Singular parameters: coequational resurgence,
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1 Singular parameters: the model problem.

Consider the following paradigmatic instance of a doubly singular differential
system — a system not only singular in itself (i.e. relative to the time variable
t) but also singularly perturbed (by a small parameter ¢):

0 = ey + Ny +0(tey',...y)  (1<i<wy) (11
t ~ 0 (variable)
e ~ 0 (parameter)
It is technically more convenient to set z := 1/t ~ 0o and z := 1/€ ~ o0, so
as to prepare for working in the conjugate Borel planes ( and £. This leads
to the system:
0.Y = xzAY + B(z,z,Y)  with (1.2)
Y =(Y"), B=(B"), A = diag.matr.(\;)
BieC{z" 27 Y, ... )Y} or eC{z""Y' ..., Y}
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From the viewpoint of z-resurgence, choosing the series B’ independent of
z, i.e. taking them in C{z7!, Y} rather than C{z7% 271 Y}, makes little
difference to the resurgence pattern in the £-plane, and none at all to the
location of the singularities. So we shall henforth stick with this simplifying
assumption.

To respect homogeneity, we may re-write our system thus:

J#i
0. = aNY' + ) N BL L (Y[ (1<i<v) (1.3)
n; >0n;>—1
or in compact form:
0. = v (Nx Y Y Bu)v) (1<i<v) (14)
n;>0n;>—1

with coefficients B (z) € C{z'} analytic at infinity and z-free.
The general solution, with its full set {s,...,s,} of integration parameters,
may be formally expanded in powers of either 2~ or 27!:

Y =Y(z,x,8) € Cllz " or 27 @ C{s127 €M™ ... 5,2/7eM**}  (1.5)
Separating the exponentials from the power series, we get:

JF
Yi(z,2,8) = Yi(z,2)+ Z Z Yi(z,z) s;8™ etit<nA>)zm o 6)

n;>0n;>—1

As just pointed out, the formal solution Y, or rather its components }7;;,
can be expanded in power series of 27! or z7!. Both types of expansions
are generically divergent yet Borel-summable, but with distinctive singular
points, singularities and resurgence patterns. Some form of the Bridge equa-
tion holds sway in both cases, but with distinct index reservoirs €2; and above
all with this crucial difference: whereas the ordinary, first-order differential
operators A, that govern the z-resurgence in BE; do not depend on z, the
differential operators P, that govern the z-resurgence in BE5, have coeffi-
cients that are themselves divergent-resurgent in z and require a third Bridge

equation BEj3 for their description.

Equational resurgence: Y =Y (z,z, s) (expanded in 27! with x fixed)

BE; : A, Y =AY Y wy € Dy (1.7)



Co-equational resurgence: Y =Y (z,x,8) (expanded in z~" with z fixed)

BE, : A, Y =P, Y Y wy € Qy (1.8)
BE; : APy, = Flyu ({P,}) YV owy € Qs (1.9)

Despite these far-going differences, there is bound to be a certain kinship
between the two types of resurgence, since in the special case when B, (z) =
¢ /z with 3¢ scalar, due to the underlying homogeneousness, z and x coalesce
and both the z- and x-expansion assume the form:

J#i
Yi(z,xz,8) = Yi(zz)+ Z Z Yi(zx) s;8™ eMit<mAZ) = (110)

n;>0n;>—1

with Yi(t) and Y/ (t) € C[[t]].

It is this loose kinship or duality that justifies the labels of equational for
the z-resurgence (z being the variable with respect to which we differenti-
ate in the system (1.2)) and co-equational for the z-resurgence. FEquational
resurgence is by far the simpler of the two, since the general shape of BE;
with its operators A, and their indices w, can be inferred from purely formal
considerations, directly from the differential system (1.2). Equations BEs
and BEgz with their index reservoirs €25, €23, are harder to derive, yet there
too we are fortunate in having a general machinery, with a strong agebraic-
combinatorial flavour, that addresses the general case.

2 Multiplication interfering with convolution.
Hyperlogarithms.

The z-resurgence (“equational”), which manifests in the dual (-plane, turns
out to be totally independent of what singularities the coefficients B (z) of
the system S may or may not possess: the depend only on its “multipliers”
Ai. The z-resurgence (“co-equational”), however, which manifests in the dual
¢-plane, depends on both the multipliers \; and the singularities of the B, (2),
which live directly in the z-plane, at or over some points «;;. So what we are
facing here is an unusual interference of two structures:
(i) the multiplicative structure, which leaves the singularities in place,
(i) the convolutive structure, which adds singularities, in the sense that:
(singularity over wy)*(singularity over we)=- (singularities over wy + ws).
The ideal tool for understanding this mixed structure is the hyperloga-
rithms, with their two encodings, their stability under two products and two



sets of exotic derivations and, not least, their ‘denseness’: any given resur-
gent function in the Borel plane is the limit, uniformly on any compact set
of its Riemann surface, of a suitable series of hyper logarithms.

Hyperlogarithms in the a and w-encodings:

A[al ..... ar] T d LI LI
Py o [ B,
o Tr — Qr o T2—0p Jog T1— Qp

)% (r) = Vv (1) with o, =wi+...+w; (Vi) (2.2)

Functional dimorphy:

][] o]

(v v )7 v o0 (2.3)
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Remark 1: Here * stands for the convolution

(8, % Pa)r) = / Bi(r— ) d Pa(r) (2.5)

whose unit (namely ¥ (7) = 1) coincides with the unit of point-wise mul-
tiplication — a definite advantage in this context. To fall back on the more

familiar convolution % (whose unit is the dirac at 0):

(SA01 % SADQ)(T) = /OT 01 (T —T) Py(m)dn (2.6)

w w w
it is enough to change Y (1) into v (1) =0,V (7).
Remark 2: When some o’s or, equivalently, some w-sums vanish, the defi-
nition (2.1) remains in force, but the conversion rule (2.2) has to be slightly
modified. Indeed, in the extreme case when all a’s and therefore all w’s
vanish, to ensure the double symmetrality, the definitions have to be:

[0 7 times O]

V (7) = OOgT—!T)T (a-encoding)  (2.7)
0,...,0

v (1) = [agﬁ} T (10517) +... (w-encoding) (2.8)
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with the dots in (2.8) standing for a polynomial in log 7 of degree < r.
Hyperlogarithms are stable under the action of two systems of exotic
derivations: foreign and alien.

Foreign derivations V,, (ag € C,).

Each V,, is a linear operator that measures singularities over «g, without
return to the origin. Together, they generate a free Lie algebra of derivations
with respect to point-wise multiplication:

Vao(?pl . 9?’2) = (Va, 951) @2 + @1 (Vo ‘TOQ) (2.9)

The V,, act only on functions ¥ with (isolated) logarithmic singularities,

i.e. such that over each point 7y, each determination of ¥ (7 +7) be a germ
in C{7} or C{7} ® C[log 7] or C{7} ® C{log T} suvexp-

Here, C{t}supesp denotes the space of entire functions of ¢t with at most
subexponential growth at infintity. This condition makes it possible to sep-
arate powers of 7 from elements of C{log 7} supesp-

Alien derivations A, (wy € C,, wy # 0).

Each A, is a linear operator that measures singularities over wy (it calculates
a suitable average of finitely many determinations over wy) but with return
to the origin. Together, they generate a free Lie algebra of derivations with
respect to convolution:!

Aup(P1% P3) = (A P1) * Po+ @1 % (Auy 92) (2.10)
ANy (P15 03) = (Auy $1) % Po + &1 % (Ayy P2) (2.11)

The derivations A,,, act only on functions ¢ with isolated singularities?, but
they act on all such functions, without any restriction whatsoever, and can
tackle any singular behaviour at wy. Although the A, are clearly far more
basic and general than the V,,, while investigating co-equational resurgence
it is advisable to think of these two systems of exotic derivations as being on
the same footing.

"Depending on which convolution we work with (% or %), slight modifications are
called for in the definition of the operators A, .
2logarithmic or much more general.



Stability of hyperlogarithms under exotic derivations.

— [e [o] [
vag V[ ](t> - vao X V[ | (212)
A V() = Vg x V. (2.13)

Here, x denotes non-commutative mould multiplication. The function-valued

— [o] e
moulds V (t) and V (t) are symmetral, whereas the scalar-valued moulds
[o] .
Voo and Vi, are alternal, meaning that:

Yoo vkl =0 (Va!, o +# 0) (2.14)
acsha(a’,a’)
Z Ve =0 (V' , w" # 0) (2.15)

weEsha(w’,w’)

It should be noted, though, that VI® and V¢ are not related under the
correspondence (2.2).

3 Hyperlogarithmic expansions.

Elementary multilinear inputs:

The basic r-linear inputs (r-linear, that is, in the coefficients B?) that go into
the making of the formal solution Y (z,z, s) of our prototypal system (1.3)
are the following ‘monomials’ S°®:

SPrvBin(z 0) = D,.Bi ...D.BY (3.1)
-1
with D, = (82 + (ug+...+u;) x) and  u; =< Mg, A >

Equational resurgence:

Under the Borel tranform B, : 27" — (f;—?)!, our monomials §* become:
(B..S)PBin (¢ 2) = Dy By (Q)... D1 By, (€) (3.2)
R -1
with D, = (— ¢+ (ur+...4u;) :U) and  u; =< Mg, A >

This expression readily yields all the information we need: location of singu-
larities, Stokes constants, pattern of z-resurgence etc.



Coequational resurgence:
n—1
Under the Borel tranform B, : =™ — = these selfsame monomials S°®

(n—1)!?
formally become:
BA ..Bir # i # i
(B,.S) P (2,€) == Dy .By (2)--- D1 .B, (%) (3.3)
” —1
with D, = (82 + (ug+...+u;) 85) and  u; ;=< my, XA >

This amounts to a system of partial differential equations which, in view of
the limit conditions for £ = 0, admits a unique solution given by the following
multiple integral:3

(B,.S) BBt (5 €)= /Bf;l(tl)...Bf{‘r(tr)dtl...dtr (3.4)

with integration on a horrendous domain:

O<t, <ty <---<ty<ty
(u1—|—'~~—|—ui)ti—|—(umtm—l—'--—kur)<§ (2§Z§T)
u1t1+...urtr:§

While this integral representation has its uses for majorising the monomials
(B:.8)*(z,£), it is pretty hopeless when it comes to locating their singular
points (in the &-plane) and describing their singular behaviour there.

The way round this difficulty is to decompose each coefficient Bfli of
“weight” u; :=< m;, A >, as a finite superposition of hyperlogarithms in the
a-encoding?

Ved(z) = pleianl(z) (3.5)

or as a uniform limit of such superpositions.

For our purposes, it will be convenient to symbolise the monomials (3.5)
along with the component bei (z) where they originate by a two-tier index W
comprising, in higher position, the weight u; :=< n;, A > attached to B;,(z)
and, in lower position, the sequence (v;1,v;2...) consisting of the singular
points «; (at home in the z-plane) minus the variable z itself:

{ By, , Voursmi(z) ) — (3.6)

U .
VI/Z' = (V) with V; = (Ui,la "'7vi,m¢) — (ai,1_27 . 7ai,mi_z) (37)

1

3at least when all partial sum uj +...+u; are # 0.
[@?]

“but of type V (z) rather than ple] (2)
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By multilinearity, it is enough to consider the monomial expressions:

(B, 8)V " (2,6) = T WiV (2, ) (3.8)

and these monomials 7°(z,&), in turn, car be expressed as finite supper-
positions of a (usually very large) number of hypermonomials V*(€) of the
sole variable &, with the z-dependence migrating to the upper indices w =
(W1, ey wW). All these w’s have the same length m equal to the added mul-
tiplicities m; of the V;’s, and their total number p(m) depends only on the
signature m = (myq, ..., m,) of W. Explicitly:

TV(z8) = TV (o)=Y gVurn(g) (39

1<i<p(ma,...,ms)

with € = =x1 mzzmz‘ , my = #(V;)

We observe that the z-dependence of T°(z,&) is now concentrated, on the
right-hand side of (3.9), in the upper indices w;;. Indeed, each such w; (for
simplicity, let us drop the indices j) is bilinear in the weights u; and the z-
shifted singularities v; := a; — z. Moreover, as the induction (see infra) that
makes explicit the expansion (3.9) of 7 will show, the bilinear expression of
w; involves only sums of consecutive u;’s multiplied by pair-wise differences
of v;’s (which are z-constant) and also, on accasion, single v;’s (which depend
on z).This already explains the appearance of a z-dependent index set €2
in the second Bridge equation, and prepares us for the emergence of a z-
independent index set €23 in the third Bridge equation.

Backward induction for 7° in the general case:

For r=1 and W; = (“1) = ( “ ) we start the induction by setting:

1% V1,15004,V1,my

TW1 - f}[mvl,l,u1v1,2,-~,u1111,m1]
~
Vu1 V1,1 7111(111,2*111,1) ,~~,u1(v1,m1*v1,m1—1)

To continue the induction, we must distinguish four types of sequences w,
depending on the nature of their last index w,y,:

Case 1: Wi = Uy UI = Up Uy (Zf #(Vr) = 1)
Case 2: Wy = u; (0] — UZ_H)

Case 3: Wi = U; (U,T - UZ'T—1)

Case 4: Wy = U; (vzT - vf)



Then we must know how the operators drop,, act on the monomials 7°:

Casel: dropwm T Wi We 0 Wi Wra
U; + U
Case2: drop, T "W = T W WiliassWe iy T/Vf ( TZ ; o )
" a ViloViy, z+1
. . — Ui + Us
Case 3: dro TWI’“"WT = —TWl"”’Wi—l,iV“?W"” with W_ :< v )
pUJnL 7 171 V—i-lov-l.’ Z_l
U
Case4: drop,, T"Wr= 47" WheWeith, Wi = (VZT>
i

Interpretation:
(i) True to their name, the linear operators drop,, act on the monomials Ve
by annihilation or removal of the last index:

dropwof)“l’“"“’mfl’w” = Pt if Wy = Wy, and = 0 otherwise.

(i) For any sequence V;, vj denotes the last element of V; and vf its last but
one element (when it exists).

(iii) The sequence ViT is simply V; deprived of its last element v;r )

(iv) (V;TOVZ-L, v;l) denotes the set of all sequences V, obtained by shuffling
V" with VJH and then adding, in last position, the last element UZ_H of V:H
Likewise, (Vi oV v

T wl ) denotes the set of all sequences V, obtained by shuf—
fling V;', with V', and then adding, in last position, the last element v} , of
AN

(v) The symbols W', and W, ; therefore represent each a collection of dou-
ble indices W, of type (“’Jr“*“) or (" ‘1/“”) , and the induction in case 2 and
3 should correspondingly be interpreted as

Case2: drop,, T W We = ZW*€W+ T W Wr

Case 3: drop,, , T Wi We — ZW*GW_ TWeseoos W oo, Wr

i—1,1

(vi) Summig up, the induction means that the monomials V¥ on the right-
hand side of (3.9) carry a last index w,,, capable of assuming only four distinct
shapes, and react to the action of drop,, —according to the four aforemen-
tioned rules.

Remark 1: forward-backward asymmetry.
The innocent-looking induction rule applying in case 1 suffices to upset the
left-right symmetry: there also exists a forward induction for T, based on
operators cut,, that remove first indices, but it differs sharply from the back-
ward induction, based on the operators drop,, .

Remark 2: relegation of z into the upper indices.
The induction rules 2, 3, 4 involve indices w,, carrying only wv-differences
v —v" = o — o wherefrom z is absent, but the rule 1 involves a single



v =« — 2, with 2z persisting.

Remark 3: number of hyperlogarithmic summands.

The number u(W) = u(my,...,m,) of hyperlogarithmic summands in the
standard expansion (3.9) of 7" depends only on the multiplicities m; :=
#(V;). It tends to be huge. Thus:

r times

p(l,...;1) = 135...2r—1) = rll

w1(5,5,5) = 29135106 ~ 29 10°
11(4,5,6) = 22855560 ~ 23 10
11(6,5,4) = 23963940 ~ 24 10
w(4,4,4,4) = 10050665625 ~ 10 10°
w(1,3,5,7) = 349098750 ~ 0.4 10°
1(7,5,3,1) 539188650 ~ 0.5 10°
©(3,3,3,3,3) = 60575515000 ~ 60 10°
©(1,2,3,4,5) = 6067061000 ~ 6 10°
w(5,4,3,2,1) = 9641071440 ~ 10 10°

Remark 4: convergence.

This runaway proliferation of summands doesn’t prevent the corresponding
expansions of B,Y (z,&,s) from converging, after suitable regroupings (of
arborification-coarborification type) that can be deftly handled by the mould
formalism. Besides, convergence in the (ramified) Borel ¢-plane can also
be derived directly, by standard PDE methods, or based on the integral
representation (3.4). But our concern here is with the precise expression of
the singularities (in the {-plane) and their exact resurgence equations, and
for that there can be no alternative to the present approach since for truly
general data WW; no cancellations occur and all the singularities produced by
the induction mechanism are truly there.

Remark 5: the case of vanishing indices.

In the case of vanishing u-sums and in that of vanishing wv-differences, the
above formulas hold without modification, although multiple cancellations
tend to drastically reduce the number of hyperlogaritmic summands in the
expansion of TW.

Both cases are of frequent occurrence. The reason why u-sums often van-
ish is that (as soon the so-called corner invariant A_,, is # 0), there is going
to be a ‘weight’ —\; effectively present alongside the ‘weights’ A\;, 2 \;, 3 \;
etc. The reason why w-differences often vanish is that, in non-linear prob-
lems, the same singularities v[a](z) may occur in various components Bfw
leading to index repetitions within the sequences W'.
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Remark 6: symmetrality and consistency.

Under convolution, both 7* and V* behave as symmetral moulds. The exis-
tence of a unique expansion of 7" into a finite sum of V<’s leads therefore
to a commutative diagram:

’ ” symmetral linearisatiom
TV« TW g STV
hyperlogarithmic i{ % \L hyperlogarithmic \L hyperlogarithmic
expansion expansion expansion

(Z Ewl]}w,) « (Z €L f}wu) Symmetralﬂfarisaﬁon Z €w]>w

The path expansion then linearisation always leads to a number of summands
V*“ considerably less than the path linearisation then expansion, but the
latter gives rise to massive (pair-wise) cancellations, ensuring the same end
result.

Backward induction for 7° in the special case of simple V;’s:
When each V; reduces to a single element v;, case 4 is ruled out, and cases
1,2,3 simplify to:

Case 1: Wi = Uy Uy
Case 2: Wi = U (v; — Vi)
Case 3: Wm = w; (v; — viq)
Case 1: dropwm Tw17"'7w7‘ — _’_Twl, ............ Wr—1
+ . U; + Uiyl
Case ?2: drOpwm T WL Wr +Twl7"'7wi,i—|>l7"'7wr with w:-H_l _ ( i >
- . _ Ui + Uy
Case 3: drOpwm T WL Wr T WL Wiy goeesWr ity oy, = ( i z)
' Vi1

4 The scramble transform.

Originally, the scramble transform arose during the search for an algorith-
mic way of reducing the complex monomials 7° of (3.9) to sums of simpler
monomials V*, but in the simpler context of meromorphic singularities in the
z-plane, so that instead of indices W; := (”(/Z) we had to handle the simpler
w; = (:f’) Our reason for mentioning the scramble here is because that
transform has applications that extend far beyond co-equational resurgence.
In particular, it led to:

(i) the first systematic use of flexions;

(ii) the first systematic production of double symmetries.
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Indeed, the scramble is a linear transform on bimoulds of BIMU:

M®* — S®* = scram.M*® with S* := Ze('w,w*) M*" (4.1)

w*

which not only preserves simple symmetries (alternal or symmetral) but,
when applied to all-even bimoulds® M*®, turns simple into double symmetries
(alternal into biaternal and symmetral into bisymmetral).

To define the sums S™ in (4.1) we have the choice between a forward and
backward induction, quite dissimilar in outward form but equivalent nonethe-
less. They involve respectively the ‘mutilation” operators cut and drop:

(Cutyy M)Wt o= MW2eotr gf g = wy
: 0 Zf Wo 7é w1
(drop,,, M)wir = MWortgf g = w,
=0 if  wo # w,

We get each induction started by setting S™' := A"!' and then apply the
following rules, which rely on the usual flexion notation w], w|, [w, |w.

Forward induction rule:
We set (cuty,.S)" := 0 unless wy be of the form [w;]| with respect to some
sequence factorisation w = aw;be, in which case we set :

(Cuty,))® = (—1)"® > S (if w=awbe) (4.2)
w’Esha (aj .1b, c)
with b denoting the sequence b in reverse order. If A® is symmetral, so is S*

(see below). In that important case the forward induction rules assumes the
much simpler form :

(cttpy))® = S* (invmu.S)® S° (if w = aw;bc) (4.3)

Backward induction rule:
We set (cuty,,.S)™ := 0 unless wy be of the form |w; or w;] with respect to
some sequence factorisation w = aw;b, in which case we set :

(cuty,,)” = —S2IP (if w = awb) (4.4)
(Cuty,))” = +5°P (if w = aw;b) (4.5)

%i.e. when applied to bimoulds M*® that are even separately in each double index w;.
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Remark: Extending the scramble to ordinary moulds.

We must often let the scramble act on moulds M*® by first ‘lifting’ these into
bimoulds M* according to the rule: M(zi ) = Mt Of course,
the scramble of a mould is a bimould — not a mould. Thus, the bimould 7°

of (3.9) is essentially the scramble of the mould V* of (2.2).

Remark: The general scramble.

The scramble also extends to generalized bimoulds M* carrying an indexation
W = (Wi,...,W,) with W; = (}}) and #V; > 1. Its definition then simply
relies on the backward induction of §3. In that case too, there exists an
(outwardly non-linear) forward induction, somewhat on the lines of formulae

(4.2) and (4.3).

5 The tessellation mould.

The general tesselation mould tesW is key to the third Bridge equation BE3
in the most general situation, i.e. when the coefficients of the differential sys-
tem are z-ramified. Let us here describle the special tesselation mould tes™,
which is enough when dealing with differential systems whose coefficients are
z-meromorphic with simple poles.

Let V* be the classical scalar mould produced under alien derivation from
the equally classical resurgent mould V*(z):

llw”l|=wo

A V9(2)= > V' V() (5.1)

w:wlwll

V*(z) is symmetral; V* is alternal.
If we now apply the scramble transform to the alternal mould V* (see
Remark 2 supra about the lift V* — V* ), we get a bialternal bimould tes®:%

tes® = scram.V'* with tes" 1= Z e(w, w*) V" (5.2)

w*

which surprisingly turns out to be piecewise constant in each w; and v,
despite being a sum of hyperlogarithmic summands V¥ . This begs for
an alternative, simpler expression of tes®. The following induction formula
provides such an elementary alternative:

tes" = Z push” Z sig? ™" tes® tes®” (5.3)

0<n<r(w) w'w =w

6Tts real place is in resurgence theory — in the description of the “geometry” of co-
equational resurgence.
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Do not mix up the pair (w’, w”), that simply results from splitting w, and
the derivative pair (w*, w**), whose construction is explained below.

The notations in (5.3) are as follows.

We fix € R/277Z and set Ry : z € C — R(e?2) € R. Then we define:

U= < v'><u, > g = <!, Rgu'><u, Ryo>1 (5.4)

o= < v'><u, o>t gv = <, Rpv'><u, Rpv>"' (5.5)

From these scalars we construct the crucial sign factor sig which takes its
values in {—1,0,1}. Here, the abbreviation si(.) stands for sign(3(.)).

. awaw . w w” ]_ . w’ w” . w’ w!!
sigh " =sigy = (Sl(fw —Jw ) — 59w — 9w )) X
(1+sir' /g si(a' —g2) x
(14 i /gy sitfe" ~ ) (5.6)

Lastly, the pair (w*, w**) is constructed from the pair (w’, w”) according to:

uwi=u v =0 <u, > Qg — Rev' <u, Rgu>t S (5.7)
u” =", v =" <u, > gl — Rev” <u, Rgv>— SgW(5.8)
Remark 1: The above induction for tes® is elementary in the sense of being

non-transcendental: it depends only on the sign function. But on the face of
it, it looks non-intrinsical. Indeed, the partial sum:

urtesy’ = Z sig?’* tes® tes?” = Z sig;"/’w"teswgtesws* (5.9)
w'w =w w'w=w
is polarised, i.e. O-dependent. However, its push-invariant offshoot :
tes® := Z push” urtesy (5.10)

0<n<r(w)

is duly unpolarised. We might of course remove the polarisation in urtes)
itself by replacing it by this isotropic variant:

1 27
urtesy,, = = / urtesy df (5.11)
T Jo

but at the cost of rendering it less elementary, since urtes?,, would assume its
value in R rather than {—1,0, 1}. It would also depend hyperlogarithmically

on its indices, and thus take us back to something rather like formula (5.2),
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which we wanted to get away from. So the alternative for tes® is: either
an intrinsical but heavily transcendental expression or an elementary but
heavily polarised one!

Remark 2: In the induction (5.9) we might exchange everywhere the role
of u and v and still get the correct answer tes®, but via a different polarised
intermediary urtesy. The natural setting for studying tes® is the biprojective
space P™" equal to C* quotiented by the relation {w! ~ w?} & {u' =
Au? vt = pv? (A, p € C*)}. But rather than using biprojectivity to get rid
of two coordinates (u;, v;), it is often useful, on the contrary, to resort to the
augmented or long notation, by adding two redundant coordinates (ug, vp).
The long coordinates (u}, v}) relate to the short ones (u;, v;) under the rules:

U = U, v = U — v (1<i<r) (5.12)

1 Y

The long u; are constrained by uj + --- + uy = 0 while the long v are,
dually, regarded as defined up to a common additive constant. Thus we
have <u*,v*>=<u,v>.The indices ¢ of the long coordinates are viewed as
elements of Z,,1 = Z/(r+1)Z with the natural circular ordering on number
triplets circ(i; < 1o < i3) that goes with it. Lastly, we require r?—1 basic
“homographies” H;; on P"", defined by:

Hij(w) = Qiy(w)/Qi;(w) (i—3j#0;i,j € Zry1) (5.13)

Qij(w) = Y ul(v;—v)) (5.14)

cire(j<g<)

Qiyw) = Y up(vp—v) # Qiu(w) (5.15)

circ(i<g<j)

Main properties of tes®.

P;: the bimould tes® is bialternal, i.e. alternal and of alternal swappee.

Ps: in fact swap tes® = tes®.

Pj: tes® is push-invariant.

Py: tes® is pus-variant, i.e. of zero pus-average.

Ps: tes® assumes the sole values -1,0,1.

Pg: for r fixed but large, the sets Sy C P"" where tes® is £1, have positive
but incredibly small Lebesgue measure.

Py for r fixed, all three sets S_, Sy, Sy are path-connected.

Pg: for r fixed, the hypersurfaces S(H; j(w)) = 0 limit” but do not separate®

"that is to say, the boundaries of these sets lie on the hypersurfaces.

8that is to say, none of the three sets can be defined in terms of the sole signs
si(H; j(w)) = sign(S(H; j(w))), at least for r > 3. For r = 1, tes® = 1 and for r = 2,
tes® = %1 iff si(Ho,1(w)) = si(Hy2(w)) = si(Hao(w)) = £ and 0 otherwise.
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the sets S_, Sy, 5.
Py: tes” = 0 whenever w is semi-real, i.e. whenever one of its two compo-
nents u or v is real. ?

6 Tables.

For a double sequence W' as in (3.9), we set m(W) = (#Vi,...,#V,) as
usual. The following table gives, for low signatures m(W’), the number
p = p + p~ of terms on the right-hand side of (3.9), with u* denoting the
number of summands preceded by the sign =.

3

mo o=t p=pt+p m po=pt T

(1,1) 3= 241 (1,1,1) 15= 8+7 (1,1,1,1) 105= 53452
(1,2) 5= 342 (1,1,2) 35=18+17 (1,1,1,2) 315=158+157
(2,1) 6= 4+2 (1,2,1) 42=122420 (1,1,2,1) 378 =190+188
(1,3) 7= 443 (2,1,1) 45=24+21 (1,2,1,1) 405 = 2044201
(2,2) 15= 9+6 (1,1,3) 63=232+31 (2,1,1,1) 420 = 2124208
(3,1) 9= 643 (1,3,1) 81 =42+39 (1,1,1,3) 693 = 3474346
(1,4) 9= 544 (3,1,1) 90=48+42 (1,1,3,1) 891 = 4474444
(2,3) 28 =16+12 (1,2,2) 135=69466 (1,3,1,1) 990 = 4984492
(3,2) 30=18+12 (2,1,2) 140 = 72468 (3,1,1,1) 1050 = 530+520
(4,1) 12= 8+4 (2,2,1) 168 = 88480

The following tables give, for elementary signatures m(W) := (1,1, ...), the
scramble S® of M*®.

u u
SOt
uy , ug uy , ug ul2 , ul u12 , ug
S(mvvz) = —|-M('v1;'v2)—|-]\/[(’vz,v1:2)—]\/[(v1w2:1)
u u u u U u u u u u u u
Sl ivsley) = e es es) o pCer D eas) — pler s s
ulg , up , ug ulg , ug ,uz
—{—M( v 301:271)3) —M( vl :v2:1’1’3)
u1g s Uz, Ul ulg , Uz, u
—|—M( v av3av1:2) —M( vl av3av2:1)
u123 , u23 , u3 w123, u23 , u2 u123 , u3z , ug
—|—M( vy »v2;1vv3;2) —M( vl 71)3:17”2:3) +M( v1 vv3;1»v2;1)
(“123 5 U1 5 U3y (“123 5 U3 > vl )
v2 o, V1:2 5 Y3:27 — v2 o, V3:2 5 V1:2
(“123 5 U1, w2 ) (w1235 w12 > 2 ) (“123 5 ¥12 5 vl )

+M" vs svizsvas’ — M ovs vz svas’ 4 M ovs o v23 s v

9or purely imaginary, since under biprojectivity this amounts to the same. Of course,
tes™ vanishes in many more cases. In fact it vanishes most of the time: see Pg above.
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Soy 1y s vs)
PO D
L e )

V(S S D)
LM e )
MU e L vs)
FMORE )
M )
Y :%?’:39?&
MG e
MO )
MG )
MG U )
MGt e )
MO v e )
M otk sy L g)
M3 o L va ) vs)
M3 s e ) s)
LM L o)
M ok vt L vas)
(33° otz L ve | va)
(u123 s U3, Ugq, UL
MO
—|-M( ,v4,v1:3;v2:3)
M s L)
]\4(u123 . Zi : 1};?2 7 vii:IQ)
— M s L)
_|_M( u121§4 02?2 JQZ)
_|_M( u12)24 7 1:;:24 , 7;,34)
G v as)
( 1, U234 5 Ugq , U )
e )
+ M v v v s vas
M e L)
M e )
—}—M(u12 1334 viztl3 UZ:Ql)
MU T )
M s vas)

(41254345 ¥4 5 U1 )
— v2 5 V3 5 V4:3 5 V12
(412> U345 Uz, U3 )
— vl o5 V4, U345 V2:1
(U125 w1 - u34, U3 )
—|-Z\4 v2 5 V12, V4 5 V34
(4125 w2 u34, U4 )
+M" v v2i s vz s vay
(w125 ¥2 u34, U3 )
— V1 o5 V2:1 5, V4 5 V34
(w125 ¥1 34, U4 )
— [\/j v2 5 V1:2 5 V3 s V4:3
(4123 > u12 5 Ul o, Ud)
+M" vs s vaz vz, va
(123 > ®12 5 U2, ud)
—_ V3 5> V1:3 5 Y2:1 5 V4
(4123 > u12 5 U4, Ul )
4+ M vz vz, va s v
(123> v12 > U4 U2 )
— V3 5 V1:3 5 V4 5 V2:l
(123 5 U235 U3, U4\
+ MY v1 > v21 5 v3:2, va
(u1231“23’ u2 ,u4)
— V1 o, V3:1 5 V2:3 5 V4
(4123 > u23 > U4, U3 )
+ M v1ov2i s va s vai
(4123 5 u23 U4, U2 )
— V1 5 V3:1 5 V4 5 V2:3
(4123 > %4, v12, Ul )
—|—M V3 5 V4, V2:3 5 V1:2
(123> U4 > v12 U3 )
— V3, V4 5 V1:3 5 V2:l
(123 5 U4 > U235 U3
+ M v1ova v vai
(4123 > U4 5 U23 , U3 )
— vl o, U4, V31 5 V2:3
(415 u234 5 U23, U2 )
4+ M 1 va vz vais
(415 U234 5 U235 U3 )
— V1, V4 5 V245 V32
(415 U234 434, U4 )
+ M v, v2 vz vas
(41> u234 5 U34 U3
— V1, V2, V42, V34
(u12347 uyp o, uz , ug
+ V4 5 V14> U2:4 5 V34
(41234 U1 5 4 3
+ M vz vz, vaz,
(41234 ud 5 Ul 3
+ V25 V425 V12
(“1234  ud 5 U3 1
+ V25 V4:2 5 V3:2
(41234 > U4 5 U1, 2
— V3 5 V4:3 5 Y1:3 >
(1234 > u1 5 ud 2
— V3 5> V1:3 5 V4:3
(1234 > 4 > U3, 2
— vl 5 Y4:1 5 V3:1
(41234 U1 5 U2, 4
— V3 5> V1:3 5 V2:3
(41234 > U125 U3 1
+ M va 2 vza,
(41234 > 12 5 U1 3
—+ V4 5 VU245 V102
(“12347 U2 > U4 2
+M ) V1:3 > V4:3 »
(41234 U125 U2 4
+ V35 V13, V2:1
(%1234 > v12 5 U3
— V4 5 V145 V34 v2 1
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w12
V1:4
w12
v2:3
u12
v2:3
u34
V4:1
u34
v4:1
u3zq
v3:2
u34
v3:2
u3z4
v4:2
u3zq
V4:2
u3z4q
v3:1
u3z4
v3:1
ul
v1:4
uq
v4:1
ul
V1:4
ugq
V4:1
uq
v4:3
ugq
V4:3
ul
v1:2
ul
v1:2
u123
v3:4
U123
v1:4
U123
v2:4
U123
v2:4
u934
v3:1
U234
v3:1
U234
V4:1
U234
v2:1
U123
v3:4
U123
v3:4
u123
v1:4
U123
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u234
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U3:4
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v3:1
u23
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u23
v2:1
u12
v1:3
u12
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u34
v3:2
u3zq
v4:2
uy
v1:3
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v3:1
ul
v1:2
u3
v3:2
u2
v2:3
uq
v4:3
u2
v2:4
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u23
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The following tables give, for general signatures m(W) :=
scramble S* of M?®.

gl

m .

g

S¢

It

= (17 2)

uy , U2
Vi, Vo

uy , U2
Vi, Vo

=(1,3)

Uy, Uy
Vi, Ve

— (2,2)

uy , ug
Vi, Vo

)

(2,1)

)

)

)

) ‘/IZ(UI) )
(W12, u2 )

+M vl , V2, Ugl.g
u127u1’ 2)

+M V2 5 V112 5 Vglg
(“1271"12’“1)

+ M v2 o v vy

_ /
) ‘/1 - (Uly Ul)
(ul , Ul o, ug
+M V1 5 V979 5 V2
+M vl 5 V2, Vs

(“127 up o, Ul )

_|_M v2 5 V125 Vyrg

) ‘/1 = (Ul) )

/
Vo = (U27U2>
(v125 2, ug )
— M v1oov2i s varg
(¥125 %12, ug )
_M V2, V1.2 5 Vgl
) ‘/2 == (U2>
(¥125 %125 w1 )
H+ M vrov2i s vy
(v125 U2 5 Ul )
_M V1 o5 Y2:1 5 Vyrg
(M2 v12 5 U2 )
—M" vt v

Vo =

<U27 véa Ug)

ul,u2,u2 ,  ug ) (u12,u2,u2 U
+M V1 5 V2 5 Ugl.g s Voll.of _M V1 5 U215 Vgl s Voll.of
(M2 ¥12 5 w12 5 Ul ) (M2 ¥12 5 Uz 5 U
+M V2 5 Vgl Valligl 5 Vg’ N[N U2 5 V12, Vorq s Vongr
(Y125 w12 > Ul o, ug ) (Y125 w12 5 U125 U2
M V2o vara s Vi VT [ V2 0 Vol Y1l v Vora
(M2 w1 5 wa s up
M vz U2 varig s Yoy
/ /
) Vvl = (Ulavl) y ‘/2 = (?JQ,'U2)
(¥1,u2, g, Ul (Y12 w12 5 v12 5 Ul )
M v v2 s varg s v 7 e S R T IR Y]
(V1 U2, w1, up (M2, ¥2 5 w1, U2y
M vz v s Ve — M U1 v Vg s Varo
(W1 w1 o U2, w2y (M2 12 . Uz U2
S+ Mo v 2 varg — M U1 Vi Yair s Vot
(¥125¥12 5 w1 5 up ) (125 v12 5 v12 5 U2 )
M v v Vg s Vot V2 s VL2 s Virg s Vara/
(Y12 w125 w12, Ul ) (M2 ¥12 > v12 5 U2 )
+M V1o V2:1 0 Vorig o Virigr . [ U1 s v2:1 5 Vs s Vorys
(2> w12 > U1, Ul (125 ¥12 5 w2 5 Ul
M vz oo vare vy s Vi — N 2 s vz Varg s Vi
(125 w1 > wg u1) (125 u2 5wz o, Ul
+M V2 5 V1:2 5 Ugl.g s Vq _M V1 5 V2:1 5 Vgl.g s Vg
(¥125 w1 5 Ul s up
+ M2 25 V1 Vel
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=310, Vi=(ude) Vo= (02)

(u17“2) (ul, uy o, uyp o, ug uy o, u
S Vi, Vy — _|_M V1 5 Vs VMLl s 1)2) _|_M( Ui s U1/1:1 : zg : Ulllt/lAl/)
(ul y U2, Ul o, uj u12 u12 u -
+M Ul 5 U2, V7, s Ul”:l’) _M( v : vyl : vll}i/ : U;i//)
(’u12, u12 o, U12 5 Ul u12 u12 u ‘
+ M v v vaass ”1”:2> —M( EIE “2:21’ “17’141/)

("12 » U125, U1 o, Ul u12 u2 u ’
+M UL 5 V21 Vil.g o U1//:1/) _M( vl : v2:1 : v1/1:1 ) v;j/l:l/)
R T R

+M( V2 5 V1:2 5 Yyl.q 5 Vql.q!

= <1a 172) P ‘/1 - ('Ul) y ‘/2 - (UQ) 3 ‘/3 = (Ug,vé)

[SERE A8 DN VGt Rbe B S U )
U T ey I ey )

PR e ) G L )

P ey ) U st eyl
(”1a“23*“2v“3) “17“237”£3si3)

H+ M v vs o v2i3 . vgg _M(U17v3av2:3,1}3/
+M(u7}f3 UZ?I ”5/3;3 v1;:21) _]\4(11123 vqi:12 v7§-32 ”Z’sg)
U e e ey (e e vy o)
O e ) U ik ey
T VA R DR ) (S St Rt v§?:3
U123 5 12 5 U U :
+M§"ZZJ ’ 7;222 : Uiif : vi?’) —]\4(11123 : :11523 ”:/?ts : ”1;:21)
P e e ey g e )
("11J23 ’ u1 > U235, U2 U123 5> U123 5> U23 5, U
M S e ) M
R BN
R e e
_|_M v3 5 v2:3 v3/;3 ) v1;2) M(uud 2;25 vli;12 v;ﬁg)
) :
g e e ey g s )
e e s ey s s vas vy
(u123 > U23 , U23 , U3 )

_|_M Ul 5 ¥3:1 5 V2:3 5 Vgl.g
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m:= (1,2 =
(7 71) ) ‘/1_<U1) ) V2:<U27Ué> ’ ‘/3:<U3)

(;1#27“3) I
by y U2, U2, U
S Ve V) — +M(U1’v2’v2/12’v§) M(:’;l:u2yu3x “2 )
, U
(ul’u%’ S —+ 1 25 V3 Uglig
+ M v ovs vz vy ) ulg, ug , ug U
2/:2 3
¥ : — M vrosv2a vy, ,v3)
(Y12 w1 Uz, U2 N
+ M vz ov2s 3 ) (“z, vz ,uz, v
(U1 23, v 2/:2 —M = ’U2:1’U3:U2’22)
, , U923 5, U :
e ,U3:2,U2,2:3) _M(”vm,:jg,ulz, uy
+M(u12YU3, uyp o, ug ) e
V2 5 V3, V12 5 Y v vy vas
2/:2 —M(vlv% *“3:2»”:/2;2)

(u123, up o, U2 o, U2 )

+ M vs LB v23 s Vo —M

(2, w12, Uz v
3
V2 U125 Vol s v3)

uyy . up o, up

PR R
(“12 5 “12 u‘1 u —M" v2 vz ’v2"1)

7 :

+ M vz vara s vy : “3) (o203 v L vgr
(u12 e . _M vl o, V3, V2:1 v2/_2)

P S e ) o
: : — M v v2 v 113;2’)

ulg , Ul U
_"_M( v 'U2/:2 : 'Ug : Ur.lz/) (u123 . U23 vag L var
(%123 > u3 . u2 u —M" v vz vz, U2’=2)
MY e u2,2,2) (“123 > ¥123 > U23 , w2
(%123 » u23 » u3 o —M" v2 vz vz v2"3)
VS e gz |
+ » V2:1 5 V3:2 5 Vgl _M( v3 UQI:?i 31122 vgfl)

123 5 U123 5 12 »
+M( v2 o, V3:2 :'U }2 ’Uul (U123 Corly v N
(“123 - u23 2730 V2t — [ v2 vl Va2 :”2’22)
) y U23 u :
+M V1l 5 V2:1 5 Vglig ”3:32’ —]\4(%23 Lt vz gy
(v123 > v123 » u23 5 U3 v ey s
P a0 V320’ — N[ vz s varg s V3o vy 12’)
’ 3 ul H : H
_|_M vy, V3.2 v1:3 v:/2.3) s e
(“123 > 3, v12 , w ’ —M" v2 o va2 v, U2"1)
| :
(%123 - U123 2 —M" v2 V2 vt ”332’)
) y U3 o, U A :
+M v 5 U1:2 5 Y3:1 s v2/24) (o ot
) . _M V5 Vgl.g 5 V.9l 5 Vg, /)
+M( 11}53 s U1 5 U125 Ul ) (u123 u ‘ o
> V2:3 » Vg, L ug | vy y
PVl Vit — V20 V32 L) ”2’2:2)

(“123 5 U1 U2
3, u2
+ 125 1 w28 ,U2/:3) B (uigs ’1;;32 ,Uu12 , Ul )
(“128 > 125 vl w e
) 2 '
v3 »v2-37U12:v ) (3% a1
: ! u2 B 128 23 5 U2 )
M ) V2:1 5 V3:2 5 Vg/
: 27:3
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m = (27 17 1) ’ ‘/1 - (Uluvi) ) ‘/2 = (U2> ) ‘/3 = <U3)

(U1 U2, U3 (41> w1 Uz, Uy (415 u2,u3, w1y
Si\vi.ve, V3 *+MU1’UI’:1’”2’”3 —|—MU1’1’2’”3’U1/:1
(ul,u2,u1 7“3) (ulaul 7“237“3)
+M vl 5 V2, Vyr.q 5 V3 _M V1, Vs s V2 VU3:2
(U1-u23, U1, U2 (w125 U3, ug o oul )
H+ M v vs vy v — M v w3 Vo vy
(4125 U35 u1 o, Ul (H12, U2, ul o, U3y
+ M vz oovs vz vy — M v1ov2aa vy v
(4125 w1 Uz, Ul (410 w23, U3 o, Ul
+M V2 5 V1:2 5 V3 5 Vil — M v1oov2 s vsi2s vy
(41> w1 »u23, U2 (w12, w2 Uz, Ul
+M Y1, Y1/ 0 V3 > V2:3 _M V1 5 Y2:1, Y3, Y97
(Y125 w1, w1 o, U3) (41> v23, w1 o, U3
+M V2 5 V12 5 Vyr.q s V3 — M v1 v2 vy s v32
(415 U235 up o, Ul (Y12 w12 5 uz , u3)
H+ M v ovs 23 vy — Moo v v
(4125 %12, w1 o, u3) (4125 U3, w12, U2 )
+ M v v Vg v — M P13 vy s Vs
(4125 U35 U12 Ul ) (w125 u12 U3, U2 )
4+ M1 vs V21 Vg — M1 v1ra s Vs vy
(Y125 ®12 > U3, Ul ) (“123 > u3 > Ul o, Ul
H+ M v v 93 Vg — M v2 vs2, v vy
(4123 5 U1 5 U2 o, Ul (41235 1 5 u3 g
_|_M VU3 5 V1:3 5 V2:3 5 Vq/,q — M v2 vi2, U325, vy
(4123 U1 5 Ul o, ug ) (4123 5 u23 5 U2, Ul )
_|_M v3 5 V1:3 5 Vyr,1 > V2:3 — M v o3 v23 5 vy
(4123 > U3, Uz, Ul ) (41235 u3 > U125 Ul )
+M U1 5 V315 V2:1 5 Uyl — M v1os U3 Y21 Vg
(“123 > u23 , U3, Ul ) (123 > ¥123 > Ul 5 U3
+M V15 V21 5 ¥3:2 5 Vy/.g — M v1osv21 s vyrg s V32
(“123 > 23, w1l o, U3 ) (1235 u1 o, w1l o, U3 )
+M VL5 V21 5 Vql,1 > V3:2 — M v2 vi2s vy v32
(u123 > U1 s Ul o, ug ) (“123 > U2 5, U2, Up )
+ M v 235125 Vg — M V3 VLB U2 i
(#4123 > 4123 5 U23 , U3 ) (4123 > u23 5, U1, U2 )
_|_M V15 Vyl.q s Vg.p/ s U3:2 — M 1 o3 vy V23
u123 5 U123 > U12 5 U1 u123 > 123 5 U3 , U
+M( vl s V3:1 5 V2:3 s U1/:2) _M( vl o, U2:1 5 V3:2 Ull:g)
(“123 > U3, U1z, w2 (123 > U123 > u23 » U2 )
H+ M v vz v v — N VL s Var s Vaas o Y23
(4123 > %123, w1 5 ug ) (“123 > ®12 > w1z 5 U2 )
+ M v vs s vig s v — M v3 svi3 s vy Yoy
(#4123 > 41235 U3, U2 ) (4123 5 %123 5 U125 U2 )
+ M v v Ve o vt N[ VL VB Vg Yoy
(4123 > U125 U125 U1 )
+ M v v vl Virg
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