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Abstract. The purpose of this paper is to give an introduction to some ideas
which motivated the construction of the hypoelliptic Laplacian as a deforma-

tion of Hodge theory, which interpolates between Hodge theory and the geo-

desic flow. Results obtained with Lebeau on the analysis of the hypoelliptic
Laplacian are also presented.

Contents

Introduction 2
1. The Witten deformation 2
1.1. The Witten Laplacian 3
1.2. The action of Um on Xm 5
1.3. Chern-Gauss Bonnet and the Mathai-Quillen Thom form 10
1.4. Witten’s localization and Chern-Gauss-Bonnet 11
1.5. Functional integration and the energy functional 13
1.6. Some aspects of local index theory on LX 15
2. A construction of the hypoelliptic Laplacian 16
2.1. The adjoint of the de Rham operator with respect to a bilinear form 17
2.2. An exotic Hodge theory on T ∗X 18
2.3. A Hamiltonian function 19
2.4. A self-adjointness property 21
2.5. The Weitzenböck formula 22
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Introduction

The purpose of this paper is to give an introduction to the ideas which motivated
the construction of the hypoelliptic Laplacian [B05], and also to describe some
results obtained jointly with Lebeau [BL06] on this operator.

One initial motivation was to provide a construction of the Hodge theory on the
loop space LX of a Riemannian manifold X, and also of the corresponding Witten
deformation [W82], which would interpolate between the Hodge theory of LX and
the Morse theory of the energy functional E.

Constructing directly the Hodge theory on LX is notoriously difficult, in partic-
ular because of the issues related to the choice of a suitable L2 scalar product on
the de Rham complex. We will sidestep these delicate points.

We will give three interrelated approaches to the construction of the hypoelliptic
Laplacian, as a substitute for the Hodge theory of LX:

• In a first approach, we replace X by Xm equipped with an action of Um,
the group of m-th roots of unity, we construct a Witten Laplacian on Xm

and we make m→ +∞.
• In a second approach, by extending Chern-Gauss-Bonnet to infinite dimen-

sions, we propose the construction of a new Hodge theory based on a path
integral where the gradient of the energy functional on LX should appear.
• In a third approach, we view the measure on LX associated to the hypoel-

liptic Laplacian as the local limit (in the sense of local index theory) of the
local supertrace of a non existing heat kernel on LX.

The object which is finally obtained is a second order hypoelliptic operator of
order 2 on the cotangent bundle T ∗X of a Riemannian manifold X. This operator
depends on a parameter b > 0. We give the details of its rigorous construction
in [B05], and we explain in what sense it does interpolate between classical Hodge
theory for b→ 0 and the geodesic flow for b→ +∞.

Finally we describe a few results obtained with Lebeau [BL06] on the analysis
of the hypoelliptic Laplacian, and also on the hypoelliptic torsion.

This paper is organized as follows. In section 1, we introduce the classical Witten
Laplacian [W82], and we develop various non rigorous approaches to the construc-
tion of the Witten Laplacian on LX. The Thom forms of Mathai-Quillen [MQ86]
play an important role in the whole argument.

In section 2, we give the rigorous construction of an exotic Hodge theory on
T ∗X, where the corresponding Laplacian is an hypoelliptic second order operator
on T ∗X. We also give the arguments in [B05] showing that this new Hodge theory
has the suggested interpolation properties.

Finally in section 3, we state some analytic properties of the hypoelliptic Lapla-
cian established with Lebeau in [BL06], and we present in particular our results on
the hypoelliptic torsion.

1. The Witten deformation

The purpose of this section is to describe the Witten deformation of classical
Hodge theory on a compact Riemannian manifold X, and to explain its possible
applications to LX, the loop space of X. This way, we will produce a second order
hypoelliptic operator on T ∗X, which will eventually turn out to be exactly the
hypoelliptic Laplacian acting on 0-forms.
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This section is organized as follows. In subsection 1.1, we recall some results on
the Witten Laplacian on X, which interpolates between Hodge theory and Morse
theory.

In subsection 1.2, we replace X by Xm equipped with the obvious cyclic action,
we construct the Witten Laplacian on Xm associated to a natural smooth function
on Xm, and we make m → +∞. We produce this way the dynamics of a random
path in X, depending on a parameter T ∈ R.

In subsection 1.3, we recall the construction of the Mathai-Quillen Thom forms.
In subsection 1.4, we interpret the localization of Witten eigenforms near the

critical points of a Morse function as a formal consequence of Chern-Gauss-Bonnet
on LX associated to the natural lift of a Morse function f on X to an S1-invariant
function F on LX.

In subsection 1.5, we write a functional integral on LX associated with any
Lagrangian L (x, ẋ). We observe that if this Lagrangian is just the energy, the
corresponding functional integral should converge to a classical Brownian integral
for T → 0, and should localize on the closed geodesics when T → +∞. It also
produces a dynamics for a random path x which is the same as the one which
was produced in subsection 1.2. This dynamics is described by a second order
differential operator on T ∗X. In section 2, we will show that this operator is in
fact a Laplacian associated with an exotic Hodge theory on T ∗X.

Finally in subsection 1.6, we give still another approach to the construction of the
hypoelliptic Laplacian via a non existing local index theory on LX, in connection
with the theory of V -invariants which was developed in [BG04].

Many arguments used in this section are not rigorous. Still they provide a
powerful motivation for the rigorous constructions of section 2.

The construction of the hypoelliptic Laplacian was announced in [B04a, B04b]
and developed in [B05]. Our results with Lebeau were announced in [BL05] and
are explained in detail in [BL06].

1.1. The Witten Laplacian. Let X be a compact connected manifold of dimen-
sion n, let gTX be a Riemannian metric on TX, and let dX (·, ·) be the corresponding
Riemannian distance on X. Let ∇TX be the Levi-Civita connection on

(
TX, gTX

)
.

Let
(
F,∇F , gF

)
be a complex flat vector bundle on X equipped with a non neces-

sarily flat metric. Let
(
Ω· (X,F ) , dX

)
be the de Rham complex of smooth forms

on X with coefficients in F . Let H · (X,F ) be the cohomology of this complex. It
is a finite dimensional Z-graded vector space.

Let 〈 〉Λ·(T∗X)⊗F be the Hermitian product on Λ· (T ∗X)⊗F which is associated

to gTX , gF , let dvX be the volume form on X associated to gTX . We equip Ω· (X,F )
with the L2 Hermitian product 〈 〉Ω·(X,F ) associated to gTX , gF . If s, s′ ∈ Ω· (X,F ),

then

(1.1) 〈s, s′〉Ω·(X,F ) =

∫
X

〈s, s′〉Λ·(T∗X)⊗F dvX .

Let dX∗ be the formal adjoint of dX with respect to 〈 〉Ω·(X,F ). Set

(1.2) �X =
[
dX , dX∗

]
.

The operator �X is the Hodge Laplacian. It is a second order elliptic self-adjoint
nonnegative operator.
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Set

(1.3) H = ker �X .

Equivalently,

(1.4) H = ker dX ∩ ker dX∗.

Hodge theory tells us that

(1.5) H ' H · (X,F ) .

Equivalently any cohomology class in H · (X,F ) is uniquely represented by a form
in H.

Let now f : X → R be a smooth function. In [W82], Witten proposed a
deformation of Hodge theory associated to f . Indeed for T ∈ R, set

(1.6) dXT = e−TfdXeTf .

Let dX∗T be the formal adjoint of dXT with respect to 〈 〉Ω·(X,F ), so that

(1.7) dX∗T = eTfdX∗e−Tf .

The corresponding Laplacian �XT is given by

(1.8) �XT =
[
dXT , d

X∗
T

]
.

An equivalent construction is to replace 〈 〉Ω·(X,F ) by 〈 〉Ω·(X,F ),T given by

(1.9) 〈s, s′〉Ω·(X,F ),T =

∫
X

〈s, s′〉Λ·(T∗X)⊗F e
−2TfdvX .

Let d
X∗
T be the adjoint of dX with respect to 〈 〉Ω·(X,F ),T , so that

(1.10) d
X∗
T = e2TfdX∗e−2Tf .

Let �
X

T be the associated Laplacian. Clearly

(1.11) �XT = e−Tf�
X

T e
Tf .

These two constructions are essentially equivalent. The second one can be inter-
preted as one in which the trivial line bundle R is equipped with the non trivial
metric e−2Tf .

In any case the Laplacians �XT ,�
X
T are still second order elliptic self-adjoint

nonnegative operators. For T = 0, they coincide with the standard Laplacian �X .
For simplicity, for the moment we only consider the Laplacian �XT .

Put

(1.12) HT = ker�XT .

Then the obvious analogues of (1.4)-(1.5) still hold. In particular,

(1.13) HT ' H · (X,F ) .

Let e1, . . . , en be an orthonormal basis of TX, let e1, . . . , en be the corresponding
dual basis of T ∗X. Then we have the Weitzenböck formula for �XT ,

(1.14) �XT = �X + T 2 |∇f |2 + 2Teiiej
〈
∇TXei ∇f, ej

〉
− T∆Xf.

In (1.14), ei, iej are the obvious creation and annihilation operators, and ∆X is the
Laplace-Beltrami operator.
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The idea in [W82] is to make T → +∞. Indeed assume that f is a Morse
function. The main assertion in [W82] is that as T → +∞, most of the eigenvalues
of �XT tend to +∞, a finite number of them, counted with multiplicity, tend to
0. Among those, there are the ones which are exactly 0, which correspond to HT ,
and others which are exponentially small, i.e. they are dominated by e−cT , with
c > 0. Let

(
F ·T , d

X
T

)
be the finite dimensional complex of eigenspaces associated

with small eigenvalues. Then Witten shows that F ·T localizes near the critical points
of f . More precisely for 1 ≤ i ≤ n, he shows that F iT localizes near the critical
points of index i. If Mi is the number of critical points of index i, we find that for
T large enough,

(1.15) dimF iT = Mirk (F ) .

From (1.15), one gets immediately a proof of the Morse inequalities.
In [W82], Witten goes one step further. He suggests that when T → +∞, the

complex
(
F ·T , d

X
T

)
can be identified with a combinatorial complex built out of the

instanton integral trajectories of −∇f connecting the critical points, which he in-
terprets as causing tunnelling effects between critical points. If ∇f verifies the
Thom-Smale transversality conditions [T49, Sm61], this combinatorial complex is
in fact the complex described by Thom [T49] and Milnor [Mi65]. This conjecture
by Witten was first proved by Helffer and Sjöstrand [HS85]. A simpler proof was
given by Bismut-Zhang [BZ94, section 6], which is based on the de Rham map of
Laudenbach [BZ92]. In fact in [BZ92, Appendix], Laudenbach shows that under
adequate assumptions, the unstable or stable cells can be compactified in subman-
ifolds with conical singularities, and that these compactified cells have essentially
the same properties as the simplexes of a triangulation.

The Witten deformation has been used in [BZ92, BZ94] to give a proof of the
Cheeger-Müller theorem [Ch79, Mül78], which asserts the equality of the Ray-Singer
analytic torsion [RS71] with the corresponding Reidemeister torsion [Re35].

Let us also make a final observation on the dynamics associated to the semi-

group exp
(
−t�XT /2

)
restricted to Ω0 (X,R). The stochastic differential equation

describing the diffusion x associated to this semigroup is given by

(1.16) ẋ = −T∇f (x) + ẇ,

where w is a classical Brownian motion. When f = 0, we recover the equation for
classical Brownian motion.

1.2. The action of Um on Xm. Let H be a connected Lie group, and let h be
its Lie algebra. Let V be a complex finite dimensional representation of H. For
m ∈ N∗, then H acts on V ⊗m.

We will denote Z/mZ multiplicatively. Equivalently we identify Z/mZ to the
group Um of m-th roots of unity.

Then Um acts on V ⊗m, the action of e2iπ/m ∈ Um being given by

(1.17) v1 ⊗ v2 . . .⊗ vm → v2 ⊗ v3 . . .⊗ v1.

The actions of H and Um commute, so that Um ×H acts on V ⊗m.
If σ ∈ Um, let d ∈ N be the order of σ, so that σd = 1, and d|m. If h ∈ H, one

has the easy formula

(1.18) TrV
⊗m

[σh] =
(
TrV

[
hd
])m/d

.
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In particular if σ ∈ Um is primitive, and if A ∈ h, t ∈ R,

(1.19) TrV
⊗m [

σetA
]

= TrV
[
emtA

]
.

We rewrite (1.19) in the form,

(1.20) TrV
⊗m
[
σetA/m

]
= TrV

[
etA
]
,

which does not depend on m.
Let G be a compact Lie group, and let g be its Lie algebra. Let X be a compact

Riemannian connected manifold as in subsection 1.1, and let
(
F,∇F , gF

)
be a flat

Hermitian vector bundle on X. Assume that G acts isometrically on X, and that
the action lifts to

(
F,∇F , gF

)
. Then G acts on H · (X,F ).

In the sequel, Trs is our notation for the supertrace. The Lefschetz formula
asserts that if g ∈ G, if Xg is the fixed point manifold of g and if e (TXg) is the
Euler class of TXg, then

(1.21) Trs
H·(X,F ) [g] =

∫
Xg

e (TXg) TrF [g] .

Take m ∈ N∗. For 1 ≤ i ≤ m, let πi : Xm → X be the obvious projection. Put

(1.22) F [m] =

m⊗
1

π∗i F.

Let ∇F [m]

, gF
[m]

be the obvious flat connection and the obvious metric on F [m].

Note that Um×G acts isometrically onXm and that this action lifts to
(
F [m],∇F [m]

, gF
[m]
)

.

Clearly,

Ω·
(
Xm, F [m]

)
= Ω· (X,F )

⊗m
, H ·

(
Xm, F [m]

)
= H · (X,F )

⊗m
.(1.23)

If σ ∈ Um is of order d, if g ∈ G, by (1.18), (1.23), we get

(1.24) Trs
H·(Xm,F [m]) [σg] =

(
Trs

H·(X,F )
[
gd
])m/d

.

The Lefschetz fixed point formula (1.21) applied to Xm also leads easily (1.24).
Incidentally observe that if one uses the above formalism in the context of the

Atiyah-Singer index formula or of Riemann-Roch-Hirzebruch, the identity in (1.21)
reflects trivial identities on cyclotomic polynomials. Part of what we will say in the
sequel will be valid also in this more general context, without further mention.

The Mc-Kean-Singer formula [McKS67] asserts that for any t > 0,

(1.25) Trs
H·(X,F ) [g] = Trs

[
g exp

(
−t�X

)]
.

Moreover,

(1.26) �X
m

= �X ⊗ 1⊗ . . .+ 1⊗�X ⊗ 1 . . .+ . . .

By (1.19), (1.26), if σ ∈ Um is of order d,

(1.27) Trs

[
σg exp

(
−t�X

m
)]

=
(
Trs

[
gd exp

(
−dt�X

)])m/d
.

Of course (1.24), (1.25), (1.27) are compatible.
Note here that we could as well have taken a usual trace instead of a supertrace

in (1.27). The fact that the supertrace in (1.27) has a topological interpretation
does not play any role for the moment.
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By (1.27), we find that if σ ∈ Um is primitive, if A ∈ g,
(1.28)

Trs

[
σeA/m exp

(
−t�X

m

/m
)]

= Trs
H·(X,F )

[
eA exp

(
−t�X

)]
= Trs

H·(X,F )
[
eA
]
.

Again (1.28) does not depend on m.
Let us now give a geometric interpretation of an identity like (1.28). We will work

here using the classical heat kernel exp
(
t∆X/2

)
instead of exp

(
−t�X

)
, but since

all the arguments we give are algebraic, this is perfectly legitimate. Incidentally
note that if F = R, the restriction of �X to Ω· (X,R) is just −∆X .

The heat operator et∆
Xm/2 on Xm is associated to the motion of m independent

Brownian motions in X. We take here σ = e2iπ/m. A simple computation shows

that if pt (x, y) is the smooth heat kernel associated to et∆
X/2, then

(1.29)

Tr
[
σget∆

Xm/2m
]

=

∫
Xm

pt/m (x1, gx2) pt/m (x2, gx3) . . . pt/m (xm, gx1) dx1 . . . dxm.

Using the fact that G commutes with ∆X and the semigroup property of the heat
kernel, we get from (1.29),

(1.30) Tr
[
σget∆

Xm/2m
]

=

∫
X

pt (x, gmx) dx,

which is precisely the abstract content of (1.28).
The interpretation of (1.30) is that the dynamics of m independent Brownian

motions in X on the time interval [0, t/m] is equivalent to a single Brownian motion
on X on the time interval [0, t].

Let us point out here that the time scaling in (1.30) is natural. Indeed there are
m independent points in Xm. The total randomness on the time interval [0, t/m]
is then m× t/m = t.

Let now f : Xm → R be a smooth function which is G and Um invariant. For
T ∈ R, let �X

m

T be the corresponding Witten Laplacian. Of course by (1.25), we
get

(1.31) Trs
H·(Xm,F [m]) [σg] = Trs

[
σg exp

(
−t�X

m

T

)]
.

However no identity like (1.26) holds any more for �X
m

T , except in the case where
f is of the form

(1.32) f (x1, . . . , xm) =

m∑
1

h (xi) .

In the sequel, we take f of the form

(1.33) fm (x1, . . . , xm) =

m∑
i=1

log p1/m (xi, xi+1) ,

with the convention that xm+1 = x1. Obviously the function f has the required
invariance properties.

One can then construct the Witten Laplacian �X
m

T associated to the function
fm. The dynamics of the m particles xi associated formally to the Witten Laplacian
�X

m

T are now correlated. If fm happens to be a Morse function, when T → +∞,

the eigenforms associated to small eigenvalues of �X
m

T will concentrate near the
critical points of fm.
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Now we will make m → +∞ in the above construction. Let LX be the loop
space of X, i.e. the set smooth maps s ∈ S1 → xs ∈ X. Let us accept the fact that
LX is the ‘limit’ of Xm as m→ +∞. This means that given (x1, . . . , xm) ∈ Xm, we
think of these m points as being such that there is x ∈ LX for which if 1 ≤ k ≤ m,
xk = x(k−1)/m. Equivalently, if x ∈ LX, when m is large enough, we may replace x·
by its piecewise geodesic approximation which interpolates between x(k−1)/m and

xk/m for 1 ≤ k ≤ n. Now for x, y ∈ X, with dX (x, y) small, as t→ 0, then

(1.34) pt (x, y) ' e−d
X(x,y)2/2t

(2πt)
n/2

.

By (1.33), (1.34), we find that if x ∈ LX,

(1.35) fm
(
x0, . . . , x(m−1)/m

)
+
n

2
log (2π/m)→ −1

2

∫
S1

|ẋ|2 ds.

Observe that adding a constant to f does not change the Witten Laplacian. By
(1.35), we find that when m → +∞, when replacing Xm by LX, then fm should
be replaced by −E, where E is the energy functional on LX given by

(1.36) E (x) =
1

2

∫
S1

|ẋ|2 ds.

The above approach is more than disingenuous. Indeed by (1.33),

(1.37) efm (x1, . . . , xm) =

m∏
1

p1/m (xi, xi+1) ,

and the right-hand side of (1.37) is the obvious discrete time approximation of the
Brownian measure µ on LX. This Brownian measure can be represented formally
as being given by

(1.38) µ = exp (−E) dx,

which ultimately explains why fm should be replaced by −E.
Admittedly if F = R, the limit of the Witten Laplacian �X

m

T associated to fm
should then be the Witten Laplacian �LXT associated to −E. Moreover,

(1.39) ∇E (x) = −ẍ.

The critical points of −E are the closed geodesics in X. One can then say that
as m → +∞, the critical set of fm on Xm converges in some sense to the closed
geodesics on X.

We already indicated that in (1.30), the scaling of t by the factor 1/m is natural so
as to keep total randomness constant. Indeed if one expect that the limit as m→
+∞ of the motion of m independent Brownian motions describes the Brownian
motion of a string on a time interval [0, t], it is necessary to scale the time interval
of evolution of each of the m independent Brownian motions in Xm by a factor
1/m so as to keep the total randomness (which in this case is equal is the variance
of the underlying Brownian sheet) equal to t.

Also we want to understand what dynamics of the loop x associated to the semi-
group exp

(
−t�LXT /2

)
. Recall that s ∈ S1 describes the parametrization of a given

loop. Extending equation (1.16) to infinite dimensions and using (1.39) means that
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the process t ∈ R+ → xt ∈ LX should be a solution of the stochastic differential
equation,

(1.40)
∂x

∂t
= −T ∂

2x

∂s2
+ ẇs,t.

In (1.40), ẇ is a Gaussian process whose covariance on L2
(
S1 ×R+

)
is just the

identity.
However we will here go back to equation (1.29). The left-hand side describes

the motion of a collection m independent Brownian motions (x1, . . . , xm) such that

(1.41) (x1, . . . , xm) |t/m = (x2, . . . , x1) |0.

To obtain the right-hand side of (1.29), we constructed a single Brownian motion on
the time interval [0, t] which coincides with x1 on [0, t/m], with x2 on [t/m, 2t/m]. . .

If y = (x1, . . . , xm) ∈ Xm, the dynamics of y associated to the semigroup

e−t�
XmT /2 is now

(1.42) ẏ = −T∇fm (y) + ẇm,

where wm is a collection of m independent Brownian motions. The idea is now to
consider a process xt which coincides with x1 on [0, t/m], with x2 on [t/m, 2t/m]. . . and
then to take the limit as m→ +∞. Keeping in mind the limit remains formal, we
find that x should verify the equation

(1.43) ẋ = −T ẍ+ ẇ.

Observe that equation (1.43) looks like a degenerate version of (1.40), where we have
made s = t. Also note that while we pieced together various Brownian motions
with a drift (the drift is the local deviation from mean 0), which are nowhere
differentiable, the resulting equation for T > 0 indicates the process x should
become C1 in the time variable. Note that there is the implicit constraint xt = x0.

For T = 0, as it should be, equation (1.43) becomes,

(1.44) ẋ = ẇ

which is the classical equation for Brownian motion, and for T = +∞, equation
(1.43) becomes

(1.45) ẍ = 0,

which is the equation for closed geodesics.
The above reasoning indicates that studying equation (1.40) for a Brownian

motion with drift on LX is equivalent to studying equation (1.45), which is the
equation for a single diffusion in X. Also equation (1.27) indicates that the evalu-
ation of the expectation for certain observables associated to the Brownian motion
with drift on LX can be reduced to the evaluation of other observables associated
to the standard diffusion (1.43).

The program carried through in [B05, BL06] consists in precisely disregarding
the infinite dimensional picture by concentrating on the finite dimensional equation
(1.43).
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1.3. Chern-Gauss Bonnet and the Mathai-Quillen Thom form. To make
our notation simpler, the coefficient systems of the cohomology groups which are
considered later will always be tensored by R.

Let M be a manifold, let π :
(
E, gE ,∇E

)
→ M be a real vector bundle of

dimension n equipped with a metric and a metric preserving connection. Let RE

be the curvature of ∇E . Let o (E) be the orientation bundle of E. Let e (E) ∈
Hn (M,o (E)) be the real Euler class of E. If n is odd then e (E) = 0, if n is even,
it is represented by Chern’s form [C44],

(1.46) e
(
E,∇E

)
= Pf

[
RE

2π

]
.

By definition, we make the right-hand side vanish when n is odd, so that (1.46) will
be valid in all cases.

Let E be the total space of E. Let Hc,· (E ,R) be the compactly cohomology
of E . A similar notation is used when replacing R by o (E). The Thom class[
ΦE
]
∈ Hc,n (E , π∗o (E)) is characterized by the fact that

(1.47) π∗
[
ΦE
]

= 1.

Let i : M → E be the embedding of M as the zero section of E. Then

(1.48) i∗
[
ΦE
]

= e (E) .

Moreover we have the Thom isomorphism H · (M, o (E)) ' Hc,·+n (E ,R) given by

(1.49) α ∈ H · (M,o (E))→ π∗α ∧
[
ΦE
]
.

In [MQ86], Mathai and Quillen gave an explicit construction of a Thom form
ΦE ∈ Ωn (E , π∗o (E)) which depends on

(
gE ,∇E

)
, which represents canonically the

Thom class
[
ΦE
]
. The form ΦE is Gaussian shaped. Actually its restriction to the

fibre is a Gaussian. The identity

(1.50) π∗Φ
E = 1

just reflects the known identity for the Gaussian distribution. Also corresponding
to (1.48), we now have

(1.51) i∗ΦE = e
(
E,∇E

)
.

Let y the generic element in E. We write ΦE in the form,

(1.52) ΦE = exp

(
−|y|

2

2
+ . . .

)
,

the expression . . . containing the geometric information involving the connection
∇E and its curvature RE .

Let s be a smooth section of E. Then (Ts)
∗

ΦE is a smooth closed n-form on M
whose cohomology class in Hn (M, o (E)) is equal to e (E). By (1.52),

(1.53) (Ts)
∗

ΦE = exp

(
−T 2 |s|

2

2
+ . . .

)
.

Equation (1.53) makes clear that as T → +∞, (Ts)
∗

ΦE concentrates on the zero
locus Y of s. If s is generic, Y is a submanifold of M , and the limit as T → +∞
can be explicitly evaluated [BGS90]. This leads in particular to a proof of Chern-
Gauss-Bonnet which is in fact exactly the proof by Chern [C44].
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1.4. Witten’s localization and Chern-Gauss-Bonnet. We now make the same
assumptions as in subsection 1.1. We assume here that F = R equipped with its
trivial metric. Let ΦTX be the associated Thom form on the total space of TX.
We assume that f : X → R is Morse. Then ∇f is a generic section of TX, whose
zero set Y consists of the critical points of f .

By (1.53),

(1.54) (T∇f)
∗

ΦTX = exp

(
−T 2 |∇f |

2

2
+ . . .

)
.

When T → +∞, the currents in (1.54) converge to a sum of ± Dirac masses
at the critical points, which gives a special case of Hopf’s formula for the Euler
characteristic.

Now we will briefly show that aspects of Witten localisation of eigenforms can
be understood via an infinite dimensional version of the localisation in (1.54).

Note that the metric gTX induces a natural L2-metric on TLX. Namely if
x ∈ LX, if U, V are two smooth sections of TX along x·, set

(1.55) 〈U, V 〉gTLX =

∫
S1

〈Us, Vs〉gTX ds.

Also S1 acts on LX. Namely if t ∈ S1, x ∈ LX, set ktx· = xt+·. The generating
vector field K for this action is given by

(1.56) K (x) = ẋ.

The action of S1 on LX is isometric, so that K is a Killing vector field. Its zero
set is just X ∈ LX.

Note that the function f lifts naturally to the S1-invariant function F : LX → R
given by

(1.57) F (x) =

∫
S1

f (xs) ds.

Then ∇F vanishes exactly at Y ⊂ LX.
To explain the Witten localisation in its simplest form, we start from the McKean-

Singer formula [McKS67], which asserts that for any t > 0, T > 0, the Euler char-
acteristic χ (X) of X is given by

(1.58) χ (X) = Trs

[
exp

(
−t�X

T/
√
t
/2
)]
.

Recall that F is assumed to be the trivial R. The Weitzenböck formula for �X

says that

(1.59) �X = −∆H +
〈
RTX (ei, ej) ek, e`

〉
eiieje

ki`.

In (1.59), ∆H is the horizontal or Bochner Laplacian. From (1.14) and (1.59), we
get a formula form t�X

T/
√
t
. The leading term in t�X

T/
√
t

is the negative of the

Bochner Laplacian −t∆H , the remainder consists of zero order terms. In particular
the principal symbol of t�X

T/
√
t

is t |ξ|2.

The dynamics associated to t∆H/2 is just parallel transport with respect to
the Levi-Civita connection over a Brownian trajectory x·. The paths of Brownian
motion are nowhere differentiable, but the stochastic calculus shows that parallel
transport along such paths is still well defined.
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The above formula form �X
T/
√
t

indicates that the heat kernel for exp
(
−�X

T/
√
t
/2
)

can be calculated using a Feynman-Kac formula evaluated over the Brownian path
x·. Ultimately simple probabilistic arguments shows that there is a signed measure
µt,T on L0X, the set of continuous loops in X, such that

(1.60) Trs

[
exp

(
−t�X

T/
√
t
/2
)]

=

∫
L0X

dµt,T .

Integrating on a loop space reflects the fact that we integrate a heat kernel on the
diagonal, so that ultimately we have Brownian paths starting and ending at the
same point. Tautologically, the measure µt,T is S1-invariant.

The right-hand side of (1.60) has no obvious cohomological content. In particular
the fact that the integral does not depend on t, T is mysterious from that point of
view. However Atiyah and Witten [A85] taught us how to transform the well-
defined integral of a measure on L0X into an ill defined integral of a differential
form on LX, with an obvious cohomological interpretation. We will not give the
detail of our calculation in this context, but we state simply the final product. The
formula can be written as follows,

(1.61) Trs

[
exp

(
−t�X

T/
√
t
/2
)]

=

∫
LX

αt ∧ (T∇F)
∗

ΦTLX .

In the right-hand side of (1.61) appear two explicitly defined series of forms, which
are both S1-invariant, but also dK closed, with dK = d+iK . Note that the property
of being dK closed cannot be read degree by degree.

Let K ′ be the 1-form dual to K. Then

(1.62) αt = exp (− (dKK
′/2t)) .

We can rewrite (1.62) as

(1.63) αt = exp (−E/t− dK ′/2t) .
The form ΦTLX is the equivariant Thom form of Mathai-Quillen [MQ86] associated
to
(
TLX, gTLX ,∇TLX

)
and to the action of S1 on LX. The construction of ΦTLX

is a trivial modification of the construction of Mathai-Quillen [MQ86]. By (1.53),
we get

(1.64) (T∇F)
∗

ΦTLX = exp

(
−T

2

2

∫
S1

|∇f (xs)|2 ds+ . . .

)
.

The difficulty in making sense of (1.61) is that we do not know precisely what is
the integral of a series of forms, since we should select the term of infinite degree
corresponding to the dimension of LX, which is not well-defined. However, from
another point of view, this is irrelevant since the integral (1.60) is well-defined
anyway.

Equation (1.61) explains why the right-hand side is independent of t, T . For
T = 0, we recover a classical integral with respect to Brownian motion, which, as
we know, corresponds to classical Hodge theory. However as T → +∞, (1.64)
makes clear that the integral should localize near the critical loops of F , i.e.
near the critical points of f . This is precisely what happens for the heat kernel

exp
(
−t�X

T/
√
t
/2
)

(x, x) here evaluated on the diagonal. Actually, a direct proof

of this fact can be easily given using (1.14). Indeed T 2 |∇f |2 appears there as a
potential, and when T → +∞, the heat kernel on the diagonal localizes near the



LOOP SPACES AND THE HYPOELLIPTIC LAPLACIAN 13

potential well, where this potential vanishes. Of course localization of the heat
kernel on the diagonal implies the localization of the corresponding eigenforms.

When making t→ 0 first in the integral in (1.58)-(1.61), we recover an integral
over X of the form (T∇f)

∗
ΦTX . One can then write an obvious commutative

diagram in which the limits t→ 0, T → +∞ are interchanged. Local index theory
shows that as t→ 0,

(1.65) Trs

[
exp

(
−t�X

T/
√
t
/2
)

(x, x)
]
→
[
(T∇f)

∗
ΦTX

]max
,

which is compatible with (1.58) and with Chern-Gauss-Bonnet.

1.5. Functional integration and the energy functional. Let L (x, ẋ) be a
Lagrangian, i.e. a smooth function TX → R. If x ∈ LX, set

(1.66) I (x) =

∫
S1

L (x, ẋ) ds.

Then I is a S1-invariant function on LX. Of course F in (1.57) is a special case of
I, with L (x, ẋ) = f (x). Among the Lagrangians are those coming from classical
mechanics, of the type

(1.67) L (x, ẋ) =
1

2
|ẋ|2 − V (x) .

The function F looks like a functional I attached to L in (1.67), in which the most

important part, the energy E (x) = 1
2

∫
S1 |ẋ|2 ds has been omitted.

For the functional I associated to the Lagrangian L as in (1.66), we know that

(1.68) ∇I =
∂L

∂x
(x, ẋ)− D

Dt

∂L

∂ẋ
(x, ẋ) .

The key idea is to consider a functional integral like the one in (1.61), in which F
is replaced by I. For the moment we make t = 1, and we set

(1.69) α = α1.

By (1.52), (1.68), the path integral to be considered is of the form,

(1.70)

∫
LX

α ∧ (T∇I)
∗

ΦTLX =∫
LX

exp

(
−1

2

∫
S1

|ẋ|2 ds− T 2

2

∫
S1

∣∣∣∣ DDt ∂L∂ẋ (x, ẋ)− ∂L

∂x
(x, ẋ)

∣∣∣∣2 ds+ . . .

)
.

Since I is S1-invariant 〈∇I, ẋ〉 = 0. We can rewrite (1.70) in the form

(1.71)

∫
LX

α ∧ (T∇I)
∗

ΦTLX =∫
LX

exp

(
−1

2

∫
S1

∣∣∣∣ẋ+ T

(
D

Dt

∂L

∂ẋ
(x, ẋ)− ∂L

∂x
(x, ẋ)

)∣∣∣∣2 ds+ . . .

)
.

Let us make a few simple considerations on (1.70). Indeed if D
Dt

∂L
∂ẋ = 0, we

recover an integral of the type (1.61). But if D
Dt

∂L
∂ẋ 6= 0, the differential D

Dt
∂L
∂ẋ (x, ẋ)

contains ẍ, in which case the functional integral changes fundamentally of nature.

For this last condition to be true, we need that ∂2L
∂ẋ2 (x, ẋ) 6= 0, which implies that

the map ẋ→ p = ∂L
∂ẋ (x, ẋ) is a local diffeomorphism.
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It is then natural to assume in the sequel that L (x, ẋ) has a smooth Legendre
transform H (x, p), which is a smooth function on T ∗X, and that it verifies the non
degeneracy condition

(1.72)
∂2H
∂p2

(x, p) 6= 0.

If x ∈ LX, put

(1.73) p =
∂L

∂ẋ
(x, ẋ) .

The path integral in (1.71) can be written in the form

(1.74)

∫
LX

exp

(
−1

2

∫
S1

∣∣∣∣ẋ+ T

(
ṗ+

∂H
∂x

(x, p)

)∣∣∣∣2 ds+ . . .

)
.

Let us ignore the ‘fermionic’ part . . . in (1.74) and concentrate on the bosonic
part containing the scalar action. The probabilistic content of (1.74) is that the
process (x, p) ∈ T ∗X verifies a stochastic differential equation of the type

ẋ =
∂H
∂p

(x, p) , ẋ = −T
(
ṗ+

∂H
∂x

(x, p)

)
+ ẇ.(1.75)

In (1.75), w is a classical Brownian motion in a fibre T ∗X, which is parallel trans-
ported with respect to the Levi-Civita connection along the path x. Of course since
x ∈ LX, we should also have

x1 = x0, p1 = p0.(1.76)

Let Y H be the Hamiltonian vector field associated to the Hamiltonian H on
T ∗X, so that

(1.77) Y H =

(
∂H
∂p

(x, p) ,−∂H
∂x

(x, p)

)
.

Let ∇̂VH be the vector field along the fibre T ∗X associated to the differential of
H along the fibre.

Using stochastic calculus, we find that the second order differential operator LT
which is associated to the dynamics in (1.77) is given by

(1.78) LT = −∆V

2T 2
+

1

T
∇∇̂VH −∇YH .

Let us now make several remarks here. If H = |p|2 /2, we can rewrite (1.70),
(1.74) in the form

(1.79)

∫
LX

α ∧ (−T∇E)
∗

ΦTLX =∫
LX

exp

(
−1

2

∫
S1

|ẋ|2 ds− T 2

2

∫
S1

∣∣ẍ2
∣∣2 ds+ . . .

)
=∫

LX

exp

(
−1

2

∫
S1

|ẋ+ T ẍ|2 ds+ . . .

)
.

Also we can rewrite (1.75) in the form

(1.80) ẋ = −T ẍ+ ẇ.
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This is precisely the equation we obtained in (1.43) by an entirely different argu-
ment.

Also observe that by a theorem by Hörmander [Hö67], if u ∈ R is an extra

coordinate, a sufficient condition for hypoellipticity of ∂
∂u−LT is that ∂2H

∂p2 (x, p) 6= 0,

which is almost equivalent to saying that H has a nice Legendre transform, which
is L in this case.

Things start falling into place. We will try to solve the following well-defined
problem: is there an exotic deformation Hodge theory whose Laplacian looks like
the operator LT in (1.78)? Note that this question does not involve path integrals
any more. The answer to this section will be the exotic Hodge theory corresponding
to the hypoelliptic Laplacian.

But before its effective construction, let us relate the above considerations to
local index theory over LX.

1.6. Some aspects of local index theory on LX. Recall that pt (x, y) is the heat
kernel associated to exp

(
t∆X/2

)
. As t→ 0, the heat kernel pt (x, x) on the diagonal

is equivalent to t−n/2. The fact that this singularity depends on the dimension n
is one of the reasons why there are no heat kernels in infinite dimensions, since all
measures tend to be mutually singular.

As we explain in (1.65), local index theory tells us that there are ‘fantastic

cancellations’ in the local supertrace Trs

[
exp

(
−t�X

T/
√
t
/2
)]

as t→ 0, which make

that, in spite of the fact that the heat kernel is singular as t→ 0, with a singularity
like t−n/2, the supertrace itself is non singular. Tautologically, this cancellation
mechanism is by definition dimension independent. This is why we can hope to
produce directly local ‘densities’ on LX which should be related to the asymptotics
as t → 0 of some heat kernel supertrace on the diagonal. Of course none of this
should be taken literally, since densities do not really exist in infinite dimensions,
they are replaced by corresponding measures.

Now consider the path integral in (1.70). If one could apply (1.65) to LX, we
would get

(1.81) Trs

[
exp

(
−t�LX

T/
√
t

)
(x, x)

]
→ (∇I)

∗
ΦTLX ,

where �LXT would be the Witten Laplacian associated to the functional I in (1.66).
However this disregards the fact we deal indeed with dK closed forms on LX, and
not with ordinary closed forms. Worst still, at least when I = −E, the term α is
really needed to make the integral over LX converge in (1.70), even at a formal
level.

Let X be a finite dimensional Riemannian manifold equipped with an action of
S1 associated to a Killing vector field K, and also equipped with a K-invariant
smooth function f : X → R. Joint work with Goette [BG04] shows that it is
possible to produce a natural elliptic operator on X such that the limit as a new
time t′ tends to 0 of the local supertrace of its heat kernel is given by

(1.82)
[
αt ∧ (T∇f)

∗
ΦTX

]max
,

where the forms in (1.82) are dK-closed. So it seems that the local ‘density’ on
LX of the path integral (1.71) can be viewed as a ‘local index density’ for an index
problem on LX where the action of S1 on LX should be incorporated, and this for
any functional like F , I or −E.
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Incidentally observe that the action of the cyclic group Um was already present
in subsection 1.2, as a substitute for the action of S1.

Reference [BG04] played a basic conceptual role in the whole construction. In-
deed the purpose of this reference is to give a formula for the difference of two
natural versions of the equivariant Ray-Singer analytic torsion [RS71]. This differ-
ence is expressed as a new invariant, the V -invariant of a manifold equipped with
a Killing vector field K.

Our point of view is to consider the analytic torsion of X as being the V -invariant
of LX equipped with its action of S1, so that the main result of [BG04] is an
illustration of a functoriality principle for V -invariants.

A remarkable property of V -invariants is that as shown in [BG04], they localize
on critical points of invariant Morse functions. From our point of view, this explains
the compatibility of the main result of [BG04] to the Cheeger-Müller theorem, where
the smooth function to be considered on LX is precisely F in (1.57). To our surprise,
when replacing F by −E, at least formally, we obtained a result closely related to
Fried’s conjectures [F86, F88] on relations between analytic torsion and Ruelle
dynamical zeta functions. We will say more about this in section 3. However the
above represented still another incentive to understand what Hodge theory would
correspond to the path integral (1.79).

Our hope is to have convinced the reader that there is an array of facts which
makes unavoidable the existence of the hypoelliptic Laplacian in its relation with
LX.

A final point which we should emphasize is that the above does not provide any
hint on how to put our hand on the general Dirac operator on LX, nor on the
construction of the elliptic genus.

2. A construction of the hypoelliptic Laplacian

The purpose of this section is to explain the rigorous construction of the hypoel-
liptic Laplacian [B05].

This section is organized as follows. In subsection 2.1, we define the adjoint of
the de Rham operator with respect to a non degenerate bilinear form on the tangent
bundle.

In subsection 2.2, if X is a compact Riemannian manifold, we define a nontrivial
bilinear form on TT ∗X, and we construct the adjoint of the de Rham operator
dT
∗X on T ∗X with respect to that form.
In subsection 2.3, given a Hamiltonian function H : T ∗X → R, we introduce

an extra Witten twist associated to H. By taking the half-sum of dT
∗X and its

‘adjoint’, we obtain an operator Aφ,H.
In subsection 2.4, we show that is Aφ,H is self-adjoint with respect to a Hermitian

form of signature (∞,∞).
In subsection 2.5, we give the Weitzenböck formula for the Laplacian A2

φ,H. In
degree 0, this formula coincides with the one we dreamt about in section 1.

In subsection 2.6, we obtain our hypoelliptic Laplacian, which depends on a
parameter b > 0.

In subsection 2.7, we show that as b→ 0, this Laplacian should converge in the
proper sense to �X/4.

In subsection 2.8, we show that as b → +∞, our Laplacian converges towards
the generator of the Hamiltonian flow associated to H.
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Finally in subsection 2.9, we consider the case where X is a circle.

2.1. The adjoint of the de Rham operator with respect to a bilinear form.
In subsection 1.5, we saw the Hamiltonian vector field Y H appear. This indicates
that the symplectic structure of T ∗X should play some role in the construction.

Let M be a manifold. Let η be a bilinear nondegenerate form on TM . Let φ :
TM → T ∗M be the isomorphism canonically attached to η so that if U, V ∈ TM ,

(2.1) η (U, V ) = 〈U, φV 〉 .

Let η∗ be the bilinear form on T ∗M which corresponds to η by the isomorphism φ,
so that if f, f ′ ∈ T ∗M ,

(2.2) η∗ (f, f ′) =
〈
φ−1f, f ′

〉
.

The bilinear form η∗ on T ∗M extends to a bilinear form on Λ· (T ∗M), which is
obtained using the obvious extension of (2.2). Also η induces a volume form dvM
on M .

Let
(
Ω· (M) , dM

)
be the de Rham complex of smooth forms on M with compact

support. If s, s′ ∈ Ω· (M), put

(2.3) 〈s, s′〉φ =

∫
M

η∗ (s, s′) dvM .

Let d
M

be the formal adjoint of dM with respect to 〈 〉φ, so that

(2.4)
〈
s, dMs′

〉
φ

=
〈
d
M
s, s′

〉
φ
.

Note that since 〈 〉φ is in general not symmetric, the formal adjoint of d
M

is not

equal to dM .

Of course d
M,2

= 0. Then
[
dM , d

M
]

is a generalized Laplacian.

Assume now that M is even dimensional, and that ω is a symplectic form on M .
The symplectic form defines a nondegenerate bilinear form on TM . Therefore the

above formalism can be applied. We denote by d
M

the formal adjoint of dM which
is associated to the symplectic form ω.

Proposition 2.1. The following identity holds,

(2.5)
[
dM , d

M
]

= 0.

Proof. By Darboux’s theorem, we can suppose that ω has constant coefficients.
Then (2.5) follows from the vanishing of ω on the diagonal. �

Remark 2.2. Identity (2.5) is responsible for some of the commutation relations in
Kähler geometry.

Let
(
F,∇F , gF

)
be a flat Hermitian vector bundle on M . Note that gF is not

supposed to be flat. The above construction is still possible when the de Rham
complex

(
Ω· (M) , dM

)
is replaced by

(
Ω· (M,F ) , dM

)
. The bilinear form 〈 〉φ is

now a skew-linear form, and incorporates the metric gF in the obvious way. Still
Proposition 2.1 only holds at the level of principal symbols.
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2.2. An exotic Hodge theory on T ∗X. Let X be a compact connected Rie-
mannian manifold as in section 1, let

(
F,∇F , gF

)
be a flat Hermitian vector bundle

as in that section. Put

(2.6) ω
(
∇F , gF

)
=
(
gF
)−1∇F gF .

Then ω
(
∇F , gF

)
is a 1-form with values in self-adjoint sections of End (F ). Set

(2.7) ∇F,u = ∇F +
1

2
ω
(
∇F , gF

)
.

Then ∇F,u is a unitary connection on F .
Let π : T ∗X → X be the cotangent bundle of X. Let p be the generic element

of the fibre T ∗X. Let θ = π∗p be the canonical 1-form on T ∗X, let ω = dT
∗Xθ

be the canonical symplectic 2-form on T ∗X. On Ω· (T ∗X,π∗F ), we consider the

symplectic adjoint d
T∗X

of dT
∗X . If F is trivial, by (2.5), we get

(2.8)
[
dT
∗X , d

T∗X
]

= 0.

To construct the hypoelliptic Laplacian, we have to go one step further. Let
∇TX be the Levi-Civita connection on TX, and let RTX be its curvature. Let
∇T∗X be the connection induced by ∇TX on T ∗X, and let RT

∗X be its curvature.
When identifying TX and T ∗X by the metric gTX , RTX and RT

∗X correspond.
The connection ∇T∗X induces a splitting of TT ∗X, so that

(2.9) TT ∗X = π∗ (TX ⊕ T ∗X) .

Elements of the second factor in (2.9) or its dual will usually wear hats. From (2.9),
we get the isomorphism,

(2.10) Λ· (T ∗T ∗X) = π∗
(

Λ· (T ∗X) ⊗̂Λ̂· (TX)
)
.

Let ∇Λ·(T∗T∗X) be the connection on Λ· (T ∗T ∗X) induced by ∇TX .
Let e1, . . . , en be a basis of TX, let e1, . . . , en be the corresponding dual basis.

Then

(2.11) ω = ei ∧ êi.

Let I be the vector bundle on X of smooth sections of Λ· (TX) along the fibre
T ∗X. By (2.10), and disregarding supports, we get

(2.12) Ω· (T ∗X,π∗F ) = Ω· (X, I ⊗ F ) .

Classically, using (2.10), we can write dT
∗X in the form,

(2.13) dT
∗X = d̂T

∗X +∇I + i
R̂TXp

.

In (2.13), d̂T
∗X is the de Rham operator along the fibre T ∗X, ∇I is the obvious

connection on I, and i
R̂TXp

denotes interior multiplication by the vertical vector

R̂TXp. We can rewrite (2.13) in the form,

(2.14) dT
∗X = ei ∧∇Λ·(T∗T∗X)⊗̂F

ei + êi ∧∇êi + i
R̂TXp

.

On TT ∗X, we consider the following bilinear form, so that if U, V ∈ TT ∗X,

(2.15) η (U, V ) = 〈π∗U, π∗V 〉gTX + ω (U, V ) .
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The isomorphism φ : TT ∗X → T ∗T ∗X associated to η is given by

(2.16) φ =

(
gTX −1|T∗X
1|TX 0

)
.

The volume form on T ∗X associated to η is just the symplectic volume form dvT∗X .

Let d
T∗X

φ be the formal adjoint of dT
∗X with respect to the bilinear form η as in

subsection 2.1.
Put

λ0 =
〈
gTXei, ej

〉
ei ∧ iêj , δT

∗X,V = −
〈
gTXei, ej

〉
iêi∇êj .(2.17)

In the sequel, we will assume that the basis e1, . . . , en is orthonormal, so that

λ0 = ei ∧ iêi , δT
∗X,V = −iêi∇êi .(2.18)

Set

(2.19) RTXp∧ =
1

2
iêiiêjR

TX (ei, ej) p ∧ .

We now have the result established in [B05, Proposition 2.10].

Proposition 2.3. The following identity holds,

(2.20) d
T∗X

φ = d
T∗X −

[
d
T∗X

, λ0

]
.

Also, [
d
T∗X

, λ0

]
= −δT

∗X,V ,

d
T∗X

φ = −iêi
(
∇Λ·(T∗T∗X)⊗̂F
ei + ω

(
∇F , gF

)
(ei)
)

(2.21)

+ iei∇êi +RTXp ∧ −iêi∇êi .

2.3. A Hamiltonian function. Let H : T ∗X → R be a smooth function. Let Y H

be the associated Hamiltonian vector field, so that dH + iYHω = 0. Using (2.11),
we get

(2.22) Y H = (∇êiH) ei − (∇eiH) êi.

Recall that ∇̂VH is the fibrewise gradient field of H.

Definition 2.4. Set

dT
∗X
H = e−HdT

∗XeH, d
T∗X

φ,H = eHd
T∗X

φ e−H.(2.23)

Observe that d
T∗X

φ,H is the adjoint of dT
∗X
H with respect to the Hermitian form

〈 〉φ in (2.3), with φ given by (2.16). Also, if s, s′ ∈ Ω· (T ∗X,π∗F ), put

(2.24) 〈s, s′〉φ,H =

∫
T∗X

η∗ (s, s′)gF e
−2HdvT∗X .

Then d
T∗X

φ,2H is the adjoint of dT
∗X with respect to 〈 〉φ,H.

Definition 2.5. Set

Aφ,H =
1

2

(
d
T∗X

φ,2H + dT
∗X
)
, Bφ,H =

1

2

(
d
T∗X

φ,2H − dT
∗X
)
,(2.25)

Aφ,H =
1

2

(
d
T∗X

φ,H + dT
∗X
H

)
, Bφ,H =

1

2

(
d
T∗X

φ,H − dT
∗X
H

)
.
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Then

Aφ,H = e−HAφ,He
H, Bφ,H = e−HBφ,He

H.(2.26)

We have the identities,

dT
∗X,2 = 0, d

T∗X,2

φ,H = 0.(2.27)

From (2.27), we deduce that

A2
φ,H = −B2

φ,H =
1

4

[
dT
∗X , d

T∗X

φ,2H

]
, [Aφ,H, Bφ,H] = 0,(2.28) [

dT
∗X , A2

φ,H

]
= 0,

[
d
T∗X

φ,2H, A
2
φ,H

]
= 0.

Let ∇Λ·(T∗T∗X)⊗̂F,u be the connection on Λ· (T ∗T ∗X) ⊗̂F which is associated to
∇TT∗X and ∇F,u. We have the result established in [B05, Proposition 2.18].

Proposition 2.6. The following identities hold,

Aφ,H =
1

2

(
ei − iêi

)
∇Λ·(T∗T∗X)⊗̂F,u
ei − 1

4

(
ei + iêi

)
ω
(
∇F , gF

)
(ei)

+
1

2
(êi + iei−êi)∇êi +

1

2

(
RTXp ∧+i

R̂TXp

)
+ iêi∇eiH+ iêi−ei∇êiH,(2.29)

Aφ,H =
1

2

(
ei − iêi

)
∇Λ·(T∗T∗X)⊗̂F,u
ei − 1

4

(
ei + iêi

)
ω
(
∇F , gF

)
(ei)

+
1

2
(êi + iei−êi)∇êi +

1

2

(
RTXp ∧+i

R̂TXp

)
+

1

2

(
ei + iêi

)
∇eiH+

1

2
(êi + iêi−ei)∇êiH.

Set

(2.30) µ0 = êi ∧ iei .

Put

(2.31) A′φ,H = e−µ0Aφ,He
µ0 .

The operator A′φ,H will also be considered in the sequel.

Remark 2.7. Let M be a symplectic manifold as in Proposition 2.1, and let H :
M → R be a smooth function. Put

(2.32) d
M

H = eHd
M
e−H.

Let Y H still denote the Hamiltonian vector field associated to H. One verifies easily
that

(2.33) d
M

H = d
M − iYH .

Combining (2.5) with (2.33), we obtain

(2.34)
[
dM , d

M

H

]
= −LYH .

Equation (2.34) shows that the operator −LYH can be considered as a generalized
Witten Laplacian. This fact plays an important role in our construction of the
hypoelliptic Laplacian.
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2.4. A self-adjointness property. The sesquilinear form 〈 〉φ,H is in general not
a Hermitian form, that is exchanging the two arguments does not produce the
conjugate expression. Following [B05, section 2.7], we will produce a Hermitian
form with respect to which Aφ,H will be self-adjoint.

Set

f =

(
1 1
1 2

)
, F =

(
1 2
0 −1

)
.(2.35)

Then f defines a scalar product on R2, and F is an involution of R2, which is
an isometry with respect to f . Its +1 eigenspace is spanned by (1, 0), and the −1
eigenspace is spanned by (1,−1). Finally, the volume form on R2 which is attached
to f is just the original volume form of R2.

Using the identifications in (2.9), we observe that f defines a metric gTT
∗X on

TT ∗X given by

(2.36) gTT
∗X =

(
gTX 1|T∗X
1|TX 2gT

∗X

)
.

Let p : TT ∗X → T ∗X be the obvious projection with respect to the splitting (2.9)
of TT ∗X. Then if U ∈ TT ∗X,

(2.37) 〈U,U〉gTT∗X = 〈π∗U, π∗U〉gTX + 2 〈π∗U, pU〉+ 2 〈pU, pU〉gT∗X .

Then the volume form on T ∗X which is attached to gTT
∗X is the symplectic volume

form.
Similarly, we will identify F to the gTT

∗X isometric involution of TT ∗X,

(2.38) F =

(
1|TX 2

(
gTX

)−1

0 −1|T∗X

)
.

Then F acts as F̃−1 = F̃ on Λ· (T ∗T ∗X).
Let r : T ∗X → T ∗X be the involution (x, p)→ (x,−p).

Definition 2.8. Let 〈 〉gΩ·(T∗X,π∗F ) be the Hermitian product on Ω· (T ∗X,π∗F )

which is naturally associated to the metrics gTT
∗X and gF . Let u be the iso-

metric involution of Ω· (T ∗X,π∗F ) with respect to 〈 〉gΩ·(T∗X,π∗F ) such that if s ∈
Ω· (T ∗X,π∗F ),

(2.39) us (x, p) = Fs(x,−p).
Let 〈 〉hΩ·(T∗X,π∗F ) be the Hermitian form on Ω· (T ∗X,π∗F ),

(2.40) 〈s, s′〉hΩ·(T∗X,π∗F ) = 〈us, s′〉gΩ·(T∗X,π∗F ) .

It should be pointed out that in (2.39), the change of variable p → −p is not
made on the form part of s. So this action does not incorporate the full action of
r∗. Set

(2.41) 〈s, s′〉
h

Ω·(T∗X,π∗F )
H

=
〈
ue−2Hs, s′

〉
gΩ·(T∗X,π∗F ) .

If H is r-invariant, then (2.41) is a Hermitian form.
Let gTT

∗X be the obvious natural metric on TT ∗X which is associated to the
splitting (2.9), and let gΩ·(T∗X,π∗F ) be the Hermitian product on Ω· (T ∗X,π∗F )

associated to gTT
∗X , gF . Let hΩ·(T∗X,π∗F ) be the Hermitian form on Ω· (T ∗X,π∗F ),

(2.42) 〈s, s′〉hΩ·(T∗X,π∗F ) = 〈r∗s, s′〉gΩ·(T∗X,π∗F ) .
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Note that the Hermitian forms in (2.40) and (2.42) have signature (∞,∞). The
same is true for (2.41) if H is r-invariant.

We state a result established in [B05, Theorems 2.21 and 2.30].

Theorem 2.9. If H is r-invariant, then Aφ,H is h
Ω·(T∗X,π∗F )
H self-adjoint, Aφ,H is

hΩ·(T∗X,π∗F ) self-adjoint, and A′φ,H is hΩ·(T∗X,π∗F ) self-adjoint.

2.5. The Weitzenböck formula. We give the Weitzenböck formula established
in [B05, Theorem 3.3].

Theorem 2.10. The following identities hold,

A2
φ,H =

1

4

(
−∆V − 1

2

〈
RTX (ei, ej) ek, el

〉
eiejiêk iêl + 2L∇̂VH

)
− 1

2

(
LYH +

1

2
eiiêj∇Feiω

(
∇F , gF

)
(ej) +

1

2
ω
(
∇F , gF

)
(ei)∇êi

)
,(2.43)

A2
φ,H =

1

4

(
−∆V − 1

2

〈
RTX (ei, ej) ek, el

〉
eiejiêk iêl +

∣∣∇VH∣∣2
−∆VH+ 2 (∇êi∇êjH) êiiêj + 2

(
∇êi∇ejH

)
ejiêi

)

− 1

2

(
LYH +

1

2
ω
(
∇F , gF

) (
Y H
)

+
1

2
eiiêj∇Feiω

(
∇F , gF

)
(ej)

+
1

2
ω
(
∇F , gF

)
(ei)∇êi

)
.

Remark 2.11. Observe that if F = R, the restriction of 2A2
φ,H to Ω0 (T ∗X) is given

by,

(2.44) 2A2
φ,H|Ω0(T∗X) = −1

2
∆V +∇∇̂VH −∇YH ,

which is just the operator L1 in (1.78).
More generally set

(2.45) HT (x, p) = TH (x, p/T ) .

If H is the Legendre transform of L (x, ẋ), then HT is the Legendre transform of
TL (x, ẋ).

Let KT be the map s (x, p)→ s (x, Tp). Then

(2.46) KT 2A2
φ,HT |Ω0(T∗X)K

−1
T = −∆V

2T 2
+

1

T
∇∇̂VH −∇YH ,

which is just the operator LT in (1.78). The program we had outlined at the end
of section 1 is now partially fulfilled. The operator 2A2

φ,H is indeed the Laplacian
of an exotic Hodge theory whose restriction to forms of degree 0 is precisely the
operator LT .

2.6. The hypoelliptic Laplacian. For c ∈ R, set

(2.47) Hc = c
|p|2

2
.
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Let u ∈ R be an extra variable. The following result was established in [B05,
Theorems 3.4 and 3.6].

Theorem 2.12. The following identities hold,

A2
φ,Hc =

1

4

(
−∆V + 2cLp̂ −

1

2

〈
RTX (ei, ej) ek, el

〉
eiejiêk iêl

)

− 1

2

(
LYHc +

1

2
eiiêj∇Feiω

(
∇F , gF

)
(ej) +

1

2
ω
(
∇F , gF

)
(ei)∇êi

)
,

(2.48)

A2
φ,Hc =

1

4

(
−∆V + c2 |p|2 + c (2êiiêi − n)− 1

2

〈
RTX (ei, ej) ek, el

〉
eiejiêk iêl

)
− 1

2

(
LYHc +

1

2
ω
(
∇F , gF

) (
Y H

c
)

+
1

2
eiiêj∇Feiω

(
∇F , gF

)
(ej)

+
1

2
ω
(
∇F , gF

)
(ei)∇êi

)
.

For c 6= 0, the operators ∂
∂u −A

2
φ,Hc ,

∂
∂u − A2

φ,Hc are hypoelliptic.

Remark 2.13. Of course (2.48) follows from Theorem 2.10. Hypoellipticity follows
from Hörmander [Hö67]. Also observe that the hypoellipticity result still holds if
∂2H
∂p2 is non degenerate.

Any of the operators in Theorem 2.12 is called a hypoelliptic Laplacian.

2.7. An interpolation property: the limit b→ 0 and classical Hodge the-
ory. In the sequel, we take b > 0, T = b2, and we still define HT as in (2.45). For
T > 0, set

(2.49) ĤT (x, p) = TH
(
x, p/

√
T
)
.

For a ∈ R, let ra : T ∗X → T ∗X be given by (x, p)→ (x, ap). Note that r = r−1.
By (2.43), we get

(2.50)

r∗bA
2
φ,Hb2 r

∗−1
b =

1

4b2

(
−∆V − 1

2

〈
RTX (ei, ej) ek, e`

〉
eiejiêk iêl + 2L ̂b∇VH(p/b)

)
− 1

2b

(
L
Y
Ĥ
b2

+
1

2
eiiêj∇eiω

(
∇F , gF

)
(ej) +

1

2
ω
(
∇F , gF

)
(ei)∇êi

)
.

Now we study the behaviour of the operator in (2.50) as b → 0. To make the
argument simpler, we set

(2.51) H =
|p|2

2
.

In this case,

Hb2 = H/b2 = H1/b2 , Ĥb2 = H.(2.52)

The Hermitian form h
Ω0(T∗X,π∗F )
±Hb2

is given by

(2.53) 〈s, s′〉
h

Ω0(T∗X,π∗F )
±H

b2

=

∫
T∗X

〈s (x, p) , s′ (x,−p)〉gF e
∓2H/b2dvT∗X .
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In degree 0, the self-adjointness of A2
φ,±Hb2

with respect to (2.53) is the exact

reflection of the self-adjointness in degree 0 of the formal Witten Laplacian �X
m

T

of section 1.2 or of the non existing Laplacian �LXb2 associated with ∓E.
Set

a± =
1

2

(
−∆V ± 2Lp̂ −

1

2

〈
RTX (ei, ej) ek, el

〉
eiejiêk iêl

)
,(2.54)

b± = −
(
±LYH +

1

2
eiiêj∇Feiω

(
∇F , gF

)
(ej) +

1

2
ω
(
∇F , gF

)
(ei)∇êi

)
Note that a± commutes with r∗, and b± anticommutes with r∗. Also one checks
easily that

a± =
1

2

[
dT
∗X , δT

∗X,V ± 2ip̂

]
, b± =

1

2

[
dT
∗X , d

T∗X ∓ 2iYH
]
.(2.55)

In particular a±, b± commute with dT
∗X .

In (2.50), we replace H by ±H. We get

(2.56) r∗b2A2
φ,±Hb2 r

∗−1
b =

a±
b2

+
b±
b
.

Observe that the operator a± makes sense on any real Euclidean vector bundle
with connection

(
E, gE ,∇E

)
, and not only on T ∗X. To keep the discussion short,

we will limit ourselves to the case where E = T ∗X, but the fact that a± makes
sense in full generality is important.

Let ΦT
∗X be the Thom form associated to

(
T ∗X, 2gT

∗X ,∇T∗X
)

as in (1.52).

The choice of 2gT
∗X instead of gT

∗X reflects a difference in scaling, that is, instead
of (1.52), we have now

(2.57) ΦT
∗X = exp

(
− |p|2 + . . .

)
.

The following result is established in [B05, Theorem 3.11].

Theorem 2.14. The following identities hold,

dT
∗XΦT

∗X = 0,
(
δT
∗X − 2ip̂

)
ΦT
∗X = 0.(2.58)

The operator a± is semisimple. The kernel of a+ is spanned over Λ· (T ∗X) by the
zero form 1. The corresponding spectral projection operator QT

∗X
+ is given by

(2.59) α→ QT
∗X

+ α = π∗π∗

(
α ∧ ΦT

∗X
)
.

The kernel of a− is spanned over Λ· (T ∗X) by ΦT
∗X , and the corresponding spectral

projection operator QT
∗X
− is given by

(2.60) α→ QT
∗X
− α = (π∗π∗α) ∧ ΦT

∗X .

Remark 2.15. Theorem 2.14 is remarkable. It asserts in particular that ΦT
∗X is

a harmonic form with respect to a fibrewise exotic Hodge theory, as shown by
equations (2.55) and (2.58). Together with (1.50), this characterizes the Mathai-
Quillen form ΦT

∗X uniquely.

Since the operators a± are semisimple, we can write,

(2.61) Ω· (T ∗X,π∗F ) = ker a± ⊕ Im a±.
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Needless to say, one should be careful about the function spaces on which the
operator a± acts. However a± is conjugate to a standard harmonic oscillator, so
this question can be easily settled.

Since b± anticommutes with r∗, it exchanges the invariant and antiinvariant
parts of Ω· (T ∗X,π∗F ), while a± preserves these invariant and antiinvariant parts.
By Theorem 2.14, ker a± is either invariant or antiinvariant. In follows that b±
maps ker a± into Im a±.

Let us pretend for the moment that a±, b± are endomorphisms of a finite dimen-
sional vector space E, that a± is semisimple, so that

(2.62) E = ker a± ⊕ Im a±.

Let Q± be the projector from E on ker a± with respect to the splitting (2.62). We
also assume that b± maps ker a± into Im a±.

Let u ∈ End (E). We write u in matrix form with respect to the splitting (2.62).

(2.63) u =

[
A B
C D

]
.

Assume that u is invertible. We will give a matrix expression for the inverse u−1

of u under the assumption that D is invertible. We will implicitly assume that
other matrix expressions are invertible as well. These implicit assumptions will be
obvious in the formula anyway.

In fact we have the following easy formula,
(2.64)

u−1 =

[ (
A−BD−1C

)−1 −
(
A−BD−1C

)−1
BD−1

−D−1C
(
A−BD−1C

)−1
D−1 +D−1C

(
A−BD−1C

)−1
BD−1

]
.

Let a−1
± be the inverse of a± acting on Im a±. Using (2.64), if λ ∈ C, at least

formally,

(2.65)

(
λ− a±

b2
− b±

b

)−1

=

[(
λ+Q±b±a

−1
± b±Q±

)−1
+O (b) O (b)

O (b) O
(
b2
)] .

By (2.65) we find that as b→ 0,

(2.66)

(
λ− a±

b2
− b±

b

)−1

= Q±
(
λ+Q±b±a

−1
± b±Q±

)−1
Q± +O (b) .

In particular the relevant operator in the limit b→ 0 appears to be−Q±b±a−1
± b±Q±

acting on ker a±.
Passing from the above finite dimensional argument to an infinite dimensional

considered in (2.56) is a wild jump. However this is the sort of situation one
encounters typically in adiabatic limit problems in the theory of Quillen metrics
[BL91, BB94]. The major difference is that the operators considered in these ref-
erences are elliptic and self-adjoint, which is not the case here.

We have given enough motivation for studying the operator−QT∗X± b±a
−1
± b±Q

T∗X
±

in the context of (2.56).
We identify Ω· (X,F ) to ker a+ by the map α → π∗α, and Ω· (X,F ⊗ o (TX))

to ker a− by the map α→ π∗α∧ΦT
∗X . Let �X be the standard Hodge Laplacian

acting on Ω· (X,F ) in the + case, on Ω· (X,F ⊗ o (TX)) in the − case.
Now we state the crucial result established in [B05, Theorem 3.13].
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Theorem 2.16. The following identity holds,

(2.67) −QT
∗X
± b±a

−1
± b±Q

T∗X
± =

1

2
�X .

In the same way, it is shown in [B05, Theorem 3.8] that

(2.68) Kb2A
′2
φ,±Hb2K

−1
b =

α±
b2

+
β±
b

+ γ±.

We just give the corresponding formulas for α±, β±,

α± =
1

2

(
−∆V + |p|2 ±

(
2êiiêi − n

))
,(2.69)

β± = −∇Λ·(T∗X)⊗F,u
±YH +

1

2
ω
(
∇F , gF

)
(ei)∇êi .

The main point of (2.68), (2.69) is that contrary to a±, α± is a standard self-adjoint

harmonic oscillator. Then kerα± is spanned by the function exp
(
− |p|2 /2

)
, and

kerα− by exp
(
− |p|2 /2

)
η, where η is a fibrewise n-form of norm 1.

We identify Ω· (X,F ) to kerα+ by the map α→ π∗α exp
(
− |p|2 /2

)
/πn/4, and

Ω· (X,F ⊗ o (TX)) to kerα− by the map α→ π∗α exp
(
− |p|2 /2

)
η/πn/4. Let P±

be the standard L2 -projector from Ω· (T ∗X,π∗F ) on kerα±. Note that β± maps
kerα± into its L2 orthogonal.

In [B05, Theorem 3.14], the following analogue of Theorem 2.16 is established.

Theorem 2.17. The following identity holds,

(2.70) P±
(
γ± − β±α−1

± β±
)
P± =

1

2
�X .

Remark 2.18. Theorems 2.16 and 2.17 give another powerful argument in favour of
the fact that up to conjugation, A2

φ,Hc is a deformation of �X/4. It is of an entirely

different nature than the one discussed in (1.43)-(1.45).
Indeed the content of these equations can be made rigorous. What these equa-

tions say is that for a given T = ±b2, the process x is a motion whose speed ẋ = p
is what is known as an Ornstein-Uhlenbeck process (or autoregressive process in
the statistics literature), with covariance is exp (− |t− s| /T ) /2T . When T to 0,
the covariance tends to the Dirac δt=s, when T → +∞, it tends to 0. This means
that when T → 0, the dynamics of x becomes Brownian, and when T → +∞, the
speed of x becomes constant, i.e. it becomes a geodesic. Proving this convergence
at the dynamics level was already done by Stroock and Varadhan [StV72], where
instead they approximated Brownian motion by piecewise geodesic approximations.
The key to the argument in [StV72] is seeing the Itô calculus as the proper limit of
classical differential calculus on R+.

What equations (2.67) and (2.70) reflect is of a different nature. They should be
viewed as a functional analytic version of Itô calculus, where as T → 0, besides its
more and more erratic dynamics, we request the process x to also remember about
Hodge theory. . .

The same arguments are still valid when instead of being quadratic, the Hamil-

tonian H is such that ∂2H
∂p2 is nondegenerate.

When H = |p|2 /2, for T 6= 0, the functional integral in (1.79) can be viewed as
a regularized version of the corresponding functional integral with T = 0 because
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of the regularizing effect of the term T 2

2

∫
S1 |ẍ|2 ds. A byproduct of this regular-

ization is that while, for T = 0, the trajectories of Brownian motion are nowhere
differentiable, for T 6= 0, the trajectories of the solution of (1.80) will be C1.

Usually regularization is viewed as bad, since we replace the real physical theory
by an approximation. We would like to take here the opposite view. In our context,
regularization of the theory is excellent, since it will lead to a deformation of Hodge
theory to the geodesic flow.

In joint work with Lebeau [BL06], the hard analysis involved in the analysis of
the convergence of A2

φ,Hc is carried through in detail. The results of [BL06] will be
briefly reviewed in section 3.

2.8. An interpolation property: the limit b→ +∞ and the geodesic flow.
We assume for the moment H to be arbitrary. Using (2.43), we get

(2.71) r∗b22A2
φ,b2H1/b2

r∗1/b2 =
1

2

∣∣∇VH∣∣2−(LYH +
1

2
ω
(
∇F , gF

) (
Y H
))

+O (1/b) .

The dynamics associated to the operator in the right-hand side of (2.71) is associ-

ated to the Hamiltonian vector field Y H. In the case where H = ± |p|2 /2, this is
just the geodesic flow.

From (2.71), we deduce that when b → +∞, the trace of an operator like

exp
(
−A2

φ,Hc
)

should localize around closed geodesics.

2.9. The case of the circle. Assume that X = S1, with S1 = R/Z equipped
with its standard metric. Then T ∗X = S1 ×R. We take here F = R and c > 0.
We will now find remarkable properties of the hypoelliptic Laplacian in this simple
situation. Here we follow [B05, section 3.10].

By (2.31) and by (2.48), we get

(2.72) A′2φ,Hc =
1

4

(
−∆V + c2 |p|2 + c

(
2N̂ − 1

))
− c

2
∇Fp .

In (2.72), N̂ is just the number operator in Λ· (R).
An easy formal computation shows that for c 6= 0,

(2.73) exp

(
1

c

∂2

∂p∂x

)
A′2φ,Hc exp

(
−1

c

∂2

∂p∂x

)
=

1

4

(
−∆V + c2 |p|2 + c

(
2N̂ − 1

))
− 1

4
∆X .

The conjugation in (2.73) is done with an unbounded operator, but still the con-
clusions one can derive from (2.73) are correct. In particular the spectrum of A′2φ,Hc

is given by cN2 + 2k2π2, where N
2 denotes the set of a ∈ Q with 2a ∈ N. The

fundamental point about (2.73) is that the operator in the right-hand side is now
elliptic.

In the next formula, Trs denotes the supertrace with respect to the vertical
exterior algebra. By (2.73), we find that

(2.74) Trs

[
exp

(
−2tA′2φ,Hc

)]
= Tr

[
exp

(
t∆X/2

)]
.

Indeed we use the conjugation formally to replace A′2φ,Hc by the right-hand side of

(2.73). Using the explicit spectral decomposition of ∆X , one can show easily that
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this is indeed legitimate. The McKean-Singer formula [McKS67] applied in a very
simple case shows that

(2.75) Trs

[
exp

(
− t

2

(
−∆V + c2 |p|2 + c

(
2N̂ − 1

)))]
= 1,

which completes the proof of (2.74).
If we make c→∞ in (2.74) and follow the ideas in subsection 2.7 and in [BL06],

we get a tautology, i.e. the operator 2A′2φ,Hc tends in the proper sense to the operator

−∆X/2. Using (2.71), we find easily that as c → 0, the local expression for the
left-hand side of (2.75) converges to the classical Poisson sum for the heat kernel
on S1.The interpolation property for the hypoelliptic Laplacian has then been used
as a substitute to Poisson’s summation formula.

Note that the operator (2.72) is closely related to the hypoelliptic operator whose
heat kernel was evaluated by Kolmogorov [K34].

3. The analysis of the hypoelliptic Laplacian

The purpose of this section is to report on the results obtained jointly with
Lebeau [BL06] on the analysis of the hypoelliptic Laplacian.

In subsection 3.1, we summarize some of the main analytic and spectral proper-
ties of the hypoelliptic Laplacian, of its resolvent and of its heat kernel.

In subsection 3.2, we give one of the important results in [BL06] which relates
the hypoelliptic Ray-Singer metric on det H · (X,F ) to the corresponding classical
elliptic Ray-Singer metric.

3.1. The resolvent of A2
φ,Hc and the spectral theory of A′2φb,±H. In joint

work with Lebeau [BL06], we have studied in detail the analytic properties of the
hypoelliptic Laplacian for c = ±1/b2, and shown precisely that in the proper sense,
as b→ 0, A2

φ,Hc converges to 1
4�

X .
Let us now describe these results in more detail. We fix b > 0, and we take

c = ±1/b2. Let Ω· (T ∗X,π∗F )
0

be the vector space of L2 sections of Λ· (T ∗T ∗X)⊗F
on T ∗X. Then A2

φ,Hc has discrete conjugation invariant spectrum and compact

resolvent in End
(

Ω· (T ∗X,π∗F )
0
)

. Moreover the resolvent maps the Schwartz

space S · (T ∗X,π∗F ) into itself.
Given constants λ0 > 0, c0 > 0, set

(3.1) W =
{
λ ∈ C,Reλ+ λ0 ≤ c0 |Imλ|1/6

}
.

It is shown in [BL06] that, with an adequate decay choice of λ0, c0, W is included
in the resolvent set.

Moreover for t > 0, the heat kernel exp
(
−tA′2φ,Hc

)
is trace class, and has a

smooth kernel on T ∗X with adequate decay at infinity.
Put

(3.2) A′2φb,±H = KbA
′2
φ,±Hb2

K−1
b .

It is proved in [BL06] that if λ ∈ C, λ /∈ Sp�X/4, as b → 0, λ /∈ SpA′2φb,±H, and

moreover
(
λ− A′2φb,±H

)−1

converges in a very strong sense to P±
(
λ−�X/4

)−1
P±,

which justifies the anticipations of subsection 2.7.
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Besides it is shown in [BL06] that for b > 0 small enough, the classical conclu-
sions of Hodge theory hold, and moreover that the set of the b > 0 where these
conclusions do not hold is discrete. The relevant cohomology H· (X,F ) is the stan-
dard cohomology of T ∗X for c > 0, and the compactly supported cohomology for
c < 0.

But more is true. Indeed for b > 0 small enough, the spectrum has nonnegative
real part, and moreover for any M > 0, for b > 0 small enough, the λ ∈ SpA′2φb,±H
such that |λ| ≤M remain real. Note that the fact that the spectrum is conjugation
invariant, and also these last results follow in particular from Theorem 2.9.

3.2. The hypoelliptic Ray-Singer metric. We now explain briefly a result es-
tablished in [BL06]. Set

(3.3) λ = det H· (X,F ) .

The determinant in the right-hand side of (3.3) should be understood as a tensor
products of determinants of the Hi (X,F ) or their duals, the choice depending on
the parity of i.

For c > 0, λ = det H · (X,F ), and for c < 0, λ = (det H · (X,F ⊗ o (TX)))
(−1)n

.
In any case λ can be equipped with the Hermitian metric defined via the Ray-
Singer analytic torsion [RS71], which one obtains via the derivative at 0 of the

zeta function of �X in various degrees. This metric, denoted ‖ ‖2λ,0, is called the

Ray-Singer metric [BZ92].
It is shown in [BL06] that for b > 0, it is possible to define a generalized metric

‖ ‖2λ,b associated to the hypoelliptic Laplacian A2
φ,Hc . The fact it is a generalized

metric means that a priori, this metric has a sign, which is positive if it a classical

metric, negative if not. This metric is defined via the Hermitian form h
Ω·(T∗X,π∗F )
Hc ,

and also using the analytic torsion of A2
φ,Hc .

We now state a result established in [BL06].

Theorem 3.1. For any b > 0, the following identity holds,

(3.4) ‖ ‖2λ,b = ‖ ‖2λ,0 .

The proof of (3.4) is difficult. It requires all the results stating that A2
φ,Hc is a

deformation of �X/4, the development of a local index theory for the hypoelliptic
Laplacian, and also a careful study of the transition from the small time asymptotics
for the heat kernel of A2

φ,Hc to the small time asymptotics of the heat kernel for

�X/4. The equality should not be taken granted. In fact in the equivariant context,
there is a topological defect in the corresponding formula.

Remark 3.2. One motivation for [B05] has been the conjectures made by Fried
[F86, F88] on the relation between the Ray-Singer torsion to the value at 0 of
the dynamical zeta function associated to certain dynamical systems. Equality
was proved by Moscovici and Stanton [MoSt91] in the case of symmetric spaces,
by using the Selberg trace formula, when the dynamical system is precisely the
geodesic flow.

However we verified that at least formally, Fried’s conjecture can be understood
as a consequence of an infinite dimensional version of the proof by Zhang and
ourselves [BZ92, BZ94] of the Cheeger-Müller theorem, where we used the Witten
deformation to obtain this result. Theorem 3.1 should be understood as a first
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step in giving a proof of Fried’s conjecture, with a proof formally similar to the
proof of the Cheeger-Müller theorem. Indeed a natural first step when using the
Witten deformation is to show that the corresponding metric does not depend on
the deformation parameter. This is precisely the content of Theorem 3.1.
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Astérisque, (205):235, 1992. With an appendix by François Laudenbach.
[BZ94] J.-M. Bismut and W. Zhang. Milnor and Ray-Singer metrics on the equivariant deter-

minant of a flat vector bundle. Geom. Funct. Anal., 4(2):136–212, 1994.

[C44] S.S. Chern. A simple intrinsic proof of the Gauss-Bonnet formula for closed Riemannian
manifolds. Ann. of Math. (2), 45:747–752, 1944.

[Ch79] J. Cheeger. Analytic torsion and the heat equation. Ann. of Math. (2), 109(2):259–322,

1979.
[F86] D. Fried. The zeta functions of Ruelle and Selberg. I. Ann. Sci. École Norm. Sup. (4),
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