥ is a unitary connection on E. We use the notation
of Section 2 d).

Let DB-EF DBkerV he the Dirac operators acting on smooth sections
of C*°(B,STE ® E), C*(B,STE @ ker V). Clearly

7277 (0) = L Ind (DPF) in R/Z

(2.111) N
727V (0) = L Ind (DB*V) in R/Z.

1
2
1
2
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Theorem 2.40. The following identities holds

_DB,ker \4

(2.112) 7275 0) =7 (0) + / A(TB,VTB)7 in R/Z.
B

PrOOF : By Theorem 2.17 and the Atiyah-Singer index theorem [AS1],
(2.113) /B/I(TB,VTB)?;: L (Ind (DPF>0) _ Ind (Df’E“’)) ,

and so

(2.114) /B A(TB,Y"P)7 = § (Ind (D) + Ind (DF'P<)) in R/Z.
By (2.111), (2.114), we get (2.112). O

Now we make again the same assumptions and use the same notation
as in Section 2 c¢). Also we suppose that B is compact, oriented, spin and
odd dimensional.

Let 7 = +1 on E+. Then D'B = 7DB 4V is a self-adjoint elliptic oper-

ator acting on C°(B, STE @ F). Let 70" (0) be the reduced eta invariant
associated to D'B. By a simple deformation argument, one finds that

(2.115) 727 0) =72 (0) - 72°° (0) in R/Z.

Now for € > 0, we replace g7 2 by in Let D'2 be the corresponding

Dirac operator. Then by (2.102), ﬁDIEB(O) remains constant in R/Z. Now,
we give a refinement of Theorem 2.39, established in [BC1, Theorem 2.28].

Theorem 2.41. If kerV = {0}, then the limit as € — 0 of 7P'e (0) ezists
i R, and moreover

(2.116) lim 727 (0) = / A(TB,VTB)7.
B

e—0

PROOF : The main point in the proof of [BC1] is to show that

1
2.117 lim
( ) e—0 2\/;(7;

which in turn follows from local index theory techniques. O

Te [D'B exp(—tD'B?)] = / A(TB, VBB,
B
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If B is even dimensional, an obvious analogue of Theorem 2.41 holds.
Now we make the same assumptions as in Sections 2 a) and 2 e). Sup-
pose that X and B are compact, that X is odd dimensional and that B

is oriented and spin. Then X is also oriented and spin. Let g7%,¢T® be
metrics on TZ, TB. Put

1
(2.118) gFX = Ew*gTB ®gT?.

Let DX be the Dirac operator on (X,g7%) as in Section 2 e). Using
the variation formula for eta invariants, one verifies easily that as ¢ — 0,

ﬁDeX (0) converges in R/Z.
Now we state the main result of [BC1, Theorems 4.35 and 4.95].

Theorem 2.42. If ker D = {0}, as € — 0, ﬁDeX (0) converges in R, and
moreover

(2.119) lim 7P (0) = / A(TB,VTB)7.
e—0 B

PrROOF : Formally, the proof of Theorem 2.42 is closely related to the
proof of Theorem 2.41. In fact, (2.119) is an infinite dimensional version of
(2.116), as should be clear from formula (2.63). The proof has three main
steps:

e One proves that as € — 0,

(2.120) . Béexp(—tDX’z)] - / A(TB,VTE)g
' VT2Vt : B ’ "

e One controls the lowest eigenvalue of DX as e — 0.

e One uses a version of finite propagation speed to control the integrand
in (2.98) uniformly in € as ¢ & +o0. d

REMARK 2.43. In [D], Dai has given a very interesting extension of Theo-
rem 2.42 to the case where ker D? is not necessarily zero.

Dai’s result apply in particular to the case where B is odd dimensional,
and DX is the signature operator of [APS1] associated to the metric g7 X.

In this case, there is no spectral flow, so that lin% 7P : (0) exists in R. Us-
£—

ing results of Mazzeo and Melrose [MazMe] relating small eigenvalues of
DX? to the Leray spectral of the fibration, Dai obtains a formula extending
(2.119) by adding to the right-hand side of (2.119) the reduced eta invariant
of a signature operator on B (twisted by the cohomology of the fibres) and
a sum of half integers. These integers are the “signatures” of the Leray
spectral sequence (E,,d,), for r > 3.

Adiabatic limits of eta invariants appeared naturally in the context of
the solution by Atiyah-Donnelly-Singer [ADS] of the Hirzebruch conjecture
[Hir] on the signature of Hilbert modular varieties. The fibrations which
appear in this context are fibrations by tori over a torus basis. The calcula-
tion of [ADS] was recovered in the context of 7j forms in [BC5]. For a L,
approach to the same problem, we refer to [Miil].
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k) The families index theorem for manifolds with boundary.

Let now X be a manifold with boundary, let B be a manifold, and let
7 : X — B be a fibration, whose fibres Z are smooth compact manifolds
with boundary.

We assume the fibres Z to be even dimensional, oriented and spin. Let
g7% be a metric on T'Z, which is fibrewise product near 8Z. Let THX
be a horizontal vector subbundle of T'X, such that THXIaX C T0X. Put
TH9X = T# X|5x. Then THHX is a horizontal subbundle of T9X.

Let (£,9%,V¢) be a Hermitian vector bundle on X with unitary con-
nection.

Assume first that Z is even dimensional. For b € B, let DbZ be the
Dirac operator with the Atiyah-Patodi Singer boundary conditions on 0Z.

In order that the index bundle Ind (Df ) to be well-defined, it is crucial
that the family of boundary Dirac operators D%Z does not have spectral
flow. So we first assume that

(2.121) ker D%Z = 0.

In this case, (DZ) is a family of Fredholm operators and its index
Ind (D%) € K°(B) is well-defined.
Let 7 be the even form on B constructed in Definition 2.35, which is

attached to the family D%%.
The following result is proved in Bismut-Cheeger [BC3, Theorem 6.11].

Theorem 2.44. The following identity holds

(2.122) ch(Ind DZ) =, .[,Z(TZ, VT2 ch(e, VE)| — 7 in H®*(B, Q).

PROOF : The basic idea in [BC2,3] is to replace the manifolds with bound-
ary Z by the manifolds with conical singularity Z, = ZUsz Cl%9(3Z). Then
we equip the fibres Z with a family of metric of conical type. By proceeding
as in Proposition 1.7, for £ large enough, the Atiyah-Patodi-Singer family
(DZ) and the family of L, Dirac operators (Df‘ ) have the same index. To
the family Z;, one attaches a natural Levi-Civita superconnection A¢, to
which the techniques of [B2] are formally applied. Note here that the ad-
vantage of using Z, is that the Atiyah-Patodi-Singer boundary conditions
only appear in implicit form.

Observe that equation (2.95) explains why the right-hand side of (2.122)
is closed. O

In [MeP1], Melrose and Piazza have extended Theorem 2.44 in a fun-
damental way. In fact, they observe that even if ker D97 is non trivial, by the
family index Theorem of Atiyah-Singer [AS2], the family (D%Z) € K*(B)
is trivial. They show that if B is compact, the triviality of the family (D?%)
is equivalent to the existence of a spectral section P, i.e. a smooth family of
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self-adjoint projections P, : C®(8Zy, (ST9% ® €)|z,) = C®(82,(5T9%2 @
€)|z,), such that there is R > 0 for which for any b € B,

D%y = Mu,A> R, then Pu=u

(2.123)
A< —R, then Pu=0.

Then Melrose and Piazza [MeP1] prove that if for every b € B, the
Atiyah-Patodi-Singer projection P>g 4 is replaced by Py, the family of Dirac

operators Df’f associated to the boundary conditions attached to P has

a honest index bundle Ind (D_,Z_’P). They construct an even form 7¥ on
B, formally similar to the form 7 in (2.94). However in Melrose-Piazza’s
construction, the term /D% is replaced by a more complicate expression
VtD'9% where D'9% interpolates between D%Z for t < 1 and a suitable
perturbation D% + Ap (with Ap depending on P) for t > 1. The family
Ap is smoothing and such that D%Z + Ap is invertible. It can be seen as
providing an explicit trivialization of the zero class (D?%) € K1(B). Modulo
exact forms, the form ¥ only depends on P and not on the particular choice
of A P
Then Melrose and Piazza [MeP1] prove :

Theorem 2.45. The following identity holds
(2.124)

ch(Ind (DZ7F)) = . [X(TZ, vTZ) ch(g,vf)] 7 in H®™(B,Q).

Besides in [MeP1], Melrose and Piazza compare the forms 7¥ for dif-
ferent choices of P.

When the fibres Z are odd dimensional and the family D97 is invert-
ible, Bismut-Cheeger [BC4, Section 6] conjectured a formula like (2.124)
for a family of self-adjoint Dirac operators D?. This conjecture has been
proved and extended by Melrose-Piazza [MeP2]. They adapted the idea of
a spectral section in this new context, produced a superconnection whose
Chern character forms are shown to represent the index, and established the
corresponding index formula.
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III. Analytic torsion forms and analytic torsion currents.

The purpose of this Section is to review the properties of the analytic
torsion forms of [BGS2] and [BK] , and of the analytic torsion currents of
[B2], [BGS4,5].

As explained in the introduction, analytic torsion forms are naturally
associated to a family of Hermitian Dolbeault complexes. Analytic torsion
currents are associated to an embedding 7 : Y — X and a resolution of a
holomorphic Hermitian vector bundle  on Y by a holomorphic complex of
Hermitian vector bundles on X. Analytic torsion forms and analytic torsion
currents are secondary objects which refine the Riemann-Roch-Grothendieck
theorem for submersions and immersions at the level of differential forms or
currents.

This Section in organized as follows. In a), we construct the torsion
forms associated to a holomorphic Hermitian complex of vector bundles
[BGS1], and we relate them to the secondary classes of Bott-Chern [BoCh].
In b), we consider a holomorphic submersion 7 : X — S, and a holomorphic
Hermitian vector bundle £ on X. When this fibration is Kéhler (in a sense
to be described), we show that the Levi-Civita superconnection of Defini-
tion 2.20 “respects” the holomorphic structure of the problem. When R, £
is locally free, we construct analytic torsion forms on S, which refine on the
7 forms of Definition 2.26.

In ¢), we introduce the Quillen metrics on the inverse of the determinant
of the cohomology A(¢) = (det Rm.£)~!. The construction of the Quillen
metric only involves the component of degree 0 of the above analytic torsion
forms. Then we state the curvature theorem of [BGS1,3] for the Quillen
metric on A(€).

In d), we describe the results of [BerB] and [Ma] on the compatibility
of the analytic torsion forms to the composition of submersions.

In e), we construct the analytic torsion currents of [B2], [BGS4,5].
In f), we show that these currents are compatible to the composition of
immersions.

In g) and h), we describe the results of [BL] and [B5,6] on the com-
patibility of the analytic torsion forms and analytic torsion currents to the
composition of an immersion and a submersion.

In i), we give a short introduction to the proof of the main result in
[BL]. In j), we develop a simple but crucial technical tool in [BL], the Hodge
theory of the resolution of a point.

In k), we explain the construction in [B4] of the analytic torsion forms
associated to a short exact sequence of holomorphic vector bundles, which
plays an important role in the proof of the main result in [BL] and [B5]. In
particular the evaluation of [B4] produces the genus R of Gillet and Soulé
[GS3] in the final formula.

a) The torsion forms of a holomorphic Hermitian complex.
Let S be a complex manifold. Let

(3.1) (E,v):0>E, —>... > E3—>0
v v

be a holomorphic complex of vector bundles on S . Put

(3.2) E,=@E , E. =@ E.

i even 1 odd
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Then £ = F, @ E_ is Zy-graded.

m m
Let g% = P g¥ be a Hermitian metric on E. Let VZ = @ V¥ be
=0 1=0

m

the holomorphic Hermitian connection on £ = @ E;. Let v* be the adjoint
=0

of v. Put

(3.3) V=v+0v".
Then V is a self-adjoint section of End °%¢(E). For ¢ > 0, put

Al = VE + Vv,

(3.4) A =VE 4 Ve,
A, =VE ViV,

Clearly

(3.5) A =AY + AL

Also A; is a superconnection of the kind we already met in (2.14). Let N
be the number operator on F, i.e. N acts by multiplication by k£ on FEy.
The following result is established in [BGS1, Proposition 1.6].

Proposition 3.1. The following identities hold
A"2=0, A2=0,
At2 = [A;’,AH )
[A),AZ] =0, [A4},47] =0,

. A
0A! -1
o = 3 AN

PROOF : Since (F,v) is a holomorphic complex,
(3.7) A"2=0.

Also

oAy v 1

(38) ot ok 2

(A7, N .

The other identities in (3.6) follow easily from analogues of (3.7), (3.8). O
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DEFINITION 3.2. For ¢t > 0, put
ai = ¢ Trg [eXp(_Af)] )

DA
(3.9) By = @.7:—)1/—2<p Trs [—(9—; eXp(—A?)] :

1 = Trs [Nexp(=A7)] .

Observe that in our context, the forms a; and (3; were already intro-
duced in Definition 2.5.

Let P be the set of smooth real forms on § which are sums of forms of
type (p,p). Let P> be the subspace of the a € P® such that o = 683 + 87,
with 8 and v smooth.

Now we have the result of [BGS1, Theorem 1.15].

Theorem 3.3. The forms a; and y; lie in PS. Moreover

oo
5 = ~dBt,
3.10 —
(10 5o L@ 0
*T 2 2t
In particular
aat _ 58 Yt

PROOF :  We only prove part of Theorem 3.3. The first identity in (3.10)
was already established in (2.16). Using (3.6), we obtain the second identity
in (3.10). O

Assume now that the homology H(E,v) is of locally constant dimen-
sion. Then H(E,v) is a holomorphic Z-graded holomorphic vector bundle
on S. Clearly

(3.12) H(E,v) ~kerV.

Let g*(E:%) be the metric on H(E,v) induces by ¢F via (3.12).
One verifies easily that V'V = pPkerVyE g the holomorphic Hermit-
ian connection on (H(E,v), g#(E:). Put

m

(3.13) ch'(E,g®) = (~1)% ch(E;, g%).
=0

Then by an analogue of Theorem 2.6, as t — 400,

(3.14) 7o = ch'(H(E,v),g"E) + 0 (%) '
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DEFINITION 3.4. For s € C, 0 < Re(s) < £, put

+o00
(3.15) R(E,¢®)(s) = % /0 £ (g = o) dt.

By (3.14), R(E, g¥)(s) is a holomorphic function of s, which extends
holomorphically to s = 0.

DEFINITION 3.5. Set

(3.16) T(8,%) = 5 R(E,95)(5)ls=o.

Recall that the odd form 7 was defined in Definition 2.7. Now we have
the result of [BGS1, Theorem 1.17].

Theorem 3.6. The form T(E,g%) lies in PS. Moreover

99 (B, ¢F) = ch(H(E,v), g#F) - ch(E, gF),
(3.17) 2

1 = T
— (0 -0)=(E,¢%) =17.
5. (0= 0)5 (B g7) =1
PROOF : These identities follow easily from Theorems 2.6 and 3.3. O

DEFINITION 3.7. We will say that ((E,v),¢%) is split, if E; = F; @ F;_1 @
H;,v|g, vanishes on F; & H; and is the identity on F;_;, and the above
splitting is orthogonal with respect to g&:.

Now we state a result of [BGS1, Corollary 1.30].

Theorem 3.7. There is a unique way to associate to ((E,v),g%), with
H(E,v) of locally constant dimension, a class T(E,v) € PS /P59 such that

a) T(E,gF) is functorial.
b) If (E,gF) is split, T(E,g®) = 0.
c) The following identity holds,

09

SCT(B,g") = ch(H(B,v),g"(B) = ch(E, ).
o

(3.18)
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PROOF : [Existence is almost obvious by the above construction. As to
uniqueness, observe that over S x P!, one constructs easily a complex (E,v)

and a metric g% such that
((E,U)agE)SX{O} = ((E,’U),gE),

((E”U)ng)SX{O} is Spllt .

Using the obvious equation

(3.19)

99
(3.20) % log |Zl2 = 5{0} - 5{00} 5

we get
(3.21)

T(E,gE)z/Pl log |22 (ch (H(E,m,g’f(g'?)) —ch(E,gE)) in PS/pS®,

which guarantees uniqueness. 0

REMARK 3.8. Observe that

(3.22) R(E, %) (s) = Trs [N[V?7*],
so that
(3.23) T(E, %) = - Try [Nlog(V?)] .
By (3.18), we get
(324)  erldet B,g®) = (det H(B,v), g H ) - 0, g2y

The interpretation of (3.24) is easy. In fact there is a canonical holomorphic
isomorphism [KMu)]

(3.25) det E ~ det H(E, v).

Let us briefly describe this isomorphism. First assume that H(E,v) = {0},
i.e. (E,v) is acyclic. Then (3.25) says that det F has a canonical non zero
section 7(F,v). To construct 7(E,v), we choose w,, € det E,, wy, # 0,
W1 € AdMPm—dimEnp . sych that vwm, A w1 € det B, is non
Z€r0, Wy—g € AdM Em—2—dimEn_1+dimEn g sych that vwpm—1 A wp_2 €
det E,,_2 is non zero... . These choices are possible because (E, v) is acyclic.
Then

(3.26) T(E,v) = (Wm ® (Vwm A wm_1)"' @ (Vwm-1 Awm_2) Q... )(_l)m

does not depend on the above choices.

When H(FE,v) is non zero, the construction of the canonical isomor-
phism (3.25) is similar.

Then one verifies easily that

(3.27) g4t F = g0t HE exp{T(E, 7)),
from which (3.24) follows immediately.
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The class of forms T(E, g¥) € PS5 /P50 appears as a prototype of Bott-
Chern classes [BoCh], [BGS1]. Let us give a construction of these classes
in the simplest case.

Let p : F — S be a holomorphic vector bundle. Let g¥, ¢'F be two
Hermitian metricson F. Let ) be a characteristic polynomial. The following
result in established in [BGS1, Theorem 1.29].

Theorem 3.8. There erists a unique way to assign to (F,gF,¢'F) a class
Q(F,g¥,¢'F) € PS/P5° such that

a) @(F,gF,g’F) is functorial.

b) Ifg" =g¢F, Q(F,¢",¢'") =0.

c) The following identity holds

(3.28) D 3(F,6",9") = QUF.9F) ~ QUF,gF).

PROOF :  We just outline a construction of é(F,gF,g"F) [BGS1]. Extend
F to a vector bundle F on § x PL. Let g¥ be a metric on F such that

F _ F _F _ IF
95x{0} =9 Isx{oo} =9 - Put

(3.29) O(F, 9", g'F) = - / log(|2|2)Q(F, ¢).
Pl

Then by (3.20), (3.28) holds. O

m m
Let gF = @ g%, ¢’ = @ ¢'F be two set of Hermitian metrics on E.
2=0 =0
Let g (E) ¢'H(Ev) be the corresponding metrics on H(E,v).

Theorem 3.9. The following identity holds

(3.30) T(E,g'P) — T(E,g%) = ch(H(E,v), g7 E), g HE )
~ ch(E,g%,g'F) in PS/P50.

PrOOF : Using Theorem 3.7, our Theorem is a straightforward conse-
quence of the uniqueness of Bott-Chern classes stated in Theorem 3.8. [

b) The Levi-Civita superconnection of a Kahler fibration and the
analytic torsion forms.
Let 7 : X — S be a holomorphic submersion with compact fibre Z. Let
¢ be a holomorphic vector bundle on X. Let Rx.£ be the direct image of £.
Let wX be a real closed (1,1)-form on X, such that the restriction of w™*
to T'Z is the Kahler form w”Z of a Hermitian metric g7 on TZ = T X/S.
If JT=Z ig the complex structure of TrZ, if U,V € TrZ, wT2(U,V) =
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(U, JTRZV). Let g¢ be a Hermitian metric on &, let V¢ be the holomorphic

Hermitian connection on (£, g¢). Let T# X be the orthogonal bundle to TZ

with respect to w*.

Let (Q(Z,Qz),gz) be the family of relative Dolbeault complex along
the fibres Z. We equip Q(Z,§|z) with the Ly metric attached to gT% g%,

dvz
(331) (S, $I> = /Z<S, Sl> W .
Let 8 be the formal adjoint of 3” with respect to (3.31). Set

(3.32) pZ=3"+3".

Then by [Hi], v2D7 is a family of standard Dirac operators along the fibre
Z. The only minor difference is that the fibres Z only have spin® structure.
To the data (g7%,T# X) we can associate the objects constructed in
Section 2 e).
The following result is proved in [BGS2, Theorem 1.7].

Theorem 3.10. The connection VIRZ on Tr Z preserves the complex struc-
ture of T Z. It induces the holomorphic Hermitian connection on (T Z, g7%).
As a 2-form, T is of complez type (1,1).

Let VATV 2)8€ be the connection induced by V2, V¢ on A(T*©V) 2)®

IfU €TZ, let U¥ € TH X be the horizontal lift of U.
DEFINITION 3.11. If U € TR S, if s is a smooth section of Q(Z, {|z) over S,
put

(333) vg(zyglz)s — Vﬁ([zﬂ(ﬁ,l)z)®gs.

The following result is established in [BGS2, Theorem 1.14].

Theorem 3.12. The connection V¥Z:412) on Q(Z, §|z) preserves the Her-

mitian product (3.31) on QUZ,§)z). Its curvature is of complex type (1,1).
Also

(3.34) [vmz’ﬁrz)”,éz] =0, [vmzvﬁlz)’,éz*] = 0.

Amazingly enough, (2(Z,§)z), B_Z) appears to be a “holomorphic“ Her-
mitian vector bundle compact over S. By (3.34), we find that

(3.35) (VQ(Z,E&Z)” +5Z)2 =0, (VQ(Zaflz)l +Z’§Z*)2 =0.

The explanation for (3.35) given in [BGS2, Theorem 2.8] is that us-
ing the smooth identification A(T*(®VX) ~ A(T*OVZ2)@x* A(T*(V) ),
V22" 157 is exactly the full Dolbeault operator 5 acting on Q(X, £).
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Recall that A(T*(OVX) ® £ is a ¢(TrZ) Clifford module. Namely if

X eTZ, let X" € T 7 correspond to X by the metric g74. Then if
XeTZ Y eTZ, put

(3.36) oX)=V2X*A , oY) = —V2iy.

Extend ¢ to a linear map TrZ ®r C — End (A(T*®VZ) ® ¢). Then if
X, X' eTrZ ®r C,

(3.37) e(X)e(X') + e(X)e(X) = =2(X, X') yrz -
Let (f,) be a basis of T S, let (f*) be the dual basis of T S. Put

(@) = 172 PO (£, 1),
o(TOD) = § 1 fe(TOD (S, 15)) -

With the notation in (2.54),

(3.38)

(3.39) e(T) = (TOD) 4 ¢(TOD).

DEFINITION 3.13. For £ > 0, put

c(TH)
2v2t

c(TOV)
2v2t

BY = Vi 3% 4 VZ) _

(340) B; _ \/Z —a—Z* + VQ(ZYé'Z), _

Bt=Bél+B£

Then by (2.55) and Theorem 3.12, for ¢t > 0, B; is exactly the super-
connection A in the sense of [B1], i.e. B; is a Levi-Civita superconnection.

Put
(3.41) wX =wT? + .

In particular w# € m*A?(T.S) is the restriction of wX to TEX = m* TR S.
Let Ny be the number operator of (Z,§,z), i.e. Ny acts by multipli-
cation by k on Q*(Z,¢z).

DEFINITION 3.14. For ¢ > 0, put

: H
(3.42) N, = Ny + ’—“’t—

even

Then N; € (A(TS)® End ((Z,€2))) -
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The following result is proved in [BGS2, Theorem 2.6].
Theorem 3.15. The following identities hold,

B"2=0, B?=0,

Bt2 = [B;',B;] ’

B! B2l =0, [B., B? =0,
(3.43) [t,, ‘] (B, Bi]

OB _ Lipr

ot ot Ut

8B, 1

ot 2t[ o Vel -

REMARK 3.16. The identities in (3.43) are remarkable. They guarantee that
the Levi-Civita superconnection B; also has natural holomorphic properties,
i.e. it splits as B; = B!’ 4+ Bj. Besides, by comparing (3.43) with (3.6), N;
appears as the right “number operator” associated to B;.

DEFINITION 3.17. For t > 0, set

a; = ¢ Trg [exp BY)] ,
(3.44) 8, = (7) [ > exp(—B?)] ,
= ¢ Trs [Nyexp(-B})] .

Now we state a result taken from [BGS3, Theorems 2.9 and 2.16].

Theorem 3.18. The forms as, B,y are real. The forms a; and v lie in
. The cohomology class of a; is constant, and

(3.45) 4] = ch(Rm,&) in H®**(S,R).
Also,
0
% = —dﬁtv
(3.46) ] y
= (Bt
b= —2iz 0= 9y

In particular,

Bat 53 Yt
4 ga 997
(3-47) ot 2im ¢

Finally ast — 0,

A = Ty [Td(TZ’ gTZ) Ch(f,gg)] + O(t),

(3.48) C_,

7t:T+CO+O() , C_1,Cy € Ps.
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PROOF : We just sketch the proof of part of Theorem 3.18. Equation
(3.45) follows from Theorem 2.22. Equation (3.46) follows from (3.43) as in
(3.10). The first equation in (3.48) follows from Theorem 2.22. The second
equation in (3.48) is proved in [BGS2] by local index theoretic techniques.

(|

Now we assume that Rx,¢ is locally free. So Rw.£ is a holomorphic
Z-graded vector bundle on S, and moreover (Rm.&), ~ H(Z,,§z,). Since

H(Z,&z) ~ ker DZ, Rr, ¢ inherits a smooth metric g%,
Theorem 3.19. Ast — 400,

1

v = ch'(Rm&,¢"™4) + O <\_1f1:) '

(3.49)

PROOF : With the notation of Theorem 2.25, using [BGS3, Theorem

3.11] (which relies on (3.35)), one shows easily that VkerD?u g just the
holomorphic Hermitian connection on (Rm,£, g®™+¢). Theorem 3.19 is then
an obvious modification of Theorem 2.25. d

DEFINITION 3.20. For s € C, 0 < Re(s) < 3, put

1

+o0
wX €y — _ _~ s—1 : — Yoo ]
(3.50) R ¢ =55 [ 67 0e =t

By (3.48), (3.49), R(wX,g®) is a holomorphic function of s, which ex-
tend holomorphically near s = 0.

DEFINITION 3.21. Set

(3.51) T(¥ %) = 2R, 6)(0).

Recall that the form 77 was defined in Definition 2.26. Then we have
the result of [BGS2, Theorem 2.20], [BK, Theorem 3.9].

Theorem 3.22. The form T(wX,g¢) lies in P5. Moreover
@,

T (X, ¢¢) = ch(Rm.&, gF™¢) — m, [Td(TZ,977) ch(£,9%)]
(3.52) = .

1 T g
%(3—5)5(&9 )=7.

PROOF : Equation (3.52) follows from Theorems 3.18 and 3.19. g
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In Remark 2.28, we observed that the dependence of 7 (modulo cobound-
aries) on the various geometric data is quite explicit. Also in Theorem 3.9,
we found that the dependence of T(E, g%) € PS/P5° on the metric gF can
be explicitly given in terms of Bott-Chern classes.

It is then natural to ask how T(w*,¢¢) depends on (w™,g¢). In fact
if only ¢¢ is made to vary, equation (3.52) and the methods of [BGS1]
used in the proof of Theorem 3.7 provide the answer immediately. However
if wX also varies, the answer certainly does not rely on the methods of
Theorem 3.7. In fact, for Theorem 3.22 to hold, it is crucial for wX to
be closed. So in order to calculate T'(w'X, g¢) — T(w¥X, g¢) using (3.52), a
necessary condition would be, for example, that the fibres Z have the same
volume for wX and w'X.

Let (w'%,¢’¢) be taken as before. The following “anomaly formulas”
were established in [BK, Theorem 3.10], extending earlier work in degree 0
[BGS3, Theorem 1.23].

Theorem 3.23. The following identity holds

(3.53) T(w'™,g'%) - T(w¥,g) = ch (Rm.£,g"m¢, g/ Fm-t)
— Ty ['f&(TZ, gTZ,g'TZ) ch(¢,¢%) + Td(TZ,g’TZ)c~h(§,g£,g'§)] n PS/PS,O_

In particular, T(w™,g%) € PS/P5° only depends on (g7%, ¢%).

The last statement in Theorem 3.23 is if particular importance. It
says that, as should be the case, the class of T'(w*X,g%) in PS/PS0 only
depends on the geometric data which appear in the right-hand side of the
first equation in (3.52).

¢) Quillen metrics.

Assume first that S is a point. Let ¢7%, g¢ be the Hermitian metrics
onTZ €.

DEFINITION 3.24. Put
(3.54) 8(s) = — Trs [NV [D“]‘s} .

Then 0(s) is a linear combination of the zeta functions of the Laplacian
D?%? acting on forms in Q(Z, §)z) of degree 0,1...,dim Z.

Put

(3.55) A(€) = (det H(Z,£2))7 .

Then A(€) is a complex line. The metric g#(%:¢12) induces a metric | |>\(£)

on A(§).
In [Q2], Quillen introduced the following metrics on A(£).
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DEFINITION 3.25. The Quillen metric || ||y on A(€) is given by

a0
(3.56) I o= hooe{-3501}.

The underlying motivation for formula (3.56) is equation (3.27). In
fact (3.56) is a way of making sense of the metric g(det®(Z:£2)™"  which
(det Q(Z,£,2)) " does not exist. The quantity g—Z(O) is called the Ray-Singer
analytic torsion [RS].

Let now 7 : X — S be a holomorphic sumersion with compact fibre Z.
Let £ be a holomorphic vector bundle on X.

By a construction due to Grothendieck-Knudsen-Munford ([KMul], there
is a canonically defined holomorphic line bundle A(§) on S, called the inverse
of the determinant of the direct image Rm,£. In particular if s € S, there is
a canonical isomorphism

(3.57) A(€)s ~ (det H(Zs,82,)) " .
Needless to say, if Rm,£ is locally free,
(3.58) A(€) = (det Rm, &)™t .

In the general case, we will still use the notation A(¢) = (det Rm, &)™ .

Let g7, g¢ be arbitrary Hermitian metrics on 7Z,£. Then by the con-
struction in Definition 3.25 and using (3.57), the fibre A(§), can be equipped
with the Quillen metric || - ”A(f)s'

A first result on Quillen metrics is as follows [BGS3, Theorem 3.14].

Theorem 3.26. The Quillen metric is a smooth metric on A(§).

PrOOF : If Rm.¢ is locally free, | [y and || [, are smooth. The
remarkable fact is that in the general case,|| ||, is still smooth. However
formula (3.27) partly explains the smoothness of || |- O

DEFINITION 3.27. We will say that 7 : X — S is locally Kéhler if there is
a covering of S by open sets U such that 7= (U) is Kéhler.

We now state the result of [BGS3, Theorem 1.27].

Theorem 3.28. Assume that 7 : X — S is locally Kéhler and that gT% is
fibrewise Kdahler. Then

(3.59) A, lIae) = -7 [TA(TZ,g77) ch(€,69)] .
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PROOF : Clearly, we can assume that X is Kihler. Let g7* be a Kihler
metric on T'X, with Kihler form w”¥, and assume first that g7Z is the metric
on TZ induced by g7X. By (3.50), (3.54),

(3.60) R(w™,g%) O (s) = 6(s),
and so
(3.61) T(*,¢9)© = 2 (0).
0s
Suppose that Rx.¢ is locally free. By (3.52), we get
(3.62)
00

_-—'T(qugé)(o) = —01(/\(5), | I,\(E)) — T [Td(TZ, gTZ) Ch(éagg)] @ .

From (3.62), we get (3.59). If Rx.£ is not locally free, more work is needed
to establish (3.59) [BGS3].

Suppose now that g’T%
Then by (3.53),

is a metric on T'Z which is only fibrewise Kéhler.

(3.63) log I e =/ﬁ(TZ,gTZ,g’TZ) ch(¢,¢%).
I e z

From (3.59) (established for ¢g7%) and (3.63), we get (3.59) for ¢'TZ. 0

d) Adiabatic limits of Quillen metrics, analytic torsion forms, and
composition of submersions.
Let 7 : X — S be a submersion of compact complex manifolds. Let &
be holomorphic vector bundle on X. We assume that Rw,£ is locally free.
Let g7% be a Kahler metric on X, let w* be the corresponding Kéhler
form. Let g7° be a Kahler metric on S. Let g¢ be a Hermitian metric on &.

Put
.60 A= (det H(X, &))",
N = ® (det H(S, Rim,€)) ™ .
Let

(3.65) Q(X,€) = F°Q(X,€) D FIQ(X,€) D ... D FImSHIO(X £) =0

be the obvious filtration by the partial degree in A(T*(%1) ) of the Dolbeault
complex Q(X,¢). Let (Fr,d,) be the associated spectral sequence. Then

(3.66) EPY = HP(S, Ri7,¢).

By (3.66), it follows that the lines A and A’ are canonically isomorphic.
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We can equip the line A with the Quillen metric associated to g7%, g¢,
and the line A’ with the Quillen metric associated to g7, gfm=¢.

Consider the exact sequence

(3.67) 05TZ - TX - TS = 0.

Let Td(TX,TS,g"X,g7S) € PX/PX? be the Bott-Chern class [BoChl],
[BGS1] such that

(3.68)

90 —~

-2i—7er(TX, T8,gT%,¢T%) = Td(TX, g**)-Td(T Z, gT%)n* Td(TS, ¢g*°).

The following result is established in [BerB, Theorem 3.1].
Theorem 3.29. The following identity holds

2
(3.69) log (M) = —/STd(TS,gTS)T(wX,g{)

Y

+ / TA(TX, TS, g7, g75) ch(€, ¢f)
X

We 1dent1fy (x) to the corresponding additive genus. By definition,

the genus Td' is the product of the additive genus '1;% and the multiplicative

genus Td.
In [BerB, Theorem 3.2], it is shown that (3.69) is essentially equivalent
to the following statement. For € > 0, put

1
(3.70) gIX = g™ + —mg"S.
€
Let || ||, . be the Quillen metric on A associated to (97X, ¢%).

Theorem 3.30. As e — 0,

I

(3.71) 10g<” ““) —/ 7 Td'(T'S) Td(TZ) ch () log(e)
I x

A%
N _/STd(TS,gTS)T(wX’QE) +log ( I lli)

REMARK 3.31. The proof of Theorems 3.29 and 3.30 is a combination of
the adiabatic limit techniques of Bismut-Cheeger [BC1], and of the Leray
spectral arguments of Mazzeo-Melrose [MazMe] and Dai [D].

Recently, Ma [Ma] has established an extension of Theorem 3.29 for

the higher analytic torsion forms T'(wX, g¢). Namely let
(3.72) 7 —W

Tw/s
o L WW/V'( \

Y——*V—,,;WS
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be a commutative diagram of holomorphic submersions, with compact fibres
Z and Y. Let £ be a holomorphic vector bundle on W. Assume that
Rmws«€, Rmw v«§ and Rmy, s, Ry, v.€ are locally free.

Let g¢ be a Hermitian metric on ¢&. Let w",w" be (1,1) closed forms on
W,V having the properties described in Section 3 b). Then by proceeding
as in Section 3 b), the three direct images vector bundles described above
inherit Hermitian metrics.

Let Twv (W%, 9%), Tw/s(w",9¢), Ty s(w’, gf™#/v+-¢) be the analytic
torsion forms on V and S associated to mw,v,Tw;s,Ty/s, and the given
metrics.

A problem which arises in [Ma)] is the adequate definition of

(3.73) a=ch (Rmw)s.&, Ry s. Ry v &, g w/s=&, gRmwy s Bawyva by

so that
(§.74)
gz‘%a = ch (Rmy; s, Rwyv.€, g7mv/s-Bmwivet) — ch (Rmyys.€, gmwrset) .

In fact there is a spectral sequence E, of sheaves on S such that E; =
Rrw s« Rmw v« &, which abuts to Rmy;s.&.

Under an adequate assumption of ampleness, this spectral sequence is
trivial, so that the definition of « is easy. If the E, are locally free, there
is also a natural definition of @. In general, if W and V are projective, a
definition of « is given in [Ma].

Then Ma’s result is as follows.

Theorem 3.32. The following identity holds
(3.75)
Tw/s(w",g%) = Ty/s(w”, gfmwiv+e)

+ w5 [TA(TY, g7¥) T v (W, 6°)]
+ &= mwys. [ TATZ,TY, 972,g7) ch(¢,gf)| in P/PSC.

e) Analytic torsion currents.
Let 1 : Y — X be an embedding of complex manifolds. Let 5 be a
holomorphic vector bundle on Y. Let

(3.76) &v):0&n 2 €n-1... & —0

be a holomorphic complex of vector bundles on X, which, together with a
holomorphic restriction map 7 : £y — 7, provides a resolution of the sheaf
i+Oy (n), i.e. we have an exact sequence of sheaves

(3.77) 0—- Ox(&m) = — Ox (&) = 1.0y (n) = 0.

In particular the complex (§,v) is acyclicon X \Y. Ify e Y, U € TX,,
let dyv(y) be the derivative of v in any holomorphic trivialization of (£,v)
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near y. Then by [B3, Theorem 1.2], dyuv(y) acts on H((£,v),), the action
only depends on the image z € Ny, x , of U, and will be denoted by 8,v(y).
Let m be the projection Ny,x — Y. Then by [B3, Theorem 1.2], there is
a canonical isomorphism of holomorphic complexes on Ny/x,

(3.78) (T H(,v)y), Bsv) ~ (7r* (AN 5 ® n),z’z) ,

where in the right-hand side of (3.78), appears a Koszul complex. Let ¢¢ =
@ g% be a Hermitian metric on ¢ = G) &. Let gVv/x g" be Hermitian

=0 i=0
metrics on Ny, x,7.

Put
(3.79) V =v+v*.

By finite dimensional Hodge theory,
(3.80) H(&,v))y) ~kerV}y.

As a subbundle of &y, ker Vjy inherits a Hermitian metric. Let g# &)y be
the corresponding metric on H(§,v)y.

DEFINITION 3.33. We will say that g%, ..., g*™ verify assumption (A) with
respect to g™V¥/x g" if the identification (3.78) is an isometry.

By [B3, Proposition 1.6], given metrics g™/, g7, there exist metrics
g%, ...,9% such that (A) is verified.

In the sequel we assume that (A) holds.
Let V¢ be the holomorphic Hermitian connection on ¢. For ¢ > 0, put
(3.81) Ay =VE+ V1V,

Let Ny be the number operator of (§,v).
DEFINITION 3.34. For ¢t > 0, put

oy = ¢ Tr [exp(—A7)] ,

(3.82) ve = ¢ Trs [Ny exp(—A7)] .

Of course, equations (3.10), (3.11) are still valid. Now we give a result
of [B3, Theorems 3.2 and 4.3|, which replaces Theorem 2.6 and (3.14) in
this new situation. Let dy be the current of integration on Y.

Theorem 3.35. Ast — +oo,

ar = Td™H(Ny,x,g"¥/%) ch(n, g")dy + O (%) ;
(3.83) 1
7t = —((Td)~YY (Ny,x, ™/ ch(n, g")by + O (%) |
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REMARK 3.36. In(3.83), O (%) is taken in the adequate Sobolev space
of currents. Also, the convergence is shown to be microlocal in the set of
currents whose wave front set is conormal to Y.

By Theorem 2.4 and by (3.83), we see that
(3.84) ch(¢) = Td™*(Ny,x) ch(n)dy in H®*"(X,Q).

This is exactly the content of Riemann-Roch-Grothendieck for immersions,
which says that

(3.85) ch(i,n) = Td™ (Ny/x) ch(n)dy in H®(X,Q).

Using Theorem 3.35, we can now imitate Definition 3.5 and construct
a current T'(¢, ¢¢) on X by formulas (3.15), (3.16). The following result is
proved in [BGS4, Theorem 2.5].

Theorem 3.37. The current T(€,9%) is a sum of currents of type (p,p),
and its wave front set lies in N;}/X r- Moreover

00 _
(3.86) %T(ﬁ,gf) = Td ™ (Ny,x, g"¥/*) ch(n,g")éy — ch(&, ¢°).

Let Pf,{ be the set of currents on X, which are sums of currents of type
(p,p), whose wave front set lies in Ny x r- We define P})f‘o as in Section 3

a), with the adequate condition on the wave front set of 3,~.
The following extension of Theorem 3.9 is established in [BGS5, The-
orem 2.5).

Theorem 3.38. Let (g%, g™Nv/x,g") and (g'¢, ¢'N¥/x  ¢'") be triples of met-
rics verifying condition (A). Then

—~ —1
(3.87) T(&,9'%) —T(&, 6% = (Td (Nyx,gNv/x, g'Nvix)y Ch(n,g”)
+ Td ™" (Ny;x,9'N"/*)ch(n, g", ¢'"))dy
—ch(¢,¢%,9'%) in PE/PF°.

PrROOF : The proof of Theorem 3.38 is essentially the same as the proof
of Theorem 3.9. O

f) Compatibility of the currents T(£,¢%) to the composition of im-
mersions.

Let i : Y = X, 4 : Y’ - X be two complex submanifolds of X in-
tersecting transversally. In particular dimY + dimY’ > dim X. Let 7,7’
be holomorphic vector bundles on Y,Y”, let (§,v), (¢',v") be two holomor-
phic complexes of vector bundles on X which provide resolutions of 7.7,
i'n'. Then one verifies easily that if Y/ = Y NnY' if ¢/ : Y - X is
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the corresponding embedding, then (£®¢,v + v') provides a resolution of
iil(n'Y” ® 77|Iy~)-
Then we have the diagram

(3.88) Y/ ——Y

AN

Y —X

Let (gNvrx g7 &) and (¢7v'/x, g7, ¢¢') be Hermitian metrics verify-
ing (A). Then we equip Ny~,x = Ny,x)y» @ Ny/ x|y~ with the metric
gNvix = gNvixiyr @ gNvi/xiye | One verifies easily that (gVv”/v gy @
gy g¢") verifies (A).

Let PE v/, P;{L‘Joy, be the obvious analogues of P, P;f % when replacing
YbyYUY'

The following result is established in [BGS5, Theorem 2.7].

Theorem 3.39. The following identity holds

(3.89) T(¢B®E,gt®¢) = T(¢,¢%) ch(€',g¢ )+
Td_l(NY/X$gNY/X) Ch(nagn)T(éluqél)aY in P}a{UY’/PSi(L’JOY’ .

g) Complex immersions and Quillen metrics.
Assume now that X and Y are compact. Let ¢7%, ¢7¥ be Kihler
metrics on TX,TY. Let ¢™v/x g7 be Hermitian metrics on Ny;x,n, let

g°¢ = @ g% be a Hermitian metric on £ = @ & which verifies (A) with
1=0 i=0
respect to gNY/x g7,
Put
M) = (det H(Y,n)) ™",
&) = (det H(X, &)1,
590) (6) = (et HX,60)
) =@ (e
i=0

We claim that there is a canonical isomorphism

(3.91) A(€) ~ A(n).

In fact let H(X, &) be the hypercohomology of the sheaf Ox (§). Namely

if § is the natural Cech coboundary, we consider the complex (Ox (), 4 +v).
Needless to say, d and v are graded so that

(3.92) (64+v)2=dv+v6=0.
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Also if Ng, ., is the natural Cech number operator, we grade (Ox(£),6 +v)
by Ngeen — Nu so that d + v increase the total degree by 1. Then r :
(0Ox(&),d +v) = (Oy(n),9d) is a quasi-isomorphism, so that

(3.93) H(X,§) ~ H(Y,n).

Now there is a spectral sequence whose F; is given by
(3.94) EP?Y = HY(X,¢_,).

y (3.94), we get

(3.95) (det H(X,§)) ® <(det E§p,-)>—1>(—1>p |

p

which is equivalent to

(3.96) (det H(X, €)™ =~ &) (M&))™ '

By (3.93), (3.96) we get (3.91).
Now A(€) and A(n) are equipped with Quillen metrics || ||>‘(§) and

I llxgy- It is natural to compare these metrics. This question was first

varied by Gillet and Soulé [GS3] in their program to prove a Riemann-
Roch-Grothendieck formula in Arakelov geometry.

In fact if A is the ring of integers of a number field &, if X — Spec(A) is
an arithmetic variety, if £ is an algebraic vector bundle on X, then H(X,¢)

is A-module. If A(¢) = (det H(X, €)™}, then if A(€) is equipped with a
metric at places at infinity, A(£) has an Arakelov degree deg A(£). The idea
in [GS3] is to precisely equip A(§) with Quillen metrics at the places at
infinity.

In [GS3], Gillet and Soulé gave a conjectural formula for deg A(§) in
terms of arithmetic characteristic classes. Still, when calculating the ratio of
two Quillen metrics on the same algebraic object, only the contributions at
infinity remain, so that [GS3] suggests a comparison formula which should
be valid for any complex K&ahler manifold.

Now we describe a result of Bismut-Lebeau [BL, Theorem 0.1] where
the conjectured comparison formula was established.

+o00
First we introduce the Gillet-Soulé series R [GS3]. Let {(s) = Z -};
1

be the Riemann zeta function.

DEFINITION 3.40. Let R(z) be the power series

_ ¢(=n) 1),
(3.97) R(z)= ) (2“ m +;j)<(

n>1
n odd
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g
We identify R(z) with the additive genus Z R(zx;).

1
Let Td (TX|y,gTY,gTY|Y,gNY/X) € PY/PY"? be the Bott-Chern class,
such

00 —~
(3.98) o Td(TXy,g"",g" ™", g"/*) = Td(TX}y,g" )~
Td(TYa gTY) Td(NY/X7gNY/X) .

Then the result of Bismut-Lebeau [BL, Theorem 0.1] is as follows.
Theorem 3.41. The following identity holds

2
(3.99) log I e =~/ Td(TX, 9" *)T(¢,¢°)
I Mg b's

/ﬁ(TXmgTY,gTX"’,gNWX)
Y

h n
Td(Ny;x,g"v/x) chin. ")

- / Td(TX)R(TX) ch(¢) + / Td(TY)R(TY) ch(n).
X Y

PROOF : Some details on the proof of Theorem 3.41 are given in Sec-
tion 3 i)- 3 k). O

h) Analytic torsion forms, analytic torsion currents and the com-
position of an immersion and a submersion.

Let now ¢ : W — V be an embedding of complex manifolds, let my :
V — S be a holomorphic submersion with compact fibre X, which restricts
to a submersion my : W — S with compact fibre Y. Then we have the
diagram

(3.100)

| I

X—sV-—">8

Let 1 be a holomorphic vector bundle on W, let (§,v) be a holomorphic
complex of vector bundles of X which resolves i,7. Of course, fibrewise, the
situation is the same as in Section 3 g). Equivalently, the case where S is a
point is just the case considered in Section 3 g).

Assume that Rmw.n is locally free. Then Rrw.n ~ H(Y,ny). By
(3.93), Rmy.& is also locally free.

Let wY (resp. w") be a (1,1) closed form on V (resp. W). Let

m m

gt = @géi, gNv/x  g" be Hermitian metrics on £ = @{i, Ny/x, n, which
i=0 i=0
verify assumption (A) (keeping in mind that Ny,;x = Nw/v).
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Let T(w",g") € P° be the analytic torsion forms constructed in Sec-
tion 3 b). They verify the equation
(3.101)

90
=T @Y g7 = ch (H(Y,my), g% ")) — . [Td(TY,g™) ch(n,g")] -
Similarly, to the family of double complexes (Q(X,¢ X),EX + v), we can

associate analytic torsion forms T'(w", g¢) € P, which verify the equation
(3.102)

a0
5 T(@",g%) = ch(H(X,§x), g7 4%)) — v [TA(TX, g7) ch(€, )] -
Since H(X,{x) =~ H(Y,ny), the Bott-Chern class E(H(Y, Ny ),
gHX81x) gHY:my)) is well-defined.

The main result proved in [B5, Theorem 0.1], which extends Theo-
rem 3.41 to the relative situation, is as follows.

Theorem 3.42. The following identity holds

(3103) E\E(H(Y;WIY)’QH(X’HX), gH(YJ/IY)) — T(ww’gn) + T(wv,gf)

TA(TX|w.oTY . gTXlw gNv/x
- [ gmome oty [ T 0T 0T
X Y Td(Ny;x,9"¥/*)

ch(n, g")

- / Td(TX)R(TX) ch(&)+ / Td(TY)R(TY) ch(n) =0 in  PS/PS0.
X Y

Assume now that for j > 0, Riny,& =0, (0 < k < m), Riaw.n = 0.
Then we have a holomorphic complex of vector bundles K on S,
(3.104).

K:0— H(X,n) = H (X, €n-1) ... = H(X,&) = H*(X,§x) = 0
Let ch(K,gX) € PS/PS0 be the Bott-Chern class such that

00 ~
h(K,g%) = ch (HO(X,§|X),9HO(X’€'X))

- f]—l)i ch (HO(X7§z'|X),9HO(X’E"'X)) .
=0

(3.105)

—C
i
The following result is proved in [B5, Theorem 0.2].

Theorem 3.43. The following identity holds

(3.106) T(wV,gf)—i(—l)iT(wV,g&)—?:ﬂ(K,gK)=0 in  P%/P%0.

=0
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REMARK 3.44. Needless to say, Theorems 3.39, 3.41-3.43 are compatible to
each other.

i) A sketch of the proof of Theorem 3.41.
Using the anomaly formulas of Theorem 3.23 as in (3.63), and also
Theorem 3.38, to establish Theorem 3.41, we may and will assume that

gTY, gNr/x are the metrics induced by g7* on TY, Ny, x.
Put
(3.107) E = C*(X, AT* "V X)&¢).

We define the total Z-grading on F by the operator Ny — Ny. Then 5X +v
acts on F and

(3.108) @ +v)?=0.

Therefore (E, 5 +w) is a Z-graded complex, whose hypercohomology H (E, 7+
v) is finite dimensional. Dolbeault’s theory shows that

(3.109) H(E, 5" +v)~ H(X,¢).
Set
(3.110) F = C®(Y,A(T*OVY)&n).

The restriction map r : {o|y — 7 extends to a map of complexes 7 : (E, 5X +
v) = (F, 5}/). By [BL, Theorem 1.7], it induces the canonical identification
H(X,&) ~ H(Y,n).

Put
(3.111) X(€) = (det H(X, €)™,

Then by (3.93), (3.96)
(3.112) A(€) = AE) = A(m).

Moreover by imitating Definition 3.25, we can equip X(f) with a Quillen
metric || ”X(E)' A first step in the proof of Theorem 3.41 is the simple fact,

established in [BL, Theorem 2.1], that

(3.113) I M =11l -

I e )
To establish Theorem 3.41, we must then compute Log (”—H)‘ﬁ .
A(m)
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Put
=X =X *
DX =
(3.114) o+,
V=v+v*.
For T > 0, it is clear that
(3.115) @ +Tv)? = 0.
Also for T >0
=X =X
(3.116) H(E, 5 +Tv)~H(EJ +v).
For T > 0, put
(3.117) Ar=D* +TV.
Then by Hodge theory,
(3.118) ker Ay = H'(E, 5 + Tw),
so that for T' > 0,
(3.119) ker(Ar) ~ H'(E, 5" +Tv) ~ H(F,8 ).
Set
(3.120) DY =3 +3 ".
Then
(3.121) ker DY ~ H(Y,7).
Now we describe in some detail a few difficulties which appear in the
I e\
evaluation of Log #9— given in [BL]. We will here take a toy object
A(n)

to describe these difficulties.
Let x(¢), x(n) be the Euler characteristics of Ox(£), Oy (n). Then, by
the Mc Kean-Singer formula [McKS], for ¢t > 0, T > 0,

x(€) = Trs [exp(—(tA7)?] ,

3.122

(3122) x(n) = Tr, [exp(—(tDy)?]
Of course

(3.123) x(&) = x(n).

Let PF(z,2') (z,2' € X), Q:(v,¥’) (y,4' € Y) be the smooth kernels
for exp(—(tAr)?), exp(—(tD¥)?) with respect to dux(z'), dvy(y'). Here
Trg [PtT(ac,x)] dux(z), Trs [Q:(y,y)] dvy (y) will be be considered as cur-
rents on X.

In [BL, Sections 9 and 13], the following result is proved.



Jean-Michel Bismut 63
Theorem 3.45. For anyt > 0,

(3.124) Plim T [Pl (z,7)] dux(z) = Trs [Q:(y,y)] dvy (¥).

Also, by the local index theorem given in Theorem 1.2,

G PR [PT(z,2)] dvx(z) = { TA(TX, g7¥) ch(, 6°)}™™ ,
3.125
lim, Trs [Q:(y, )] doy (y) = {T(TY, g"") ch(n, g")}

max

We then have the non commutative diagram

(3.126)  Trs[PT(z,2)ldvx (z) — =5 {Td(TX,g"%) ch(¢, g¢) } 2
J(T—r+oo

Trs [Q:(y, y)ldvy (y)dy —=5- {Td(TY,g™") ch(n, g")} by

Needless to say, (3.126) fits with (3.122), (3.123), because of (3.86).
Observe that

(3.127) tAr = tDX + TV .

We use the notation in Section 3 e). A simple application of local index
techniques shows that

(3128)  lim Ty, [ P, z)] dvx(z) = {Td(TX, gT¥)ars
—

}max

In view of (3.83), (3.124), (3.128), we have the new diagram

(3.129) v, [PT/*(z,z)|dvx (z) {Td(TX, g7%) g2 ym2x

[T—H»oo

{ Td(TX,g7%) ch(n, g") x5y

T
e Td(Ny)x,g"7 ¥/ %)

Trs [Q(y, 9)ldvy (¥)dy ——g= {TA(TY, g7") ch(n, g")} "5y

The whole point is now to find how to close the gaps in the diagrams
(3.126), (3.129) at the level of currents (the gap is of course 0 in cohomology).
Clearly

T
(3.130) tAr e = tDX + ?V.
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Consider the exact sequence of holomorphic Hermitian vector bundles
onY

(3.131) 0->TY - TXy = Ny;x =0

and more generally any short exact sequence as in (3.131). In [B4], for
T > 0, a form 67 € PY is constructed, such that

Td(T Xy, g7%7)

lim 5T = )
(3.132) T-0 Td(Nyx,g"v/x)
: _ TY
TBTOQ or =Td(TY,¢"").

Then, in [BL, Section 12], it is shown that for 7" > 0,
. T/t _ 7y 1Mmax
(3.133) }1_{% Trs [Pt (z,2)| dvx(z) = {87 ch(n,g")} = dy.

Then we have the new diagram

TX
(3.134)  Tr, [PO(z,z)|dvx (z) ﬁ&}vﬁg—) ch(n, g")dy

T-0 T—0

Tr, [PT/% (2, 2))dvx (z) — 55— (07 ch(n, ")} ™oy

t—0

T—+o0 T—+o00

Trs [Q¢(y, y)ldvy (y)dy ——5= {Td(TY,g""") ch(n, g")}*dy

Let PT be the orthogonal projection operator on ker(Ar). Then PL is
given by a smooth kernel PZ (z,2') on X. Similarly let Q be the orthogo-
nal projection operator on ker(Dy), and let Q (y,y’) be the corresponding
kernel on Y.

Then by [BL, Section 10], we have the diagram

(3.135) Trs [PF (2, z)]dvx (z) Trs [PL (z, 7)]dvx (z)

—_——
t—=+o00

lT——H—oo tT—>+oo

Trs [Q: (v, ¥)]dvy (v)6y ——= Trs [Qoo (v, y)]dvy (v)dy

t—+00

Part of the proof of Theorem 3.41 [BL] consists in putting together the
diagrams (3.126), (3.129), (3.134) and (3.135).
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j) The Hodge theory of the resolution of the point.

In the proof in [BL] of Theorem 3.41, or in the construction of the form
d7 in [B4], the following toy model of an embedding ¢ : ¥ — X appears
naturally.

Let Vg be a real even dimensional vector space, let J be a complex
structure on V. Let V be the corresponding complex vector space, so that

VROR C =V @ V. Put n = dimV. Recall that if z € V, z represents
Z=v4+7v € Vr.
Let 7 be the embedding {0} — V. If z € V, let ¢, be the interior

multiplication by 2. Let

(3.136)

(AV* V/=1i,): 0 5 A"V —— A"V ... —— A%(V*)=C =0

VASUS V=T,

be the obvious Koszul complex. Let r be the restriction map o € AO(V*)lo —

a € C. Then by [GrH, p. 688], the complex (AV*,/—1i,) provides a res-
olution of the sheaf 7, C.

Let (C(V, AV @AV™*), 5‘/) be the Dolbeault complex over V of smooth
sections of AV ®AV*. .,
Let Ny, Ny be the number operator of AV | AV*. The Z-grading of
the complex (C®(V, AV ® AV*),8" + v/—1i,) is given by Ny — Ny.
Let 7 : C®°(V,AV " ® AV*) = C be such that if @ € C°(V,A?(V")),
B € C®(V,A?(V*)), then
r(a®B) =0ifp+¢>0,

3.137
( ) =aofp if p=0,¢g=0.

Observe that AV @r C = AV" ® AV*, and that r is nothing else than the
restriction of a smooth form on V to {0}

Let C be the trivial complex, equipped with the chain map 5
By the arguments of [BL, Theorem 1.7], the chain map
(3.138) r: (C®(V, AT ®AV*), 8 +v—1i;) = (C,3

is a quasi-isomorphism. In particular if # is the hypercohomology of (C*°(V, AV'®
-V .
V*),0 +v-1iy),
HP=0if p#0,

(3.139) _Citp=0,

and r = # — C identify canonically H with C = H°({0}, C).
Let now g¥ be a Hermitian metric on V. Let (, >A(V‘)§A(V*) be the

corresponding Hermitian product on AVH®A(V*) and let duy be the as-

sociated volume form on V. Then we equip C°(V, AV @ AV*) with the
Hermitian product

dimV
1
3.140 o) = (_> / (00 B) oo dy
( ) (s,8") o v ATHBAV™)
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Let 3 be the formal adjoint of 3. Thend - v =14} is the formal
adjoint of EV + V=1i,.
Let 6 be the Kahler form of Vg, i.e.

(3.141) 6(X,Y) = (X,JY)y,, .
Let L = A, and let A be the adjoint of L. Put
(3.142) S=—(L+A).

By [B4, Proposition 1.4],

* A% 2
G143 @ +v T+ -vTip= -5 2l

Then the Laplacian (3.143) is an harmonic oscillator.
The following elementary result is proved in [B4, Theorem 1.6].

Theorem 3.46. Let 8 € C®(V,A(V )RA(V*)) be given by

712
(3.144) B = exp (0 - %) .
Then B has total degree 0, and moreover
(3.145) 16, =1.
Also
@ +v=1i,) =0,
(3.146)

@ - V=1t =0.

Moreover B spans the 1-dimensional kernel of (5V +v 11, +5V* —v/=1i%)%
Finally

(3.147) rB=1
i.e. 3 represents canonically 1 € H°({0}, C) in C°(V,A(V)RA(V*)).

REMARK 3.47. Several remarks are in order here. First note that 6, as a
(1,1) form, has total degree 0, so that indeed 3 is of total degree 0. Also
observe that ||8]|;, = 1 and 78 =1, so that 1 — 3 is an isometry.
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Now we go back to the formalism of Section 3 h).

Let ' : Ny, x — Y be the obvious projection. Consider the embedding
i' 1Y = Ny,x (where Y is identified with the zero section of Ny;x).

A fundamental fact, established in [BL, Section 10] is that for T —
+00, ker(Ar) ~ H'(E,EX + Tv) ~ H*(F, 5Y) can be asymptotically de-
scribed as follows. *Put

(3.148) DY =3 +3".
Then
(3.149) ker(DY) ~ H(Y,n).

Take « € ker(DY) ~ H(Y,n). Then by [BL, Section 10}, the element
yr € ker(Ar) ~ H(X,£) canonically identified with o can be described
asymptotically in a tubular neighborhood of Y by

T|Z)?
(3.150) yr ~ '*Bexp (QNY/X - '2 | ) .

Of course vy can be viewed locally as a smooth section of A(T*(%1) X)®¢
because of (3.80).

k) The forms é7 : A toy model for the analytic torsion forms.
Let Y be a complex manifold. Let

(3.151) 0L —->M-—=>N-=0
i j

be a short exact sequence of holomorphic vector bundle on Y. Let ¢™ be a
Hermitian metric on M, let g* be the induced metric on L. By identifying
N to L*, let gV be the metric induced by ¢™ on N.

Let £, M be the total spaces of L, M. Then we have the diagram

L L
DS
M M TS

S
Also on M, the Koszul complex (7},AN*,/=1i},)) is a resolution of
the constant sheaf 7, C.
Let VI, VM V¥ be the holomorphic Hermitian connectionson L, M, N,
and let RM RE RN be their curvatures. Then the connections V¥, VM de-
fine horizontal subbundles T2 £, T# M. Put

(3.152)

U

_

c_ 1001y

=2

m _ 100zl
2

(3.153)
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Clearly
(3.154) wt =M.

Also w*,w™ induce the tautological Kihler forms along the fibres L, M.
Moreover one verifies easily that TH# L, TH M are exactly the orthogonal
bundles to L, M with respect to w®,w™.

Then we are in a situation formally similar to the one we met in Sec-
tion 3 g). We will then construct the associated Levi-Civita superconnection.
In our context, if U,V € Tr S,

T (UE,vH) = RE(U,V)Z

3.155
( ) TM(UH,VH):RM(U,V)Z.

Let E, F be the bundles on Y of smooth sections of A(M )®A(N*), A(N")
along the fibres M, L. Let VZ, V¥ be the connections on E, F constructed
as in Definition 3.11.

DEFINITION 3.48. For T > 0, let B! be the Levi-Civita superconnection
on F,

(3.156)
— —M *x - 1 RMZ
BY = (aM +3 ) + \/T(\/?llj(z) +(V=1ij0:))") + VZ - C(—g—\/i*)’

Similarly by making T = 0 in (3.156), we can construct the supercon-
nection BV.
Recall that A(M ), A(N*) are ¢(Mg), ¢(Ng) Clifford modules. Let ¢,

denote the corresponding Clifford actions.
We have the C* identification M = L @ N. Put

(3.157) A=VM _vlgvV.

Then A exchanges Lr and Ng.
Let PL: M — L,PN : M — N be the orthogonal projection operators.
If (fo) is a basis of TR .S, put

(3.158) A(AP*Z) = —Sf*C(A(fa) P*Z).
Let e1,...,ea, be an orthonornal basis of Ng. Put
2n
=1 R
(3.159) §=" PIECHCEHE
1
Then by [B4, Theorem 3.10] (or by the more general curvature identity
of [B2, Theorem 3.5], if e1,..., €2y, is an orthonormal basis of Mg,
2m
(3.160) Bp"? = (Ve, + 3 (RMZ,¢,))°
1
T |PNZ]

+ VTS + \/;AAPL )

+ 1 Tr [RM] + RAVT).

2
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In particular,
(3161) By =13 (Ve +3(RMZ,e))" + 1 T [RM] + RAN),
1

With some surprise, we see that B(/,\A’z is nothing else than the Getzler
operator [Gel,2] [BeGeV, Proposition 4.19] in local index theory. The
fact that the Getzler operator (obtained by rescaling the square of the Dirac
operator) is itself a square is a surprise. Another surprising feature of Bé\f{ 2 is
that its matrix part only acts on A(N" )@A(N*) and not on A(M)R®A(N*).

For T > 0, B% is essentially a perturbation of the harmonic oscilla-
tor in (3.143). For T > 0, let Sr(Z,Z') (Z,Z' € MRg) be the smooth
d’UM VA4
—(ET)—d(h%. Then
Sr(Z,2") € A(T3Y)® End (A(NY®A(N*)). Then a simple fact proved in
[B4, Theorem 4.2] is that Z — Trs [Sr(Z, Z)] only depends on j(Z) € Ng.
Also one verifies easily that if Z € Ny,

kernel of the operator exp (—34/&) with respect to

(3.162) |S7(Z, Z)| < e(T) exp(~C(T) | Z]%) .

The operator exp(—B%) is in general not trace class. Still we can define a
generalized supertrace as follows.

DEFINITION 3.49. Set

(3.163) Trs [exp (—B;”’Q)] = [ v [sr(z, Z)](—gf—r’)‘;—(if)—N.
Put
(3.164) br = @ Trs [exp (—BTM’Z)] .

Then we have the result of (B4, Theorems 4.8 and 7.7].

Theorem 3.50. The forms &7 lie in P2, they are closed, and their coho-
mology class does not depend on T'. Moreover as T — 0,

_ Td(M,g"M)
(3.165) or = TA(N, gV +0(1),
and as T — +o00
1
3.166 6r = Td(L,g*) + O (-) .

Let Ny be the number operator of A(N*). Set

(3.167) er = ® Trs [Ny exp(—B7)]
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(where again, the right-hand side of (3.167) is a generalized supertrace).
By [B4, Theorem 4.6]

0 5(9 ET

Also by [B4, Theorem 7.7], as T — +oo,

_dimN

1
(3.169) Er =

Td(L,¢Y) + O (ﬁ) .

DEFINITION 3.51. For s € C,0 < Re(s) < 1/2, put

(3.170) B(s) = 1)/+00T5‘1(5T—eoo)dT.
0

I'(s
Then B(s) extends holomorphically near s = 0.

DEFINITION 3.52. Put

0
(3171) B(L7M7g‘M) = %B(s)bzo'

Clearly B(L, M, g™) is a generalized analytic torsion form on Y.
The following result is established in [B4, Theorem 8.3].
Theorem 3.53. The form B(L, M, g™) lies in PY. Moreover

80

M
(3172)  SOB(LM,gM) = Td(Lg") - rand )

Td(N,gV)

The construction of B(L, M, gM) is functorial. In view of (3.172), a
natural question is to evaluate

(3.173) B(L, M, g™) + Td™ (N, g™) Td(L, M, g™).

in PY/PY. Using equation (3.172), it is enough to calculate (3.173) in a
split situation.

DEFINITION 3.54. Let D(z) be the formal power series

G D= Y (ro+XED )
¢(=n) 7 n!

n>1
n odd




Jean-Michel Bismut 71

We identify D(z) to the corresponding additive genus. Let Td(L), D(N)
be the classes of Td(L, g%), Td(N,¢") in PY/PY:%. Clearly they do not de-
pend on g~ g™V,

Then we have the result of [B4, Theorem 8.5].

Theorem 3.55. The following identity holds
(3.175)

B(L, M, g™) = — Td~Y(N, ¢V)Td(L, M, g™) + Td(L)D(N) in PY /P¥°.

PROOF : As explained in (3.173), it is enough to evaluate B(L, M, g™) in
the case where the exact sequence splits holomorphically and metrically.
Let (T, z) be the function

T+ Va2 +4T) ah (—x-i-\/mz +4T)
_— 11 .
4 4

4
(3.176)  o(T,z) = T sinh (
]

We identify %(T, z), as a function of z with the corresponding ad-

ditive genus. Then in [B4, eq. (8.26)-(8.28)], it is shown by explicit com-
putation that in the split case, for 7' > 0

(3.177) ET — Eoo = —Td(L,gL)-@(T,N,g‘V)-
Set
+o00
C(s,z) = ————1——/ Ts_l?ﬂa—z(T,x)dT,
(3.178) L(s) Jo v
oC
D(z) = %(O,x).

We identify D(z) with the corresponding additive genus. Then by (3.170),
(3.173), (3.178), when (3.151) splits,

(3.179) B(L, M, ¢M) = Td(L, 9" )D(N, ¢7).

Now we have the easy expressions for p(T, )

i iz T iz T
(3.180)  (T2) Ig( M= 4k27r2) ( kx T 4k27r2> :
which makes the computation of a—ﬁﬁg(T, z) quite pleasing.

In [B4, Appendix], Bismut and Soulé obtain the expression of D(z)
given in (3.174) by using (3.180) and the functional equation for {(s).
By (3.97), (3.174),

D(z) = R(z) + F'(l)%’(m) )

In [BL], the term related to I''(1) % (z) disappears in the final result, because
it is killed by a corresponding term in T'(&, g%).
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REMARK 3.56. In [GS3], Gillet and Soulé have obtained the genus R by
evaluating the analytic torsion of P,(C) equipped with the Fubini study

metric, and by calculating the degree over P, (Z) of their Todd genus Td.
They obtained the R-genus as a defect in their conjectured Riemann-Roch
formula in Arakelov theory.

It has in fact been made clear in the work of Bost [Bos] and Roessler
[Ro] that the evaluation of the analytic torsion of P,,(C) can be obtained as
a consequence of [BL]. Using the results of [BGS5], the formula of [GS3]
for P,,(Z) can then be also obtained as a consequence of [BL].

The amazing almost coincidence of the genera R of [GS3] and D of
[B4] is then explained.
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