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Abstract. The purpose of this paper is to explain how Toeplitz operators can be used in
studying asymptotic torsion, and also in the theory of the hypoelliptic Laplacian. The
role of the hypoelliptic Laplacian in the explicit computation of orbital integrals will
be described. The geodesic flow will be viewed as implementing a dynamical version of
Fourier transform.
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1. Introduction

The purpose of this paper is to review some applications of the theory of Toeplitz
operators to questions connected with analytic torsion, and also from the point of
view of the theory of the hypoelliptic Laplacian.
In the first two sections of the paper, we describe the results of [14] on the

asymptotics of analytic torsion, when a class of corresponding flat vector bundles
tends to infinity in the proper sense. The next two sections are devoted to the
hypoelliptic Laplacian as a scalar operator, to the hypoelliptic Laplacian in Hodge
theory, to hypoelliptic torsion, and to applications of the hypoelliptic Laplacian to
Selberg’s trace formula. In the last section, we connect the hypoelliptic Laplacian
to a geometric version of Fourier transform, and to the wave equation.
The paper is written in an informal way. We only sketch the proofs, referring to

the original papers when necessary.
We will now describe in more detail the content of this paper, and we will give

the proper historical perspective to the results described in the paper.

J.-M. Bismut is indebted to Shu Shen and to a referee for reading the paper very carefully. The research
leading to the results contained in this paper has received funding from the European Research Council
(E.R.C.) under European Union’s Seventh Framework Program (FP7/2007-2013)/ERC Grant agreement
No. 291060.
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1.1. ANALYTIC TORSION AND COMBINATORIAL TORSION

Given a compact odd dimensional manifold X , and a flat unimodular vector bun-
dle F , combinatorial torsion or Reidemeister torsion [37] is an invariant which
can be computed from the combinatorial complex associated with a triangulation.
Given metrics on T X and F , the Ray–Singer analytic torsion [38] is an invariant
obtained via the spectrum of the corresponding Hodge Laplacian. This invariant
does not depend on the choice of metrics.
A conjecture of Ray and Singer asserts that the two above invariants are equal.

This conjecture was proved by Cheeger [20] and Müller [32,33]. A different proof,
based on the Witten deformation, was given by Bismut and Zhang [15,16].

1.2. ASYMPTOTIC TORSION AND TOEPLITZ OPERATORS

As long as the flat vector bundle F is algebraic, Reidemeister torsion detects
important information on the order of the torsion in the cohomology groups
H · (X, F). This is especially true when H · (X, F)⊗C=0, in which case Reidemeis-
ter torsion is the alternate product of the order of the torsion groups in H · (X, F).
Bergeron and Venkatesh [2] initiated the study of the asymptotic torsion of

locally symmetric spaces under finite coverings, in order to obtain asymptotic
information of the order of torsion subgroups. They used the trace formula to
obtain the proper control of analytic torsion, while a similar control on combina-
torial torsion would have been difficult.
In [34], Müller developed the theory in another direction. In the case of hyper-

bolic 3-folds equipped with a natural flat vector bundle F , Müller [34] studied
instead the asymptotics of the analytic torsion for the symmetric powers S pF as
p→+∞.
With Ma and Zhang, [14], we extended Müller’s work in several directions. We

considered the case of arbitrary compact manifolds, equipped with a flat fibration
by compact complex manifolds equipped with a positive holomorphic line bundle
L. In this case, Fp is taken to be the holomorphic direct image of L p. We studied
the behaviour of the analytic torsion associated with Fp. Toeplitz operators along
the fibres play an important role in estimating certain 0-order terms that appear
in the corresponding Weitzenböck formula. In Section 3, this point of view will
be reviewed in some detail.
In [35], Müller and Pfaff have also studied the asymptotics of the analytic tor-

sion of hyperbolic spaces using flat bundles associated with rays of representation
of the underlying reductive group, a case also considered in [14].

1.3. THE HYPOELLIPTIC LAPLACIAN

On a Riemannian manifold, in its simplest form, the hypoelliptic Laplacian is a
family of hypoelliptic operators LX

b |b>0, acting on the total space X of the tan-
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gent bundle T X , that interpolates in the proper sense between −�X/2 and −Z ,
where Z is the generator of the geodesic flow. The theory has been first developed
in the context of Hodge theory [6]. With Lebeau [13], we showed that the elliptic
and hypoelliptic torsions coincide.
In the present paper, we will emphasize the connections of this theory with

Toeplitz operators. Also, we will review various results on the hypoelliptic Lapla-
cian in Hodge theory.

1.4. HYPOELLIPTIC LAPLACIAN AND THE TRACE FORMULA

In [9], we have constructed another hypoelliptic Laplacian associated with symmet-
ric spaces and their compact quotients. We gave an explicit local formula for the
semisimple orbital integrals associated with the heat kernel, thus recovering Sel-
berg’s trace formula by interpolation. A remarkable property of this hypoelliptic
Laplacian is that the spectrum of the original elliptic Laplacian remains rigidly
embedded in the spectrum of its hypoelliptic deformation.
In the present paper, we will review some significant aspects of the construction

of the hypoelliptic Laplacian on symmetric spaces. We will also explain the main
geometric formula in [9] for the semisimple orbital integrals of elliptic heat kernels.

1.5. GEODESIC FLOW AND THE FOURIER TRANSFORM

In the last section of the present paper, we show that the geodesic flow implements
a geometric form of Fourier transform. We will also emphasize the connections
between the hypoelliptic Laplacian and the wave equation.

1.6. THE ORGANISATION OF THE PAPER

This paper is organized as follows. In Section 2, we give the main properties of
analytic torsion and of combinatorial torsion.
In Section 3, we describe results that we obtained with Ma and Zhang on

asymptotic torsion.
In Section 4, we introduce the hypoelliptic Laplacian, and we describe its main

properties.
In Section 5, we consider the hypoelliptic Laplacian in relation with Selberg’s

trace formula.
Finally, in Section 6, in the context of the theory of the hypoelliptic Laplacian,

we discuss the geodesic flow and its connections with Fourier transform, and also
the relation of the hypoelliptic Laplacian to the wave equation.
We have excluded from the present paper connections of the hypoelliptic Lapla-

cian with probability theory. These connections have been explained at length in
[4,7,11].
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2. Analytic Torsion and Combinatorial Torsion

Let X be a compact Riemannian manifold, let F be a complex flat vector bundle
on X . The purpose of this section is to recall the definition of the Ray–Singer tor-
sion in de Rham theory [38], of the combinatorial or Reidemeister torsion [31,37],
and to state the Cheeger–Müller theorem [20,32,33].
This section is organized as follows. In Section 2.1, we recall the definition of

the Ray Singer torsion.
In Section 2.2, the combinatorial torsion is defined.
In Section 2.3, given metrics gT X , gF , we give the Weitzenböck formula for the

Hodge Laplacian acting on �· (X, F). Of special importance will be the section ωF

of T ∗X ⊗REnd (F) that measures the local variation of the metric gF with respect
to the flat connection.
Finally, in Section 2.4, we give the Weitzenböck formula for the Witten Lapla-

cian associated with a smooth function f : X →R, and we briefly explain the argu-
ments of [15,16] that are used in the proof of a general form of the Cheeger–
Müller theorem.

2.1. THE RAY–SINGER ANALYTIC TORSION

Let X be a compact manifold of dimension m, let (F,∇F ) be a complex flat vec-
tor bundle on X . Equivalently, F can be obtained via a complex representation of
π1 (X).

Let (�· (X, F) ,dX ) be the de Rham complex of smooth sections of �· (T ∗X)⊗R

F .
Let H · (X, F) denote the cohomology of the above complex. In the sequel, for

simplicity, we will assume that H · (X, F)=0, even though most statements that fol-
low make sense in the general case.

EXAMPLE 2.1. We take X = S1 = R/Z, and, given α ∈ C, F is the trivial line
bundle C equipped with the connection ∇F = d + αdt . If α ∈ C\2iπZ, then
H · (X, F)=0.

Let gT X be a Riemannian metric on X , let gF be a Hermitian metric on F . We
equip �· (X, F) with the obvious L2 Hermitian product associated with gT X , gF .
Let dX∗ be the formal adjoint to dX . Then, the Hodge Laplacian �X is given by

�X =[dX ,dX∗]. (2.1)

In the above formula, dX ,dX∗ are viewed as odd endomorphisms of �· (X, F), and
the right-hand side is their supercommutator, which in this case is an anticommu-
tator. For 0≤q ≤m, let �X

q be the restriction of �X to �q (X, F).
Since H · (X, F)=0, the Hodge theorem asserts that �X is invertible.
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DEFINITION 2.2. For 0≤q ≤m, s ∈C,Res>m/2, set

ζq (s)=Tr
[
�X,−s

q

]
. (2.2)

Set

ϑ (s)=
m∑

q=0

(−1)q+1 qζq (s) . (2.3)

Then, the ζq (s) are holomorphic functions that extend to meromorphic func-
tions on C, which are holomorphic at 0. Now, we follow Ray and Singer [38].

DEFINITION 2.3. We define the Ray–Singer analytic torsion by the formula

Tan = 1
2
ϑ ′ (0) . (2.4)

If m is odd, Ray and Singer [38] have shown that Tan does not depend on
gT X , gF . They used the fact that if A is a smooth section of End (�· (T ∗X)⊗R F),
the asymptotic expansion of Tr

[
A exp

(−t�X
)]

as t → 0 does not contain a con-
stant term.

EXAMPLE 2.4. If we make the same assumptions as in Example 2.1, by an easy
computation, we get

Tan =− log
∣∣2 sinh (α/2)

∣∣ . (2.5)

2.2. THE COMBINATORIAL TORSION

From now on, m is assumed to be odd1. Let o(T X) be the orientation bundle of
T X . Put

det F =�maxF. (2.6)

Then, det F is a complex line bundle. Let gdet F be the metric on det F that is
induced by gF .
Now, we follow [16, section 1 b)]. Let K be a triangulation of X . If σ is a sim-

plex in K , let xσ ∈ σ denote its barycentre. Let (C · (K , F) ,∂) denote the combi-
natorial complex generated by locally flat sections of F ⊗Z2 o (T X) on the cells of
the dual triangulation K ∗, whose cohomology can be canonically identified with
H · (K , F). In our case, our finite dimensional complex is exact, i.e. its cohomology
is reduced to 0. The restriction of gF to the barycentres xσ induces a Hermitian

1This is a simplifying assumption. Analytic torsion and combinatorial torsion can also be made
sense of when m is even.
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structure on the complex C · (K , F). If the metric gF is flat, this Hermitian struc-
ture does not depend on the choice of the barycentres.
Let ∂∗ be the adjoint of ∂. By proceeding as in Section 2.1, but in a finite

dimensional context, we can define the combinatorial torsion τK by a formula sim-
ilar to (2.4). If the metric gF is flat, and more generally, as explained in [33], if the
metric gdet F induced by gF on det F is flat, τK does not depend on the choice
of barycentres. In this case, it is a fundamental nontrivial fact that τK does not
depend on K . The proof consists in proving the invariance of τK by subdivision
of the triangulation K . This way, we obtain a combinatorial invariant τR, the Rei-
demeister torsion [37]. If gdet F is not flat, τK depends explicitly on K and on the
choice of barycentres.
A related construction of the Reidemeister torsion was given by Milnor [31].

Indeed if f : X →R is a Morse function, let Y be a Thom–Smale gradient vec-
tor field for f . A Thom–Smale gradient vector field is such that the ascending
and descending cells for Y are transverse. This condition is generic. In this case,
Thom [44] and Smale [41,42] have proved that the descending cells produce a CW
complex. By proceeding formally as in the case of a triangulation, Milnor [31] has
shown that one can defined an associated torsion, the Milnor torsion, which has
exactly the same properties as the combinatorial torsion. In particular, when gdet F

is flat, it coincides with the Reidemeister torsion τR.
When gF is flat, a conjecture by Ray–Singer [38] asserts that

Tan = τR. (2.7)

This was proved by Cheeger [20] and Müller [32], using different methods. This
result was extended by Müller [33] in the case where gdet F is flat.

The Cheeger–Müller theorem was given another proof by Bismut and Zhang
[15,16], and extended to the case where the metric gdet F is not necessarily flat.
In this case, a formula obtained by [15,16] compares the analytic torsion to the
Milnor torsion associated with a Thom–Smale gradient vector field, the difference
being given by an explicit local formula. The proof in [15,16] is based on the Wit-
ten deformation of classical Hodge theory [45].

2.3. A WEITZENBÖCK FORMULA FOR THE HODGE LAPLACIAN

DEFINITION 2.5. Put

ωF = (gF )−1∇FgF . (2.8)

Then, ωF is a section of T ∗X ⊗REnd (F). More precisely, it is a 1-form with val-
ues in self-adjoint endomorphisms of F with respect to gF . It exactly measures the
extent to which the metric gF is nonflat. Then, ωF,2 is a 2-form with values in
skew-adjoint elements of End (F).
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Let ∇F,u be the unitary connection on F given by

∇F,u =∇F + 1
2
ωF . (2.9)

Its curvature is given by

∇F,u,2 =−1
4
ωF,2. (2.10)

Also

∇FωF =−ωF,2, ∇F,uωF =0. (2.11)

Let ∇T X be the Levi–Civita connection on T X , and let ∇�·(T ∗X) be the induced
connection on �· (T ∗X). Let ∇�·(T ∗X)⊗RF ,∇�·(T ∗X)⊗RF,u be the connection on
�· (T ∗X)⊗R F induced by ∇�·(T ∗X),∇F and ∇�·(T ∗X),∇F,u .

Let e1, . . . , em be an orthonormal basis of T X , and let e1, . . . , em be the corre-
sponding dual basis of T ∗X . The operators dX ,dX∗ are given by

dX = ei∇�·(T ∗X)⊗RF
ei , dX∗ =−iei

(
∇�·(T ∗X)⊗RF
ei +ωF (ei )

)
. (2.12)

Let RT X be the curvature of ∇T X , and let K X be the scalar curvature of X . Let
�X,u denote the Bochner Laplacian acting on �· (X, F),

�X,u =−∇�·(T ∗X)⊗RF,u,∗
ei ∇�·(T ∗X)⊗RF,u

ei . (2.13)

In (2.13), ∗ is a notation for the adjoint. With our conventions, −�X,u is nonneg-
ative.
Put

|ωF |2 =
m∑
i=1

(ωF (ei ))
2. (2.14)

Then, |ωF |2 is a self-adjoint nonnegative section of End (F).
If e∈T X , if e∗ ∈T ∗X corresponds to e by the metric gT X , put

c (e)= e∗ ∧−ie, ĉ (e)= e∗ ∧+ie. (2.15)

The operators in (2.15) act on �· (T ∗X).
By [15, Theorem 4.13], we get

�X=−�X,u + K X

4
− 1

8
〈RT X (ei , e j )ek, e�〉c(ei )c(e j )̂c(ek )̂c(e�)

+1
4
|ωF |2 − 1

8
(c(ei )c(e j )− ĉ(ei )̂c(e j ))ω

F,2(ei , e j )

−1
2
c(ei )̂c(e j )∇T X⊗F,u

ei ωF (e j ). (2.16)

The term 1
4

∣∣ωF
∣∣2 is of special interest. As we shall see later, it may well dominate

the other terms of order 0 and guarantee the existence of a spectral gap in �X .
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2.4. ANALYTIC TORSION AND THE WITTEN LAPLACIAN

The proof given in [15,16] of the Cheeger–Müller theorem is based on the Witten
deformation [45].
Indeed let f : X →R be a smooth function. Given T ∈R, in the above construc-

tions, we replace gF by e−2T f gF . The corresponding form ωF
T is given by

ωF
T =ωF −2Td f. (2.17)

From (2.17), we get

1
4

∣∣∣ωF
T

∣∣∣
2 = 1

4

∣∣∣ωF
∣∣∣
2 +T 2 |∇ f |2 −TωF (∇ f ) . (2.18)

Let �X
T be the Hodge Laplacian associated with the metrics gT X , gFT . Set

�̃X
T = e−T f �X

T e
T f . (2.19)

Then, �̃X
T is self-adjoint with respect to the Hermitian product associated with

gT X , gF . By (2.16), we get

�̃X
T =−�X,u + K X

4
− 1

8
〈RT X (ei , e j )ek, e�〉c(ei )c(e j )̂c(ek )̂c(e�)

+1
4
|ωF

T |2 − 1
8
(c(ei )c(e j )− ĉ(ei )̂c(e j ))ω

F,2(ei , e j )

−1
2
c(ei )̂c(e j )∇T X⊗F,u

ei ωF
T (e j ). (2.20)

By (2.18), (2.20), the terms in the right-hand side that depend on T are given by

T 2 |∇ f |2 −TωF (∇ f )+T c (ei ) ĉ
(
e j

)∇T X
ei ∇e j f. (2.21)

Assume now that f is a Morse function, i.e. it has a finite number of critical
points, and these critical points are nondegenerate. By (2.20), (2.21), by proceed-
ing as in Witten [45], it is elementary to verify that as T → +∞, the eigenforms
associated with small eigenvalues localize near the critical points of f , the forms of
degree p localizing near the critical points of index p. As shown in [45], by making
T →+∞, one can obtain this way an analytic proof of the strong Morse inequal-
ities.
Assume now that ∇ f is a Morse–Smale vector field. It was shown by Helffer

and Sjöstrand [24] that the asymptotics of the eigenvalues of �X
T can be exactly

determined in terms of the eigenvalues of the associated combinatorial Laplacian.
For a simple geometric derivation of these results, we refer to Bismut and Zhang
[16, section 6]. By elaborating on such considerations, Bismut and Zhang [15,16]
gave a proof of the Cheeger–Müller theorem, which is also valid in the case of an
arbitrary Hermitian metric gF . In this context, the difference between the analytic
torsion and the Milnor torsion is given by an explicit local formula that vanishes
when gdet F is flat.
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3. Asymptotic Torsion and Toeplitz Operators

We use the notation of Section 2. The purpose of this section is to explain the
results obtained by Bismut et al. [14] in connection with Toeplitz operators. Let
q :N → X be a flat fibration by compact complex manifolds N , and let L be a
fibrewise holomorphic positive line bundle. The idea is to consider the family of
flat vector bundles Fp = H0 (N , L p) as p→+∞. We will express the tensors that
appear in the Weitzenböck formula of Section 2.3 as Toeplitz operators, so that
their asymptotics as p→+∞ can be suitably controlled.

This section is organized as follows. In Section 3.1, as a special case, we consider
a flat vector bundle F , and its symmetric powers S pF , in which case the fibres N
are the projective bundles P (F∗).
In Section 3.2, we construct the flat vector bundles Fp|p∈N in the case of a gen-

eral fibration π :N → X .
In Section 3.3, we express the forms ωFp as Toeplitz operators in the sense of

geometric quantization [1,17,27].
In Section 3.4, we describe the behaviour of certain heat equation supertraces as

p→+∞.
In Section 3.5, we construct the real invariant W obtained in [14, subsection

9.6].
Finally, in Section 3.6, still following [14], we describe the asymptotics as p→

+∞ of the analytic torsion of Fp in terms of the W -invariant.
As explained in the introduction, the subject of asymptotic torsion has been ini-

tiated by Bergeron and Venkatesh [2]. For work which is directly relevant to this
section, we also refer to Müller [34] and Müller and Pfaff [35].

3.1. THE CASE OF PROJECTIVE BUNDLES

For the moment, F denotes a complex finite dimensional vector space. Let P (F∗)
be the projectivization of F∗, and L be the canonical holomorphic complex line
bundle on P (F∗). Then, F can be canonically identified with H0 (P (F∗) , L), the
holomorphic cohomology of L. More generally, for p ∈N, the symmetric power
S pF can be identified with H0 (P (F∗) , L p).
If gF is a Hermitian metric on F , it induces the Fubini–Study metric on P (F∗),

and also a Hermitian metric on L. The corresponding L2 metric on H0(P(F∗), L p)

is proportional to the canonical metric on S pF .
If F is a complex flat vector bundle on X as in Section 2, let P (F∗) be the

total space of the fibres P (F∗). Then, P (F∗) is a flat fibration over X with com-
pact complex fibres P (F∗). Also L is a complex line bundle on P (F∗) equipped
with a horizontal flat connection. If gF is a Hermitian metric on F , it induces
a Hermitian metric along the fibres P (F∗), and also a Hermitian metric on the
line bundle L. For p∈N, we have the identification of flat vector bundles S pF =
H0 (P (F∗) , L p). The L2 metric on H0 (P (F∗) , L p) is proportional to the canoni-
cal metric of S pF .
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3.2. FLAT VECTOR BUNDLES AND DOLBEAULT COHOMOLOGY

We make the same assumptions as in Section 2, and we assume m to be odd. We
will explain the formalism developed in [14, section 9]. Let q :N → X be a flat
fibration over X by compact complex manifolds N of complex dimension n. Let L
be a line bundle on N which is holomorphic along the fibres N . Also we assume
that the flat connection on the fibration N lifts to the line bundle L. In particular,
the fibration by the fibres (N , L) is locally trivial, i.e. X can be covered by open
sets U such that over U , if x0 ∈U , q−1U is just U × Nx0 , and L is the pull back
of its restriction to Nx0 .
For p∈N, set

Fp = H0(N , L p). (3.1)

Then, Fp is a complex flat vector bundle on X . The flat connection ∇Fp is just
induced by the flat structure on the fibration N .
We assume that gL is a Hermitian metric on L which is fibrewise positive,

i.e. if r L is the curvature of its fibrewise Chern connection, if U ∈ T (1,0)N , then
r L

(
U,U

)
> 0. For the existence of such a metric gL , it is enough to assume that

such a metric exists for each fibre Nx0 , or even for just one fibre when X is con-
nected. Let gT N be a Hermitian metric on the fibrewise holomorphic tangent bun-
dle T N . The metrics gT N , gL induce a corresponding L2 metric gFp on Fp.

In the sequel, we use the notation

ξV =−ir L . (3.2)

Then, ξV is a fibrewise symplectic form along the fibres N . If H∈C∞ (N ,R), let
XH denote the fibrewise Hamiltonian vector field along N , so that

dNH+ iXHξV =0. (3.3)

If H,H′ ∈C∞ (N ,R), let
{H,H′} denote their fibrewise Poisson bracket, i.e.

{H,H′}= ξV (XH, XH′) . (3.4)

3.3. THE FORMS ωFp AS TOEPLITZ OPERATORS

Let ωL denote the horizontal variation of the metric gL . More precisely, if U ∈T X ,
if UH ∈TN denotes the horizontal lift of U , set

ωL (U )= (gL)−1∇L
UH g

L . (3.5)

Then, ωL is a smooth section of q∗T ∗X . By construction, it is horizontally closed,
i.e. it vanishes under the horizontal lift of the de Rham operator dX . Equivalently,
its restriction to horizontal leaves is closed.
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If U ∈T X , let divN (U ) denote the divergence of U with respect to the fibrewise
volume form dvN along the fibres N . More precisely, if U ∈T X , we have the iden-
tity

LUH dvN =divN (U )dvN . (3.6)

Let F be the infinite dimensional vector bundle on X ,

F =C∞ (N , L|N ) . (3.7)

Then, F is a flat vector bundle on X , equipped with the L2 metric gF associated
with gT N , gL .
We use the notation F = F1. Let P denote the fibrewise orthogonal projection

operator from F on F with respect to the metric gF .
Now, we have the elementary result in [14, Theorem 9.25].

PROPOSITION 3.1. The following identity holds:

ωF =ωL +divN . (3.8)

Also

ωF = PωF P. (3.9)

When replacing L by L p, we add the extra subscript p. In particular, for p∈N,
Pp denotes the orthogonal projection from Fp on Fp. By (3.8), (3.9), we get

ωFp = pωL +divN , ωFp = Ppω
Fp Pp. (3.10)

By the above, ωFp is a Toeplitz operator in the sense of Berezin [1], Boutet de
Monvel and Sjöstrand [19], Boutet de Monvel and Guillemin [18], Bordemann et
al. [17], Ma and Marinescu [27].
In the sequel, we use the notation

θ =−ωL/2, ηN =−divN/2. (3.11)

We will rewrite the second identity in (3.10) in the form

1
2p

ωFp =−Tp,θ+ηN /p, (3.12)

Tp being a shortcut for Toeplitz.
We use the notation

∣∣Tp,θ+ηN /p

∣∣2 =
m∑
i=1

(
Tp,(θ+ηN /p)(ei )

)2
. (3.13)
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By (3.12), we deduce that

1
4p2

∣∣∣ωFp

∣∣∣
2 = ∣∣Tp,θ+ηN /p

∣∣2 ,
1
4p

ωFp,2 = pT 2
p,θ+ηN /p. (3.14)

Similarly, by [14, Theorem 9.27], if U,V ∈T X , we get

− 1
2p

∇Fp,u
U ωFp (V )=∇Fp,u

U Tp,(θ+ηN /p)(V ). (3.15)

The main advantage of Equations (3.13)–(3.15) is that they reexpress the consid-
ered tensors in terms of Toeplitz operators associated with functions or 1-forms.
Let θ∗2 denote the section of q∗�2 (T ∗X) which is such that

θ∗2 (U,V )={θ (U ) , θ (V )} . (3.16)

As explained before, the right-hand side of (3.16) is a fibrewise Poisson bracket.
Put

|θ |2 =
m∑
i=1

θ (ei )
2 . (3.17)

Then, |θ |2 is a smooth function on N .
Set

A=C∞ (N ,R) . (3.18)

Let ∇A be the obvious flat connection on A. In [14, Definition 9.6], another con-
nection ∇A,u on A is defined that depends only on the metric gL , and is such that
the Poisson bracket in (3.4) is parallel.
We are now ready to use the full strength of the properties of the Toeplitz alge-

bra in the context of Berezin quantization. By the results of [1,17–19,27], as p→
+∞,

∣∣Tp,θ+ηN /p

∣∣2 =Tp,|θ |2 +O (1/p) ,

pT 2
p,θ+ηN /p = iTp,θ∗2 +O (1/p) ,

∇Fp,u
U Tp,θ+ηN /p (V )=Tp,∇A,u

U θ(V )
+O (1/p) . (3.19)

In (3.19), O (1/p) is taken in the sense of the norm of operators with respect to
the L2 norm on Fp.

EXAMPLE 3.2. In the case where N is of dimension 0, and L is the trivial flat
bundle C on X , let f be the smooth function on X such that

‖1‖2gL = e−2 f . (3.20)
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Then

θ =d f. (3.21)

From (3.21), we deduce that

|θ |2 =|∇ f |2 . (3.22)

When replacing L by L p, f is replaced by p f . In this case, the integral parameter
p plays the role of T in the Witten deformation considered in Section 2.4.

We go back to the general case. We follow [14, Definition 9.13].

DEFINITION 3.3. We will say that the metric gL is nondegenerate if |θ |2 does
not vanish.

Remark 3.4. In [14, Proposition 8.12], when X is locally symmetric, and when the
fibration q :N → X is defined in group theoretic terms, natural conditions are given
under which the metric gL is nondegenerate. In Example 2.1, X = S1. The canon-
ical metric on C is nondegenerate if and only if Reα �=0.

When replacing F by Fp, we denote by �X
p the Hodge Laplacian acting on

�· (X, Fp
)
, and by �

X,u
p the corresponding Bochner Laplacian. By Equation (2.16),

we get

�X
p =−�X,u

p + K X

4
− 1

8
〈RT X (ei , e j )ek, e�〉c(ei )c(e j )̂c(ek )̂c(e�)

+1
4
|ωFp |2 − 1

8
(c(ei )c(e j )− ĉ(ei )̂c(e j ))ω

Fp,2(ei , e j )

−1
2
c(ei )̂c(e j )∇T X⊗Fp,u

ei ωFp (e j ). (3.23)

Now, we give a result established in [14, Theorem 4.4 and section 9.10].

THEOREM 3.5. If the metric gL is nondegenerate, there exist C > 0,C ′ > 0 such
that for p∈N,

�X
p ≥Cp2 −C ′. (3.24)

In particular, for p∈N large enough, H ·(X, Fp)=0.

Proof. The proof is obtained by combining (3.12), (3.14), (3.19) and (3.23).
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3.4. THE BEHAVIOUR OF Trs
[
N�·(T ∗X) exp

(
−t�X

p /p2
)]

AS p→+∞

For the moment, we do not assume the metric gL to be nondegenerate. Let
N�·(T ∗X) be the number operator of �· (T ∗X).
If H∈A, if dvN ,0 is the symplectic volume form along the fibre N with respect

to ξV , set

Tr [H]= (2π)−n
∫

N

HdvN ,0. (3.25)

Then, Tr is a trace on the Poisson algebra A.
Recall that by Ma and Marinescu [26, eq. (4.1.84), Lemma7.2.4], as p→+∞,

Tr[Tp,H]= pnTr[H]+O(pn−1). (3.26)

In the sequel if A∈End(�·(X, Fp)) is trace class, we denote by Trs[A] its super-
trace, i.e.

Trs [A]=Tr[(−1)N
�·(T∗X)

A]. (3.27)

Take t > 0. By (3.19), (3.23), and (3.26), as p→+∞, we can study the asymp-
totics of the supertrace Trs

[
N�·(T ∗X) exp

(
−t�X

p /p2
)]

using semiclassical methods
on the base X and the asymptotics of Toeplitz operators described in Section 3.3.
This is done in detail in [14, proof of Theorem 9.30]. The singularity pm associ-
ated with the singularity of the standard heat kernel as the time parameter tends
to 0 can be compensated by suitable Getzler rescalings [23] on the Clifford alge-
bras c (T X) , ĉ (T X).

3.5. THE INVARIANT W

We assume again the metric gL to be nondegenerate.
There is a canonical Hermitian connection ∇L ,u on the line bundle (L , gL) that

coincides with the Chern connection along the fibres N , and which is such that if
U ∈T X ,

∇L ,u
UH =∇L

UH + 1
2
ωL (U ) . (3.28)

Let c1
(
L , gL

)
be the first Chern form associated with the connection ∇L .

The form θ can be viewed as a 1-form on N , which is in general not closed. Let
T̂ X be another copy of T X , and let ∇ T̂ X be the analogue of ∇T X . Let ψ denote
the m−1 current on the total space X̂ of T̂ X with values in the orientation bun-
dle o(T̂ X) of T̂ X that was constructed by Mathai and Quillen [29] which is such
that

dψ =−δX . (3.29)

In (3.29), δX denotes the current of integration on X . Here, we have used the fact
that X is odd dimensional. If X was even dimensional, there would be an extra
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Euler form e
(
T X,∇T X

)
in the right-hand side of (3.29). The restriction of −ψ to

the fibres T̂ X is just the solid angle form of total volume 1.
In particular, since θ̂ does not vanish, the n−1 form θ̂∗ψ on N with values in

o(T X) is well defined. By (3.29), this form is closed.

DEFINITION 3.6. Let W ∈R be given by

W =
∫

N

[
θ

(
θ̂∗ψ

)
exp

(
c1

(
L , gL

))]
. (3.30)

In [14, subsection 9.6], another construction of W is given in the Berezin integral
formalism of Mathai–Quillen [29].
The following result is established in [14, Theorem 9.23].

THEOREM 3.7. The invariant W does not depend on gT X or on infinitesimal vari-
ations of the metric gL .

3.6. THE ASYMPTOTICS OF Tan,p

We assume the metric gL to be nondegenerate. By Theorem 3.5, for p ∈N large
enough, H · (X, Fp

)=0.
For p∈N large enough, let Tan,p denote the analytic torsion associated with the

vector bundle Fp. By reexpressing the zeta functions ζq as Mellin transforms of
the trace of the corresponding heat kernels, we will rewrite Tan,p informally as:

Tan,p =−1
2

+∞∫

0

Trs
[
N�·(T ∗X) exp

(
−t�X

p /p2
)] dt

t
. (3.31)

The integral in (3.31) converges as t →+∞, but has to be suitably regularized as
t →0.
We will now describe the results on the asymptotics of Tan,p as p→ +∞ that

were obtained in [14, Theorem 9.32].

THEOREM 3.8. As p→+∞,

p−n−1Tan,p =W +O (1/p) . (3.32)

Proof. The proof consists in expressing Tan,p as in (3.31) and in taking the
proper limit in the integrand, along the lines indicated in Section 3.4.

Remark 3.9. Since Tan,p does not depend on the metric gL , equation (3.32) shows
that W does not depend on gL . The proof in [14, section 9] is formally very close
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to the proof given in [15,16] of the Cheeger–Müller theorem. From this point of
view, one can work as if the Morse function f in Section 2.4 did not have criti-
cal points. This is compensated by the extra complication due to the presence of
Toeplitz operators.

As we saw in Remark 3.4, in the context of Example 2.1, the metric gL on L=C
is nondegenerate if and only if Reα �=0. In this case, by (2.5),

Tan,p =− log
∣∣2 sinh (αp/2)

∣∣ . (3.33)

By (3.33), as p→+∞,

Tan,p =− p

2
|Reα|(1+O(e−Reαp)). (3.34)

Note that here, n = 0, θ = (Reα)dt , m = 1, and ψ is minus half of the form of
degree 0 that defines the orientation of S1. By (3.30), we get

W =−|Reα| /2. (3.35)

By (3.35), Equations (3.32) and (3.34) are compatible.

4. The Hypoelliptic Laplacian

Let X be a compact Riemannian manifold. The purpose of this section is to give
a short introduction to the theory of the hypoelliptic Laplacian [6,13]. In its sim-
plest form, the hypoelliptic Laplacian is a family of scalar hypoelliptic operators
LX
b |b>0 acting on the total space of the tangent bundle X that interpolates between

−�X/2 and the vector field −Z , where Z is the generator of the geodesic flow. The
ordinary Laplacian �X/2 will be viewed as a Toeplitz operator, the effect of the
Toeplitz compression being to eliminate the fibres T X in X .
This section is organized as follows. In Section 4.1, we introduce the family of

operators LX
b |b>0.

In Section 4.2, we show that −�X/2 can be viewed as a Toeplitz operator.
In Section 4.3, we describe the asymptotics of the resolvent of LX

b as b→ 0 in
terms of the resolvent of −�X/2.

In Section 4.4, we recall the results of [13] that describe the behaviour as b→0
of the hypoelliptic heat kernels for exp

(−t L X
b

)
.

In Section 4.5, the operators LX
b are shown to be self-adjoint with respect to a

bilinear symmetric nondegenerate form of signature (∞,∞).
In Section 4.6, we show that as b→+∞, LX

b converges in a proper sense to −Z .
In Section 4.7, we extend the construction of the scalar hypoelliptic Laplacian to

hypoelliptic Hodge Laplacians that deform the classical elliptic Hodge Laplacian.
In Section 4.8, we briefly connect the hypoelliptic Laplacian to the more classi-

cal theory of the Witten deformation.
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In Section 4.9, we state the main result in Bismut and Lebeau [13] that asserts
that for odd dimensional manifolds, the elliptic and hypoelliptic analytic torsions
coincide.
Finally, in Section 4.10, we describe the results of Shen [39,40], who gave a

direct proof of the equality of hypoelliptic and Reidemeister torsions.

4.1. THE SCALAR HYPOELLIPTIC LAPLACIAN

Let X be a compact Riemannian manifold of dimension m. Let �X be the corre-
sponding Laplace–Beltrami operator.
Let π :X → X be the total space of its tangent bundle T X . Let �V denote the

Laplacian along the fibres T X .
Let H be the harmonic oscillator along the fibre T X . If Y is the tautological

section of π∗T X on X , then

H = 1
2
(−�V +|Y |2 −m). (4.1)

Let Z be the vector field on X which is the generator of the geodesic flow. If
x ∈ X , in local geodesic coordinates centred at x , then

Z (x,Y )=Y i ∂

∂xi
. (4.2)

DEFINITION 4.1. For b>0, the scalar hypoelliptic Laplacian LX
b with parameter

b is given by

LX
b = H

b2
− Z

b
. (4.3)

By [25], LX
b is hypoelliptic. Also we have the stronger result that if t ∈R+ is an

extra coordinate, the operator ∂
∂t + LX

b is hypoelliptic. This shows that as soon as
the heat operators exp

(−t L X
b

)
are properly defined, they are given by smooth ker-

nels.

4.2. THE OPERATOR �X /2 AS A TOEPLITZ OPERATOR

Recall that fibrewise, H is a self-adjoint elliptic nonnegative operator with spec-
trum N, that ker H is 1 dimensional and spanned by the Gaussian function
exp(−|Y |2 /2), and that more generally, the eigenfunctions of H are the products
of Hermite polynomials by the Gaussian weight exp(−|Y |2 /2). Also Z is an anti-
symmetric operator.
The Gaussian function exp(−|Y |2 /2) is a section of ker H . Equivalently

ker H =C∞ (X,R)⊗
{
exp(−|Y |2 /2)

}
�C∞ (X,R) . (4.4)

Let P denote the (fibrewise) L2 orthogonal projection on ker H .
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PROPOSITION 4.2. The following identities hold:

PZ P =0, PZ2P =�X/2. (4.5)

Proof. Since Z is odd in the variable Y , the first identity is obvious. The second
identity follows from (4.2) and from the fact that

∫

R

e−y2 y2
dy√
π

= 1
2
. (4.6)

We write LX
b as a (2,2) matrix of unbounded operators with respect to the

orthogonal splitting L2 = ker H ⊕ Im H . Because of the first identity in (4.5), as
b→0, we get

LX
b �

[
0 −Z/b

−Z/b H/b2

]
. (4.7)

As the notation indicates, in the right-hand side of (4.7), we only wrote the leading
terms.

4.3. THE RESOLVENT OF LX
b AS b→0

Let us now pretend that the operator LX
b is a linear operator acting on a finite

dimensional Euclidean vector space E , that H is a symmetric nonnegative matrix
and that Z ∈End (E) is an antisymmetric morphism that maps ker H into Im H .
For b>0, put

Lb = H

b2
− Z

b
. (4.8)

Then, we can write Lb as a (2,2) matrix as in (4.7).
Let P still denote the orthogonal projection on ker H . Since Z maps ker H in

Im H , the operator PZH−1Z P is well defined. An elementary computation shows
that for λ∈C\R+, as b→0,

(λ− Lb)
−1 → P(λ+ PZH−1Z P)−1P. (4.9)

Because of (4.9), we will say that in the proper sense, as b→0, Lb is a deformation
of −PZH−1Z P . From (4.9), we deduce that as b→ 0, except for the eigenvalues
λ∈C of Lb that are such that |λ|→+∞, as b→0,

Sp Lb →Sp(−PZH−1Z P). (4.10)

Let us now pretend that the previous considerations apply to the operator LX
b

in (4.3). Recall that by (4.4), ker H �C∞ (X,R).
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PROPOSITION 4.3. The following identity holds:

PZH−1Z P =�X/2. (4.11)

Proof. Note that the Y i exp(−|Y |2 /2) span the eigenspace of H associated with
the eigenvalue 1. Using Proposition 4.2 completes the proof of our proposition.

Remark 4.4. Equations (4.5) and (4.11) express the elliptic Laplacian �X/2 as a
Toeplitz operator. The context is different than in classical geometric Toeplitz oper-
ator theory, since there is no line bundle L and no parameter p∈N, but instead a
parameter b>0. The context will be more the one of index theory. In the sequel,
like in the theory of Toeplitz operators, the problem will be to exploit the above
identities, in order to understand more about the elliptic Laplacian −�X/2.

4.4. CONVERGENCE OF THE HEAT KERNELS AS b→0

To give a concrete consequence of the convergence results of Section 4.3, we will
state a result established by Bismut and Lebeau [13, section 3.4]. Given t > 0, let
pXt (x, x ′) be the smooth kernel associated with exp(t�X/2) with respect to the vol-
ume dx ′. For b> 0, t > 0, let qX

b,t ((x,Y ), (x ′,Y ′)) be the smooth kernel associated
with exp(−t L X

b ) with respect to the volume dx ′dY ′.

THEOREM 4.5. Given t >0, as b→0, we have the uniform convergence of smooth
kernels over compact subsets of X together with their derivatives of arbitrary order,

qX
b,t ((x,Y ), (x ′,Y ′))→qX

0,t ((x,Y ), (x ′,Y ′))

=π−m/2 pXt (x, x ′) exp
(

−1
2
(|Y |2 +|Y ′|2)

)
. (4.12)

4.5. SELF-ADJOINTNESS

The operator LX
b is not classically self-adjoint because of the presence of the anti-

symmetric operator Z . Let dvX be the natural volume form on X . Let γ be the
symmetric nondegenerate bilinear form on C∞,c (X ,R) that is given by

γ ( f, g)=
∫

X
f (x,Y ) g (x,−Y )dxdY. (4.13)

Then, γ is a bilinear form of signature (∞,∞), which is positive on the even
functions of Y , and negative on the odd functions of Y . Then, LX

b is formally
self-adjoint with respect to γ . All the hypoelliptic Laplacians which we have con-
structed share this property of being self-adjoint with respect to such a bilinear
form.
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4.6. THE HYPOELLIPTIC LAPLACIAN AS b→+∞

After conjugation by the map (x,Y )→ (x,bY ), as b→+∞,

LX
b � 1

2
|Y |2 − Z . (4.14)

The two operators in the right-hand side of (4.14) commute. Equation (4.14) indi-
cates that as b→+∞, the heat flow exp

(−t L X
b

)
propagates more and more along

the trajectories of the vector field Z2. When considering the trace of the hypoel-
liptic heat kernel, as b→+∞, this forces the localization of the trace near closed
geodesics.

4.7. THE HYPOELLIPTIC LAPLACIAN AS A HODGE THEORETIC OBJECT

The operator −�X/2 is the restriction of the Hodge Laplacian �X/2 to smooth
functions. A natural question is to ask whether the Hodge Laplacian �X/2 can be
deformed to a hypoelliptic Hodge Laplacian LX

b acting on �· (X ,R), whose restric-
tion to forms of degree 0 would be precisely the scalar hypoelliptic Laplacian LX

b .
This is precisely the question which is completely solved in [6]. For detailed sur-
veys of the construction of the hypoelliptic Hodge Laplacian, we refer to [5,8].

Let us briefly make a few remarks on this construction. First, as explained in
[8, section 2.2], if (M,ω) is a symplectic manifold, the symplectic form ω defines a
bilinear pairing between compactly supported forms on M , which is neither sym-
metric nor antisymmetric. Let d

M
denote the formal adjoint of dM with respect to

this pairing. It is elementary to verify that
[
dM ,d

M
]
=0, (4.15)

i.e. the symplectic Laplacian vanishes. Let H : M →R be a smooth function. Let
YH be the Hamiltonian vector field associated with H so that

dH+ iYHω=0. (4.16)

Let LYH denote the Lie derivative operator associated with YH. When introduc-
ing the extra weight e−2H in the formula for the pairing of two forms, we obtain
this way the symplectic Witten Laplacian

[
dM ,d

M
2H

]
. By [8, Proposition 2.2], the

symplectic Witten Laplacian is given by
[
dM ,d

M
2H

]
=−2LYH . (4.17)

2From equation (4.14), one should conclude that the family of operators LX
b |b>0 interpolates

between −�X /2 and 1
2 |Y |2 − Z , which seems to contradict the assertion made in the paper that as

b→+∞, we should get instead −Z . The contradiction disappears when one realizes that two conju-
gate versions of LX

b may have different limits as b→+∞. This observation applies to the remainder
of the paper.
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Let us now return to the case of the manifold X . By identifying T X and T ∗X by
the metric gT X , X is also a symplectic manifold. If H=|Y |2 /2, the corresponding
Hamiltonian vector field YH is precisely the vector field Z .
Therefore, −LZ , the natural extension of −Z to smooth forms, is half of a sym-

plectic Witten Laplacian. The interpolation between −�X/2 and −Z lifts to the
question of properly interpolating between �X/2 and −LZ , which is an interpo-
lation between a Riemannian Laplacian and a symplectic Witten Laplacian. As
explained in [6, section 2.12], [9, section 3.2], the construction of the hypoellip-
tic Hodge Laplacian is obtained by interpolating between the scalar product 〈 〉 on
T X and the symplectic form ω on TX . Namely for b>0, U,V ∈TX , set

ηb (U,V )=〈π∗U, π∗V 〉gT X +bω (U,V ) . (4.18)

Then, ηb is a nondegenerate bilinear form. By proceeding exactly as before, it
defines a nondegenerate bilinear pairing on �c (X ,R). Still correcting the volume
form by the extra weight exp (−2H), it is shown in [6,9] that we obtain this way
a Hodge hypoelliptic Laplacian LX

b that restricts on functions to the scalar opera-
tor LX

b . As b→0, LX
b deforms �X/2, and as b→+∞, LX

b converges in the proper
sense to −LZ . Also as shown in [6, section 2.12], [9, section 3.4], LX

b is also self-
adjoint with respect to a symmetric bilinear form of signature (∞,∞). Similar
considerations are valid when considering instead the Hodge Laplacian �X acting
on �· (X, F). In this case, LX

b acts on �· (X , π∗F).

4.8. HYPOELLIPTIC LAPLACIAN AND THE WITTEN DEFORMATION

As explained in [6, section 0] and in [7], the hypoelliptic Laplacian should be
thought as a semi-classical limit of a nonexisting Witten Laplacian on the loop
space LX . This implies that the hypoelliptic Laplacian should share many prop-
erties of the Witten deformation.

4.9. THE HYPOELLIPTIC TORSION

We make the same assumptions as in Section 2.1, and we assume m to be odd.
In particular, �X is invertible. By [13, Theorem 3.5.1], for b>0 small enough, the
Hodge hypoelliptic Laplacian is invertible. As shown in [13, chapter 6], for b> 0
small enough, it is still possible to define the hypoelliptic torsion Tan,b in spite of
the fact that in general the spectrum of LX

b is not real. The key fact is that the
eigenvalues of LX

b still come by conjugate pairs. For arbitrary values of b> 0, by
[13, Theorem 3.6.2], except for a discrete set in R∗+ not accumulating at 0, LX

b is
invertible. For b> 0 not belonging to this set, one can still define the hypoellip-
tic analytic torsion Tan,b as before. As explained in [13, chapter 6], the theory of
Quillen metrics [12,36] is enough to suitably extend the definition of Tan,b to arbi-
trary b> 0. There are questions of signs which we will not address here since, in
this case, only exp(2Tan,b) is unambiguously defined. In the sequel, we will disre-
gard this subtlety.
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We now state one key result of Bismut and Lebeau [13, Theorem 9.0.1].

THEOREM 4.6. For any b>0, the following identity holds:

Tan =Tan,b. (4.19)

The proof of Theorem 4.6 uses the full strength of the analysis which is needed
to show that as b→0, the hypoelliptic Laplacian LX

b deforms �X/2.

Remark 4.7. We will now give the proper perspective to Theorem 4.6. The Fried
conjecture [21,22] predicts that for manifolds with strictly negative curvature, the
analytic torsion can be expressed in terms of special values of a combination of
values at 0 of Ruelle’s zeta functions. In the introduction to [6], it was shown that
at least formally, the Fried conjecture is an equivariant version of the Cheeger–
Müller theorem on the loop space LX , if one takes the view in [15,16] that the
Cheeger–Müller can be proved using the Witten deformation. Here, the relevant
Morse–Bott function on LX would be the energy E . Theorem 4.6 is nothing else
than a result that expresses the invariance of analytic torsion under the Witten
deformation. The proof of the Fried conjecture would be completed if one could
make b→+∞ in (4.19). The behaviour of the spectrum of LX

b as b→+∞ makes
this difficult.
By combining (2.7) and (4.19), we get

Tan =Tan,b = τR. (4.20)

4.10. THE RESULTS OF SHEN ON THE HYPOELLIPTIC TORSION

In [39,40], Shen gave a direct proof of the fact that

Tan,b = τR. (4.21)

Combining (2.7) and (4.21) gives a different proof of Theorem 4.6. The proof of
Shen consists in deforming the hypoelliptic torsion to the combinatorial torsion,
without going through the hard analysis involved in passing from the hypoellip-
tic Laplacian LX

b to the elliptic Laplacian �X/2. To do this, Shen uses the full
strength of the hypoelliptic theory, replacing the Hamiltonian H=|Y |2 /2 by a lin-
ear combination of |Y |2 /2 and of a Morse function f on X . Shen’s proof gives
a new confirmation of the fundamental connection between the classical Witten
deformation and the hypoelliptic Laplacian.

5. Hypoelliptic Laplacian, Orbital Integrals and the Trace Formula

The purpose of this section is to give a short introduction to the results of [9] on a
different version of the hypoelliptic Laplacian on locally symmetric spaces, which is
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such that the spectrum of the original elliptic Laplacian remains rigidly embedded
in the spectrum of the hypoelliptic deformation. This new version has been used
in [9] to give another approach to Selberg’s trace formula.

This section is organized as follows. In Section 5.1, we consider in detail the case
where X = S1, and we describe the spectrum of the scalar hypoelliptic Laplacian
LS1
b .
In Section 5.2, we show how to derive the usual Poisson formula from a super-

symmetric modification LS1
b of LS1

b .
In Section 5.3, we introduce the locally symmetric space X =G/K . The hypoel-

liptic Laplacian LX
b now acts on the total space X̂ of T X ⊕N , where N is an extra

natural vector bundle on X . We only give the formula for LX
b , referring to [9] for

details on its construction.
In Section 5.4, we explain the results of [9] according to which the trace of heat

kernel for the elliptic Casimir operator is preserved under the hypoelliptic deforma-
tion. This property is extended to the corresponding semisimple orbital integrals.
In Section 5.5, we explain the uniform estimates of [9] on the hypoelliptic heat

kernels on X̂ for fixed t >0 and bounded b>0. These estimates play a key role in
proving the invariance of semisimple orbital integrals under the hypoelliptic defor-
mation.
Finally, in Section 5.6, we describe the main result of [9], in which arbitrary

semisimple orbital integrals are evaluated. As a special case, when G=SL2 (R), we
rederive the original Selberg trace formula for compact Riemann surfaces of con-
stant negative curvature.

5.1. THE CASE OF S1

We use the formalism of Section 4. Assume that X = S1, so that X̂ = S1 ×R. This
case has been extensively covered in [6, section 3.10], [8, section 1.3], [10, section
5.1]. The importance of the case X = S1 is that S1 is the simplest compact mani-
fold, and also because S1 is the model of a closed geodesic.

If (x, y) is the generic element in S1 ×R, then

LS1
b = 1

2b2

(
− ∂2

∂y2
+ y2 −1

)
− y

b

∂

∂x
. (5.1)

Also, we have the identity

exp

(
b

∂2

∂x∂y

)
LS1
b exp

(
−b

∂2

∂x∂y

)
= 1

2b2

(
− ∂2

∂y2
+ y2 −1

)
− 1

2
∂2

∂x2
. (5.2)

Equation (5.2) should be viewed as an equation in the Lie algebra of differential
operators in the variables x, y whose total weight obtained by giving weight 1 to
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the action of ∂
∂x , ∂

∂y , y is lower or equal to 2. The question is how to interpret (5.2)
as an identity of unbounded partial differential operators. The obvious difficulty
is that b ∂2

∂x∂y is a hyperbolic operator, which has no heat kernel. As explained in
[9, sections 10.3 and 10.5] and in [10, section 5.1], equation (5.2) can be thought
of as a version of Egorov’s theorem, in which the symplectic transformation to be
quantized is imaginary.
Still by exploiting the fact that the eigenfunctions of the harmonic oscillator are

analytic, one can show that an obvious formal consequence of (5.2) is indeed cor-
rect, i.e.

Sp
(
LS1
b

)
=

{
2k2π2

}
k∈Z + N

b2
. (5.3)

In (5.3), the + sign indicates that elements in each set are added to each other.
From (5.3), we deduce that the spectrum of − 1

2∂
2/∂x2 on S1 remains rigidly

embedded in Sp LS1
b . Moreover, by (5.3), as b→0, we have the convergence

Sp
(
LS1
b

)
→Sp

(
−1
2

∂2

∂x2

)
. (5.4)

Equation (5.4) can be viewed as a consequence of the convergence of resolvents
described in Section 4.3.

5.2. THE HYPOELLIPTIC LAPLACIAN AND THE POISSON FORMULA

We will now show how to extract the spectrum of − 1
2

∂2

∂x2
from the spectrum of

LX
b . We introduce the exterior algebra �· (R) and the corresponding number oper-

ator N�·(R). Set

LS1
b = LS1

b + N�·(R)

b2
. (5.5)

By (5.3), (5.5), except for questions of multiplicity, we have

SpLS1
b =

{
2k2π2

}
k∈Z + N

b2
. (5.6)

Now, we state a result that was established in [6, section 3.10], [8, section 1.2],
[10, section 5.1]. Recall that the supertrace was defined in equation (3.27).

THEOREM 5.1. For b>0, t >0, we have the identity:

Tr

[
exp

(
t

2
∂2

∂x2

)]
=Trs

[
exp

(
−tLS1

b

)]
. (5.7)

Proof. This is an easy consequence of (5.3), (5.6).
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Using the results of Section 4.6, as b→ +∞, the supertrace in the right-hand
side of (5.7) localizes along the trajectories of closed geodesics on S1. As was
explained in [6, section 3.10], we obtain this way a proof of the Poisson formula
for the trace of the heat kernel on S1.
Much more is true. It is shown in [10, Theorem 5.3] that an analogue of equa-

tion (5.7) still makes sense when X =R. More precisely, equation (5.7) lifts to the
equality of the individual terms in the Poisson sum. This observation is the start-
ing point of our work on the hypoelliptic Laplacian and orbital integrals [9].

5.3. A LOCALLY SYMMETRIC SPACE

Let G be a reductive group of noncompact type, let θ ∈ Aut (G) be the Cartan
involution, and let K ⊂G be the corresponding maximal compact subgroup. Let
g, k be the Lie algebras of G, K , and let g= p⊕ k be the Cartan splitting of g.
Let B be a θ -invariant nondegenerate symmetric bilinear form on g which is pos-
itive on p and negative on k, the Cartan splitting being orthogonal. Let Cg be the
Casimir operator on G. This is a biinvariant differential operator of order 2 on G,
whose principal symbol is given by B (ξ, ξ). It can be thought of as the sum of a
Laplacian along k and minus the Laplacian in the directions p.

Let X = G/K be the associated symmetric space. The principal K -bundle π :
G→ X is naturally equipped with a connection. Also X is a Riemannian manifold
with nonpositive covariantly constant curvature, whose tangent bundle is given by
T X =G×K p. Moreover, G acts isometrically and transitively on the left on X . The
Casimir operator Cg descends to the operator −�X on X .

Let � ⊂G be a discrete cocompact torsion-free subgroup. Then, Y = �\X is a
compact smooth manifold, which is locally symmetric.

EXAMPLE 5.2. The simplest nontrivial example is when G = SL2 (R), θg = g̃−1,
so that K = SO (2). Then, g is the Lie algebra of trace-free (2,2) matrices, p, k

being the symmetric and antisymmetric matrices in g. We may take as B the bilin-
ear form 2Tr [AB] in the natural representation of SL2 (R). Then, X is the upper
half-plane, and the Y are all the Riemann surfaces of genus g ≥ 2 with constant
scalar curvature −2.

Let us now summarize the constructions in [9]. As we saw before, p descends to
the tangent bundle T X . Similarly k descends to the vector bundle N =G ×K k, so
that T X ⊕ N = G ×K g. Then, T X ⊕ N is a bundle of Lie algebras. Let ρ : K →
Aut (E) be a finite dimensional irreducible unitary representation of K , and let
F = G ×K E be the corresponding Hermitian vector bundle on X . Let Cg,X be
the action of Cg on C∞ (X, F). Up to a constant, Cg,X coincides with minus the
Bochner Laplacian �X,F .
Let π̂ : X̂ → X be the total space of T X ⊕ N . Now, we follow [9, section 2.13].
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DEFINITION 5.3. For b>0, let LX
b be the operator acting on

C∞ (X̂ , π̂∗ (
�· (T ∗X ⊕ N∗)⊗ F

))

that is given by

LX
b = 1

2
|[Y N ,Y T X ]|2 + 1

2b2
(−�T X⊕N +|Y |2 −m−n)+ N�·(T ∗X⊕N∗)

b2

+1
b

(
∇C∞(T X⊕N ,π̂∗(�·(T ∗X⊕N∗)⊗F))

Y T X + ĉ(ad(Y T X ))

−c(ad(Y T X )+ iθad(Y N ))− iρE (Y N )

)
. (5.8)

We will not explain in detail the terms in equation (5.8). Let us just mention
that Y =Y T X +Y N is the generic section of π̂∗ (T X ⊕ N ). The reader should have
recognized the harmonic oscillator along the fibre T X ⊕N , and also the generator
of the geodesic flow ∇Y T X lifted to X̂ . The terms that depend linearly on Y T X ,Y N

are matrices acting on �· (T ∗X ⊕ N∗) or F . The quartic term 1
2

∣∣[Y T X ,Y N
]∣∣2 is the

square of the norm of a fibrewise Lie bracket. Observe the fundamental fact that
LX
b acts on X̂ and not on X .
One key result proved in [9] is that as b→ 0, LX

b deforms the elliptic operator(
Cg,X − c

)
/2, where c is an explicit constant.

5.4. THE PRESERVATION OF THE TRACE OF THE ELLIPTIC HEAT KERNEL

Let Y =�\X be a compact locally symmetric space as in Section 5.3. The opera-
tors Cg,X ,LX

b descend to operators Cg,Y ,LY
b .

The following analogue of Theorem 5.1 was established in [9, Theorem 4.8.1].

THEOREM 5.4. For any b>0, t >0, then

Tr
[
exp

(
−t

(
Cg,Y − c

)
/2

)]
=Trs

[
exp

(
−tLY

b

)]
. (5.9)

The proof of Theorem 5.4 is relatively easy. However, making b→ +∞ would
force localization on an infinity of manifolds of closed geodesics in Y . In [9], one
of the main points is to split the identity in (5.9) as an identity of orbital inte-
grals. These orbital integrals are analogues of Fourier coefficients. The advantage is
that given a semisimple element γ ∈G, one can refine (5.9) to an identity of orbital
integrals

Tr[γ ]
[
exp

(
−t

(
Cg,Y − c

)
/2

)]
=Trs[γ ]

[
exp

(
−tLY

b

)]
. (5.10)

In the context of Section 5.2, this corresponds to replacing an identity of traces
over S1 to an identity of smooth kernels over R.
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The price to pay is that instead of working with ordinary traces over Y , we need
to consider the corresponding smooth heat kernels over X or X̂ and, more specif-
ically, we need to control their long distance decay.

5.5. UNIFORM ESTIMATES ON THE HYPOELLIPTIC HEAT KERNELS

Let d denote the Riemannian distance on X . For t>0, let pXt (x, x ′) be the smooth
kernel associated with exp(−t (Cg,X − c)/2). It is well known that given ε >0, M >

0, ε ≤M , there exist C >0,C ′ >0 such that for ε ≤ t ≤M, x, x ′ ∈ X ,

|pXt (x, x ′)|≤C exp(−C ′d2(x, x ′)). (5.11)

For b > 0, t > 0, let qX
b,t ((x,Y ), (x ′,Y ′)) be the smooth kernel associated with

exp(−tLX
b ). Set

m=dim p, n=dim k. (5.12)

Let P denote the projection from �·(T ∗X ⊕ N∗) on �0(T ∗X ⊕ N∗)=R.
To establish (5.10), the proof consists that the right-hand side does not depend

on b> 0, and also in proving that as b→ 0, the right-hand side converges to the
left-hand side. In that respect, we state a key result established in [9, Theorem
4.5.2].

THEOREM 5.5. Given ε > 0, M > 0, ε ≤ M , there exist C > 0,C ′ > 0 such that for
0<b≤M, ε ≤ t ≤M , (x,Y ) , (x ′,Y ′)∈ X̂ ,

|qX
b,t ((x,Y ), (x ′,Y ′))|≤C exp(−C ′(d2(x, x ′)+|Y |2 +|Y ′|2)). (5.13)

Moreover, as b→0,

qX
b,t ((x,Y ) , (x ′,Y ′))→qX

0,t ((x,Y ) , (x ′,Y ′))

=PpXt (x, x ′)π−(m+n)/2 exp
(

−1
2
(|Y |2 +|Y ′|2)

)
P. (5.14)

The proof of Theorem 5.5 given in [9] is based on probabilistic considerations. A
uniform version as b→0 of the Malliavin calculus [3,28,43] plays a key role in the
proof. Needless to say, the estimates in Theorem 5.5 are also valid for the scalar
kernels that were considered in Section 4.4, when X is taken to be our symmet-
ric space. More generally, such estimates still hold on noncompact manifolds with
uniform geometry.

5.6. THE LIMIT AS b→+∞

In [9], we take the limit of (5.10) as b → +∞. As was explained before, on the
compact manifold Y , Trs

[
exp

(−tLY
b

)]
localizes on closed geodesics. Similarly if
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γ ∈G is semisimple, as b→+∞, Trs[γ ]
[
exp

(−tLX
b

)]
localizes near X (γ )⊂ X , the

minimizing set for the displacement function dγ (x)=d (x, γ x). This minimizing set
is just the symmetric space associated with the centralizer Z (γ ) ⊂ G of γ . Ulti-
mately, the limit can be explicitly computed in terms of the local geometry of
X (γ ) and the action of γ on various vector bundles over X (γ ).
Let us briefly describe the formula obtained in [9]. After conjugation, we can

write γ in the form

γ = eak−1, (5.15)

with

a∈p, k ∈ K , Ad (k)a=a. (5.16)

Here, |a| will eventually represent the length of a closed geodesic in Y .
Let z (γ )= p (γ )⊕ k (γ ) be the Lie algebra of Z (γ ). Let z0 ⊂ g be the kernel of

ad (a), and let z⊥0 ⊂g be its orthogonal with respect to B. Note that z (γ )⊂ z0. Let
z⊥0 (γ ) be the orthogonal to z (γ ) in z0.
Now, we follow [9, Theorem 5.5.1].

DEFINITION 5.6. Let Jγ
(
Y k
0

)
be the function on k (γ ) given by

Jγ
(
Yk
0

)
= 1∣∣∣det (1−Ad (γ )) |z⊥

0

∣∣∣
1/2

Â
(
iad

(
Yk
0

) |p(γ )

)

Â
(
iad

(
Yk
0

) |k(γ )

)

×
[

1

det
(
1−Ad

(
k−1

)) |z⊥
0 (γ )

det
(
1− exp

(−iad
(
Yk
0

))
Ad

(
k−1

)) |k⊥
0 (γ )

det
(
1− exp

(−iad
(
Yk
0

))
Ad

(
k−1

)) |p⊥
0 (γ )

]1/2

.

(5.17)

The fact that the square roots in (5.17) are unambiguously defined is established
in [9, chapter 5]. The function Jγ is the quotient of two functions associated with
p and k. Geometrically, this represents the quotient of two equivariant genera asso-
ciated with T X, N respectively.
Now, we state the result in [9, Theorem 6.1.1], which was obtained from (5.10)

by making b→+∞. Set p=dim p (γ ) ,q =dim k (γ ).

THEOREM 5.7. For any t >0, the following identity holds:

Tr[γ ][exp(−t (Cg,X − c)/2)]= exp(−|a|2/2t)
(2π t)p/2∫

k(γ )

Jγ
(
Y k
0

)
TrE

[
ρE (k−1) exp

(
−iρE

(
Y k
0

))]
exp

(
−

∣∣∣Y k
0

∣∣∣
2
/2t

)
dY k

0

(2π t)q/2
.

(5.18)
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Remark 5.8. In [9, Theorems 6.2.2 and 6.3.2], it is shown how to derive a cor-
responding formula for more general kernels that include the wave kernel. One
remarkable aspect of equation (5.18) is that the orbital integral is expressed as an
integral over a part of the Lie algebra k, which is partly hidden from the analyst
who would work on the total space of the tangent bundle X . This explains in ret-
rospect why one is forced to introduce the larger space X̂ .

Let us now make the same assumptions as in Example 5.2. Here, Y is a Rie-
mann surface of constant scalar curvature −2. Then, Selberg’s original trace for-
mula [30, p. 233] can be written in the form:

Tr
[
exp

(
t�Y /2

)]
= exp (−t/8)

2π t
Vol (Y )

∫

R

exp
(
−y2/2t

) y/2
sinh (y/2)

dy√
2π t

+
∑
γ �=0

Volγ√
2π t

exp
(
−�2γ /2t − t/8

)

2 sinh
(
�γ /2

) . (5.19)

In (5.19), the γ described the nontrivial closed geodesics in Y of length lγ , and
Volγ is the length of the corresponding primitive closed geodesic. Except for the
volume factors, the objects appearing in the right-hand side are orbital integrals
that can be reobtained using Theorem 5.7. When γ is the identity, then k (γ )=R,
which explains the integral over R. When γ ∈� is nontrivial, then k (γ )={0}, which
explains why there is no integral. Ultimately, Selberg’s trace formula in (5.19) has
been obtained via an interpolation process between the left-hand side and the
right-hand side via the hypoelliptic Laplacian.

6. Geodesic Flow, Fourier Transform, and the Wave Equation

The purpose of this section is to explain the appearance of the geodesic flow in the
hypoelliptic Laplacian as part of a dynamical version of Fourier transform. Also,
we exhibit relations of the hypoelliptic Laplacian to the wave equation.
This section is organized as follows. In Section 6.1, we connect the geodesic flow

to Fourier transform.
In Section 6.2, we develop the considerations of [9] showing that as b→ 0, the

projection on X of the hypoelliptic heat kernel can be viewed as the solution of an
‘intelligent’ wave equation.
We make the same assumptions as in Section 4, and we use the corresponding

notation. Also we use the fact that the symbol of a vector field can be identified
with the vector field itself.

6.1. THE GEODESIC FLOW AND ITS FOURIER SYMBOL

Let i be the embedding of the fibres T X in X . We have the exact sequence

0→π∗T X
i∗−→TX π∗−→π∗T X →0. (6.1)
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In (6.1), the first π∗T X is identified with the tangent bundle to the fibre T X . By
(6.1), we have the dual exact sequence

0→π∗T ∗X π∗−→T ∗X i∗−→π∗T ∗X →0. (6.2)

Let η denote the canonical section of T ∗X on the total space of T ∗X . The sym-
bol of the radial vector field Y along the fibres T X is given by

√−1 〈Y, i∗η〉.
Let gT X be a Riemannian metric on T X , and let ∇T X denote the corresponding

Levi-Civita connection on T X . The connection ∇T X induces a splitting

TX =π∗(T X ⊕T X). (6.3)

The first copy π∗T X corresponds to horizontal vectors in TX , and the second
copy to vertical vectors. We also have the dual splitting

T ∗X =π∗ (
T ∗X ⊕T ∗X

)
. (6.4)

The first copy π∗T ∗X consists of the pullbacks of 1-forms on X , and the second
to the 1-forms that are vertical, i.e. they vanish on horizontal vectors.
The effect of (6.3), (6.4) is to split the exact sequences (6.1), (6.2). In particular,

if η∈T ∗X , then η splits as:

η= (ξ, υ) . (6.5)

The symbol of the radial vector field Y is the function
√−1 〈Y, υ〉 that does not

depend on gT X .

PROPOSITION 6.1. The symbol of the vector field Z is given by

σ (Z)=√−1 〈Y, ξ 〉 . (6.6)

Proof. Since Z is a horizontal vector field, this just follows from (4.2).

Remark 6.2. As explained before, the function
√−1 〈Y, υ〉 corresponds to the

radial vector field Y and is well defined without any choice of gT X . However, the
function

√−1 〈Y, ξ 〉 makes sense as a symbol on X only once the choice of a met-
ric gT X has been made. The function

√−1 〈Y, ξ 〉 will be called a Fourier symbol.

Consider equation (4.3) for LX
b . The heat kernel for LX

b gives a dynamical inter-
pretation of Fourier transform. From this point of view, the vector field Z is the
only operator in LX

b that connects the fibre T X to the base via the geodesic flow
ẋ =Y . This is to be contrasted with the use of the Fourier transform in the theory
of pseudodifferential operators, in which the Fourier transform is made locally via
a choice of local coordinates.
The reason for the introduction of the geodesic flow in the context of the trace

formula is precisely because it contributes to a global Fourier transform, which can
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be made to be exact in the case of locally symmetric spaces. The classical heat
flow exp(t�X/2) can again be viewed as the exponential of a Toeplitz operator,
obtained via a local Fourier transform of the function −|ξ |2 /2, while the hypoel-
liptic heat flow exp

(−t L X
b

)
is the exponential of an operator in which the Fourier

transform is done dynamically.

6.2. THE HYPOELLIPTIC LAPLACIAN AND THE WAVE EQUATION

As we saw in Section 4, LX
b interpolates between the −�X/2 and −Z . The ellip-

tic heat flow exp
(
t�X/2

)
has infinite propagation speed, while the geodesic flow

exp (t Z) propagates with finite constant speed on X . It is natural to ask how the
hypoelliptic heat flow exp

(−t L X
b

)
propagates on X . Giving the proper answer to

this question plays a crucial role in [9], and partly explains the uniform estimates
in Theorem 5.5.
Set

MX
b = exp(|Y |2/2)LX

b exp(−|Y |2/2). (6.7)

Let ∇V
Y denote fibrewise differentiation with respect to the radial vector field Y .

Then

MX
b = 1

2b2

(
−�V +2∇V

Y

)
− Z

b
. (6.8)

Let f ∈C∞ (X,R). Then, f lifts to a smooth real function on X . One verifies
easily that(

b2MX,2
b −MX

b

)
f = Z2 f. (6.9)

By (6.9), we deduce that(
b2

d2

dt2
+ d

dt

)
exp

(
−tMX

b

)
f = exp

(
−tMX

b

)
Z2 f. (6.10)

We follow [9, section 12.3]. Given b > 0, t > 0, let sb,t ((x,Y ) , (x ′,Y ′)) be the
smooth kernel associated with exp

(−tMX
b

)
. As explained in [9], sb,t is positive on

X ×X . Put

σb,t ((x,Y ), x ′)=
∫

Tx ′ X

sb,t ((x,Y ), (x ′,Y ′))dY ′,

Mb,t ((x,Y ), x ′)= 1
σb,t ((x,Y ), x ′)

∫

Tx ′ X

sXb,t ((x,Y ), (x ′,Y ′))(Y ′ ⊗Y ′)dY ′. (6.11)

As a function of x ′, σb,t is the projection on X of sb,t ((x,Y ), (x ′,Y ′)). Also
Mb,t ((x,Y ), x ′) is a symmetric positive quadratic form on Tx ′ X . To this quadratic
form, we can associate the second-order elliptic operator acting on C∞(X,R),

Mb,t ((x,Y ), x ′)g(x ′)=〈Mb,t ((x,Y ), x ′),∇T X· ∇·〉g(x ′). (6.12)
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By (6.10)–(6.12), we obtain
(
b2

∂2

∂t2
+ ∂

∂t

)
σb,t f −σb,tMb,t f =0. (6.13)

Equation (6.13) is not an autonomous equation for the kernel σb,t ((x,Y ) , ·), and
it is not time homogeneous. Still it is similar to a wave equation.
Moreover, by Theorem 4.5 and using the uniform bounds in [13, section 3.4],

for t >0, we get

σb,t (((x,Y ), x ′))→ pXt (x, x ′), Mb,t ((x,Y ), x ′)→�X/2. (6.14)

From the above, it follows that as b→0, the projected heat kernel σb,t ((x,Y ), x ′)
is the solution of a wave-like equation with propagation speed 1/b.
The heat operators exp

(−t L X
b

)
, exp

(−tMX
b

)
produce the solution of an intelli-

gent wave equation, which is programmed to look for geodesics as b→+∞. When
taking their traces, this produces a localization on closed geodesics.

References

1. Berezin, F.A.: Quantization. Izv. Akad. Nauk SSSR Ser. Mat. 38, 1116–1175 (1974)
2. Bergeron, N., Venkatesh, A.: The asymptotic growth of torsion homology for arith-

metic groups. J. Inst. Math. Jussieu 12(2), 391–447 (2013)
3. Bismut, J.-M.: Martingales, the Malliavin calculus and hypoellipticity under general

Hörmander’s conditions. Z. Wahrsch. Verw. Gebiete. 56(4), 469–505 (1981)
4. Bismut, J.-M.: Equivariant immersions and Quillen metrics. J. Differ. Geom. 41(1), 53–

157 (1995)
5. Bismut. J.-M.: Le laplacien hypoelliptique. In: Séminaire: Équations aux Dérivées Par-

tielles. 2003–2004. Sémin. Équ. Dériv. Partielles. pages Exp. No. XXII. 15. École Poly-
tech. Palaiseau (2004)

6. Bismut, J.-M.: The hypoelliptic Laplacian on the cotangent bundle. J. Am. Math. Soc.
18(2), 379–476 (2005). (Electronic)

7. Bismut, J.-M.: Loop spaces and the hypoelliptic Laplacian. Commun. Pure Appl.
Math. 61(4), 559–593 (2008)

8. Bismut, J.-M.: A survey of the hypoelliptic Laplacian. Astérisque. Géométrie différen-
tielle, physique mathématique, mathématiques et société. II 322, 39–69 (2008)

9. Bismut, J.-M.: Hypoelliptic Laplacian and orbital integrals. In: Annals of Mathematics
Studies, vol. 177. Princeton University Press, Princeton (2011)

10. Bismut, J.-M.: Index theory and the hypoelliptic Laplacian. In: Metric and differen-
tial geometry. In: Progress in Mathematics, vol 297, pp. 181–232. Birkhäuser/Springer,
Basel (2012)

11. Bismut, J.-M.: Hypoelliptic Laplacian and probability. J. Math. Soc. Jpn. 67(4), 1317–
1357 (2015)

12. Bismut, J.-M., Gillet, H., Soulé, C.: Analytic torsion and holomorphic determi-
nant bundles. III. Quillen metrics on holomorphic determinants. Commun. Math.
Phys. 115(2), 301–351 (1988)

13. Bismut, J.-M., Lebeau, G.: The hypoelliptic Laplacian and Ray–Singer metrics. In:
Annals of Mathematics Studies, vol. 167. Princeton University Press, Princeton (2008)



TOEPLITZ OPERATORS, ANALYTIC TORSION 1671

14. Bismut, J.-M., Ma, X., Zhang, W.: Asymptotic torsion and Toeplitz operators. J. Inst.
Math. Jussieu 1–127 (2015)

15. Bismut, J.-M., Zhang, W.: An extension of a theorem by Cheeger and Müller.
Astérisque 205, 235 (1992). (With an appendix by François Laudenbach)

16. Bismut, J.-M., Zhang, W.: Milnor and Ray–Singer metrics on the equivariant determi-
nant of a flat vector bundle. Geom. Funct. Anal. 4(2), 136–212 (1994)

17. Bordemann, M., Meinrenken, E., Schlichenmaier, M.: Toeplitz quantization of Kähler
manifolds and gl(N ), N →∞ limits. Commun. Math. Phys. 165(2), 281–296 (1994)

18. Boutet de Monvel, L., Guillemin, V.: The spectral theory of Toeplitz operators. In:
Annals of Mathematics Studies, vol. 99. Princeton University Press, Princeton (1981)

19. Boutet de Monvel, L., Sjöstrand, J.: Sur la singularité des noyaux de Bergman et de
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