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1 Basic flexions.

Bimoulds M• have a two-tier indexation • = w = (u1

v1

,...,
,...,

ur

vr
)

with ui ’s and vi ’s that interact in a very special way, through
four basic flexions c, d and e, b . Thus, if w = w ′.w ′′

with w ′ = (u1

v1

,
,

u2

v2
) and w ′′ = (u3

v3

,
,

u4

v4

,
,

u5

v5
), we set:

w ′c =
( u1
v1:3

,

,

u2
v2:3

)
dw ′′ =

(u1,2,3
v3

,

,

u4
v4

,

,

u5
v5

)
w ′e =

(u1
v1

,

,

u2,3,4,5
v2

)
bw ′′ =

( u3
v3:2

,

,

u4
v4:2

,

,

u5
v5:2

)
ui ,j ,k... := ui + uj + uk ... vi :j := vi − vj

The products of upper and lower indices remain invariant:

w = w ′w ′′ , w∗ = w ′c dw ′′ , w∗∗ = w ′e bw ′′ ⇒∑
ui vi ≡

∑
u∗i v

∗
i ≡

∑
u∗∗i v ∗∗i∑

dui∧dvi ≡
∑

du∗i ∧dv ∗i ≡
∑

du∗∗i ∧dv ∗∗i



2 Basic flexion operations: the core involution swap.

B• = swapA•

m

B
( u1

v1

,...,
,...,

ur
vr
)

= A
( vr

u1,...,r

,...,
,...,

v3:4
u1,2,3

,
,

v2:3
u1,2

,
,

v1:2
u1

)

Once again, the invariance holds :
∑

i ui vi =
∑

i vi :i+1 u1,...,i

• The swap transform (swap 2 = id) is as central to flexion
theory as the Fourier transform (F 4 = id) is to Analysis.
There are even contexts where the two coincide.

• Interesting bimoulds M• tend to possess a double symmetry :
one for M•, another for the swappee (swap.M•).



3 Basic flexion operations: ari, gari.

Lie bracket ari =⇒ Lie algebra ARI :

N• = arit(B•)M• ⇔ Nw =
w = abc∑

MadcBbc −
w = abc∑

MaecBbb

ari(A•,B•) := arit(B•).A• − arit(A•).B• + lu(A•,B•)

Associative product gari =⇒ Lie group GARI :

N•=garit(B•)M• ⇔ Nw =

w =
∏

aibi c i∑
Mdb

1e..dbseBa1c..BascBbc
1

∗ ..Bbc
s

∗

gari(A•,B•) := mu(garit(B•).A•,B•) (B•∗ := invmu B•)

NB: gari(A•,B•) is linear in A•, highly non-linear in B•.

Main merits: ari/gari respect double symmetries.



3∗ Basic flexion operations: ari, gari (comments).

Very loosely speaking, the flexion structure is the sum total of
all interesting operations that may be constructed from the
four afore-mentioned flexions. More specifically: up to
isomorphism, there exist exactly seven pairs {Lie algebra, Lie
group} obtainable in this way. Of these substructures, two
have the added distinction of preserving double symmetries.
Moreover, when restricted to doubly symmetric bimoulds,
these two substructures actually coincide. So we choose to
work with the simpler of the two pairs: {ari, gari}.



4. Origin of the flexion structure in Analysis.

Singularly perturbed systems (typically, differential systems
with a small ε in front of the leading derivatives) tend to be
divergent-resurgent-resummable in x = 1

ε
, giving rise in the

Borel ξ-plane to complex singularities ω constructed, under
application of the flexion combinatorics, from two quite
distinct ingredients:
(i) additive ui -variables that depend solely on the structure of
the equation and its multipliers,
(ii) subtractive vi -variables that reflect the singularities of the
equation’s coefficients in the multiplicative plane.



4∗. Origin of the flexion structure in Analysis (comments).

The corresponding developments, esp. the so-called scramble
transform and the tesselation bimould, may be found in
J.E. Weighted products and parametric resurgence.

Travaux en Cours, 47 1994.
or again, in a much extended context, in
J.E. Singularly Perturbed Systems, Coequational Resurgence,

and Flexion Operations. 7 June 2014.
The second paper is accessible on the author’s homepage.



5. Origin of the flexion structure in mould algebra.

C • = mu(A•,B•) = A• × B• ⇔ C u =
u = u′u′′∑

Au′Bu′′

C • = ko(A•,B•) = A• ◦ B• ⇔ C u =
u = u1..us∑

1≤s

A|u
1|, .., |us |Bu1

..Bus

Moulds of the form M•
A = A•×Id•×A•∗ with A•×A•∗≡1• are

stable under (mould) composition, and the equivalence holds:

{M•
C =M•

A ◦M•
B} ⇐⇒ {C • = gari(A•,B•)} (1)

The ari-bracket is capable of a similar derivation.
R1: From the u- to the (u

v )-indexation: unique extension.
R2: (1) establishes the associativity of the gari -product.
R3: From moulds to bimoulds, and back.



5∗. Origin of the flex. str. in mould algebra (comments).
There exists a natural path from the basic, non-inflected
mould operations (i.e. mould multiplication mu or × with its
Lie bracket lu, and mould composition ko or ◦ with a suitably
defined Lie bracket lo) to the inflected operations ari, gari.
Thus, formula (1) shows how to derive gari from mu and ko.
R1: Strictly speaking, (1) derives gari only for u-dependent
bimoulds, but once a flexion operation is defined on the ui ’s, it
uniquely extends to the vi ’s, and vice versa.
R2: The quickest way to check the associativity of gari is
actually by using that very same formula (1).
On the correspondence uninflected −→ inflected (which,
incidentally, can be partially reversed), see [E5], §1.



6. The coloured multizetas wa• and ze•.

• Polylogarithmic integrals.
(
αj = 0 or unit root; (α1 6=0

αs 6=1
)
)

waα1,...,αs :=(−1)s0

∫ 1

0

dts

αs − ts
· · ·
∫ t3

0

dt2
α2 − t2

∫ t2

0

dt1
α1 − t1

• Harmonic sums.
(
ej = e2πiεj =unit root; sj ∈ N∗; ( e1

s1
) 6= (1

1
)
)

ze
( ε1

s1

,...,
,...,

εr
sr
)

:=
∑

n1>...>nr>0

n−s1
1 e−n1

1 . . . n−sr
r e−nr

r (ej = e2πiεj )

• Conditional conversion rule (assuming convergence):

ze
( ε1

s1

ε2
s2

,...,
,...,

εr
sr
) ≡ wae1...er ,0[sr−1],...,e1e2,0[s2−1],e1,0[s1−1]

• s = weight , r = length (or depth) , d := s−r = degree.



7 Algebraic constraints on the scalar multizetas.

• First symmetry: wa• is symmetral, with a unique symmetral
extension wa• → wa• such that wa0 = wa1 = 0.

• Second symmetry: ze• is symmetrel, with a unique
symmetrel extension ze• → ze• such that ze( 0

1
) = 0.

• Conversion rule: The conversion formula wa• ↔ ze• has a
non-trivial extension wa• ↔ ze•, best expressed in terms of
the generating series zag • and zig •. Cf infra.

• Colour-consistency: If p ∈ N, Q∞ :=Q/Z, Qp :=( 1
p
Z)/Z∑

τj∈Qp

ze
( ε1+τ1

s1

,...,
,...,

εr +τr
sr

) ≡ p−d ze
( p ε1

s1

,...,
,...,

p εr
sr

)
with d := s − r

• Conjecture: this set of algebraic constraints is exhaustive.



7∗ Alg. constraints on the scalar multizetas (comments).

Attached to each of the two encodings wa• and ze• there is a
specific symmetry type, which amounts to a specific way of
multiplying the scalar multizetas. This is the essence of
arithmetical dimorphy — a phenomenon that extends far
beyond the multizeta landscape, but finds there its most
striking manifestion.
Dropping the convergence assumption while preserving the
symmmetries, i.e. extending wa•, ze• to wa•, ze•, is a purely
formal-algebraic affair, but it comes at the cost of a slight
complication in the conversion rule and colour consistency
constraints. The modified constraints are best expressed in
terms of the generating functions zag •, zig • and of two
suitable elements in centre(GARI ) : see slides 9,10.



8 The generating series/functions zag • and zig •.

• zag
( u1
ε1

,...,
,...,

ur
εr
)

:=
∑
1≤sj

wae1,0[s1−1],...,er ,0[sr−1]

us1−1
1 us2−1

1,2 ...usr−1
1,..,r (2)

• zig
( ε1

v1

,...,
,...,

εr
vr
)

:=
∑
1≤sj

ze
( ε1

s1

,...,
,...,

εr
sr
)
v s1−1
1 . . . v sr−1

r (3)

Meromorphy of zag • and zig •. Setting P(t) := 1
t
, we have:

zag• = lim
k→

(
dozag•k × cozag•k

)
zig• = lim

k→

(
dozig•k × cozig•k

)
dozag

( u1
ε1

,...,
,...,

ur
εr
)

=
∑

1≤mj≤k

∏
1≤j≤r

e
−mj

j P(m1,..,j − u1,..,j )

dozig
( ε1

s1

,...,
,...,

εr
εr
)

=
∑

k≥n1>..>nr>0

∏
1≤j≤r

e
−nj

j P(nj − vj )

• zag • ∈ GARI as/is = no group, but right action of GARI as/is .



8∗ The generating series zag • and zig • (comments).

There is much to be gained by switching from the scalar
multizetas wa•, ze• to the generating series zag •, zig • as
defined by (2)-(3). These generating series, crucially, sum to
meromorphic functions, which in turn factor into a dominant
part dozag • or dozig • that carries ‘multivariate simple poles’
(recall that P(t) := 1/t), and an elementary (scalar-valued)
corrective factor cozag • or cozig •.
The sets GARI as/as ,GARI as/is are no groups, but admit a right
action of the groups GARI as/as ,GARI as/is , the only difference
being that elements of the groups have length-1 components
even in w1: Sw1 ≡ S−w1 .



9. Algebraic constraints on the generating series.

• First symmetry: zag • symmetral.

• Second symmetry: zig • symmetril.

zig...,wi+wj ,... → zig
( ...,
...,

ui,j
vi

,...
,...

)
P(vi :j ) + zig

( ...,
...,

ui,j
vj

,...
,...

)
P(vj :i )

• Conversion rule: For a well-defined man• ∈ GARIcentre

swap.zig• = gari(zag•,man•) = mu(zag•,man•)

• Colour-consistency: For a well-defined lag •p ∈ GARIcentre

µp zag
• = gari(δp zag

•, lag•p) = mu(δp zag
•, lag•p) (∀p ∈ N)

with µp zag
( u1
ε1

,...,
,...,

ur
εr
)

:= pd
∑

pε′j≡pεj

zag
(

u1
ε′
1

,...,
,...,

ur
ε′r
)
(p-averaging)

and δp zag
( u1
ε1

,...,
,...,

ur
εr
)

:= p−rzag
( u1/p
ε1 p

,...,
,...,

ur /p
εr p

)
(p-dilation)

• Pairs {GARI as/is ,ARI al/il} and {GARI as/as ,ARI al/al}.



10. The centre of GARI.

The elements ca• of GARIcentre are all of the form:

ca
( u1

v1

,...,
,...,

ur
vr
) ≡ car ∈ C if (v1, ..., vr ) = (0, ..., 0) (else ≡ 0)

and verify for all Ma• ∈ GARI :

gari(ca•,Ma•) ≡ gari(Ma•, ca•) ≡ mu(Ma•, ca•)

The central elements man•, lag •p on slide 9 correspond to
constants manr , lagp,r so defined:∑

1≤r

manr t
r ≡ exp

(∑
2≤s

(−1)s−1ζ(s)
ts

s

)
lagp,r :=

(− log p)r

r !
=

(−1)r

r !

( ∑
ap=1 , a 6=1

log(1− a)
)r



11. Adequation of the flexion structure to multizeta
arithmetics.

• Moving from the scalar multizetas wa•/ze• to the generating
series zag •/zig • compactifies everything.

• zag •/zig • simplify the expression of the double symmetry,
conversion rule (‘dimorphy’), colour consistency etc.

• GARI contains, alone of all competing frameworks, such
basic and crucially helpful objects as the bimoulds pal•/pil•.

• The series zag •/zig • can also be viewed as meromorphic
functions resp. in u or v , with simple multivariate poles.
This makes them ideally suited for disentangling the algebraic
identities between multizetas, which seem to be wholly
derivable from (iterated) polar identities of the form:

1

ns1
1 ns2

2

=
∑
σ1,σ2

(
αs1,s2
σ1,σ2

nσ11 nσ21,2
+

βs1,s2
σ1,σ2

nσ12 nσ22,1
) =

∑
σ1,σ2

(
γs1,s2
σ1,σ2

nσ11 nσ22:1
+

δs1,s2
σ1,σ2

nσ12 nσ21:2
)



12. Dynamical MZs. Reduction of odd-degree MZs.

• Euler considered MZs of length 2. The general MZs first
came up in the late 70s, as dynamical multizetas, i.e. as the
transcendental ingredients of the analytic invariants attached
to local, identity-tangent diffeomorphisms.

• Dichotomy: the arithmetical MZs, occuring in the Stokes
constants and subject to the two symmetries, versus the
dynamical MZs, occuring in the invariants and subject only to
those (weaker) algebraic relations responsible for making the
invariants invariant.

• Any uncoloured dynamical (and, a fortiori, arithmetical)
ζ(s1, . . . , sr ) of odd degree d := −r +

∑
si can, via an explicit

algorithm, be expressed in terms of MZs of even degree plus,
oddly, the ‘odd’ odd-degreed ζ(2) = π2/6.



13. The palindromy formula in ARI
al/il
ent. .

For any C ∈ IHARA ⊂ Q[x0, x1] (corresponding to elements

of ARI
al/il
polynomial ), the right and left decompositions

C = A0 x0 + A1 x1 = x0 B0 + x1 B1 (Ai ,Bi ∈ Q[x0, x1])

yield sums A0 + A1 and B0 + B1 that are invariant under the
palindromic involution

xε1 xε2 . . . xεs ←→ (−1)s−1 xεs . . . xε2 xε1

Proof: follows from the ‘senary relations’ which express the
invariance of C under the operator pushu := adari(pal•) push.



14. Elimination of all weight indices equal to 1.

Every multizeta ze
( ε1

s1

,...,
,...,

εr
sr
)

can be decomposed into a finite
sum (over Q) of multizetas with partial weights si > 1.

The solution relies on explicit formulae (it uses a functional
projector) and involves delightful combinatorics.

N.B. The statement applies equally to coloured and
uncoloured multizetas. In the case of uncoloureds, it can be
bettered: see Francis Brown’s theorem on the elimination of all
partial weights si other than 2 and 3 (for motivic multizetas).



15 The basic polar/trigonometric bisymmetrals.

Set P(t) := 1
t

and Q(t) := π
tan(π t)

. Then there exists

• an ess.ly unique polar pair pal•/pil• ∈ GARI as/as

with palw1,...,wr r -homogeneous in the P(ui ) and P(u1,..,2 i ).

• an ess.ly unique trigonometric pair tal•/til• ∈ GARI as/as

with talw1,...,wr r -homogeneous in π2, the Q(ui ) and Q(u1,..,2 i ).

These two bisymmetrals pal•/pil• and tal•/til•

(i) admit several equivalent definitions/characterisations,
(ii) possess no end of remarkable properties,
(iii) are key to the understanding of multizetas (thrice over!!!),
(iv) cannot be defined in any of the alternative frameworks.

• pal•, tal• ∈ GARI as/as not GARI as/as (palw1 , talw1 w1-odd).
• GARI as/as no group, but GARI as/as .GARI as/as = GARI as/as .



16 The double symmetry exchanger adari(pal•).

As multizeta investigators, we are chiefly interested in the
double symmetries al/il and as/is, but we must also resort to
the double symmetries al/al and as/as which have the signal
advantage of being iso-length, i.e. of involving only bimould
components of the same length. Hence the need for double
symmetry exchangers, assembled from the bisymmetral pal•:

GARIas/as adgari(pal•)−→ GARIas/is

↑ expari ↑ expari

ARIal/al adari(pal•)−→ ARIal/il

and operating through adjoint action:

adgari(A•)B• := gari(A•,B•, invgariA•)

adari(A•) := logari.adgari(A•).expari

Mark here the first intervention of pal•/pil•.



17. Singulators, singulands, singulates.

• Singulator slankr : linear operator, turns S• into Σ•

• Singuland S•: regular, length-1 bimould (parity opp. to r)

• Singulate Σ•: singular bialternal with polarity of order r−1

slankr : S• ∈ BIMU1,regular 7→ Σ• ∈ ARI
al/al
r ,singular

2 slankr .S
• = lengr .neginvar.(adari(pal

•))−1.mut(pal•).S•

= lengr .pushinvar.mut(neg.pal•).garit(pal•).S•

mut(A•).M• := mu(invmu.A•,M•,A•)

with neginvar := id+neg

pushinvar :=
∑

0≤r (id+push+push2+···+pushr).lengr

N.B. Inadequacy of ari-composition by u−2
1 for correcting bialternal singularities.

Mark the second intervention of pal•/pil•.



17∗. Singulators, singulands, singulates (comments).

For the purpose of singularity compensation1 we must be able
to remove, at every second induction step, unwanted singular
parts of type al/al . This, however, is easier said than done. It
calls for sophisticated operators capable of producing, from
regular bimoulds, any given bisymmetral singularity at the
origin of the u-multiplane.
The operators are the singulators.
The regular inputs are the singulands.
The singular, bisymmetral outputs are the singulates.
Here again, the pair pal•/pil• turns out to be the
construction’s essential ingredient, in combination with the
elementary operators lengr , neginvar , pushinvar ,mut. For a
precise definition of these, see [E2].

1as used repeatedly on slide 18 to construct elements of ARI
al/il
ent .



18. Symmetry-respecting singularity removal.

løma•‖r ∈ ARIal/il and regular at 0

↓ adari(pal•)−1

viløma•‖r ∈ ARIal/al and singular at 0

↓ trivial extension

viløma•‖r+1 ∈ ARIal/al and singular at 0

↓ adari(pal•)
(desingularisation)

with correction if r even

løma•‖r+1 ∈ ARIal/il and regular at 0



18∗. Singularity removal (comments).

We are now in a position to construct elements løma•/lømi•

of ARI al/il inductively on the length r (also known as depth).
Start from length 1, where the al/il condition reduces to parity
in w1. Assume we have already reached some higher odd
length r . Apply the double symmetry exchanger adari(pal•)−1

so as to get into the more congenial environment ARI al/al .
Then leave the component of length r + 1 as it is but add a
suitable singulate2 to the component of length r + 2. Lastly,
apply adari(pal•) to return to ARI al/il , where løma•/lømi• is
now defined and regular at u = 0 up to length r + 2 inclusively.

So much for the general scheme, of which there exist three
main specialisations, denoted by the vowels u, o, a in place of
the ‘zero-vowel’ ø.

2i.e. a singulate that verifies the desingularisation equations of 19.



19. Constructing løma• by desingularisation.

The first and simplest desingularisation occurs at length r = 3
with a composite singuland Sw1,w2

1,2 :

slank1,2.S
•
1,2 = ari(slank1.S

•
1 , slank2.S

•
2 ) with S•1,2 = S•1⊗S•2

For S•1,2, the desingularisation equation reads:

S
( u1
ε1

,
,

u2
ε2

)

1,2 + S
( u2
ε2:1

,
,

u1,2
ε1

)

1,2 − S
( u1
ε1:2

,
,

u1,2
ε2

)

1,2 − S
( u1,2
ε1

,
,

u2
ε2:1

)

1,2 = earlier terms

For uncoloureds and with conventional notations, we get:

Su1,u2
1,2 + Su2,u1+u2

1,2 − Su1,u1+u2
1,2 − Su1+u2,u2

1,2 = earlier terms

For the general singuland Su1,...,ur
r1,...,rk

, the desingul. eq. reads:∑
σ

εσS
σ(u1,..,uk )
r1,..,rk

= earlier terms
(
σ ∈ SLk(Z), εr ∈ {0,±1}

)



19. Constructing løma• by desingularisation (comments).

To proceed from length r to length r + 2 (r odd) in the
inductive construction of løma•, composite singulands S•r1,...,rk

are required, with 2 ≤ k ≤ r + 1, 1 ≤ ri ,
∑

ri = r + 2. The
corresponding singulates Σ•r1,...,rk

are obtained as ari-products
of the simple singulates Σ•ri

and have polarity of order
2 + r − k at u = 0. The step r → r + 2 actually resolves itself
into a sub-induction on k , from k = 2 (polarity of order r) to
k = r + 1 (polarity of order 1).



20. The basic trifactorisation.

We have the π2-isolating, parity-splitting identity:

zag• = gari(zag•I , zag
•
II, zag

•
III)

with zag•I ∈ GARI as/is , zag•II ∈ GARI as/is
even , zag

•
III ∈ GARI

as/is
odd .

zag•I = gari(tal•, invgari . pal•, expari . røma•)

zag•II = expari
(∑
k even

ρs1,..,sk
∗II

~preari(løma•s1 , ..., løma•sk)
)

zag•III = expari
(∑
k odd

ρs1,..,sk
∗III

~preari(løma•s1 , ..., løma•sk)
)

where ρ•∗II and ρ•∗III denote two alternal moulds with values in
the set of multizeta irreducibles.
Mark the third consecutive intervention of pal•/pil• (and first
appearance of tal•/til•).



20∗. The basic trifactorisation (comments).

In the above formulae, preari denotes the pre-Lie product
behind ari, and expari the natural exponential from ARI to
GARI. An alternative expression for zag •II , zag •III would be

zag•II = 1• +
∑

k even

ρs1,..,sk
II

~preari(løma•s1 , ..., løma•sk)

zag•III = 1• +
∑
k odd

ρs1,..,sk
III

~preari(løma•s1 , ..., løma•sk)

with two symmetral moulds ρ•II, ρ
•
III that are none other than

the mould-exponentials of the alternal moulds ρ•∗II, ρ
•
∗III.

Note that whereas separating zag •III from the first two factors is
easy (a simple flexion formula takes care of that), disentangling
zag •II from zag •I is arduous and calls for the construction of an
auxiliary bimould røma•/rømi• analogous to løma•/lømi•.



21. Chief difficulties: infinitude.

For any given length r , the first resp. second symmetry
amounts to a set of relations between Aw and various Aσ.w

resp. between Aw and various Aτ.w , where σ ∈ Sr and
τ ∈ S∗r := swap.Sr .swap. Combining the two forces us to
work with the group < Sr ,S

∗
r > generated by Sr and S∗r ,

which group is infinite as soon as r ≥ 3.
This complicates matters, e.g. by precluding the existence of
functional projectors of ARI onto ARI al/al or ARI al/il .

N.B. For r = 2, < S2,S
∗
2 > essentially reduces (modulo

parity) to the biratio group. This explains why length-2
multizetas are quite elementary and decidedly untypical.



22. Chief difficulties: imbrication.
Meant is the imbrication of all multizetas of weight less than
s, irrespective of length r or degree d .

• Uncoloured multizetas. The construction of a generating
system {løma•s , s = 3, 5, 7...} of ARI al/il can be carried out in
accordance with the (r , d)-filtration (explain), but the
decomposition of an element of ARI al/il into multibrackets of
løma•s cannot (clue: relations between the length-1
bialternals). The solution lies in perinomal analysis.

• Bicoloured multizetas. The decomposition of an element of
ARI al/il into multibrackets can proceed in accordance with the
(r , d)-filtration, given any system of generators
{løma•s , s = 1, 3, 5...}, but the construction of such a system
cannot (explain). The solution lies in satellisation.



23 Enforcing rigidity. Perinomal analysis.

Whereas the length-1 elementary bimoulds λ•2 d with
λw1
2 d := u2 d

1 are not ari-free and do not generate all polynomial
bialternals, due to relations like ari(λ•2, λ

•
8)−3 ari(λ•4, λ

•
6) ≡ 0,

the length-1 elementary bimoulds ξ•n with
ξw1

n := P(u1−n)− P(u1+n) freely generate, under the ari
bracket, the algebra of all eupolar bialternals Ξ•n, i.e. of all
bialternals of type

Ξ w1,...,wr
n1,...,nr

:=

εl∈{±}∑
1≤k≤ (2 r)!

r !(r+1)!

∏
1≤l≤r

P
( j=j∗∗k,l∑

j=j∗k,l

(uj + εj nj )
)

For a precise description of eupolar bimoulds, see [E2] or [E3].



24 The perinomal realisation luma•.

By replacing the polynomial singulands S•r by polar singulands
and taking their residues R•r as new unknowns:

Su1,...,ur
r1,...,rk

=
∑

ni
Rn1,...,nr

r1,...,rk
P(u1 + n1)...P(uk + nk)

we move from under-determined, multi-solution systems∑
σ εσ S

σ(u1,..,uk )
r1,..,rk = earlier terms

(
ui ∈ C, σ ∈ SLk(Z)

)
to well-determined, one-solution systems∑

σ ησ R
σ(n1,..,nk )

r1,..,rk = earlier terms
(
ni ∈ Z, σ ∈ SLk(Z)

)
.

• The new singulands S•r are just ‘polar’ ; it is the
corresponding singulates Σ•r that are ‘eupolar’ .

• We then expand the meromorphic-valued bimould luma• as a
series

∑
s luma•s of homogeneous polynomial-valued bimoulds.



25. Perinomal reduction of uncoloureds.

The prodedure yields well-defined expansions (si ∈ {3, 5, 7...})

zag•II/III = expari
(∑

ρs1,..,sk
∗II/III . ~preari(luma•s1 , ..., luma•sk)

)
= 1• +

∑
ρs1,..,sk

II/III . ~preari(luma•s1 , ..., luma•sk)

zig•II/III = expira
(∑

ρs1,..,sk
∗II/III . ~preira(lumi•s1 , ..., lumi•sk)

)
= 1• +

∑
ρs1,..,sk

II/III . ~preira(lumi•s1 , ..., lumi•sk)

which in turn, after Taylor expansion in the u- resp. v -
variables, lead to the so-called perinomal decomposition of
multizetas into irreducibles (with a minor transcendental
contribution from luma•/lumi• from depth 4 onwards).
Moreover, we have explicit expansions for the irreducibles:
ρs1,...,sr

II/III =
∑

1≤ni
θn1,..,nr

II/III n−s1
1 ...n−sr

s ρs1,...,sr
II/III (θ•II/III is Q-valued).

We construct zag•I /zig
•
I from ruma•/rumi• along the same

lines. Remarkably, the lone irreducible ζ(2) = π2/6 causes as
much trouble as all other irreducibles taken together!



26 The arithmetical realisations loma•, lama•.

One may also stick with the polynomial singulands S•r and
enforce uniqueness by adding constraints that keep the
denominators arithmetically simple. There are two options:
• lama•: rather lax constraints but optimal denominators.
• loma•: stricter constr.3, fewer coeffs, slightly subopt. denom.
Thus, for r =(1, 2), take Sa•1 ,2 and So•1 ,2 resply of the form:

Sau1,u21,2 =
∑

1≤δ≤[ s−1
2

]−[ s+1
6

]

ca2δ . u
2δ
1 us−2δ−2

2

Sou1,u21,2 =
∑

1≤δ≤[ s−3
6

]

co2δ . u
2
1u2 . (u

2δ
1 us−2δ−5

2 + u2δ
2 us−2δ−5

1 )

The largest prime in the denominators is ≤ [ s
3
] resp. ≤ [2s−5

3
].

3the stricter constraints for So• mimick the a priori symmetries of the
perinomal singulands Su•, such as u2 Su

u1,u2

1,2 ≡ u1 Su
u2,u1

1,2 .



27 Some tantalising arithmetical riddles.

When applied to the ‘arithmetical singulands’ Sa•1 ,2 , So•1 ,2 , the
general desingularisation equation

Su1,u2
1,2 + Su2,u1+u2

1,2 − Su1,u1+u2
1,2 − Su1+u2,u2

1,2 = earlier terms

produces in the denominators of all the coefficients ca2δ and
co2δ – and, even more unaccountably, in the numerators of
some of them – explicitely describable strings of prime
numbers (which do not originate in the “earlier terms”!).
This generation of prime numbers almost ex nihilo is rather
unparalleled. It persists, moreover, for the higher order
singulands Sa•r1 ,..,rk

and So•r1 ,..,rk
.



28. Pausing midway to take stock.

• We pointed at the outset to the double curse of
(i) infinitude (of the underlying group < Sr ,S

∗
r >) and

(ii) imbrication (of all multizetas of weight ≤ s).

• In the case of uncoloured multizetas, we showed how to
conquer the curse by imposing polar rigidity, leading to the
perinomal decomposition of uncoloureds into irreducibles.

• We shall now deal with the coloured, esp. bicoloured
multizetas, and sketch for them a quite distinct way of
defeating the curse, again leading to a lot of fascinating new
structure (satellisation).



29. Taming the bicoloureds: overall scheme.

Road map: for s fixed, reduce the plethora of data and restore
a workable (r , d)-filtration.

ARI
al/il
bicoloured | zag

( u1
ε1

,..,
,..,

ur
εr
) r+d=s

εi∈{0, 12}

(↑) ↓ restriction | (↑) ↓

ARI
al/il
extremal | zag

( 0
ε1

,..,
,..,

0
εs
)

d=0,r=s ‖ ARI al
extremal

(↑) ↓satellisation | (↑) ↓ amplification ‖ (↑)↓satellisation

BIARI
al/il∗

uncoloured | sazag
( u1

0
,..,
,..,

ur
0
)

j
r+d=s
j∈{0,1} ‖ BIARI al

extremal

↓specialisation | ↓ ‖ ↓specialisation.

ARI
al/il
uncoloured | zag(

u1
0
,..,
,..,

ur
0
)

r+d=s ‖ ARI al
uncoloured



29∗. Taming the bicoloureds: overall scheme (comments).

The first step (data reduction) keeps the colours εi but retains
only the partial weights si = 1. In terms of generating series,

this means restricting zag ( u
ε
) to zag ( 0

ε
). Surprisingly, such

massive pruning entails no loss of information, only a partial
occultation of it.
The second step (data re-ordering) replaces zag ( 0

ε
) by a pair of

colour-free satellites sazag
( u

0
)

j (j = 0, 1) obtained by mould
amplification. It then transports the ari, gari action to such
pairs, resulting in operations biari, bigari that respect the
r -filtration by length.
The third step (data recovery) is about retrieving the full
zag ( u

ε
) from the satellites. This is particularly easy for the

uncoloured part zag ( u
0
), where it ultimaltely amounts to a

colour-to-degree transfer zag ( 0
ε
) → zag ( u

0
).



29∗∗.Taming the bicoloureds: overall scheme (comments).

Remark 1: Although the three steps make most sense when
applied to ARI al/il

bicoloured , the steps 2 and 3 extend to ARI al/.
bicoloured

and should first be studied in that context, without the
unnecessary assumption (./il).

Remark 2: Step 2 relies on mould amplification. It simply
re-orders the data and re-shapes all flexion operations, which
henceforth act on satellite couples and acquire the prefix bi.
Relative to the extremal algebra ARI al/il

extremal , step 2 doesn’t bring
about any data compression, but it instaures a precious
r -filtration that was clearly absent from ARI al/il

extremal .

Remark 3: The whole three-stepped construction also
extends, mutatis plurimis mutandis and with less compelling
usefulness, to all multicoloured (not just bicoloured)
multizetas.



30. The extremal algebra: no information loss.

Def. A• is dubbed weakly alternal if it verifies all alternality
relations

∑
w∈sha(w ′,w ′′) A

w ≡ 0 with w ′ of length 1 and w ′′

of any length. The same applies for weakly alternil.

L 1: In a double symmetry, either symmetry may be weakened:

{al/al} ⇐⇒ {alweak/al} ⇐⇒ {al/alweak} 6⇔ {alweak/alweak}
{al/il} ⇐⇒ {alweak/il} ⇐⇒ {al/ilweak} 6⇔ {alweak/ilweak}

L 2: If A
( u1
ε1

,..,
,..,

ur
εr
) ∈ ARI

al/ilweak
(1,r)

d ,r and is colour consistent, then

A
( u1
ε1

,..,
,..,

ur
εr
) ≡ 0.

It follows that the extremal component A
( 0
ε1

,...,
,...,

0
εs
) ∈ ARI

al/il
extremal

successively determines all components A
( u1
ε1

,...,
,...,

ur
εr
) ∈ ARI

al/il
d ,r of

higher degree d and lesser length r (d + r ≡ s).



30∗. The extremal algebra (comments).

The colour consistency assumption is essential. Without it,
Lemma 2 fails, and there is no retrieval of information. Indeed,
for any two elements A•1, A•2 in ARI

al/il
bicoloured , of weights

s1 6= s2, set decA
( u
ε
)

j := A
( u

0
)

j ∀ε. Then ari(decA•1 , decA•2 ) is
(al/il) but not colour-consistent, and since its trace in the
extremal algebra is nil, it cannot be reconstituted therefrom.



31 The extremal algebra: the second symmetry.

Take A• ∈ ARI
al/il

bicold , set λ
( u1
ε1

)

d ,ε0
= { ud

1 if ε1=ε0
0 otherwise

, and expand A•:

A• =
∑

bε1,..,εs ~lu(λ•0,ε1 , λ
•
0,ε2
, . . . , λ•0,εs

) if length(•) = s

A• =
∑

cε1,..,εs−1 ~lu(λ•1,ε1 , λ
•
0,ε2
, . . . , λ•0,εs−1

) if length(•) = s−1

(swap.Wil.swap A)
( 0
ε1

,...,
,...,

0
εs
)

=
∗∑

Aw∗ +
∗∗∑

Aw∗∗P(u∗∗) (4)

For (ε1, ..., εs) ending with εs = 0 resp. εs = 1
2
, (4) yields:

0 =
∑

H
ε1,...,εs−1

ε′1,...,ε
′
s

bε
′
1,...,ε

′
s + cε1,...,εs−1 (H•• ,K

•
• , L

•
• ∈ Z) (5)

0 =
∑

K
ε1,...,εs−1

ε′1,...,ε
′
s

bε
′
1,...,ε

′
s +
∑

L
ε1,...,εs−1

ε′′1 ,...,ε
′′
s
cε
′′
1 ,...,ε

′′
s−1 (6)

Eliminating c•, we get 2s−1 structure constraints on ARI al/il :

0 =
∑

R
ε1,...,εs−1

ε′1,...,ε
′
s

bε
′
1,...,ε

′
s (R•• ∈ Z) (7)



31∗ The second symmetry (comments).

For elements of the extremal algebra ARI al/il
extremal , we always have

d = 0, hence r = s. Since all alternility relations commingle
components of various lengths, there seems to be no way of
expressing them within ARI al/il

extremal . Weak alternility, however,
involves only two consecutive lengths, e.g. r = s, r = s − 1,
and that too in such a way as to permit the elimination of the
external data cε1,...,εs−1 between (5) and (6), leading to the
constraints (7), which are purely internal to the extremal
algebra.

R1: In (4), Wil simply denotes the linearisation (resp.
annihilation) operator for symmetril (resp. alternil) bimoulds,
relative to the sequence splitting (w1, ..,wr )→ (w1)(w2, ..,wr ).

R2 : We must take all the multibrackets ~lu(λ•1,ε1 , ..., λ
•
0,εs−1

) to
get a basis for the degree-1 alternals, but only some of the
~lu(λ•1,ε0 , ..., λ

•
0,εs

) to generate the degree-0 alternals.



32 Mould amplification.

We already used mould amplification to go from wa• to zag •.
We shall use it again to construct the satellites of bicoloureds.
Here are the basic facts:
Mould amplification ampω∗
(i) singles out a special index ω∗,
(ii) adds a new indexation layer (here, the ui indices),
(iii) preserves (simple) symmetries.(
ampω∗M

)( u1
ω1

,...,
,...,

ur
ωr

)
:=
∑
0≤nr

M ω1,ω
[n1]
∗ ,...,ωr ,ω

[nr ]
∗ un1

1 un2
1,2 . . . u

nr
1,..,r

If M• is alternal or symmetral, so is ampω∗M
•.

N.B. ω
[n]
∗ :=

n times︷ ︸︸ ︷
ω∗, .., ω∗ and u1,..,j := u1 + .. + uj as usual.



33. The satellites sazag •0, sazag •1 and saløma•0, saløma•1.

sazag
( u1

0
,...,
,...,

ur
0
)

0 :=
∑
0≤nr

zag(
0
1/2

←n1→
,0
,0
,..,
,..,

0,
0,
,..,
,..,

0
1/2

←nr→
,0
,0
,..,
,..,

0
0
) un1

1 un2
1,2 . . . u

nr
1,..,r

sazag
( u1

0
,...,
,...,

ur
0
)

1 :=
∑
0≤nr

zag(
0,
0,

←n1→
0
1/2

,..,
,..,

0,
1/2,

,..,
,..,

0,
0,

←nr→
0
1/2

,..,
,..,

0
1/2

) un1
1 un2

1,2 . . . u
nr
1,..,r

The satellites sazag •0, sazag •1 inherit symmetralness.

saløma
( u1

0
,...,
,...,

ur
0
)

0 :=
∑
0≤nr

løma(
0
1/2

←n1→
,0
,0
,..,
,..,

0,
0,
,..,
,..,

0
1/2

←nr→
,0
,0
,..,
,..,

0
0
) un1

1 un2
1,2 . . . u

nr
1,..,r

saløma
( u1

0
,...,
,...,

ur
0
)

1 :=
∑
0≤nr

løma(
0,
0,

←n1→
0
1/2

,..,
,..,

0,
1/2,

,..,
,..,

0,
0,

←nr→
0
1/2

,..,
,..,

0
1/2

) un1
1 un2

1,2 . . . u
nr
1,..,r

The satellites saløma•0, saløma•1 inherit alternalness.



33∗. The satellites (comments).

Each of the two sets of satellites, whether it be the one
consisting of 0-indexed, amp( 0

0
)-generated satellites, or the one

with 1-indexed,amp( 0
1/2

)-generated satellites, explicitely carries

the whole information present in the extremal algebra, and
either set can be deduced from the other, but under a clumsy
correspondence that exchanges length and degree. Worse still,
if we were to retain only one set of satellites (say, the one with
index 0), there would be no natural way of extending the
flexion operations to that set. So we find ourselves in one of
those not infrequent instances where a slight data redundancy
is unavoidable.



34. Recovering løma• from saløma•0 and saløma•1

For løma• in ARIal/il and lømaw1 = 0:

løma•bicoloured → (saløma•0 , saløma•1 )uncoloured

løma•uncoloured ≡ neg .saløma•1 − neg .saløma•0

For søma• in GARIas/is and sømaw1 = 0:

søma•bicoloured → (sasøma•0 , sasøma•1 )uncoloured

søma•uncoloured ≡ (neg .sasøma•0 )−1 × neg .sasøma•1

Interpretation: The extremal algebra carries the full
information and so does each satellite. However, explicitely
accessing the occulted information is specially easy for the
uncoloured part, provided we use both satellites.

N.B. neg .Aw1,...,wr := A−w1,...,−wr .



35. The satellite algebra structure (for alternals).

C •
lu←− (A•,B•)

ari−→ D•

sa ↓ sa ↓ sa ↓ sa
{C •0 ,C •1 }

bilu←− ({A•0,A•1}, {B•0 ,B•1})
biari−→ {D•0 ,D•1}

In the absence of length-1 components:

bilu : C •0 = lu(A•0,B
•
0 ) , C •1 = lu(A•1,B

•
1 )

biari : D•0 = −ari(A•0,B•0 ) + arit(B•1 )A•0 − arit(A•1)B•0
D•1 = +ari(A•1,B

•
1 )− arit(B•0 )A•1 − arit(A•0)B•1

−lu(A•0,B
•
1 )− lu(A•1,B

•
0 )

Remark: D•1 − D•0 = ari(A•1 − A•0 , B
•
1 − B•0 )



35∗. The satellite algebra structure (comments).

The slides 35, 36 extend the main operations to satellite pairs:
lu,mu, ari , gari → bilu, bimu, biari , bigari

The bimoulds A•,B• on the preceding slide may be taken in
ARI

al/il
bicoloured or in ARI

al/.
bicoloured . See Remark 1 on slide 29∗∗.

Similarly, on the next slide, the bimoulds A•,B• may be taken
in GARI

as/is
bicoloured or in GARI

as/.
bicoloured .

In all cases, however, the hypothesis about the vanishing
length-1 component is essential. In presence of non-vanishing
length-1 components, the satellised operations biari, bigari
become notably more complex: see slide 37.



36 The satellite group structure (for symmetrals).

C •
mu←− (A•,B•)

gari−→ D•

sa ↓ sa ↓ sa ↓ sa
{C •0 ,C •1 }

bimu←− ({A•0,A•1}, {B•0 ,B•1})
bigari−→ {D•0 ,D•1}

In the absence of length-1 components:

bimu : C •0 = mu(A•0,B
•
0 ) , C •1 = mu(A•1,B

•
1 )

bigari : D•0 = B•0 ×
(
garit(B•0

−1× B•1 ) A•0
)

= B•0 × gari(A•0,B
•
0
−1× B•1 )× B•1

−1 × B•0
D•1 = B•0 ×

(
garit(B•0

−1× B•1 ) A•1
)
× B•0

−1 × B•1

= B•0 × gari(A•1,B
•
0
−1× B•1 )

Remark: D•0
−1× D•1 ≡ gari(A•0

−1× A•1 , B
•
0
−1× B•1 )



37. Mischief potential of log 2.

{C •0 ,C •1 }
bilu←− ({A•0,A•1}, {B•0 ,B•1})

biari−→ {D•0 ,D•1}

Length-1 components (like those stemming from log 2)
complicate the satellite structure (see red adjuncts) :

C •0 = lu(A•0,B
•
0 )−adit(A1).B0 + adit(B1).A0

C •1 = lu(A•1,B
•
1 )−adit(A0).B1 + adit(B0).A1

D•0 = −ari(A•0,B•0 ) + arit(B•1 )A•0 − arit(A•1)B•0
+adit(A0).B0 − adit(B0).A0

D•1 = +ari(A•1,B
•
1 )− arit(B•0 )A•1 − arit(A•0)B•1

−lu(A•0,B
•
1 )− lu(A•1,B

•
0 )+adit(A0).B0 − adit(B0).A0

with C • = adit(A•)B• ⇔ C ( u1
0
,..,
,..,

ur
0
) = (

∑
ui )A

( 0
0
) B ( u1

0
,..,
,..,

ur
0
)



37∗. Mischief potential of log 2 (comments).

Similar, only marginally more intricate formulae account for
the product bigari in the case of symmetral data with non-zero
length-1 components.

This water-muddying quality of log 2 (somewhat reminiscent
of the nuisance potential of π2 in the case of uncoloureds –
see remark at the bottom of slide 25 ) obscures the quite
remarkable correspondences

zag(
0
ε
) −→ zag(

u
0
)

↘ ↗
(sazag

( u
0
)

0 , sazag
( u

0
)

1 )

and must be the reason why these escaped notice for so long.



38. Keeping track of the second symmetry.

The 2s−1 structure constraints on ARI al/il (see slide 31):

Rε1,...,εs−1 : 0 =
∑

R
ε1,...,εs−1

ε′1,...,ε
′
s

bε
′
1,...,ε

′
s (R•• ∈ Z)

respect the (r , d)-filtration: if one colour dominates in
(ε1, ..., εs−1), it also dominates in (ε′1, ..., ε

′
s).

Hence two structure-and-gradation respecting isomorphisms:

ARI
al/il
bicoloured ←→ BIARI

al/il∗

uncoloured

GARI
as/is
bicoloured ←→ BIGARI

as/is∗

uncoloured

Conjecture: The first ρs relations Rε1,...,εs−1 imply all others,
with first relative to the order induced by n(ε) :=

∑
εi 2

i and
ρs := 1+ds−d∗s , where ds resp. d∗s denotes the dimension of
the component of weight s in the free Lie algebra
L[e1, e2, e3 . . . ] resp. L[e1, e3, e5 . . . ] (es is assigned weight s).



39. Meromorphy of sazag •0 and sazag •1
Despite being constructed from the u-independent, 0-degree,

colour-only element zag
( 0
ε1

,...,
,...,

0
εs
)

of the extremal group
GARI

as/is
extr . , the satellites sazag •0, sazag •1 retain all the essential

properties of the full, u-dependent zag •, such as
(i) meromorphy in the u-variables
(ii) a modified version of the double symmetry.
Actually, the first symmetry is unchanged (al → al∗) and it is
the second symmetry that undergoes a slight change: il → il∗.
We already (see §31) derived the analytical expression for il∗

but we are fortunate in that il∗ is also capable (like il) of a
functional interpretation.



40. Counting our luck & listing our gains.

Our extremisation-cum-satellisation scheme succeeds only
thanks to an improbable string of good luck:

Fluke 1: the restriction to the extremal algebra (d = 0)
involves no loss of information.

Fluke 2: satellisation turns the subtractive εi -flexions into
additive ui -flexions.

Fluke 3: satellisation alters but does not destroy the second
symmetry: il → il∗.

Fluke 4: satellisation keeps sazag0
•, sazag1

• u-meromorphic.

Fluke 5: the satellisation formalism absorbs such key facts as
(i) the (r , d)↔ (d , r) duality for uncoloureds.
(ii) the conversion rule zag • ↔ zig •

(iii) the colour-consistency constraints.



41. Counting our luck & listing our gains (Cont-d)

The extremisation-cum-satellisation scheme brings huge
rewards:
Gain 1: it brings about a dramatic data reduction, while
allowing the algorithmic recovery of information;

Gain 2: it enables one to work entirely within the
(r , d)-filtration, thereby dispelling the ‘curse of imbrication’;

Gain 3: it extends ‘perinomal’ irreducible analysis
(luma•-based) to the coloured case;

Gain 4: it eases ‘arithmetical’ irreducible analysis (loma•- or
lama•-based) in all cases – uncoloured as well as coloured.



42. Concluding remarks.

• ‘Arithmetical dimorphy’ extends far beyond the multizetas.
Ext.1: The Q-ring of hyperlogarithms with rational ‘support’.
Ext.2: The Q-ring of ‘naturals’ , i.e. of all monics associated
with transmonomials with finitely many (rational) coefficients.

• Albeit rooted in Analysis, the flexion structure, with its
two-tier indexation, its core involution swap, its wealth of
operations, and its convenient capaciousness (it makes room
for meromorphic functions and poles at the origin), has shown
itself ideally suited to the investigation of multizeta dimorphy.

• Part 3 reflects work in progress : bountiful though it is, the
present harvest is likely to pale before the yields
of future crops...



43 Some references.

Here are two seminal papers:
[B] D.J.Broadhurst, Conjectured Enumeration of irreducible
Multiple Zeta Values, from Knots and Feynman Diagrams,
preprint, Phys. Dept, Open Univ. Milton Keynes, MK7 6AA,
UK, Nov. 1996.
[Z] D.Zagier, Values of Zeta Functions and their Applications.
First European Congress of Mathematics, Vol. 2, 427-512,
Birkhäuser, Boston, 1994.
For guidance on the recent literature, look up the Multiple
Zeta Function entry in Wikipedia.
For our own, flexion-based approach, see next page →
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[E1] ARI/GARI, la dimorphie et l’arithmétique des multizetas:
un premier bilan. J.Th.N. Bordeaux, 15, 2003.
[E2] The flexion structure and dimorphy: flexion units,
singulators, generators, and the enumeration of multizeta
irreducibles. Ann.Scuo.Norm.Pisa , 2011
[E3] Eupolars and their bialternality grid. Acta
Math.Vietnamica. 2015.
[E4] Singulators vs Bisingulators. 7 June 2014.
[E5] Combinatorial tidbits from resurgence theory and mould
calculus. June 2016.

All these papers and more are accessible on the author’s
homepage.


