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A1. Not to be neglected: resurgence’s algebraic apparatus.

• Resurgence is primarily about alien differentiation, and only
secondarily about resummation.

• Resurgent functions live in three models:
(i) In the formal model, as formal power series or transseries ϕ̃(z) of z−1.
(ii) In the convolution model or Borel plane, as analytic germs ϕ̂(ζ) at 0,
endlessly continuable (laterally along any finitely broken line).
(iii) In the geometric models, as sectorial germs ϕθ(z) at ∞ in z .

(i) ϕ̃(z) =
∑

an z
−n multiplicative

↓ Borel

(ii) ϕ̂(ζ) =
∑

an
ζn−1

(n−1)! (also ϕ̌) convolutive

{
(ϕ̂1∗ϕ̂2)(ζ) :=∫ ζ
0
ϕ̂1(ζ1) ϕ̂2(ζ−ζ1)dζ1

↓ Laplace

(iii) ϕ
θ
(z) =

∫
arg ζ=θ

e−zζϕ̂(ζ)dζ multiplicative

The singularities of ϕ̂(ζ) carry the Stokes constants and are responsible
for the divergence of ϕ̃(z). So they deserve close attention.

The tools for measuring them are the so-called alien derivations ∆ω.



A2. The algebraic toolkit.

• Alien derivations: measure singularities.
∆ωϕ̂(ζ) = weighted average of determinations of ϕ̂ over ζ+ω
Must verify Leibniz: ∆ω(ϕ̂ ∗ ψ̂) ≡ (∆ωϕ̂) ∗ ψ̂ + ϕ̂ ∗ (∆ωψ̂)

• Convolution averages: clear the way for Laplace or acceleration.
(µ ϕ̂)(ζ) = weighted average of determinations of ϕ̂ over ζ
Must verify: µ(ϕ̂ ∗ ψ̂) ≡ µ(ϕ̂) ∗ µ(ψ̂)

• Pseudo-variables: enter the definition of the display (see infra).
Indexed by ωi -strings: Zω1,...,ωr . Dual to the alien derivations, with
which they interact according to ∆ω0Zω1,...,ωr = δω1

ω0
Zω2,...,ωr .

Multiply according to the shuffle product.

• Resurgence monomials and monics: are the ”analytical arm” of

resurgence. Res. monomials are elementary yet all-generating res.

functions W̃ω1,...,ωr , and the monics are the (mostly transcendental)

scalars they produce under ordinary or alien differentiation.



A3. The algebraic toolkit (continued).

• Alien derivations and convolution averages: two main systems.
The standard system: Simplest of all. With weights that don’t depend
on the ωi (singularities), only on the signs εi ’s (singul. circumvention)
The organic system: on top of the mandatory algebraic constraints on
the weights, they verify subtler, non-algebraic ’compensation constraints’
that make them more pliant tools.

• Resurgence monomials: two main, roughly dual systems:
∂-friendly: behave simply under ordinary, less so under alien differ.ion

∆-friendly: behave simply under alien, less so under ordinary differ.ion

• Spherical resurgence monomials: Crucially depend on a small
parameter c > 0; live on the Riemann sphere; and behave roughly the
same at both poles (∞ and 0).

Altogether, a rich and versatile, yet manageable toolkit, tidy, perfectly

natural, easy to handle, and extremely useful.



A4. The display: what is it good for?

Definition: ϕ̃ 7→ displ.ϕ̃+
∑

r

∑
ωi
Zω1,...,ωr ∆∆ωr . . .∆∆ω1 ϕ̃

Relations between resurgent functions carry over to the displays :

{R(ϕ̃1, . . . , ϕ̃n) ≡ 0} =⇒ {R(displ.ϕ̃1, . . . ,displ.ϕ̃n) ≡ 0}

Useful for deriving independence relations (or a contrario for
detecting unsuspected relations) between resurgent functions.

The display encodes all the information about the Borel Riemann
surface in easily retrievable form. It also carries all the Stokes
constants of ϕ̃ arranged in the most meaningful way possible.
With the display, the Stokes constants come alive: they cease to
be a shapeless heap of inert numbers, to become an ordered
system – capable of interacting with other displays.



A5. Alien derivations: what are they good for?

Apart from their primary function, they are indispensible for unravelling
the composition of singularities under convolution.

Let R := Z̃ + iZ (universal covering) with a privileged origin 0• and
convolution starting from 0•. To each ramification point Q ∈ δR there is
attached a difference operator

(∆Q ϕ̂)(ζ) = ϕ̂(ζ+Q )− ϕ̂(ζ−Q ) with
−→

0•, ζ=
−→

Q, ζ±Q

(first ζ ∼ 0•, then contd in the large) with a co-commutative co-product

∆Q(ϕ̂1 ∗ ϕ̂2) ≡
∑

Q1,Q2≺Q

H
n1|Q|n2
Q1,Q2

(Rn1∆Q1 ϕ̂1) ∗ (Rn2∆Q2 ϕ̂2) (H•• ∈ Z)

leading to a natural order ≺ on δR and remarkable quadratic forms:

FQ : {xQi ; Qi ≺ Q} 7→
∑

HQ
Q1,Q2

xQi xQj

with non-trivial signatures etc (Think of the xQi ’s as residues at Qi ).



A6. Practical calculation of the co-product.

atomic basis ∆Q

↓
alien basis

∑
Rn(ω)∆ω

(
with ∆ω = ∆ωr . . .∆ω1

)
co-product ↓


R 7→ R ⊗ R

∆ωi 7→ ∆ωi ⊗ id + id ⊗∆ωi

∆ω 7→
∑

∆ω′ ⊗∆ω′′

alien basis
∑

H
n(ω1),n(ω2)

ω1 ,ω2 Rn(ω1)∆ω1 ⊗ Rn(ω2) ∆ω2

↓
atomic basis

∑
H

n1|Q|n2
Q1,Q2

(Rn1∆Q1) ⊗ (Rn2∆Q2)

Easy to program. Whereas the calculation based on SSS paths
(self-symmetrically shrinkable paths) soon becomes radically impractical:
for a sufficiently contorted path Γ of length 100, the corresponding SSS
path Γ∗ may exceed the Earth-to-Mars distance. So, roll your sleeves up!

The method also breaks down convolution on winding paths to a sum of

straight path integrals, leading to optimal estimates.



A7. Resurgence monomials: what are they good for?

• Monomial expansions: analysis. ∂-friendly monomials Ṽ• are handy
for expanding the resurgent solutions of ODEs etc:

∑
Bω1,..,ωr Ṽω1,...,ωr

and ’absorbing’ the brunt of the divergence.

• Monomial expansions: synthesis. ∆-friendly monomials Ũ•,
especially of the spherical sort Ũ•c , permit the construction of solutions∑

Aω1,..,ωr Ũω1,...,ωr
c with a pre-assigned set of Stokes constants; hence

the construction of analytic moduli for ODEs etc.

• Alien Taylor expansions. Using the convolution-respecting projectors

E Ũc (ϕ) := ϕ̃+
∑

(−1)r Uω1,...,ωr
c ∆ω1 ...∆ωr ϕ̃ from the algegra of res.

functions onto the algebra of res. constants (i.e. convergent functions),
we arrive at an alien analogue of Taylor expansions:
ϕ̃ = EUc (ϕ) +

∑
EUc (∆ωr . . . .∆ω1) Uω1,...,ωr

c (mark the indexation order)
Fascinating convergence issues there!

• Monics come with a natural indexation that reflects their symmetries

and interrelations (esp. for hyperlogarithms).



B1. The Bridge equation, a marvel of conciseness.

• Critical variables (or critical ‘times’).
Start from an equation E (ϕ) = 0 (differential, difference, functional etc).
Form its full (parameter saturated) solution ϕ̃(z , t) with t = (t1, ..., ts).
Rule of thumb: there are as many critical times zα = zα as there are
exponential blocks e−ωz

α

co-present with positive powers of z in ϕ̃(z , t).

• Bridge equation: one per critical time zα → ζα

∆∆ωϕ(z , t) = Aωϕ(z , t) with

{
ω ∈ Ω (res. support)

Aω ordinary diff . operators in (z , t).

The operators Aω carry the Stokes contants as coefficients. They are
subject to no other constraints than ‘making sense’, i.e. meaningfully
pairing off the exponentials on both sides of the Bridge equation.
The B.E. keeps Analysis down to a minimum, and covers huge ground.
The ”Bridge principle” actually exceeds the scope of the B.E.:

ALIENact. := ALIEN/ALIENnih. nearly always∼

{
algebra of ordinary

differential operators



C1. Taking germ formalization to its utmost limit.

• The multicritical case: accelerations/pseudo-decelerations.

Acceleration from z1 to z2 ( with z2/z1 → +∞){
ϕ̂2(ζ2) =

∫ +∞
0

CF (ζ2, ζ1)ϕ̂1(ζ1) dζ1 with

CF (ζ2, ζ1) := 1
2πi

∫ c+i∞
c−i∞ ez2ζ2−z1ζ1 dz2 and z1 = F (z2)

Pseudo-deceleration from z1 to z1∗
(

with

{
z1 ∼ z1∗

z1 − z1∗ → +∞

)
{
ϕ̂1∗(ζ1∗) =

∫ ζ1
0

Cid+F (ζ1∗, ζ1) ϕ̂1(ζ1)dζ1 with

Cid+F (ζ1∗, ζ1) := CF (ζ1∗ − ζ1, ζ1) and z1 = z1∗ + F (z1∗)

Accelerations totally overturn the lanscape, by destroying all given

singularities and calling new ones into existence. Pseudo-decelerations

keep all singularities in place and merely smoothen them.



C2. Taking germ formalization to its utmost limit. (Cont-d)

The accelero-summation scheme. First, identify the critical times and
order them from slower to faster: z1 ≺ z2 ≺ . . . zn−1 ≺ zn. Next:

ϕ̃1(z1) ≡ ϕ̃(z) ϕ(z) ≡ ϕ(zn)
↓ Borel ↑ Laplace

ϕ̂1(ζ1)
accel.→ ϕ̂2(ζ2) . . . . . . ϕ̂n−1(ζn−1)

accel.→ ϕ̂n(ζn)

At each stage, we get on the ζi -axis a cohesive (i.e. analytic or regular

quasi-ana.) germ ϕ̂i at 0+ that must be continued up to +∞ to prepare

for the next integration (accelelation or final Laplace). That means

by-passing whatever singularities stand in the way. In the analytic case,

no problem: the operations exp(± ε ζi ∂ζi ), then exp(∓ ε ζi ∂ζi ) will do. In

the cohesive case, we must replace exp(± ε ζi ∂ζi ) by finely calibrated

subexponential operators that restore cohesiveness at the intervening

singularities (left- or rightwards).



C3. Taking germ formalization to its utmost limit. (Cont-d)

Resummation for real transseries, with closure under +,×, ∂±1.

Here are the main takeaways:

• Multiple critical times (zi , ζi ), calling for accelero-summation.
• Gradual de-formalization of the transseries’ zi -subexponential parts.
• Cohesiveness becomes unavoidable, at two places.
• The seemingly impossible ( the constructive circumvention of real
singularities without leaving R+) turns out to be possible.

• The ”formal-to-geometric” correspondence ( from unique ϕ̃ to

polarized, hence multiple ϕ) changes in nature. Here, the formal object

itself becomes polarized, hence multiple, depending on the convolution

averages µ = {µ1, ..., µn} used during accelero-summation. The proper

thing to consider, on the formal side, is now the multicritical display

displ .ϕ̃‖µ0
relative to the harmonic averaging. One goes from displ .ϕ̃‖µ0

to any displ .ϕ̃‖µ via universal constants that depend only on (µ0,µ).



D1. Resurgence’s bearing on two major watersheds in Analysis.

Resurgence has something to say about two fundamental dichotomies:

• Real functions: the divide cohesive/non-cohesive (dislocated)
Cohesive: having the property of unique continuation.

• Entire functions: the divide autarchic/non-autarchic (anarchic, chaotic)
Autarchic: roughly, with resurgent asymptotic expansions in all sectors,
and a closed system of resurgence equations.
Like 1/Γ(s). Unlike Ξ(s), the classical companion of ζ(s).

It is about nothing less than answering these two ultra basic questions:

• Which real functions are of one piece?

• Which entire functions do admit an exhaustive description?



• The divide cohesive/non-cohesive (= dislocated).

(∗) f (n)(t) < c0c
n
1

(
n log n log2 n . . . logα n

)n
= c0c

n
1

(
log′α+1(n)

)−n
(∗∗) f (n)(t) < c0c

n
1

(
n log n log2 n . . . (logα n)1+ε

)n
(∗) =⇒ {f cohesive} ; (∗∗) 6=⇒ {f cohesive}

• With the classical Carleman-Mandelbrojt definitions, the quasi-analytic
classes don’t constitute an ever expanding sequence (⇒ instability etc).

• For α = 0 we get the analytic class.

• For α ∈ [1, ω[ we get the Denjoy quasi-analytic classes.

• For α ∈ [ω, ωω[ the growth types are well-defined up to equivalence:

c1 < logα(t)/log
α

(t) < c2 , c3 < log′α(t)/log′
α

(t) < c4 as t → +∞
leading to the equally well-defined class of cohesive functions.

• For α ∈ [ωω, ωω
ω...

[ there is no compelling definition of the growth

types logα, log′α, even up to equivalence. Fortunately, the corresponding

quasi-analytic classes never spontaneously occur in Analysis.



• The divide cohesive/non-cohesive (= dislocated). (Continued)

The transition from cohesive to dislocated, more than a discontinuity,
even a sharp one, is a radical reversal. Thus:

Cohes([0, 1]) ”⊃” Cohes([0, 2]) but C∞([0, 1]) ”⊂” C∞([0, 2])
”Measures” are localised on Non-cohes, diffuse on Cohes. Etc etc.

How gratifying to find this reversal reflected in the twin statements:

• Accelerations can produce any cohesive function, no matter how
close to the divide (the weaker, the closer).
• Pseudo-decelerations can produce any non-cohesive function, no
matter how close to the divide (the stronger, the closer).

Moreover, the theory yields a scheme for cohesive continuation:

ϕ̂ ∈ Cohes([0, ε])
weak decel.−→ ϕ̂− ∈ Cohes([0,∞])

weak accel.−→ ϕ̂ ∈ Cohes([0, ω])

(ω= cohesive singularity closest to 0) that compares favourably with the

classical procedures (Carleman et al.) for quasi-analytic continuation.



• The divide autarchic/non-autarchic (anarchic, chaotic) for entire
functions.

Autarchic: very roughly, functions with resurgent asymptotic expansions
in all sectors, and a closed system of resurgence equations.

Like 1/Γ(s). Unlike Ξ(s), the classical companion of ζ(s).

Most Stokes constants, viewed as entire functions of any given Taylor
coefficient of the ”object” at hand (diff. eq., vector field, hol. mapping
etc) appear to fall into the autarchic class. These quasi-algebraic
qualities of ’neatness’, ’finiteness’, ’self-closure’ set them apart from
functions like Ξ that may well eternally defy exhaustive description
(given that Ξ can ”approximate anything” on the critical strip).

That makes the autarch/non-autarch divide arguably as fundamental as

the algebraic/transcendental divide. It practically dovetails with the

knowable/unknowable divide.



E0. Three main sources of divergence and/or resurgence.

The chief sources of divergence (for local dynamical systems) are three:

• Resonance: Additive (resp. multiplicative) resonance for the
multipliers (eigenvalues of the linear part) of a local vector field (resp.
self-mapping) of Cν,0. Covers the operations (∂z − ω)−1 for ODE’s and

(e∂z − eω)−1 for difference equations. Plus other functional equations,
e.g. the ”sandwich equation”:
g1 ◦ f ◦ g2 ◦ f . . . gn ◦ f = id (f unknown , gi given).

• Quasi-resonance: Liouvillian small denominators.

• Symplecticity and isochoricity: the so-called small denominators of

celestial mechanics, KAM theory etc.



E1. First main source of divergence: resonance.

• Generates resurgence and is amenable to resummation
(with a minor caveat: see question Q2 in section F)

• Of the aforementioned ”three sources” of divergence, resonance is

incidentally the only one for which the analytic moduli are characterizable

by a system of ”holomorphic invariants” (”holomorphic” in the sense

of non-formal, but holomorphic in the Taylor coefficients.)



E2. Second main source of divergence: quasi-resonance.

Rule of thumb:

• Whenever there is no clear geometric counterpart, there can be no
meaningful resummation. For instance, the formal linearization
(linearizing mapping) of a quasi-resonant vector field cannot be
resummed – nor does it deserve to be.1

• Whenever there is a clear geometric counterpart, resummation

(via Borel-Laplace) is possible and unique. For instance, the local

correspondence x1 ↔ x2 attached to a quasi-resonant vector field

X = −λ x1 (1 + . . . ) ∂x1 + x2 (1 + . . . ) ∂x2 (with λ Liouvillian) is

Borel-Laplace summable. However, instead of critical times (z ∼ z ′)

what we have here are wider critical time windows (log z ∼ log z ′),

without isolated singularites in the Borel plane and without Stokes

constants, which explains why in this case resummation produces a

unique (non-polarized) result.

1There exist, though, resummable ramified linearizations: see references.



E3. Third main source of divergence: symplecticity.

• On its own, symplecticity generates no resurgence.

• It may, however, coexist with resurgence, like when a symplectic
vector field, on top of its intrinsical resonance (λi + λi+ν = 0 , ∀i ≤ ν),
presents extrinsical resonance (say, λ1 + 3λ2 = 0). In that case, the
differential operators Aω in the Bridge equation ∆ωϕ̃ = Aωϕ̃
derive from an alien potential Aω.

• Returning to ”pure symplecticity”, it is a little known but remarkable

fact that the convergence of the Lindstädt series on the invariant tori can

be established by elementary combinatorics (completely by-passing KAM

theory) via an inductive procedure that avoids the introduction of

fictitious small denominators in their (i.e. the Lindstädt series’)

coefficients.



F. Four open questions, from vexing to daunting to haunting.

• Q1: Impossibility of mixed composition identities (vexing)

Many constructions relative to transseries, or display-based independence
proofs, etc, would drastically simplify if we could prove the following:

Conjecture: Barring semi-trivial cases, no mixed identities of type

f1 ◦ g1 ◦ f2 ◦ g2 . . . fr ◦ gr ≡ id with fi ∈ G , gi ∈ G∗ (1)

are possible with group pairs such as
G := {f ; f (z) = z (1 +

∑
ad z

−d )}
G∗ := {g ; g(z) = z (1 +

∑
bd e

−d z)} or
G∗ := {g ; g(z) = z (1 +

∑
cd z

−α z)} with α irrational.

The stalemate is vexing because the obstructions to (1) are so

overwhelming: when the degree d increases, the number of constraints

grows like O(d2), that of free parameters like O(d). There is a ray of

hope, though: D.Panazzolo2 has proven the ”essential independence” of

exp and real shifts (in the framework of groupoids).

2
PSL(2,C), the exponential and some new free group, Quart. J. of Math, 2017 (DOI).



• Q2: Dense distribution of singularities (vexing)

• Singularities that project densely onto the Borel plane, yet form a
discrete set of ramification points on the Borel Riemann surface —
such singularities are no problem at all.

• Not so when the singularities are dense on the ”Riemann
surface” (an oxymoron in that case!) itself, as occurs for example
when we formally normalize resonant vector fields of type

X =
r∑

i=1

λi xi (1 + τi x
m + . . . ) ∂xi with


∑

miλi = 0 (mi ∈ N)

xm =
∏

xmi

i∑
λi N dense in C

Depending on the value of <(
∑

miλiτi ), we get (resp. don’t get)
singularities of manageable ”violence”, and a ramified version of Emile
Borel’s theory of monogenous functions (dense distributions of poles)

lets us get by: we can form the Bridge equation; calculate Stokes

constants, etc. But what about the case when we cannot?



• Q3 Alien Taylor expansions and Riemann surfaces (daunting).

We now return to the convolution-respecting projectors

E Ũc (ϕ̃) := ϕ̃+
∑

(−1)r Ũω1,...,ωr
c ∆ω1 ...∆ωr ϕ̃ (∗)

from the algebra of res. functions onto the algebra of res. constants (i.e.
convergent functions) and to the ’alien version’ of Taylor expansions:

ϕ̃ = E Ũc (ϕ) +
∑

E Ũc (∆ωr . . . .∆ω1) Ũω1,...,ωr
c (∗∗)

Establishing the convergence of (∗) and (∗∗) for a large class of
interesting ϕ̃ and c small (c < c(ϕ̃)) is hard enough, but doable.

But what about the continuability in the large of (∗), (∗∗) in {Ũc}
which in our analogy assumes the role of the variable in ordinary
Taylor series? Are there natural barriers? Or ”alien counterparts” of
ramification points and Riemann surfaces?

Though purely academic (– expansions (∗), (∗∗) are computationally

hugely costly –), the question opens fascinating theoretical vistas.



• Q4 The super-exponential range (haunting).

Neither ODEs nor ordinary real Analysis will take us beyond the range of
real transseries and finite exponential towers. But the moment we allow
general composition equations, there is no avoiding transfinite iterates
exp◦α with α < ωω. Are there privileged choices for these iterates?
(essentially: for α = ωn). No purely asymptotic criterion can tell one
choice of exp◦ω

n

from another. The existence of analytic extensions to
the complex domain might give us a handle, but on the other hand
generic cohesiveness is unavoidable.3

The question is haunting because it is so basic. It is ultimately about

the chartability of the range [ω, ωω[. Are there nature-given landmarks

beyond ω, as there are before it? Or does everything become inherently

fuzzy? Coarse-grained beyond remedy?

3Thus, any analytic solution of f (x+1) = e f (x) (1 << x) induces a cohesive
solution of P(x)+f (x+1) = Q(x).e f (x) (P, Q any polynomials), and vice versa.
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On the second youth of resurgence theory at the invigorating contact
of theoretical physics:

Countless papers by mathematicians and physicist-mathematicians:

I. Aniceto, G. Basar, M. Bellon, D. Benedetti, O. Costin, G. Dunne,
V. Fantini, M. Kontsevitch, M. Mariño, F. Menous, J.G. Russo,
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Thanks for the attention!


