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Jump Processes and Boundary Processes

Jean-Michel BismuT

§0. Introduction

' In‘ this paper, we will present the results which we have recently ob-
tained in our two papers [4] and [6]. Since the starting point of these two
papers has been the development of the Malliavin calculus by Malliavin
we start by giving a brief history of this method. Consider the st‘ochastic’:
differential equation in Stratonovitch form '

dx = X,(x)dt + ﬁ X (x)-dw,

0.1
O x(0) = x,

where X,, X,, « - -, X, are smooth vector fields, and w = (W, -0, W) is
a Brownian motion. (0.1) defines a Markov continuous diffusion whose
generator % is given by

f“':Xu‘{‘?LiXi.
o 1

The smoothness of the transition probabilities for the diffusion (0.1)-which
define the semi-group e*“—is usually studied via Hoérmander’s theorem on
hypoelliptic second order differential operators [10].

N In particular we know from Hérmander’s theorem that under con-
thlons on X,, X,, - - -, X,, and their Lie brackets, the operator ajot - &
is hypoelliptic, and that the transition probabilities arc smooth.

In [20] and [21}, Malliavin developed a purely probabilistic method
of proof for the existence of smooth trapsition probabilities. The idea in
[20] and [21] was to use the stochastic differential equation (0.1) itself to
get a direct proof for smoothness. To do this, Malliavin showed that it
was possible to integrate by parts on the Wiener space, and that a wide
class of functionals of x (w) given by (0.1) could be submitted to such a
calenlus of variations. To prove that integration by parts is indeed
possible, Malliavin used the Ornstein-Uhlenbeck operator &/ which is an
unbounded self-adjoint operator acting on the L, space (for the Wiener
measure), and the corresponding infinite dimensional Ornstein-Uhlenbeck
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process whose gencrator is . Still using the Ornstein-Uhlenbeck oper-
ator, Shigekawa [24], Stroock [26], [27] and Tkeda-Watanabe [12] simplified
and extended Malliavin’s original approach. In particular the estimates
which prove the smoothness of the transition probabilities wero proved in
Matliavin [21], Tkeda-Watanabe [12] and improved in Kusuoka-Stroock
[19], [28] where the full TIormander’s theorem was in fact obtained.

In [3], we suggested a different approach to the Malliavin calculus,
based on the quasi-invariance of the Wiener measure, which is expressed
by the well-known Girsanov transformation. A formula of integration
by parts was then obtained in [3], which was in fact deeply related to a
result of Haussmann [9] on the representation of certain Fréchet differ-
entiable functionals of the trajectory x_(w) as stochastic integrals with
respect to the Brownian motion w.

In [4], we developed a calculus of variations on jump processes. Qur
motivation was:

a) To try to exploit the resources of the stochastic calculus on Jurap
processes, and in particular the existence of a Girsanov transformation
on jump processes (see Jaced [14]) in a framework where no clear-cut
extension of the Ornstein-Uhlenbeck process exists.

b) To understand better how the calculus of variations on diffusions
works, in particular in its relation to the classical Itd calculus and martin-
gale theory.

¢) To obtain specific analytic results on a class of jump processes.

In [4], the computations seem to be difficult. One of the key reasons
(which may appear in Section 1) is that in spite of all the randomness of
Brownian motion, all the a-variations of the Brownian motion are de-
terministic processes, which is not the case for jump processes. The
caleulus of variations developed in [4] consists in doing an “elementary”’
integration by parts at the level of each jump, so that in the end an
infinite number of classical integration by parts has to be done. In the
limiting Brownian motion case, many complications are smoothed out
due to continuous stochastic integration, which makes the unpleasant
variation terms disappear.

In Section 1 of this paper, we present another approach to the
calculus of variations on jump pProcesses, which is based on more elemen-
tary arguments than in [4], and does not rely on the Girsanov transform-
ation on jump processes. Section 1 should make the reading of [4] easier
although much of the sechnical work is done in [4]. The gstimation
technigues are briefly indicated.

In our later paper [6], we still focused on a special sort of jump pro-
cesses, which are the boundary processes of continuous diffusions. Qur

motivations were:

|
|
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' a) 'To understand better the relation between certain pseudo-
differential operators [30] and the stochastic calculus.
' b)_ To ex111b1t. the interplay between the continuous diffusion (and
its continuous martingales) and the discontinuous boundary process (and
its dlscoqtllluous martingales). In particular, we felt that the It6 theory
of excursions (It6-McKean [13], Tkeda-Watanabe [12]) could be a powerful -
analytic tool to study the boundary semi-groups. g

_ c) To understand the possible interplay between the calculus of
varia}tlons on the continuous diffusion and the calculus of variations on
the jump boundary process.

“d). To try to ‘exhibit some “Hoérmander-like” interaction between
thf: drift’”” and the [évy kernel of the boundary processes or between two
Lévy kernels.

¢) To find degeneracy conditions on the continuous diffusion so that
“Lhe bc_,undary process would exhibit a slowly regularizing behavior which
is typical of some jump processes,
. Section 2 give:s a.simpliﬁed account of our results in [6]. Proofs are
in gene:ral brieﬂy. indicated. The proofs exhibiting the interaction des-
cribed in d) ate given in detail. Relations with the techniques of enlargs-
ment of filtrations [15], [16], [17], and [38] are exhibited.

§1. The calculus of variations on jump processes

The purpose of this section is to present some of the methods and
results which we obtained in [4] on the calculus of variations for jump
processes (these results were announced in [3]). |

. Recall that in [3], we had given an approach to the Malliavin calculus

using the quasi-invariance of the Brownian measure which is expressed
through the Girsanov exponential formula.
. In [4], our idea was to explore if the Girsanov transformation on
jump processes (see Jacod [14]) could be the starting point for the develop-
ment of another calculus of variations whose purpose would be to study
tpe transition probability laws for Markov j'umps processes. An integra-
tion b.y parts formula was proved in [4] using such arguments. In parti-
cular 1t. appeated that such a formula could be obtained as the consequence
of an 1nﬁni_te number of integration by parts in the Lévy kernel of the
cons:_dt.ared jump processes. In [4], we applied this technique to study the
trans1t1011. probabilities of a special class of pure jumps processes whose
construction was elementary using auxiliary independent increment jump
processes,

Tht? Malliavin calcutus of variations on diffusions is based on certain
§tochastlc differential equations. The Brownian motion model is still
important for two reasons:




56 1.-M. BisMUT

a) It is essential to build explicitly the solutions of stochastic differ-
ential equations, which can ihen be submitted to the calculus of variations
on the Brownian motion space.

b) The necessary estimates are obtained by reference to the Brow-
nian motion model, [12], [19], [21], [28].

Of course, if the Malliavin caleplus of variations is applied on the
Rrownian motion itself, it gives—not u’n]expectedly—essentially trivial results
(for an illuminating discussion of this case, see Williams [36]).

As it appears in [4], this is not the case on jump processes, even
when the calculus is applied to independent increment jump processes.
Moreover although computations are elementary in their principle, the
resulting formulas are extremely heavy to manipulate.

In this section, we will try to present the calculus of variations on
independent increment jump processes in an elementary way, i.e. based on
the most elementary aspects of their structure, Once this is done, the
reader can at least have an intuition for how to study more complex
Markov jump processes, constructed by means of such independent incre-

- ment processes, as in [4}. Note that we will only briefly address the

question of knowing what is the “right” formulation for expressing a
Markov jump processes in terms of independent increment jump processes.

In a) an integration by parts formula is proved on the probability
space of an independent increment jump process. In b) this formula is
used to obtain an integration by parts formula on the semi-group of the
considered process. In c) the estimates which are necessary to make such
o formula valid are derived. In d), the application of such methods to
more general processes is briefly considered along the lines of [4]. Finally
e} is devoted to some geometrical considerations.

a) Integration by parts on imdependent increment jump processes

Let g(z) be a function defined on R*/{0} with values in R* which has
the following properties.

a) g is differentiable with a continuous derivative g,.

b) g is such that

(.1 quz[z A Dg(2)dz < 4 oo .

Note that since g is = 0, if g(z) = 0, then also g2) =0,
Fort > 0, ® ¢ R", set

o) = exp[tjmsl (et — 1 4 i{a, z))g(2)dz

(1.2)
b, e = D]
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D(R") denotes the space of functions defined on R* with values in
R* which are right-continuous with left-hand limits. {#},5, denotes
the canonical filtration of D(R™) (here %, = &(z,|s < ). {F },z0 Will
eventually be made right-continuous and complete as in Dellacherie-Meyer
[8] without further mention. £ is the predictable o-field on R* X.D(R")
18], [14]. Let z, be the independent increment right-continuous process
whose characteristic function is given by (1.2). Let /7 be the probability
law of z. on D(R™). If A(w, ) is a function defined on R* X 2 X R"/{0}
with values in R such that

a) A, is # @ #(R*/{0})-measurable and

b) forany (>0

(1.3) E”U: dsjm[is(w, z)|g(z)dz] <+ oo,
(resp. | '
(1.3) E”UU ds j 12, z)|‘1g(z)dz] < 4o,

then we denote by S,., 4, St 2 (resp. Sic, A) the right-continuous pro-
cessos defined by |

Sssc A= Z Zs(ms AZH) 4

B

(1.4) Azg0 ';
St 2= Syoid — j ds L 2, DgE)dz ,

(resp.
(1.4 Ste; 4 = lim S5.,(/,.0)
slj0

where for ¢ > 0, the right hand side of (1.4') is defined by (1.4}, and the
limit is taken in probability uniformly on every compact set in R*). By
the results in Jacod [14] and Tkeda-Watanabe [12], we know that under
(1.3) (resp. (1.3')), S, 2 is a martingale (resp. a square-integrable mar-
tingale).

We then have the first elementary result of integration by parts on
{D(R™), I}, given in [5], [4].

Theorem 1.1. Let A0, z) be a function defined on R* X 2 X R*/{0},
with values in R" which has the following properties:

a) Ais & QR H(R/{0)-measurable and bounded.

b) ﬁ is differentiable in the variable z and has a bounded differential
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¢) There exist e and M with 0 <o <M, such that if |z] < e or |2]
> M, Afw,z) = 0. Then for any fe C7(R"), T >0

(15)  ETdf(n), Ser D) + E”[f(zr)ssgf%ﬂﬂ] =0

Proof. First observe that (1.5) makes sense. In fact:

a) Since for |z| < e, A(z) =0, A being bounded, we know that
S, opd is integrable. N .

b) Observe that g priori, div, g(z)/l(z)/g(z) is not well defined when
g(z) = 0. However, it is elementary to prove that a.s., if s is such that
Az, = 0, g{dz) + 0. Now since

div,g(2)A() _ / g.(2) .
e < i A(z)> + div, A(z)

it is easy to see that
div, g(Z)A(_Z__)

J\cﬁlz\sM g(z)

is uniformly bounded. S? p(div,g(2)A(z))/g(z)) is then a martingale.
We now give a short proof of (1.5). We first assume that

g(z) dz

(1.6) jmg(z)dz < oo,

(1.6) means that a.s., z, bas only finitely many jumps. Let S, S5z, - - Ses
.. be the increasing sequence of stopping times at which z jumps. It is
well-known that Sy, Sy — Sy, + -+ Sy — Spers + o, d2g,, A2, -+, A2g,
. are independent random variables and that moreover for every i € N,
the probability law of 4z, is given by

(1.7} _&@dz
[, e
Rw
Using (1.2), we know that
(1.8) z, = S, dz, — kt
where &k = zg(z)dz. Finally it is easy to show that since A is

M1
P & B gnyy-measurable, then

(1.9)  for S, <5< S,, dfw,2) = A2(Sy, -+, Snopy 25, -+, A25,_15 2.
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Let EX[-}S] be the conditional expectation operator given S = (S, - - -,
S, +++). Let Ny be defined by

(110 S < T < Sy
Using (1.9) we obtain for N, # 0.
BT, f(21) Suce A1S]
— 35BS, A8 S By - B 423 ))1S)

(1.11) j (ll)d -5 E”” 2(2) dz<d ¥ ( Z fzg, 42— kT)

A?.g'n(Sls frts n-ls AZSﬂ e AZSnfp Z)>g(Z)dZ]SJ .

Since A(z) has compact support, it is feasible to integrate by parts in the
variable z in each of the terms of the sum in the right hand side of (1.11),
so that (1.11) is equal to

> 5" f(ZAz& —]—z—-kT)

f dz’ ne= wFEN
w2 jg( ) &
« dlvz[g(Z)Asu(Sn o, S d2g, e, Aan_l,Z_)]g(z)dzw] .
g(@)

Observe that (1.12) is well defined even if g may be 0 at some points
since g(z)dz gives measure 0 to these points. Now clearly (1.12) is equal
to

_ i divz=d55 g(Z)Aa(m’ Z)
(1.13) E| fz)S <r e ]S] .

This equality also holds if ¥, = 0. Using (1.11), (1.13) and integrating
in the variables S, - - -, §,, ' - -, we get

(1.14) EHKdgf(zT)ﬂ Ssga"/i>] - Eﬁ[f(ZT)SsSTM] =0
&(z)

Now clearly since A(z) has compact support
(L15) j d“’sg(z)/i(z) 2(@)dz = 0

so that
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divg@4(@) _ g, dv.2@4E@)
=TT (@) (G

(1.5 is proved when (1.6) is verified.

Let o be a C* function defined on R with values in [0, 1] which is
equal to 1 for [#|>1, and to O for lt]<<1/2. Let zj, 7" be the indeperndent
increment 'processes associated to the Lévy measures o(|z)/e)g(z)dz and
(1 — p(iz|/e)g(2)dz, and let 7', I be their corresponding probability
laws. On (D(R™)XD(R™), 1/ X "), the law of the process z, given by

(1.16) S

o 1t
Z, = Z; + Z

is exactly /7. Now by (1.1), we have
(1.17) jp(_if’i) 2(2)dz < oo .
£

Moteover [’ @ IT” as.,  and z” do not have the same jump times.
Using (1.17), and reasoning on z’ as previously for each fixed z”, it is not
hard to obtain

BV [(d, f(7r), SeceA(@), 47))]

(1.18) VB H,w»[ Fz)Soen iV g(_z)/l(m(?ﬂ)f] —0.
g

Here A(ow(z), +) is written so as to indicate that A(w, ) is evaluated on the
trajectory of z. Now all the |4z;] are <. Since A(z) = 0if [z] < &, We
may as well replace Az by 4z in (1.18). Using (1.15) again, we obtain
(1.5) in the gencral case.

Remark 1. The integration by parts formula has been obtained very
simply by considering at each stage finitely many random variables. We
wrote St.p(div, g(2)4(z)/g(z)) instead of S,..(div,g(z)4(z)/g(z)} for aes-
thetic reasons, since for £ = 1, it is satisfactory that 0 = 0 obtains “obvi-
ously” in (1.5). However the Markov property of z forces the appearance
of a martingale term in an integration by parts formula. It is a striking
feature of the stochastic calculus of variations that since the analysis is
done on the path space, the dynamic of the path is reflected in the integ-
ration by parts formula.

We will now extend Theorem 1.1 to more general A.

Theorem 1.2. ILet Ao, 2z) be a function defined on R* X 2% R*{0}
with values in R*, which has the following properties:
a) fHisFR AB(R™{{0))-measurable.

e e
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b) A is differentiable in the variable z, with a bounded differential 4.,
©) A measurable function 3: R*{0}—R"* exists such that

(1.19) _[‘ @@ <+ oo
(resp.
(1.19) jm F(D)g(@)dz < + o)

and for |z|<(1,
(1.20) |4, 2)| < A=)|=}.
d) The function

w2 [, leadg@A@Idz
(resp.

Lav lgrad, g AGF

(121 [, Len E2ERAEN 4o

is uniformly bounded.
Then for any f e C3(R™), T=>0, (1.5) still holds.

Proof. (1.5 still makes sense. In fact, if (1.19) holds, then, if
|z} < 1, | 4w, 2)| < (z), and so using (1.1) and the boundedness of A, we

sce that flzis(w, 2)|g(z)dz is uniformly bounded. Similarly if (1.1%)
holds, by using (1.1) and Schwarz’s inequality, j[/ls(w, z)|g{z)dz is still

bounded, and so. S, .4 exists and is integrable. Similarly, if (1.21) (resp.
(1.21) holds, S (div,g(z)A(z){g(2)) is a martingale (resp. a square-inte-
grable martingale}.

We now prove (1.5). Assume M > 0 exists such that if |z} > M,
Az) = 0. Take p as in the proof of Theorem 1.1. For 0 <e <T M, set

(1.22) 40,2 = p( 1) 40,2).
e
(1.5) applies for 4*. Now we make ¢ — 0. Clearly

(1.23) EHU: dsj Ao, 2) — Ax(w, 3| g(z)dz] -0
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and so
(1.24) Syerds — SSETA in L(ID.

Assume that (1.19) and (1.21) hold. Then
g 7 ds [ |div.gde — div,gd]dz

(1.25) gOE” j: dsj (Idivag/fl T _i_'pf(_“j.)hd(z)lg&))a’z.

Using (1.21), the first term in the right hand side of (1.25) is casily dealt
with. Moreover |¢/| is bounded. Using (1.20) we find

(1.26) ff ds U ‘L Mf)

Using (1.19), we see that the right hand side of (1.26) tends to 0 as
e 0. So we find that

lzl=e

14|83z < c|  x@seds.

Sagr'*civgfgg' — SEST_(LIY&*/L in L),
g

1.27) , _
( 0= r ds f div,g A" ds — r ds I div,gd ds in L, (D).
0 0

As a by-product of (1.27), we also obtain that
div, gA . div, g4
S, g dVegA g (VB2
{1.28) e .

and so (1.5) holds. -
Under (1.197), (1.219), we have

- M FRR
Eﬂ[ div,gd _ go div, g4 H
g g
- EHUT ds”_——di“g‘d - M\ag@aﬁ»‘]
0 g

g
cerffe],.]

div, g4 r
g
n %p(Le*’i) 14(2) F] gz

¢
=T

(1.29)

Using (1.21%), the first term in the right hand side of (1.29) is again
controled. From (1.20}, we get
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(1.30) HUZ dst'Su :lz—p’z(%«)lfi(z)lzg(z)dz] <C jlm @)z |

So by (1.19"), we see that the right hand side of (1.30) tends to 0 as ¢ —0.
It follows that as e —0

(L31) 5o diveg 4’

sXT T

— St

divegd 4 7D,
g

(1.5) still holds. It is then easy to get rid of the conditions that if [z}
> M, A(z) = 0.

Remark 2. In general, if (1,19°) and (1.217) hold, the equality (1.28)
does not make sense any more, since the sum S, -(div,g4/g} is not well
defined. Also observe that since 4, is bounded, A(0) = lim, , A(z) exists.

1t (1.19) or (1.19) hold, -[|A(z)|g(z)dz is bounded. So if

[ stz = + oo,

it is clear that A(0)=0. Morcover if grad,gA/g is bounded, (1.21) implies
(1.219).
Qbserve that by (1.1}, we may take in (1,19}

A{y=r=z.
In this case the constraint (1.20) reads
(1.32) | A=) < |z

This is no accident, since (1.32) shows that the perturbation S, -4 can at
most be of the order of the quadratic variation of the process z,.

Remark 3. Ifn =1, it is easy to prove that

(1.33) A m@—1pp-Z i ow.
2 7z E{
Let u, be a bounded predictable process. Let z ¢ R — 1(z) be a non-
negative C= function with compact support such that for |z| < 1, v(z)
=z ForQ <7 <2, set

2—7

glz) = W .
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Let JT7 be the probability law of the process z. associated Lo g,. Set
Afw, z) = uu(z) .

If A(z) = C|z], (1.19") holds, and moreover for C large enough (1.20)
holds. It is trivial to check that (1.21°) also holds. For any fe C7(R),
we have :

(1.34) EPf!(z)Seamaldz)] + E[ f(zT)ngTus([?’i?]l(z)z“f)] ~0.

Now make 7112 in (1.34). Using (1.33), it may be proved that {ZI7}
is tight on @(R) (endowed with. the Skorokhod topology) and moreover
that as 7 — 2, fI" converges to the Brownian measure Pon ¥(R). We
will take a formal limit in (1.34) without too many justifications. Observe

T
that if for 0 < s < T, |dz,) < 1, then S,<x wudz) = J. u,d[z, zj,, Now
4]
as 7 —» 2, the jumps of 77 become “smaller and smaller”.
The quadratic variation of z, for P being equal to 7, as 7112, the first
T
term in (1.5} “tends” to Ep[f’(zt)j uds]. Moreover for |z} << 1, we

[}
have

v 2
( )(z)z“f =~ Nz,
2157

so that Sipufy/z' 71 (Z)z ' is the compensated sum of jumps, which,
when | dz,| < 1, are exactly u, Az,(1 — 7). It is then reasonable to expect
that as 7172, the limit of Sicr u vz 7Y (D)2 will be the Itd integral

— j wiz. Soas 112, (1.34) becomes formally
[H

(1.33) Ep[f’(zT) j: uds] — EP[f(zT) J: ua‘z} =0,

It is gratifying that (1.35) holds, and this is shown by a rigorous
argument given in [3], [9). (1.5) then appears to be the natural extension
of integration by parts on elementary functionals of Brownian motion to
jump processes.

b) Integration by parts on the semi-group of an independent increment
process
We will now extend Theorem 1.2 in order to obtain a formula of
integration by parts on the semi-group of z,, i.e. we will prove that for
adequately chosen 7' >> 0 we have that for fe Cg(R™),and 1 < i< n
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(136) E[aizf (e0)] + ELfEnDi = 0.

As previously pointed out, formula (1.36) itself is not very interesting,
since in this case, we know the characteristic function rr(c) explicitly.
However the method to obtain (1.36) is closely related to our work [4],
where the calculus of variations is still performed on independent incre-
ment jump processes, but the considered functionals are much more
complicated.  2(z) is a measurable function R*{{0} — R* such that

(1.37) Img PeDdz < + oo

(z) is a function defined on R*/{0} with values in R" having the following
properties,
a) (z) is bounded and differentiable, and has a bounded differential

V..
b) C > 0 exists such that if |z] < 1
(1.38) v|z| < Ci(z)|z].
¢} The following inequality holds
(1.39) [ loraditf g < 4 oo
g

Choose p as in the proof of Theorem 1.1, and for » > 0 sct

(1.40) pt) = pln) .

We now have

Theorem 1.3, For any T >0, 9> 0, fe Cp(R™), and i, (1 <i < 1,

(1.41) + EH[MSM(% v)f(zm)]

sgr V

oofSuer?) gy o OlzE) | -
+ B[ el gz 57, HEED | = 0.

sxT ¥

Proof. (1.41) makes sense. First note that p,(S,<rv) and 2;(Ss<rv)
are 0 if Syepv <L 9/2, so that Pn(SssTV)/Sss:" ¥, 04 Sscr W(Sser )y P;(Sss'r“)/
S.<rv are bounded.  Since ovjoz, is bounded, S, (Bv/dz)y cxists and is
integrable for the same reason as S,<,v in the proof of Theorem 1.2.
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To prove (1.41), the casiest way is to go back to the assumptions in
the proof of Theorem [.1. Namely, we assume that g, M, 0 e < M,
exist such that if |z| <e, or |z} = M, »(z) = 0. We also temporarily
assume that (1.6) holds. Using the notations .in the proof of Theorem
1.1, we have if N, # 0,
5|

] - o] 522 s
SsSTU azi s

EH[PW(SssT v) —g?f (zr)

(1.42) .
= 5| S ) A )itz 5.
e Secrv 02,
Set for n << Ny
Nr
{1.43) K, = >, v(dz,), z, = zp — Adzg, .

n'E
S

]

(1.42) is then equal to

j (1 . TZ,I‘*IEHU g(z)dsz'{{{—n—i—-_lﬁuzz(rfﬁ gzi(zH + z)u(z)]S] .
2(z"dz’ . " ’

L 3| [s@deste + 2

(1.44) e ™
(6/3289) (y pAKs + M)
X { @ K, + v(2)
4K+ 1@ _ oyl Ky + 2@ ) B
(BT & e Jozs)@)ls!

If Ny = 0, 0,(S,crv) = 0, so that equality between (1.42) and {1.44)
still holds (if Ny = 0, > ... is taken to be 0). By integrating (1.44) in
all variables, we find easily that (1.41) holds.

Assumption (1.6) is released by using the same argument as we used
in the proof of Theorem 1.1. ‘The support condition on v is released as
in the proofs of Theorems 1.1 and 1.2, using in particular (1.37), (1.38)
and (1.39).

We now make » — 0 in (1.41). To obtain (1.36}, we need that
(1.45) 2,(Segrv) — 1 a.s.

and so we need that S,.,v > 0a.s. A necessary condition is that

(1.46) f 2()dz = 4 oo .
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(for (1.36) to hold (1.46) is needed since otherwise a Dirac mass is left in
the law of z,!).
From Theorem 1.3, we get

Theorem 1.4, If T >0 and v are such that 1/S,c,v is in a given
L(IT) withp > 2, then for any f'e C3(R"), (1.41) still holds with p, replaced
by 1. Foramy ke R*, t > kT, |afy{a) is a bounded function. For any
£eN, t> (4 -+ 0T, the probability law of z, is given by q.(y)dy, where
g(-) e CUR™. In particular, if for any T > 0, 1[S,c,v is in a given L (I
with p > 2, then for any >0, the law of z, is given by q,(-)dy, where ¢,(+)
e Cy(R").

Proof. We make 3 — 0 in (1.41). Clearly (1.46) holds so that the
first term in the left hand side of (1.41) is taken care of. [t is not hard to
prove, using (1.38) and the boundedness of (8v/dz,)» that Socp{@f0z)v 18
in all the Z,(IT) {1 < g < + o0} S, APz I/(S, <7 V) is then in Ly(11).

Moreover

1
o) = —p’(i) -
Ui »
For t =, pi(t) = 0, so that if ¢ >> 0, pj(#) —~0 as p —0. Clearly

(147) PO

Finally St .(8(gv)/dz,)igis in L{Il). Using (1.47) we see fhat the
dominated convergence theorem applies in the three last terms of the left
hand side of (1.41).

Using (1.41) with f{(z) = e~%>®, we see that for any i(l <i<n),
|atr(a) is a bounded function. Since yr(a) = [ (c)]%, the resuli on
function , follows. The results on the law of z, are then standard results
on Fourier transform.

Remark 4, A result of Tucker [31] states that if Jg(z)dz = 4} oo,

for any 1 > 0, the law of z, has a density with respect to the Lebesgue
measure. Although the proof in [31] is probabilistic, this result admits an
easy analytic proof by differentiating r,(a).

Remark 5. We use the same assumptions and notations as in Remark
3. In particular, assume temporarily that n = 1, As we shall see later
{in Theorem 1.6) if v is C* with compact support and is such that v(z) =
2* for |z] < 1, then for every ¥ < 2, the conditions of Theorem 1.4 are
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verified. Now when all the jumps of z are in size << 1, then S,cp¥ =
[z, Z]r- As T112,itis reasonable to replace S,.rv by T. Moreover (Bvfoz)y
— 2z The 3-variation of z for the Brownjan measure P is 0, so for P,

we may formally cancel SEST%V»:;. For |z} <1, g— (g,,v)/g, =(1-"Nz
: z z

As 7112, we may expect Sgﬂ(?af gV / g) to become — zp. Taking the
z
formal limit in (1.41) (with g, = 1), we get that for 72> 0, fe¢ C3(R),

v el o]

(1.48) is of course trivially true.

Remark. 6. As should be expected, formula (1.41) with p, replaced
by 1 can be directly obtained by non trivial manipulations on the charac-
teristic functions (see [4]).

¢) Some estimates on independent increment processes

We now are left to find sufficient condition under which the assump-
tions of Theorem 1.4 are verified. As we shall see, the effect of the
caleulus of variations is to transfer an estimate on a Fourier iransform to
an estimate on a Laplace transform.

Let 3, be the non-negative measure on J0,+ co| which is the image

measure of g(z)dz by the mapping z —> ¥(z). Since ‘[ ve(2)dz << + oo, We
have | xdp(x) < + oo. More generally, let m be a non-negative ¢-finite
measure on 0, + oo, such that Ix/\l dm{x) < 4 oo. For § = 0, e
R, set
(149) (8 = j(e‘ﬁ” — DNdm(), Ma(@) = J(cos wx — Ddm(x),
X, 2(8) = exp{Twl(B)] -

Tt is clear that
(1.50) Xy, 8) = E"[exp( — fSuzr¥)] -

Cleatly, forp > 1

(1.51) E”[

31;'] = 7(1?)] B, () B -

For (1.51) to be finite for at least one p > 2, it suffices that e > 0,
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l C > 0 exist such that for § e R*

(1.52) Yo ) < -
or equivalently, that for g large enough
(1.53) Te, (B) < — @2+ eLlogf.

We will now sufficient give conditions on a measure m on 0, - oof

so that 7,,(8) behaves adequately as g — 4- co. The following is proved
in [4].

Theovem L5. The following two conditions are equivalent
) Asx—0

m(lx, |oof) ~ CLog = .
X
b) Asf— + oo

talf) ~ — CLogp.

A sufficient condition for a)-b) to hold is that
) As|a|— -+ oo, M,(e) ~ — CLog|el.
Either of the two conditions
d) lﬁ_m']x’ +Oo[_ = C, or
a0 logl/x

¢ lim (_ M)_) ~c,
lals 4o Log ||

implies

£y Tm =B o~ ¢
) gors Log 8 T )

. Proof. The proof relies on standard Abelian and Tauberian tech-
niques. For the full proof, ses [4].

Corollary, Assume that D (0 << D < + o), exists such: that

(1.54) fim % Lol _ p
s-0  Log 1fx '

=

Then for T > 2/D, 1/S,..v belongs to one given L,(II) withp > 2.

Proof. This is obvious using (1.54) and the implication d) = f) in
Theorem 1.5,
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functi ing i ion 1 b) is a
Remark 7. In general the function 4 appeating in Section
bounded function, so that for C> 0 ¥z) < Clz]. If (1.54) holds, then

also

. jllzzzng(z)dz > D
m e 2
(1.59) o Loglfh

If n = 1, it is crucial to remark in Theorem 1.5 that i.n gel}eral a) or
b) do not imply ¢), and d) or f) do not imply ¢). Otherwise using (1.55),
we would find that

j(cos o — Dglx
(!36) Jim— T T
and so fore > 0, as @ = + 0

C.
(1.57) |oer{e)] < Ik

which would make the conclusions of Theorem 1.4 trivially true without
any calculus of variations! The counter example is as follows. Let m be

given by
m = Z 6”21: .

As x — 0, mlx, -+ o[~ l‘f—fg%c Moreover for ke N

— M (272%) = 2 {1 —cos 224 = 3, (I —cos 2r2E-")

n=k+1

o

(1 — cos 2a27%) = — M.(275).

+
1

and so | M, ()] does not tend to +-0 as |a} > +oo. .
In this case, the probability law whose Fourier transform 18

eXp {Lm (e~ - 1) dm(x)}
is sipgular with respect to the Lebesgue measute. SO. if n == }, at the
critical logarithmic concentration, the calculus of variations gives non
trivial results for independent increment jump processes.

Tn a private communication, Prof. H. Delange has shown us how to
construct a function g > 0 and C* on 10, <= co[ such that as x — 0

Jump Processes and Boundary Processes 71

(1.58) [ e0)y ~ Log =

and that if

(1.59) M(a) = rm (cos ax — Dg(x)dx,
1]

| M(«)] has an arbitrarily slow growth at infinity. It is then clear that
even when g is C™, (1.58) is not enough to imply a logarithmic behavior
of (1.59) as |a| — oo

Note also the following result of [4].

Theorem 1.6. Let 7 be such that 0 <7 <1. Then the following
conditions are equivalent. -

a) Asx— 04, m(lx, + oo} ~ Cfx'.

b) As|a| = + oo, Mp(a) ~ — CP( — N(sina/2(l — D)al.

¢) Ay B— +oo, TR ~ — CI'(l — T

If the equivalent conditions of Theorem 1.6 arc verified, then for
T>0

Yrr(a) = exp{TI (emter — 1)dm(x)}

is such that for any n & N, |a|*{x(e) is bounded. So () is the Fourier
transform of a probability measure which has C* density with respect to
the Lebesgue measure. In this case, it is the concentration of m which
determines the regularity of the corresponding probability.

d) The caleulus of variations on general jump processes

As we have already said, the previous method is not devised to be
applied fo independent increment jumps processes, but can be used on
processes which are constructed by using independent increment jump
processes as an instrument, in the same way as continuous diffusions are
constructed using Brownian motion, which is plugged into a stochastic
differential equation.

In [4], we have treated the case where the process x, with values in
R" is given by the solution of

(1.60) so=x o+ [T XGedds 4 et

where ', - - -, y? are (mutually independent) independent increment jump
processes, where the probability law is modified by using the Girsanov
transformation on jump processes [14]. ‘

To treat this case, the previously developed calculus of variations
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must be applied. to functionals of »', « -+, Iy‘f which ate much ‘morle
complex than those which we previousl'y considered. Namely, funcuor}a $
of process x, which involve junllp mie‘trtm.ge;l.cs constructed by means ol X,
] Thmitted to the calculus of variations. .

mUStIl;ctsﬁi:bl:;;e way as in the calculus of var.iations on.diﬁ'uslonsl, a
random flow @, X, — x, must be considered and lifted to various bunﬂ es,
and these lifts must also be submitted to the 'cal'm’llu.s. In [4], we av&;
treated the case where the jump process is “elliptic”, i.e. the m}ppor;z :)
the iump measures for arbitrarily small jumps spans the whole space bl.

Let us note that in the proof of Theorem 1.4, as soon as we are able
io control the differential of order 1 of the law of z and so prove ’;}'15‘11:
PR GIRE bounded, the boundedness of (] () as long as t?>_ n li
obvious. For the case of the process x given "t)y.(1.60), no §uch zugument
exists a priori. However, it is possible to mimic the previous arguainena
by using a step by step integration by parts procedure, i.e. to m (;T
variation of the processes J', -+, ¥* first on [0, T, then on [T, 2‘T];1[f ,
37, - -, [ — DT, aT], so that at each step, a control is obtaine . }f‘or
the differentials of higher and higher order o‘f the 1aW of Kar: e hlls
procedure is fully developped in [4], and avoids t!ne iteration of the
calculus on the same interval [0, 7] which would require:

more differentiability on the Lévy kernels.
frightening computations.

Note that this procedure can also be applied to ordinary‘diﬁuslc.)ns
whose generator is everywhere hypoelliptic, and can e localized using
the localization procedure of Stroock [26).

ome geometrical considerations .

eT)heSstructire of equation (1.60) is not completely s.atlsfactory._ In
fact it makes full use of the vector space structure of R* since thels varlc;us
jumps are “added” to each other. In partlcula‘r, .’r,here is 10 1}1terjzi afl
between the jumps of ¥, + -+, ¥ which would be SL_mLIar to ‘the }nterac 0
of vector fields by the bracketing in ordinary continnous diffusions. .

A natural idea would be to replace (1.60) by more general stochafstl::l
differential equations with jumps (see Jacod [14]). However technic 1
difficulties do arise, essentially because contrary to (0.‘1), sutch genera
equations do not define flows of diffeomorphisms i.e. trajectorics ftaft’inf
from different points may collide. As will appear on an exampie al ;::
it seems that for general jump processes, the Lévy kernel gives an anda yt
tically useless description of the process (except in the case of m('ie‘pfnh‘::v
increment processes), Namely, it is very hard to describe explicitly
does a Lévy kernel M(x, dy) vary with x.
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Although we now know how to describe in a geometrically invariant
way a much larger class of jump processes, we will concentrate on the
boundary processes of certain continuous diffusions, where, hopefully,
our point will clearly appear.

£ 2, 'The calculus of boundary processes

In this section we report on some results which we have obtained in
our forthcoming paper [6] on the calculus of boundary processes.

Assume that z is a reflecting Brownian motion on [0, + oof ([13], p.
40, [12], p. 119), L its standard local time at 0, w = (w}, ---, w™) a
Brownian motion independent of z. Consider the stochastic differential
equation in Stratonovitch form

dx = X,(x, 2)dt 4+ 37 X(x, 2)-dw* + D(x)dL
x(0) = x,

2.1

where &, « - -, X, D are smooth vector fields. A drift b(x, z) is introduced
on z using a Girsanov fransformation. If A, is the right-continuous
inverse of L, we study in [6] the transition probabilities of the Markov
process (4,, x,;,). Of course (4,, x,,) is a jump process, whose jumps cor-
respond to the excursions of z out of 0. In [6], we use the fact that the
Lévy kernel of the jump process is itsell the image of the excursion
measure of (z, w) corresponding to the excursions of z out of ¢ through
the solutions of a stochastic differential equation.

We will essentially focus on some aspects of our work [6], and insist
on some possible connections with other recent developments in pro-
bability.

In &) the main notations and assumptions are given. In b) a
stochastic flow is associated to the considered stochastic differential
equation. In ¢) the Girsanov transformation is briefly introduced. 1In d)
the boundary process is defined. In e) a partial caleulus of variations on
w is presented along the lines of Bismut-Michel [7]. The key quadratic
form C% is introduced as in [20], [21]. In f} some simple considerations
relating the calculus of variations to the method of enlargement of filtra-
tions (see Jeulin [15], Jeulin-Yor [16], [17], Yor [38]) are developed. In
particular the “non differentiability” of local time I with respect to any
natural differential structure on the space C{R*; R*) associated to z forces
us in [4] to use the calculus of variations on jump processes to study the
component A, in (4,, x,,). This is briefly done in g). In h), the key
problem of the a.s. invertibility of €% is studied. As in [20], we know a
priori from g) that if this is the case, the law of (4,, x,,) has a density
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with respect to the Lebesgue measure. Sufficient conditions under which
this is the case are proved. The consequences are interesting since they
show that the Lévy kernel of the process (4., x,,) and the vector field D
may interact through some sort of Lie bracketing which is precisely ex-
pressed through true Lie brackets of (Xp, Xy, + + *» Xu, 8/0z, D).

In ), j) the so called “ocalizable” and “non localizable” cases for
regularity of the transitions probabilities for the boundary semi-group are
considered. In particular, in the non localizable case, conditions are
given under which the boundary semi-group is slowly regularizing,

n k), z is now a standard Brownian motion, and x is driven by the
vector fields (X, X;, -+ +» X) when z > 0, by (X5, X%, - X% when
z <0, and D for z = 0. Existence of densities for the transitions pro-
babilities of the boundary process is proved under conditions which
still exhibit interactions between all the considered vector fields. In 1),
regularity results for the two-sided case are briefly presented.

a) Assumptions and notations

m is a positive integer. £ (resp. 97 is the space C(R"; R™) (resp.
C(R*; R*)). The trajectory of we f (resp. ' & ') is written as w, =
W, -, wr (resp. ). The o-field F, (resp. F) in 2 (resp. £) is de-
fined by F, = B(w,|s < 1) {resp. Fh = Hlz,|s < 1) £ is the space
0%, endowed with the filtration {# Vingy Where F, = F @ F .

All filtrations will be made right-continuous and complete as in

- Dellacherie-Meyer [8], without further mention. P is the Brownian

measure on 2, such that Plw, = 0] = 1. For ze R*, P is the pro-
bability measure on {2’ associated to the reflecting Brownian motion on
[0, +oo[, starting at z, i.e. Pz, = 2] = 1. For notational convenience
we will write P/ instead of Pg.

On (&, P}), L, denotes the local time at 0 of z. By [12], p. 120, we
know that B, =z, — 2z — L,is a Brownian martingale with B, = 0. We
also know that if z, = 0
(2.2) L, =sup( — B)).

8xt

A, is the right continuous inverse of L, ie.
2.3) A, =inf{d = 0; L, > t}.

d is a positive integer. ¥ = (x, z) is the standard element in R**', with
xeR* and ze R. R* will be identified to R*X{0}. Xy, 2), s
X.a(x, z) are m 4 1 veclors ficlds defined on R4+ with values in RY,
whose components are in Cy(R**"). D(x) is a vector field defined on R
with values in R® whose components are in C3(R?). b(x, z) is a function
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defined on R**!, with values in R, which is in Cp(R**"). If X, is a
continuous semi-martingale, dX denotes its differential in the sense of
Stratonovitch, and §X its differential in the sence of 1td [22], If his a C*
diffeomorphism of R onto RY and if K(x) is a tensor field on R
(h*~'K)(x) denotes the pull-back of K(h(x)) to x through the differential
ahféx(x) (see [1]). If ¥(x) is a vector ficld, we see that

(7)) = [ 29 ooy

by The reflecting process and its flow
We now build a reflected process as in Ikeda-Watanabe [12], p. 203.

Tallce (%0 7). € R*X R*. On (@, P® P.) consider the stochastic differ-
ential equation

2.4) dx = Xy(x, 2dt + D(x)-dL + X(x, z)-dw’
x(0) = x,

(the summation sign > 7, is systematically omitted). The equivalent Itd
form of (2.4) is

1 3X;
@5 dx = (Xo(x, z) + > x‘ Xi(x, z))dt + D(x)-dL + X{x, z) - 3w*

x(0) = x,.

Theorem 2.1. There exists a mapping defined on 2 X R* X R* with
values in R® (@, t, x) — ¢,(@, x) having the following properties:

a} For every (1, x) € R* X R%, &~ 9@, x) is measurable, and for
every @ e 8, (t, X} — ¢.(@, x) is continuous.

b) For any @ e Q, g, -) is the identity mapping of RY,

¢) Forany@e 32, { —¢(@, ) is a family of C* diffeomorphisms of
R¢ onto R?, which depends continuously on t ¢ R* for the topology of uni-
f;r?;aconvergence of C= fumctions and their derivatives on the compact sets
of R,
d) For any z, ¢ R*, on (2, P® P.), for any x, & R*, ¢(®, x,) is the
essentially unique solution of equation (2.4). '

) For any z, € R*, any compact set K in R* X R, any multi-index
m, for any n e N and any p > 1, the random variables

",
ax™

{2.6) I;,., sup

(6w ER

(@, x)

-1
, I,.cn sup I[a’i‘ (@, x)]

tLmeEi L 3

are in L,(f, P® P,), and their norms in L2, PQ PL) may be bounded
independently of z, ¢ R*.
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On (2, P @ PL), ¢-(@, -} is essentially uniquely defined by properties
a) and d).

Proof. 'The proof is clementary using the resalts in Bismut [1] and
Kunita [18] on stochastic flows.

Remark 1. Tt follows from Bismut [1] and Kunita [18] that the usual
rules of variations of parameters on ordinary differential equations can
be extended to stochastic differential equations. For example, for x, & Rt
Z, = 0¢,/ox(@, x,;) and Z! = [8¢ Jax(@, x)]" are the solutions of the
stochastic differential equations

iz = %z O myzdr + e (x, 2z dwt
x ax 9x
Z( =T
@n Y 0X, aD ax,
4z = — 7' 88 (x, gyt — Z'——(x)dL — 7' L2 (%, Z)-dw
ox ox ox
Z'm=1.

In (2.7) x, is of course the process ¢, x;). We will use these facts
without further mention.

Remark 2. The situation considered here is very similar to the situ-
ation studied in Bismut-Michel [7].  As in [7}, z, and (x,, z,) are Markov
processes. The analogy will be better illustrated in the sequel.

¢) The Girsano¥ transformation
Take (x,, 7) € REXR",

Definition 2.2. On (@2, P PL), if x, is the process $@, xo), M, is
the positive continuous & ~martingale.

(2.8) M, = exp {ﬂ b(x,, z,)0B, — -12— J: bx,, zs)dv} .

Since b is bounded, it is easy to see that M, is in all the L¥(3, PAP,)
(1 < p << +oo) Proceeding s in Tkeda-Watanabe [12], we now define
a new probability measure on .

Definition 2.3.  Q\a,, 5 I8 the probability measure on 2 whose density
with respect to P @ P, on &, is M., i.e. '

dg
2.9 (To,20) =M
&2 T AL
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By the fundamental property of the Girsanov transformation, under

Q(Eo. 7o)
(2.10) mz&“rﬂaam
0

is a B.rowman. martingale, and (wl, ---, wp B})is a multidimensional
Brownian martingale,

Remark 3. Let & be the second-order differential operator

@.11) x4 by Ly LT

0 aZ + 2 % + 2 azl"‘ .
It is easily proved that if ¥ is any second order differential operator on
R*+1 written in Hormander’s form [10]

212 §:z+%fm
i

which is non characteristic at X € 8D (where 2D is a smooth hypersurface
f)f R, thF:n ona neighborhood_of %, there is a chart (x, ) such that 2D
is exactly given by (z = 0), and Z can be written in the form (2.11) (see

{6] 1, )

Remark 4. Tt is crucial to observe that if T is a {#,}.5, stopping
time, P ® Pf, and Q,, ., ate in general not equivalent on F p, so that
possibly E7®7[M,] < 1. In particular although L.. = 4o P&P, as.,
it may be that I, < 400 Oy, .e &8 This is the case in particular if
b=3, (where & is a positive constant). For connections with the enlarge-
ment of filtrations and the Follmer measure, see [6].

d) The boundary process

We now define the boundary process which is the object of our
study. 4 is a cemetery point, so that (R* X R)U{4} is the state space
of the boundary process.

D?,ﬁnition 2.4. D is the set of functions (a,, y,) defined on R* with
values in (R* X R%) U {4} which are right-continuous with left hand limits
such that if ¢ is the function defined on D by

{ = inf{t > 0; (a, ») = 4

then if ¢ << -+ oo, for 5 = ¢, (a,, y,) = A. -
. D is of course endowed with the Skorokhod topology so that if is a
Polish space.
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Definition 2.5. Let (ay, xo) € R* X R%. On (&, Qe ) the boundary
process {a,, y,) with values in (R* % R%)\U {4} is defined by

(@ + Ap s (@, Xo)s t< L.,
2.13 a,v,) = ’
{ } (a,, ¥ {A ) t> L.
Note that on (‘Qa Q{so‘O))s Ay =0, s0 that (CI(O), ¥(0)) = (ags Ya)-
Since I, is an additive functional of the strong Matkov process
(e.(@, X,), 2,), and since for any t >0, z,, = 0 on (4, < + o), it is easy
to see that (a,, ¥,) is a strong Markov process.

Definition 2.6. Take (ay, x;) as in Definition 2.5. Riay, va is the pro-
bability law on D of the process (a;, V) undet Q. -

The system of probability measures [Rizy o} ON D defines a strong
Markov process, which is the object of our study. More precisely, we
shall study the smoothness of the probability laws of (g, y.) (¢t > O

Of course (a,, x,) is a jump process where jumps are obtained through
the excursions of z out of 0 {see [6]). It should be pointed out that in this
case, the Lévy kernel of this process is itself obtained as the image of the
excursion measure of (w, z)-which is carried by an infinite dimensional
space—through the solution of a stochastic differential equation. In partic-
ular the possibility of using the {Z }.s0 stochastic calculus in the natural
time ¢ is a truly extraordinary possibility since the time of the process
(A4,, x,,) is in fact the local time I,; during the jumps, which occur in 0
local time, we may still use the Itd calculus.

The arch-typical example is the case where d = 1, m = 1, X, = 1,
D =0, If x(0) = 0, the probability law of x,, under P& P’ is the
Cauchy law

(2.14) _ x|
m(t* + %)

Now assume that X(x} is a one dimensional vector field which is in

C=(R), > 0 on]—oo, 1] and which is equal to 1 — x on a neighborhood

of 1. Clearly, if x(0) = 0, the law of x,, is the image law of (2.14)

through the mapping § — Vs where y, is the solution of the differential

equation

%’— — X0}, HO=0.
¢

. e o
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2.15) 1, tdy -

o+ [ T

. Y
Since for y <1, v—1, L dxfX,(x) ~ — Log(l — ¥), it is trivial to see
that the left-hand limit at ¥ = 1 of (2.15)is +oo0. The law of x,, is not
smooth. Such a phenomenon does not happen if (2.14) is replaeéd by a
Gaussian law, and so, the explicit form of the law of 4, ([13], p. 25) shows
that the law of (4,, x,,) is still smooth.

‘In this example, the non smoothness of the law of x,, comes from
the integration en the possibly large values of 4,. The introduction of
the supplementary component A, has the effect of smoothing out the
considered probability law. '

Remark 5. . Note that for p > 2, if for a given (z, L), Z, Z’ are given
by (2.7), an obvious application of Ité’s formula and Groawall’s lemma
to the processes | Z,|* and | Z:]* shows that

@16)  ENZJF < Ceriro,  EHZI] < Ceoern

(where C, C’ are fixed > 0 constanfs). It is then feasible to take s =
A0 in (2.16). Howevet, since for ¢ > 0, E”[e”*] = + oo, we find no
a'dcquate bound for EF[|Z,, "] and ET]|Z,|*]. This is another explana-
tion of the necessity of introducing the component 4,, strongly connected
with the result in (2.15).

However, assume that » = d (where § is a constant = 0). In this
case '

@.17) M, = exp{ Y laﬂA;}
2

For a given p = 2, if & = 2, using (2.16), we find that

2.18)  EPSU[M,|Z,[P] < oo,  ETEF[M|Z ] < Hoo.

As we .shall later see, if (2.18) holds for sufficiently large p, under adequate
conditions, the law of x,, will be smooth ,and so the introduction of 4, is
not needed. The full explanation of such a phenomenon appears in [6].

e) The calcalus of variations on w
A.s in Blsp:lubMicheI [7], it is possible to make a variation of the
Brownian motion w, by using a perturbation of w by a suitable drift.

WZ 1[°12rlsf define the key covariance matrix, which extends Malliavin [20]
an .
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Definition 2.7. Take %, ¢ R%. On (&, P® P}, CP* is the process of
linear mappings of I'% R into T, R® given by

m P
2.19) peTLRH—>CPp =2, L (o' Xixs, 2.0, P (0¥ T XD (or0s 220405

C@ defines a nonnegative quadratic form on T'% R*
p—=LCPp,py -

Clearly, as a quadratic form, C, increases with 7.
We now have the key results.

Theorem 2.8. If x, ¢ R% ¢/ >0 are such that for any T 220,
L, [C%)" is in all the LPRPY1<p<+ o), then for any mulii-
index m, any t > t' there exists a randowm variable B such that

a) forany T>>0,and any p 2> 1, I, BY isin L (P& P).

by for any fe C(RXRY), if X, is the process 0, (@, x,), then

eay  Eer|an, T x| = O 3B

Proof. For the complete proof, see [6]. The partial calculus of
variations is very close to Bismut-Michel [71.

Remarlk 6. Because of Remark 5, it is essential that f has compact
support. However, by using (2.18), this assumption may be released, so
that smoothness of the law of x,, will follow (the component 4, is no
longer needed).

Theorem 2.9, Assume that £ > 0 is such that
a) forevery x e R, Ci, s P& P as, invertible.
b) for every T >0, there is ¢ > 2 such that for any x € R%,

IA:IéT l [Cﬁcl]_ ll

is in L2, P& P’y with a norm which is bounded independently of x € R*.
Then for any x, € R*, any multiindex m, any t = |m|t', on (2, P @ P
there exists a random variable D having the Sfollowing properties:
a) Forany T >0, LorDP is P® P’ iniegrable.
b) Forany fe Co(R X RY), if %, is the process @,(@, Xo);

220 EP@P'[M s ;’fjii (Ao x,;,)] — EPSFf(A, %,)D7].
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Proof. See[6]. We use there the previous step by step integration
by parts procedure of [4] briefly described in Section 1 d).

Remark 7. In [6], the two sets of assumptions in Theorem 2.8 and
29 are labelled respectively “localizable” and “non-localizable”™ for
reasons which will later clearly appear. In particular, Theorem 2.9 is
useful to study slowly regularizing semi-groups.

Remark 8. At this stage, we know how to control the differentials
of the law of (4,, x,,) under Qg in the variable x (corresponding to
%4).  We now describo the situation for 4,.

f) Enlargement of filtrations and the ealculus of variations.

We must now try to control the differentials of the law of (4,, x 41)
andet Oy, o in the vatiable a (corresponding to A). Tt is known ([13], p.
25) that under P’, the law of A, is given by

2.22) o gexp {:ﬁ}ds
25’ 2s

In principle, although (2.22) shows us that the law of A, is smooth, we
cannot conclude anything on the joint law of (4, x4,). In principle, we
would need an argument to prove that in a certain sense, X, depends in a
“differentiable” way on A,.

A natural idea is to find out what are the conditional laws of the
considered processes given A,, or in a different terminology, to enlarge the
filtration Z, so as to contain at time 0 the random vagiable 4, (for the
general technique of enlargement of filtrations, see Jeuldin [15], Jeulin-Yor
[16]-{17], Yor {38]).

Now since 4, is exactly the first time where B, hits — 4, it is known
that conditionally on 4,, for 0 << s < 4,, 8, = B, -+ ¢ is a Bes (3} process
starting at ¢ and conditioned on g,, = 0 (for Bessel processes, see [13]).
Using the scaling properties of Bessel processes, we find easily that if

2.23) B =---B
conditionally on 4,, for 0 <{ s < 1, the process
(2.24) B—B, +
B 7
is a Bes (3) process starting at t/+/4, and conditioned on 3, = 0. Set

(2.25) L= 71;4_,LM,.
3
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Clearly

r 5 3 t
(2'26) LS‘ = Sup (ﬁ’B&") :328]? (—"183') + 727; .

§'Ly

If w is the m-dimensional process

1
27 ws = :'Ws »
@27 T
w is a Brownian motion independent of A4,, B. Conditionally on A, &
= Xx,,,is then a golution of

dx' = AX{x A AB, + L)s -+ D(x)- VAL,
T A AX(K, VAB, + L))dw.

The idea is then to vary A, in (2.28), It is easy to consider an auxiliary
probability space so that fi is made to depend differentiably on A, (recall
that § starts at t}¥A4y). 1In fact if w' is a three dimensional Brownian
motion {chosen independently of W, 4,), then if e, is a unit vector in R,
if B« is defined by

(2.28)

= fe

. At 1 — 5) 254 W — sl
(229) 1 = o0 L7 4w = o
clearly for every £, B (0 < s < 1) is a Bes (3) bridge starting at £/ 4, at
time 0, with Bf* = 0. However if

.30 B = p — —— L4 = sup (— By%
(2' ) I! "\/Al., H s’gg (
thete is no way that L#¢ depends differentiably on 4,. So even rewriting
(2.28) in the form

dx' = A, X N AB - LE)ds + D(x')-/ AL
+ VAXL, VALBY + Li)dw

on an adequately enlarged probability space, we find no way of differ-
entiating %/ in the variable 4,.

It is however essential to note that if instead of studying the pro-
bability laws of boundary processes, We had studied the harmonic
measures associated to the hitting distributions of certain diffusions, then
local time would play no role any more and the previous enlargement
would be sufficient.

(2.31)
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As the previous example should make clear, there is not only one
caleulus of variations on a given probability space—say the Wiener space—
but as many as needed. Random variables like hitting times are certainly
not differentiable functions of the trajectory and so cannot be submitted
to the usual Malliavin caleulus. However, by adequate conditioning—
or equivalently, by enlargement of filtrations—we may malke them become
adequately “differentiable”. Of course, as made clear in (2.24) and
(2.29), this newly acquired differentiability is clearly related to the pro-
bability law itself (e.g. the scaling property of Brownian motion).

g) The A; component

As made clear in f), the difficulty for varying 4, adequately is that
1 is ot a differentiable function of B. We must then try other variafions
which will leave L untouched.

Let S be the last exit time of 0 by B before hitting 7. Using the
results of Williams [35], (see Jeulin [L5]), we tried to do variations cn B
before S. Unfortunately S is much smaller than 4,, so that its probability
law is non smooth. There is no way that a variation of S produces the
desired result on A4,. A variation of 4, — § would still involve L (since L
increases after §). All cxcursions of z out of 0 contribute then to the
regularity of the law of 4,. In an eatlier version of [6], and following
Ité and Ikeda-Watanabe [12], under P& P/, we considered the Poisson
point process of the excursions of z out of 0. For s ¢ R, the excursion
e, of z is empty if A, = A,, and given by

es(u) = Zaptus 0<ug As - As—

if 4, < A,. Now the characteristic measure n* of the point process e,
is known by 1t8-McKean [13] p. 75-81, Tkeda-Watanabe [12] p. 123 and
p. 224, Namely let B be the law of the Bes (3) process F starting at 0
and conditioned on F, = 0. Then n* is the image of the measure on
Rt x §¥

dt .
(232) Lo ® dBO)
by the mapping
(0,7)—¢  where (W) =+ 0¢7y, 0<u<o

Of course ¢ represents the length of the excursion and 7 is the normalized
excursion so as to have length 1. (2.32) also reflects the known fact that
under P’, A_is a stable process whose characteristic measure is exactly
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o dt
t=0 )\/27?3 .

It is of course possible to enlarge the point process so as to include w also.
In an ecarlier version of [6], the variation of the component A, was
obtained through the following steps:
a) The excursions of z are renormafized so as o have length 1. If
A,. < A,, the process X,(u) = Bouridsdsyul® Xo) 18 A sOlULION for 0 < u
< 1of

4,5 {6) = (d, — A, )X (5), ¥4, — A, Y )du
VA, = A X{E ), A (A, — AR dw,

(2.33)

(where W is a Brownian motion which is the adequate renormalization of
w). The Girsanov density is submitted to the same treatment.

b) The caleulus of variations on jump processes of Section 1 is
applied on the stable process A., leaving “everything else” unchanged, i.e.
the renormalized processes (7, W) are kept unchanged.

OF course the variation of x must be computed. Differentials in x,,
appear, which are controlled using the techniques of Section 2, d).

More recently, we succeeded controlling A, by using directly some
more claborate transformations on the trajectories of z.

Theorem 2.10. Under the assumptions of Theorem 2.8, for any n e N,
any t > t', there exists a random varighle D} such that

a} for any T>0, and any p = 1, 1,,.Dpisin L(POPY(1Zp
< + OO),

b) for any fe C2(R X RY), if x, is the process 0@, Xoh

sty E I (x| = B %D
a
The law of (A, x,,) under Q0 I8 given by pfa, y)dady where
pda, y) e Co°(R X RY).

Theorem 2,11, Under the assumptions of Theorem 2.9, for any n € N,
and any t = nt', there exists a random variable D¥ such that

a) foramy T2 0, LDt is PP’ integrable,

b) for any fe CZ(RXRY), if x, is the process 0@, Xo),

@39 Erera, T x| = BT 2D

IfkeN, t =k +d+ 2, the law of (A,, x4,) under Qg0 is given
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by pda, y)dady, where pfa, y) € CH{R X R"®).
We finally have a natural extension of Malliavin [20].

Theorem 212, If t e R* is such that C% is P P’ as. invertible,
then the law of (A,, x,,) under Q s, q is of the type pla, y)dady.

Proof. In [6], we use moilifiers as in [20].

h) TInvertibility of C

We first give conditions under which C% is a.s. invertible. As
pointed out in Theorem 2.12, this will imply that the law of (4,, x,,) has
densities with respect to the Lebesgue measure,

Definition 2.13. For £ ¢ N, E,, F, are the families of vector ficlds in
R defined by :

El = (XDXZ} "'sXm); Fl = {0})
(236) E¢+I = [(X()s Xln S Xm; a/az): Ez]s
FJ+1 = [D: EG]U[(D: Xl: Tt Afm)s Fu] .

In (2.36) we use the notation [, ] to indicate that Lie brackets should
be taken between the vector fields of each considered family of vectors
fields.

Theorem 2.14. If x, is such that | )¢ (E,V F) (x,, 0) spans R*, then
for any t > 0, C# is invertible P@ P’ as..

Proof. Let U, be the vector space in 7, (R*) spanned by (o 'X,)
(%} (1 < i< n) and V, the vector space spanned by {_),<,(U,). We define
Vi by
(237) vi=NV,.

s>t

By the zero-one law, we know that P& P’ as., Vy is a fixed space, not
depending on @. Fet us assume that Vi == T, (R%). If S is the {F }iso
stopping time

(2.38) S = inf{t > 0; V, = Vit

then Sis > 0 a.s.. Let f be a non-zero element in T%(R*) orthogonal to
V. Then

(2.39) X))y =0 for <8,

Now from [1]-Theorem IV.1.1, we know that
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¢
of X, = X, + J: 2o P O Xlds + J‘D?O.f_l[D + gz', X'E] -dL

(2.40) ; 5 ,
+ j 31X, X dw! +j go;**-l[?, Xf] .dB
0 0 . ez

or equivalently

i . 1 4
atx, = X+ [ of (1 X X X X

(2.41) + 22 x| | Jas + [or|p+ 2 x|
21Loz Loz 0 dz
. ;
& [ e, xaow 4 | ot 2 x| 8.
0 o 0z 7
Now (2.41) gives the Ttd-Meyer decomposition of the {# ]}, semi-martin-

gale {f, @¥*X,>, which is 0 for s < S. By canceling the martingale
terms, we find that for s < S

js Cf oA, Xow! =0, 1< hi<m,
0

[(af g x]m-o

An elementary reasoning on the quadratic variation of the local martin-
gales (2.42) and the continuity of the processes ¢ ~'[ X, Xil, p¥-1a/0z, X.]
(see [3]-Theorem 5.2) show that P ® Pras., fors < S

(2.42)

{froE X Xi) =0, I<ijsm,
(2.43) *4[78'_ X] =0
<fv Ly oz’ i > .
Reapplying (2.41) on (2.42), we find that for s < §
¥ X (X XD =0,

w0 G Do

We now cancel the bounded variation process in the Meyer decomposition
of { f, o¥-1X,> (s < S), ie. using (2.41)-(2.43), we get for 5 < S

(2.45) <f, L @i Xy, X du> + <f, L o¥-'[D, X,)dLy = 0.

Since P ® P’ a.s., the support of the measure dL is exactly the closed set
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(z, = 0) which is negligible for the Lebesgue measure ([13], p. 44), from
(2.45) we deduce that for s << §

- {, [} ot Xidda) =0,

(5, { ¢51p, XL = 0

and so using the continuity of ¢} [X,, Xil, ¢¥ D, X,| and the support
property of dL, we get from (2.46)
Sy @?I—I[Xoa X¢}> =0 §8,

.47)
{fef D, XD =0 on {(z, = 0)N[O, ST.

By iteration of the previous procedure on (2.43) and on the first line
in (247) we find that for any £eN, if ¥y, .-+, ¥, are taken among
(X, X3y + -+, X, 0/02), then P ® P’ a.s., for 1<i<<m -

<f’ ED;k—I[Yg, [Ye—h f s [Yb Xf,]] ]> =0 Y -._<__ S,

(2.48) .
<f;'@;k—1[D) [Ys—-l, ] [Yls Xi]] ]> =0 on (Zs = 0)“[07 S[

so that in particular at s = 0, we get

<f; [YJB [Ye—n s [Y!)Xf,}]' N '] (xo, 0)> == 0, 1 --<._ iém,
<f5 [D’[Ydﬁlﬂ ©r 'n[YsXﬁ]]' ' ] (x050)> =0, 1 Lis<m,

(2.49)

and so fis orthogonal to (U EJUD, U™ E}D (x,, O).
We will now exploit the second line of (2.47). Let H(x) bea C”
vector field defined on R* with values in R® be such that

(2.50) gt Hy =0 on (z =0)NI0,S[.
This is the case for H = X,(x, 0) or H = [P, X{] (x,0). We claim that
@.51) (o ID,Hy =0 on (z,=0N[0, ST,

‘ (Fe X, HIy =0  on (7, =0)N[0, S, 1 <j<m.

Note that in (2.51), we may as well assume that [D, H} = [D, H] (x),
X,, H} = [X,, H] (x, 0), so that the previous procedure can be iterated.
We have

ottt = B + (Lot (% H) 4+ S1%0 1%, HD)ds
2.52) . 2
+ [ pr-1p, mdL + [ gt~ -5
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(it is crucial at this stage H does not depend on z so that no stochastic

2
integral | - -8z appears).

Now it is proved by Tkeda-Watanabe in [12] p. 306-307 thatifgisa
{F )ino optional right-continuous process with left-hand limits then for

any ¢t >0, for 1 <j<m

. Ay b ¢ .
(2.53) fim Y j gdw! :Lgﬁw’

10 Ayg-du— e du- AL

where the limit in the left hand side of (2.53) is taken in probability. We
will omit lim,,,, in what follows. Clearly, using (2.50), we have that for

any { >0
(2.54) 5 j
Applying (2.53) on (2.52), we find that a.s., for any t > 0,
EAS ) 1
oty = [ (ot (e 11 08 10

7 ch g, Hp

AutAS 1 1
B gt HY = S glRHD

Ay AEA

(2.55)

(the integrals " ...ds raise no special difficulty since (z = 0) is dt-negli-
0

gible). Since both sides of (2.55) are continuous, (2.55) holds a.s. for any

¢, Comparing with (2.52), we find that

(2.56) {f, j:"s gD, HIL) = 0
and so
(2.57) (foriD,Hy =0 on (z,= 0N,

We now prove the second line in (2.51). Set
, o, =22+ (s (@D (o, 00)° 5
e K= (fr (U6 H] 4+ L1 00 1) 6 0).

M, = 35 (gt Uy H] G O

Using (2.50} it is clear that
(2.59) g, =10 on (z, = 0O)NI[0,ST.
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Since dL is supported by (z = 0), we find from (2.52)jthat

do = (1 + 2{ f, @¥ H)K, 4 M,)ds

(2.60)
+ 22,38, - 2{ f; @F T H Y L, o 7'1XG, HDow!

Since a.s., forae. ¢ z, #0,forae. s

(2.61) g, = (LpiTHYM, 4 7
Ps

is well defined and < 1 -- M,. The process

2.62) 7= | Budu

[H}
is then well defined and strictly increasing. Set
(2.63) 8, = inf{3 > 0; 7, > 1}.

For r < ¥s, set

a6d I, =[ L5 ¥ f, @F X, HDoW + 2,38,
0 1/2 .

s

-Of course I', is a {7, },», martingale, and moreover &I', I';) = di, s0

that I" is Brownian motion. If g} = p,,, we have

1 o
@65)  dpi=1T2 %ﬁf 2Koo M, gy 20mer,

Assume that M, # 0. By suitably renormalizing f, we may assume
that M, = 1. Let 5 be & positive constant such that

1

(2.66 —
) 7 < i

Since ¢ f, H{(x,)> = 0, we may suppose that $ > 0 has been taken small
enough so that for 0 s < S

@67 1—p<M <149, 2L @TH)EDIK 7.

Now for 0 < 5 < 8, we have for z, 5 0
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1+ 2{f ¥ HYK, + M, _
B,
ey = HeETHAS, GFHYK + 1) 4 22QLS, o¥ " HYK + M)
' o ef T HYM, + 2

C>0.

%
a
K
I

7

Consider the stochastic differential equation

@t = (1 + C)dt + 26T,

2.69
2.69) r=20.

By a result of Yamada (see Ikeda-Watanabe [12], p. 168), we know that
(2.69) has a unique strong solution. Using (2.68) and the comparison
theorem of Yamada [37] (Ikeda-Watanabe [12], p. 352), we find that

(2.70) o = for t<7g.

In particular by using (2.59), we find that

2.71) =10 on [0,75[N(z, = 0.
Now for 0 < s < 8

2.72) U—p<p <+

Recall that the scale s and speed measure m of the square r, of a Bes (d)
process (0 < d < 2) are given by

1
2.73 = pl-¢7, dm = ——— _pH* iy
(2.73) s =7 Y4
so that
274 4 92~ DitE-t) g
. W o=

(2 —dy

Using the results in Itd-McKean [13], p. 224-226, we know that if r, = 0,
then a.s., for any ¢ > 0, the Hausdorff-Besicovitch dimension of (r, = 0,
0 < 7 < &) is the constant 1 — df2. Using this result with d = 1, we find
that a.s. the dimension of (z, = 0, 0 < ¢ <(S) is 1/2. Because of (2.72),
it is clear that a.s. the dimension of (z;, = 0, t < 7} is 1/2.

Now (2.69) shows that for 0<L# <7, v’ is the square of a
Bes (1 + C) precess and moreover 0 << C <1, We then know that a.s.,
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the dimension of (#, = 0,0 < t < 7g)is (1 —— C)/2 < 1/2. This is a con-
tradiction to (2.71). So we find that M, = 0.

Assume that the second line in (2.51) does not hold. By using the
optional selection Theorem [8]-IV-84, we can find a {# )10 stopping time
T such that (P® P') (T < +ce) > 0, and moreover if T'<{ 4-co, then
TS, 2z, =0, Mp+0.

Now using the strong Markov property of (w, z), the whole reasoning
can be restarted after time 7" (instead than after time 0); we still arrive at
a contradiction. The second line in (2.51) holds. By iterating the whole
procedure on (2.51) we find in patticular that f is orthogonal to
UJi(E, U F) (%, 0){by taking s = 0 in (2.51}). By the assumption in the
Theotem fis 0. This is a contradiction to S > 0.

Remark 9. Tnstead of using the dimension properties of the set of
zeros of a Bes¥(d) process r, (0 < d < 2) starting at 0, we could as well
use the fact (It6-McKean [13], p. 226) that if L* is the local time of r at O,
and A? is its inverse, then A? is a stable process with exponent 1 — d/2, so
that its characteristic measure will be proportional to L.(dx/x""*")).
By proceeding as in It6-McKean [13], p. 43, this shows that if N%y) is the
total length of the intervals in (r > 0)N [0, #] whose length s < e, then
a.s., forany ¢ >0, ass | 0

(2.75) NYt) ~ CyeLU(F)

where C, is > 0. Using (2.75), a contradiction is casily obtained from
the assumption M, = 0 in the proof of Theorem 2.14.

Remark 10. ‘Theorem 2.14 exhibits clearly that the excursions of the
process (x, z) out of z = 0 can interact with the process when it stays on
z = 0 through D, so that the probability law of (4., x,,) has densities,
although the Lévy kernel of this process may be degenerate.

i) Regularity of the boundary semi-group: the localizable case
We fnow give sufficient conditions under which the assumptions of
Theorem 2.10 are verified.

Definition 2.15. For £ e N, the function k%(x, z) is defined by
4
(2.76) kx,z) = inf >, 3 {f, Y(x.2))"

FERSIFI=1 J=1 YEE;
We then have

Theorem 2.16. If x, € R* is such that for a given { & N, 0 > 0
(2.77) fim zLog inf X(x,z)=0

220,20 |z—20l <8
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then for any £ >0, T = 0, L, o [[CR] "] is in all the LAP@PY (1<p<
+ o).
Proof. The proof in [6] uses the estimates of Kusuoka-Stroock [19],

[28] on standard hypoelliptic diffusions as well as the key estimate that if
for 7 >> 0, 77 isTthe stopping time :

(2.78) T =inf{t > 0;2z,=7)
then
(2.79) PUTT > 174 2] < exp{ _ z«g} ]

i) Regularity of the boundary semi-group: the non-localizable case

We now give conditions under which the assumptions of Theorem
2.11 are verified.

For £ & I¥, define m, = 6 X 20°-%,

Theorem 2.17. Assume that for a given ¢ e N, there exists C>0
such that

(2.80) lim z Log inf k*(x,z) = — C.
2>0,5—0 zgRé

For any t > 164/ 2m,C, T => 0, there exists q > 2 such that for any
Xy € R, Ly | [C5)7 Y is in L(P & P") with a norm bounded independently
of x,.

For any t > 0, the law of (A,, x4,) is given by p(a, y)dady and pla, ¥)
is such that

a) itis C*onl0, +oof X R,

) >+ d+ 216V 2ImC, pla, yye CHR X RY).

Proof. See [6].

Remark 11. The condition (2.77) is a local one, while (2.80) is a
global condition, which justifies the terminology which we have used.
Moreover, in [6], we show how instead of assuming that (2.77) is verified
on a neighborhood of the starting point x,, it may be verified on a neigh-
borhood of the final point p as well (for such a problem on standard
diffusions see Stroock [26]).

Remark 12, The conditions of Theorem 2.17 give exactly the analy-
tical conditions under which the boundary semi-group is stowly regulari-
zing in the sense of [4] (also see Theorem 1.4). Moreover it is shown in
[6] that under conditions like (2.80), the generalized symbol of the
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generator of the boundary process exhibits a logarithmic behavior (see [6],
Section 6, Remark 5). |

The conditions of Theorem 2.17 are minimal. In fact consider the
stochastic differential equation

dx = exp{ _ }dw}.

{2.81) 2z,

x(0) =0.

Cor_adltlmlmlly on z, the law. of x,, is clearly a centered Gaussian whose
variance is

Y 1
{2.82) C,, = L cxp{ — —}a’s.

&

Now, if n* and ¢ are defined as in Section 2, g),

n*”ge“”‘*ds > ct] < C + n*”a e Vide > oy g << 1]

v 0 0

2.83
(2.83) < C+ n"'[sup z, > 7]
B L) Log Ifa_'

= C + Log l/a

(the last equality in (2.83) is classical [12]). From (2.83), we see that

(B = J [exp( — ﬁf: e‘”“-‘ds) - l]dn“‘ '

(2.84) oo
zc_ﬁL e—ﬂa(Cﬁ-Log%{)daz C—C'Logp |
and so
" D |
(2.85) EP'[exp{ — ,eL g-vo ds}] = epte(f) 2 o
Since
(286) el = wapy |, ot 1'

we see from (2.85) that for ¢ small enough, (2.86) is +oc0. Now the law i
of x,, under P ® P” is h,(x)dx, where i

(2.87) hyx) =I '\/Q;CA exp{ T sz}dP’. ‘ i
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We then find that for ¢ small enough, A,0) = +-oe. h, is not even
continmous at 0. It should be pointed out that this result has nothing to
do with the fact that we are considering x,, instead of (4,, x4,), since
differentiation in x as in (2.7) is irrelevant here.

k) Two sided boundary processes: existence of a density

Let X{(x. 2), - - -, X 1%, 2) be another family of vector fields having
the same properties as Xy, - -+, X,. z now denotes a standard {i.e. non
reflecting) Brownian motion. The corresponding probability space s
still written as {2/ and the probability law of z’ is written as P!, L,is the
local time at 0 of |z| (i.e. L is twice the standard local time at 0 of z), so
that

3
(2.88) |z, = |z] + L sgnz,dz, + L, .

z}, z; are defined by
zh =z, V0, z; =z, AN 0.

A, is still the inverse of L as in (2.3). Consider the stochastic differential
equation

dx = Lol Xe(x, 2)dt - Xi(x, 2)-dw']
(289) + Is<0 [Xé(x: Z)dt + X'.;(JC, Z) ' dwi] + D(JC)dL ?
x(0) = x,.

A flow ¢,(@, x,) can be associated to (2.89) in the same way as in Theorem
2.1, If ¥(x, z) is a function having the same properties as b(x, z), the
Girsanov exponential is changed into

M, = eprc Izm(b(xs, z )iz, — %bz(x,, zx)ds)
O
(2.90) ,
+ j Izm(b’(xs, 20z, — %b’z(x,,, zs)ds)] .
0

Qieosp 18 defined formally as in (2.9). We still want to study the
boundary process (4,, x,,) undet Q- The process C¥* is now replaced
by C{* which is given by
M i
p > Cimp = 51 [ oot XD (0 20, P (F X0 (o 205
i=1J0
(2.91) -
1 3 [ Lo XD (5 2, 2D 11 XD Gt 20
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In [6], the analogues of Theorems 2.8-2.12 are proved to be still valid. So
we first study the a.s. invertibility of C7™.

Definition 2.18. For £ e N, E,, E}, F, are the family of vector fields
defined by

E = (Xb . ':Xm)s Ei = (Xi! "t '7X;n)’ F= {0}‘9

Eﬂ-l = [(X(J,Xla A Xm, j—)a E&] H
oz

E;-H == [( 6; X{, "'sX,m: 'a—):EQ] ]
0z

F&M = [(X;a e 'sX;m D); E#]U[(XU "ty Xm’D): E;]
U[(Xla "':Xms Xi: "',X:,,,D), F&]-

(2.92)

Theorem 2.19. I 15 (B, ESU F) (xo, 0) spans R, then PRI
a.s., for any i > 0, C™ is invertible. :

Proof. U, is the vector space spanned by [, ..o{pi 7' X (%o) (1 <i<<m)
and I, (ef ' XixD(A Li<m) V, is the vector space spanned by
Use: U, and ¥, is defined by

(2.93) Vo=V,

s>

We then proceed as in the proof of Theorem 2.14. Namely assume that
¥, (which is a non random vector space) is = T,(R%. Then if S is the
stopping time

(2.94) S — inf{t > 0; ¥V, # Viu} .

§ is positive a.s. Let / be a non-zero element of T*(R% orthogonal to
V. Then

LX) )y =0 on (z, > 0)NI0, 51,
L@ X))y =0 on (z <0)NI0 ST

Using the optional selection Theorem [8}-1V--84, it is easily proved that
(z = 0) is included in both closures of (z > 0) and (z < 0). (2.95) can
be replaced by

<.f5 (ED;R“IXi)(x:J)> = 0 on (Zu 2 0)“[0: S[ 3
il X))y =0 on (2, < ONID, ST.

From (2.95), we find that

(2.95)

(2.96)
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(2.97) zr (o X))y =0 on[0, S].
From It6-Tanaka’s formula, we know that
i
st ) = | 2t (Lo X0 -+ DX 1 Xl
£
v L[ 2 s o [ et b, Xaow
21loz Loz 0
8 N Xi])éz
oz

¢
+ I Iz>o‘P;[=u1[j—, Xi]dﬁ‘s
A X)) oz o

(2.98)

+[ Toagt ™' (X + 2|
[H]

(there is no integral " .. .dL because the support of dZ is (z = 0), and of
0
(2.96)). From (2.97), we find easily that for 1 << j<{m
(fy i X Xdp =0 on (z, > MNI0, I,
e (pe[2 xl)=0 e >0n0 sl
oz : :
By iteration, using (2.99) again as in (2.44), and reasoning as in (2.45), we
find that for 0 < j < m,
f, o¥ X X =0 on (z, = 0)NI0, 51,
@100 (5, gof“l[g—, X¢1> —0  on (z=0N[O,8[.
z .

We now will use the following result in Tkeda-Watanabe [12], p. 307.
Namely if g is {# },z, predictable right-continuous process with loft hand
Yimits then for any £ > 0

) Ay A ¢
hm[ 2 ‘[ Is>085W¢] = j‘ Logdw'
10 Ldp—du—"7e J du_nt 0

'. Aa b (]
m| = Tagow'| = [ Logdn’
Ay—Ady—>¢ 1]

<40 Ay — b

(2.101)

where the limits as &}, J0 are taken in probability.

Tn [12] such a result is proved in the case of a reflecting Brownian
motion (see (2.53)). The proof of [12] can be mimicked so that (2.101)
holds. Also note that if ¢,, £, are the processes

’ !
(2.102) ¢ = j Ioods, & = infis, ¢, > 1},
Q
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then by [12], p. 123, z,, is a reflecting Brownian motion, and moreover

'xt

J 1,00 (1 < i<{m) are also Brownian motions independent of z
L

0
Let H{x) be a C= vector field defined on R* with values in R*., Assume
that |

(2.103) (i 'HY =0 on {z, = N[0, ST.
We claim that
(f o '[D,H]) =0 on (z, =0)N[0, ST,

(2.109) (figf X, H]) =0 on (z=0NI0,S[, 1<j<m,
ot H =0 on (z=0N0S], 1<j<m,

We first prove the first line of (2.104). We have

ot H = HGe) + [ Loopt (X H] 4+ X, 1Y, )

: i 1
+I 1.,0f 1(X’,H Ly iy, )
(2.105) ) e ? (X5 H] -+ 2[ il J«.H]] du
&
+ [ ot1D, B+ [ Toug 1, oW
1]

13
o [ Lot 15 HIoW

Let G,, G, be the {#},s, predictable processes as in [8[-[V-90
(2.106) G, =Tml., G =I0ml,.
st1e

site

We claim that for any ¢t > 0

Ay AIAS
@1 BT s H = Gk £
In fact

if ¢ < 8§, if z, > 0, using (2.103), the sum is { f, of ~'H >,
(z, = 0) is negligible, and if z, < 0, the sum is 0.
if t > 8, if z; > 0, the sum is {f, p¥'H ),

If zy = 0, and if S is a left cluster point of (z = 0), the sum is still 0,
and moreover by (2.103), {f, ¥ *H)» = 0. If z; = 0 and z is positive on
a left neighborhood of S, the sum is { f; p¥'H), and G5 = 1. Ifzg=10 .
and if z is negative on a left neighborhood of S, both sides of (2.107) are :
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0. Finally if zy < 0, the left hand side of (2.107) is 0 and Gy = 0.
Let E, and E} be the processes

o= [ Toa (087 (0e HY -+ 055 16 HD)) )b
- { Lo £ g HDOW
= [ T (00 2 0 5 D))

I3 ;
o+ [ Lot £ 90X, D OW

(2.108)

respectively. By using the first line in (2.101) as wel} as (2.107), we find
that for any ¢ > 0, a.s.

(2.109) Eyps = Gunsl Sy 0lnstly

Now the process Gps{fs @ineH ) 18 continuous. This is clear if ¢ <CS,
by using (2.103). If Sisa left cluster point of (z = 0), {f; ¢¥ Xy =0
and continuity at § still holds, while if S is isolated on the left from
(z = 0), G will be continuous at S.  From (2.109), we find that a.s.

(2.110) E, = G{f, of 'H on [0, S5].
Similarly
(2.111) By = G{fiefHy on [0,8].

We claim that for 1 < .S
(2.112) (G, + GO S, o 'Hy = {f ¢ H) .

We only need to prove (2.112) if z, = 0. Ift < 8, {f, o "H) =10
and (2.112) is true. If £ =5, and S is a cluster point on the left of ‘
(z = 0), the same reasoning applies. 1f S is not a cluster point on the
left of (z = 0), G5+ G5 =1, and (2.112) still holds. From (2.110)-

(2.112), we see that
(2.113) {fooF*Hy = B, + E} on [0,57.

Comparing with (2.105), we find that

@.114) <H%$WMM%& on [0, 5]
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so that
(2.115) (foE D, HY =0 on (z=0)NI0,S].
The first line in (2.104) has been proved.

Now from (2.103)-(2.110) it is clear that
(2.116) E, =0 on (z, = 0N, ST.
Set

ps = %+ Ej,

ouny K= {fer(0 B+ 516 1%, H1)),

M, = 5 gt K, H G 0

From (2.116), we sce that
(2.118) 0, =0 on (z,=0NIo,SI[.
¢,, k, have been defined in (2.102). Set

73 . LT3
(2.119 7, =z, W= L Lsodw!, B, = .[o I,5082,
b= pe K=Ky, M,=M,, E, =E,.
We know that z is a reflecting Brownian motion, and that (', - - -, ¥, B)
is a {Z,)1z0 Brownian martingale. Moreover cg is a {# ..}z stopping
time. Using (2.118), we have

p.=0 on (z=0)N[0, .

Moreover using standard results on semi-martingales we know that E,,
and hence , is a continuous process. Using (2.108), we find that

(2.120) EZ:::ItEZcB 4‘jt<f;¢ﬁ*13;,fﬂ>5w’.
1] 1]

Assume that M, = 0. By renormalizing f, we may assume that
M, = 1. Let 5 be a positive constant such that 5 < 1/4. Since B, = 0,
we may suppose that § > 0 has been chosen to be small enough so that
ifs<S

(2.121) l—-p< M, <1479, 2EK[<y
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so that if 1 < ¢y
@12y 1—p<M <147, 2EK|<7.

Obviously, we have

dﬁ; = (1 + 2ELK5 + Mﬁ)‘dt

(2.123) ﬁ _
o 2268 4 2E,f, oY, H]Y oW .

At this stage, we are exactly back to the situation described in (2.60)
(except that we are working with a larger filtration that the canonical
filtration of (, £), but this is irrelevant). We then find that M, #+0is a
contradiction to (2.103). We obtain the second line of (2.104) using the
optional selection Theorem as in the proof of Theorem 2.14.

The third line in (2.104) is proved in the same way.

Of course, using (2.96), we may take H to be equal to X,(x, 0),
X!(x, 0) (I < i< m) or to any bracket appearing by iteration like in
(2.100). We find in particular that f is orthogonal to -

U E U F)(x, 0,

and so f = 0. This is a contradiction to § > 0.

Remark 13. Since under the assumptions of Theorem 2.19, the
boundary semi-group has densities, we see that unexpected interaction
may occur at the boundary between the two sides (z > 0 and z < 0) of
the process (x,, z,) as well as with the vector field ». This is a clear ex-
ample that Levy kernels do interact.

D The two sided boundary process: regularity of the semi-group

The assumptions to get regularity for the boundary semi-group are
in general much stronger than for one-sided processes. The following
counter example is developed in [6}. Consider first the stochastic differ-
ential equations

(2.124) dx = Lcpdw}, x(0) = x,
which can be put in the equivalent form

dx = Lepdwi, x(0) =0

(2.125)
dh = dt, BO)=0.

The calculus of variations applies to the component x,, in (2.125). In
fact conditionally on z, the law of x,, is a centered Gaussian, whose
variance is C,,,, where C, = 5. By [13], p. 26, the law of 4, is
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t
1. ———e ¥y,
" ¥ 2zs
One finds that 1/4/C, .y is in all L,, and the law of x,, is proved to b
smooth. Consider now the system :

dx = Lo 0y crdwi, x(M) = x,

(2.126)
dh =T, ,dt + Ldt, H0)=0.

(2.126) appears as a two-sided perturbation of (2.125), We claim that
now the law of x,, is not smooth. In fact conditionally on z, the law
of x,, is a centered Gaussian whose variance is C/,nr» Where

@2.127) 1 = I Laods .
0

Clearly, C/y ar < Ch. By Lévy’s Arcsine law ({131 p. 57), the law of C% is

(2.128) I o ds

OSSST_:n:[s(Td—T)]-“? '
and so
I—JZJFEJ—LJP=+W.
¥ v Ch

e
AgAT

The law of x,, is given by a density which is 4 co at x = 0!

This counterexample strongly indicates that, say, negative excursions
can destroy the regularity which is given by the positive excursions, since
these negative excursions are “pushing” x too fast from the regularizing
region in (z > 0).

In the two-sided case there is in general no “localizable” result, ex-
cept when both sides are equally regularizing. We prove however a
regularity result in [6]. Recall that the families of vector fields F,, E;
have been defined in Definition 2.18.

Defiition 2.20. For ¢ € N, X¥(x) is the function defined by

(.129) %) = jinf SUCST LS Y6 00 + 35V 0.

i
Ifll=1 =1 FEkn
We then have
Theorem 2.21. Assume that £ ¢ N, p > 0 exist so that for any x € R,

(2.130) ¥(x) =7




102 J.-M. BisMuT

Then for any x, € R®, any T >0, L |[[CF) | ds in all the L, (P& P').

Proof. Note that (2.130) is a global assumption on R*, (2.130)
indicates in particular that | Ji (£, U EN{x, 0) spans R* for each x. The
techniques of estimations of Theorem 2.16 based on classical stochastic
calculus do not work any more. Apparently, no single side (z > 0) or
(z < 0) is enough by itself to get the desired result. Assume for instance
that >3, <f, Y{x, 0))%is jarge enough. If 77 is still defined by (2.78)
(z is now a standard Brownian motion), we now only have the estimate

crie
Tt > ¥ 2] < e
(2.131) PIT. = 1/ 2] < L

In the estimation process we will have to take 7 so that (2.131) is small,
but in fact 7 has to be so small that z, comes back to 0 before C'*° has
become large enough. z can then go to the region (z < 0) where again
the same phenomenon can happen. We end up trying to follow Brownian
motion in an endless rumn.

In [6] we chose another route. Namely, we know the excursion law
of z out of 0. We end up estimating the contribution of each excursion
to regularity, use the fact that positive and negative excursions have equal
(or better said strictly positive) weights, and then use the exponential
martingales for ponit processes (some of which appear in Section 1) to get

the necessary estimates.
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DAPARTEMENT DE MATHEMATIQUE conductivity that can be computed in principle [4].
UnIVERSITE PARIS-SUD In this paper we consider a similar problem for a discrete medium, a

91405 ORsaY, FrANCE d-dimensional lattice. A result analogous to the one obtained in [4] was

recently given by Kithnemann [2]. Our objective here is to show that the
estimates needed for the compactness, Nash’s estimates [3] in the lattice
case, can be obtained in a simple manner.
In Section 1 we formulate the problem, in Section 2 we give Nash’s
estimate in detail and in Section 3 we outline the rest of the proof which
. : is analogous to the one in [4]. :

§ 1., Formulation

We establish first the notation which will be used in the following:
We will denote by Z¢ the simple cubic d-dimensional Jattice of span @ and
. by BY the corresponding set of bonds. We will always think of Z7 as
i imbedded in R with coordinates which are integer muliiples of @, with
! respect to a cartesian system defined by the unit vectors {e;}-s,....a.
On the Hilbert space

I HZH=MZL Ry = {1 Zi— R|w;zd|f(x)]2<oo}

! : equipped with the inner product

() = 3, (s
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