
Arithmetical dimorphy for multizetas.
Canonical irreducibles.

Warning: the various symmetry types are defined in the bottom section.

.
Coloured multizetas, actual and formal. Dimorphy.

In the first basis, the multizetas are given by polylogarithmic integrals :

Waα1,...,αl
˚ :“ p´1ql0

ż 1

0

dtl
pαl ´ tlq

. . .

ż t3

0

dt2
pα2 ´ t2q

ż t2

0

dt1
pα1 ´ t1q

with αj either 0 or a unit root, and l0 the number of zeros in tα1, ..., αlu.
In the second basis, multizetas are expressed as harmonic sums :

Ze˚
p
ε1
s1

,...,
,...,

εr
sr
q

:“
ÿ

n1ą¨¨¨ąnrą0

n´s11 . . . n´srr e´n1
1 . . . e´nrr

with sj P N˚ and unit roots ej :“ expp2πiεjq with ‘logarithms’ εj P Q{Z.
The star ˚ in Wa‚˚ or Ze‚˚ signals restriction to the convergent case. Its
removal denotes extension to the divergent case. The conversion rule

Wa˚
e1,0rs1´1s,...,er,0rsr´1s

:“ Ze˚
p
εr
sr

,
,
εr´1:r
sr´1

,...,
,...,

ε1:2
s1
q

together with the bimould symmetries (see infra, in the bottom section)

Wa‚˚ is symmetral with a unique symmetral extension Wa‚

Ze‚˚ is symmetrel with a unique symmetrel extension Ze‚

and the multiplication rules they encode, are the essence of multizeta dimor-
phy. It is conjectured that these three rules exhaust all algebraic relations
between multizetas. Pending a proof, the symbols wa‚ and ze‚ subject to
the three rules, are known as formal multizetas. They are known to span a
polynomial subring QrYjirrj s of C generated by contably many irreducibles
irr j, and the challenge is to describe these irreducibles.

.
Generating series. Dimorphy rephrased.

The generating series

zag
p
u1
ε1

,...,
,...,

ur
εr
q

:“
ÿ

1ďsj

wae1,0
rs1´1s,...,er,0rsr´1s

us1´1
1 us2´1

12 . . . usr´1
12...r

zig
p
ε1
v1

,...,
,...,

εr
vr
q

:“
ÿ

1ďsj

ze
p
ε1
s1

,...,
,...,

εr
sr
q
vs1´1

1 . . . vsr´1
r

define bimoulds zag‚, zig‚ of type as/as and as/is (see bottom section).
Moreover, zag‚ and zig‚ are essentially exchanged by the involution swap:

swappzig‚q

$

’

&

’

%

“ zag‚ ˆ mana‚

“ garipzag‚,mana‚q

“ garipmana‚, zag‚q

with

$

’

&

’

%

zag‚ P GARIas{as

zig‚ P GARIas{is

mana‚ P centerpGARIq

The corrective term is an elementary, ui-independent bimould mana‚ whose
only non-zero components are expressible in terms of monozetas :

1`
ř

rě2 manap
u1
0
,...,
,...,

ur
0
q tr :“ exp

´

ř

sě2p´1qs´1ζpsq t
s

s

¯

The above relations amount to an exact rephrasing of multizeta dimorphy in
the more flexible ARI/GARI framework.

continued ùñ



.
Multizeta parsing and canonical irreducibles.

The generating series zag‚ neatly factors as:

zag‚ “ garipzag‚
I
, zag‚

II
, zag‚

III
q with

$

’

&

’

%

zag‚
I
P GARI

as{is
e.w.

zag‚
II
P GARI

as{is
e.w.

zag‚
III
P GARI

as{is
o.w.

with factors zag‚
I
, zag‚

II
(even weights), zag‚

III
(odd weights) that break down

to:

zag‚
I
“ gari‚ ptal‚, invgarippal‚q, expariproma‚qq

actpzag‚
II
q “ 1`

ÿ

irr
II

s1,...,sr actpτ s1 loma‚q . . . actpτ sr loma‚q

actpzag‚
III
q “ 1`

ÿ

irr
III

s1,...,sr actpτ s1 loma‚q . . . actpτ sr loma‚q

If for simplicity we limit ourselves to uncoloured multizetas (i.e. εi ” 0), then:

• loma‚, roma‚ are elements of ARI al{il with rational coefficients

• τ s is the projector M
p
u1
v1

,...,
,...,

ur
vr
q
ÞÑM

p
u1
v1

,...,
,...,

ur
vr
q
||u-part of degree ś r

• In both sums
ř

, the indices si run through all odd integers ě 3

• “act” is any transitive action of ARI/GARI in BIMU – no matter which.

• Together with irr2
I
“„ “π2”, the symmetral moulds irr‚

II
and irr‚

III

#

irr‚
II
“
 

irrs1,s2,...,sr P C ; with r P t2, 4, 6...u and si P t3, 5, 7, 9...u
(

irr‚
III
“
 

irrs1,s2,...,sr P C ; with r P t1, 2, 3...u and si P t3, 5, 7, 9...u
(

jointly constitute a system, complete and free, of multizeta irreducibles.

.
Perinomal algebra:

A function ρ :N˚Ñ Z is perinomal of degrees di,j if each fpx1, .., xì k xj, .., xrq
is polynomial in k of degree di,j. The irreducibles irr ‚, irr ‚II, irr ‚III are peri-
nomal numbers ρ# attached to remarkable perinomal functions ρ via the
series :

ρ#
ps1, . . . , srq

ess
:“

ÿ

niPN˚
ρpn1, . . . , nrq n

´s1
1 . . . n´srr

.

N.B. Bimould symmetries (simple or double):

A bimould A‚ is symmetral,-el,-il (resp. alternal,-el,-il) if for all w1,w2:

ÿ

w

Aw
”

#

Aw1
Aw2

resp 0

$

’

&

’

%

symmetral , alternal : w P shapw1,w2q

symmetrel , alternel : w P shepw1,w2q

symmetril , alternil : w P shipw1,w2q

Here shapw1,w2q (resp. shepw1,w2q) denotes the set of all ordinary (resp.
contracting) shufflings of the sequences w1,w2. Under ordinary/contracting
shufflings, adjacent indices wi, wj stemming from different sequences are for-
bidden/allowed to merge into wi ` wj. In the case symmetril/alternil, the



straightforward addition pwi, wjq ÞÑ wi ` wj makes way for the subtler con-
tractions :

´

A
p
...,ui,...
...,vi,...

q
, A

p
...,uj ,...
...,vj ,...

q
¯

ÞÑ
1

vi ´ vj

´

A
p
...,ui`uj,...
...,vi,...

q
´ A

p
...,ui`uj,...
...,vj ,...

q
¯

A bimould is said to be of type as/as or as/is (resp. al/al or al/il ) if it is
symmetral with a symmetral or symmetril swappee (resp. alternal with an
alternal or alternil swappee).

The sets GARI as{as , GARI as{is of all even bimoulds of type as/as or as/is
are subgroups of GARI .

The sets ARI al{al , ARI al{il of all even bimoulds of type al/al or al/il are
subalgebras of ARI .

(An even bimould is of course one that verifies M´w ” Mw for all w.
Bialternality or bisymmetrality automatically imply parity for components
of depth r ě 2 but not for r “ 1).


