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Abstract. We extend the classical Siegel-Brjuno-Rüssmann linearization

theorem to the resonant case by showing that under A. D. Brjuno’s dio-

phantine condition, any resonant local analytic vector field (resp. diffeo-

morphism) possesses a well-defined correction which (1) depends on the

chart but, in any given chart, is unique (2) consists solely of resonant terms

and (3) has the property that, when substracted from the vector field (resp.

when factored out of the diffeomorphism), the vector field or diffeomor-

phism thus “corrected” becomes analytically linearizable (with a privileged

or “canonical” linearizing map). Moreover, in spite of the small denomina-

tors and contrary to a hitherto prevalent opinion, the correction’s analyticity

can be established by pure combinatorics, without any analysis.
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1. Introduction

The present paper is a natural sequel to an earlier investigation [E.S.] in so

far as it carries on the study of the main “associates” of “local objects”.

By local objects we mean local vector fields or diffeomorphisms (usually

analytic and resonant) and by “associates” we mean other natural objects

“functorially” attached to, or constructed from, these source objects. The

most important associates are (1) the nilpotent part (2) the correction and

corrected forms (3) the normal and prenormal forms (4) the linearizing or

normalizing transformations (5) the analytic invariants.

In its original draft, our paper dealt in parallel with two classes of asso-

ciates: the correction and corrected form on the one hand, and the so-called

continuous prenormal forms (in particular the “distinguished”, “trimmed”,

“regal”, and “royal” forms) on the other hand.

This synoptic study had the advantage of highlighting the far- going

differences between these two sets of apparently similar notions. However,

this resulted in a paper of excessive length and, much to our regret, we had

to halve it for publication. So what we present here is simply a study of the

correction and corrected form of resonant objects. The other notions, such

as the nilpotent parts and continuous prenormalizations, get only a cursory

mention, for the sake of perspective and contrast.

The corrected form (i.e. the object itself minus its correction) is con-

structed by chopping off a suitable resonant part of the source object, so

as to restore formal linearizability. Relative to any given chart, the correc-

tion, as a formal object, is unique, but the real challenge is to establish its

convergence. Indeed, despite its superficial similarity with the continuous

prenormal forms, which are generically divergent, and despite the presence

of small denominators, we prove (under the probably optimal diophantine

condition introduced by A. D. Brjuno) that the correction is always analytic

and that the corrected form that goes with it is analytically linearizable. In

fact, as we argue towards the end of this section (Remark 1), this statement

may be viewed as the natural extension to the resonant case of the classical

Siegel-Brjuno-Rüssmann linearization theorem. Furthermore, among all the

analytic coordinate changes which linearize the corrected form, there exists

one which is indisputably “canonical” and which turns out to be closely re-

lated to the “royal form”, which itself is the simplest continuous prenormal

form.

As usual in these questions, the investigation splits into a formal and an

analytic part. The formal preparation involves a lot of tedium (with notions

like moulds and mould expansions, which many find unsavoury and would

gladly do without) but it should not be despised nor neglected. Indeed, when

properly conducted, the formal preliminaries, tedious though they are, can

spare us a lot of spurious analytic complications which, if anything, are ten
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times more tedious. In the present instance, a careful formal investigation

reveals that there is no need at all for the drudgery of small denominator

compensation, simply because the “highly multiple” small denominators,

which were thought to be a central difficulty inherent in the question, do

not exist at all: they merely seem to be there, because faulty (or rather

uneconomical) modes of calculations seem to introduce them.

But before starting the investigation, a few reminders about local objects

(this section) and moulds (next section) are in order, along with some useful

terminology.

Local objects and their homogeneous components

We shall be dealing with analytic local objects of two sorts, i. e. on the one

hand, with local analytic vector fields (or fields for short) on Cν at 0:

(1.1) X =
∑

1≤i≤ν

Xi(x)∂xi
(Xi(0) = 0; Xi(x) ∈ C{x})

and, on the other hand, with local analytic self-mappings (or diffeos, short

for diffeomorphisms) of Cν with 0 as fixed point:

(1.2) f : x → fi(x) (1 ≤ i ≤ ν; fi(0) = 0; fi(x) ∈ C{x})

or equivalently, with the related substitution operators (capital-lettered):

(1.3) F : ϕ → F · ϕ
def
= ϕ ◦ f (ϕ(x) and ϕ ◦ f(x) ∈ C{x}).

All along, we shall assume the linear part to be diagonalizable, and work

with “prepared forms”, i. e. consider analytic charts where the linear part is

diagonal.

Thus, we shall consider fields of the form:

(1.4) X = X lin +
∑

n

Bn

(1.4∗) X lin =

ν
∑

i=1

λixi∂xi
(λi ∈ C)

(1.4∗∗) Bn = Bn1,...,nν = homogeneous part of degree n(ni ≥ −1)

and diffeos of the form:

(1.5) F =

{

1 +
∑

n

Bn

}

F lin
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{

F lin · ϕ(x1, . . . , xν)
def
= ϕ(l1x1, . . . , lνxν)

(li ∈ C∗; ϕ(x) ∈ C{x})
(1.5∗)

(1.5∗∗) Bn = Bn1,...,nν = homogeneous part of degree n(ni ≥ −1)

Of course, “n-homogeneous” means that for each monomial xm, we have:







Bn · xm = βn,mxn+m with βn,m ∈ C;

xm =
∏

i

xmi

i ; xn =
∏

i

xni

i .(1.6)

Each Bn is a differential operator of order one (for a field) or of some finite

order (for a diffeo). Note that, for any given Bn, at most one component ni

may assume the value −1.

Resonance, quasiresonance, nihilence

The eigenvalues λi or li will be referred to as the object’s multipliers or,

collectively, as its spectrum. We say that the local object (field or diffeo) is

resonant, if there exist non-trivial relations of the form:

(1.7)
∑

1≤i≤ν

miλi = 0 or λj (mi ∈ N)

(1.8)
∏

1≤i≤ν

(li)
mi = 1 or lj (mi ∈ N)

We say that the object is quasiresonant if, among all the non-vanishing

expressions α(m) = 〈m, λ〉 or α(m) = lm − 1 (with coefficients mi ≥ 0
except at most one that may be equal to −1) there is a subinfinity that

goes to 0 “abnormally fast”, thus violating the two equivalent diophantine

conditions:

(1.9) S
def
=
∑

k

2−k log

(

1

̟(2k)

)

< +∞ (A.D.Brjuno)

(1.9∗) S∗ def
=
∑

k

k−2 log

(

1

̟(k)

)

< +∞ (H.Rüssmann)

where

̟(k)
def
= inf|α(m)|,

with an inf over all m such that m1 + . . . + mk ≤ k and α(m) 6= 0.
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Lastly, nihilence (which presupposes resonance) amounts to the exis-

tence of a “first integral” in the guise of a (formal) power series H(x) ∈
C[[x]] with the invariance property:

(1.10) X · H(x) = 0 (for a field)

(1.10∗) H ◦ f(x)
def
= F · H(x) = H(x) (for a diffeo).

Resonance (resp. quasiresonance or nihilence) complicates the study of local

objects by creating “vanishing denominators” (resp. “small denominators”).

With diffeos an additional, though more harmless complication may

enter the picture, namely the torsion t, where t is the well-defined natural

integer such that:

(1.11) (1/t)(2πiZ) = (2πiQ) ∩

{

(2πiZ) ⊕
1≤j≤ν

((log lj)Z)

}

(Note that (1.11) makes sense, since the set on the right-hand side does not

depend on the actual determination chosen for log li). To simplify, we shall

restrict ourselves to torsion-free diffeos, i. e. diffeos with t = 1. Such diffeos

are characterized by the fact that their spectrum {li} has a (non-unique)

coherent logarithm{λi = log li}, i. e. a set{λi} such that each multiplicative

resonance relation lm = 1 translates into an additive resonance relation

〈m, λ〉 = 0. Clearly, torsion-affected diffeos have torsion-free iterates of

order t, so that, for all intents and purposes, studying the torsion-free case

is enough.

The nilpotent part of resonant objects

For resonant vector fields X as in (1.4), there is a classical (see [B]) decom-

position:

(1.12) X = Xdia + Xnal (Xdia and Xnal are formal fields)

(1.12∗) [X, Xdia] = [X, Xnal] = [Xdia, Xnal] = 0

into a “diagonalizable part” Xdia and a “nilpotent part” Xnal. This decom-

position is intrinsic (i.e. chart- independent) and fully characterized by the

fact that Xdia is (formally) linearizable while Xnal, on the contrary, has no

linear component.

Similarly, any resonant diffeo F as in (1.5) has an intrinsic decomposi-

tion:

(1.13) F = F dieF nel = F nelF die (F die and F nel are formal diffeos)
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into a (formally) linearizable part F die and an identity-tangent part F nel.

Remark. Except for the unproblematic linear parts X lin and F lin, the ob-

jects attached to vector fields (resp. diffeos) will carry the vowel a (resp. the

vowel e). Thus we will have Xnal, Xpran, Xcarr etc. as against F nel, F pren,

F cerr etc. The reason for this convention lies in the nature of the moulds

involved in both cases (see Sect. 2).

Continuous prenormalization versus discontinuous normalization

Though simplest in terms of outward shape, the normal forms Xnarm and

F nerm have definite drawbacks. One is the unavoidably non-continuous

nature of the maps:

(1.16) X → Xnarm; F → F nerm

even when we keep the linear parts X lin and F lin fixed. Another is the ab-

sence, thus far, of general and truly algorithmic procedures for determining

them, especially in the case of highly resonant spectra. (See [Be] and [Bai]).

A third drawback (operative even in the case of simple resonance) is their un-

suitability for mechanical computation: the exact shape of the normal forms

always depends on one or several discrete invariants (such as the “levels”

p.See [E.1]) whose exact value, in turn, depends on whether certain real or

complex numbers (which depend polynomially on the Taylor coefficients of

the object) do or do not vanish – a matter which a computer clearly cannot

decide.

So, for many purposes, it is preferable to work with continuous prenormal

forms or rather, to be quite precise, with prenormal forms which depend

continuously on the homogeneous componentsBn of the object, whose linear

part is kept fixed (continuous dependence on the linear part would be an

obviously impossible demand).

In concrete terms, a continuous prenormalization is a universal corre-

spondence of the form:






X = X lin +
∑

Bn → Xpran = X lin +
∑

Pran•B•

= X lin +
∑

Pranω1,...,ωrBnr . . . Bn1

(1.16∗)







F =
{

1 +
∑

Bn

}

F lin → F pren =
{

∑

Pren•B•

}

F lin

=
{

∑

Prenω1,...,ωrBnr . . . Bn1

}(1.16∗∗)

which is entirely determined by a given family, Pran• or Pren•, of scalar

coefficients depending on sequences made up of the “frequencies” ωi =
〈ni, λ〉.
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Although there exist infinitely many continuous prenormalizations (for

case-studies see [E. S.], [E. V. 1], [E. V. 2]), one of them, the so-called “royal”

prenormalization, stands out as “canonical”. A detailed investigation of its

properties has already appeared in [E. V. 0] and another one is forthcoming

in [E. V. 2], but its definition will be mentioned in Sect. 6, infra, because of

its relevance to the canonical linearization of corrected objects.

The correction and corrected form

To any resonant vector field X , we associate a “correction” Xcarr and a

“corrected form” Xcarrd:

(1.17) X → Xcarrd = X − Xcarr.

The correction is nilpotent (i.e. without linear part) and consists only of

resonant terms:

(1.17∗) [X lin, Xcarr] = 0

while the corrected form is required to be linearizable under some change

of coordinates Θcarr

(1.17∗∗) Xcarrd = ΘcarrX
linΘ−1

carr

It is an easy matter to check (see Sect. 4) that, for any given chart, Xcarr

and Xcarrd are uniquely characterized by the combination of (1.17), (1.17∗),

(1.17∗∗) and that both objects are chart-dependent. On the other hand, the

corrected form is not a prenormal form, and we shall see that its analytic

properties are strikingly different from those of prenormal forms.

For resonant diffeos F , we have one correction but two corrected forms,

right and left:

(1.18) F → F cerrd = (F cerr)−1 · F

(1.19) F → F cerrd∗

= F · (F cerr)−1

but the difference is immaterial, since F cerrd and F cerrd∗
are conjugate

under F cerr. We shall stick with the definition (1.18), supplemented by the

resonance requirement for the correction:

(1.18∗) F cerrF lin = F linF cerr (F cerr = 1 + . . .)

and by the linearizability condition for the corrected form:

(1.18∗∗) F cerrd = ΘcerrF
linΘ−1

cerr
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Main analytic results F1, F2, F3, F4

(F1) Analytic linearization

In the absence of resonance and quasiresonance, analytic objects are ana-

lytically linearizable. (See [B], [R]).

(F2) Ramified-seriable linearization

Under so-called ramified-seriable changes of coordinates (which involve

fractional powers of the variables but share with analytic changes of coordi-

nates the property of unique summability), even resonant or quasiresonant

objects can be effectively linearized in spiral-like domains of optimal size.

Underpinning this possibility is the tantalizing phenomenon of compensa-

tion. See [E.2] and [E.3].

(F3) Resonance-induced resurgence

For resonant, but non-quasiresonant objects, all the relevant associated ob-

jects tend to be divergent and resurgent (meaning of course that they involve

divergent power series which happen to be resurgent relative to certain well-

specified variables), but the actual pattern of resurgence depends a good deal

on the nature of the associated objects:

(F ′
3) For the intrinsic (i.e. chart-independent) associated objects (such as the

“formal integral” x(z, u); the nilpotent parts Xnal or F nel; the normalizing

change of coordinates Θnar and Θ−1
nar; the fractional iterates of diffeos; etc.)

the resurgence involved is of “canonical type”. It is governed by the so-called

Bridge Equation:

(1.19)
•
∆ω x(z, u) = Aωx(z, u) (

•
ω ∈ Ω)

written here in connection with the formal integral:

(1.20) x(z, u) = {x1(z, u1, . . . , uν−1), . . . , xν(z, u1, . . . , uν−1)}

(1.20∗) ∂zxi(z, u) = Xi(x(z, u)) (for fields) (1 ≤ i ≤ ν)

(1.20∗∗) xi(z + 1, u) = fi(x(z, u)) (for diffeos) (1 ≤ i ≤ ν).

Roughly speaking, the Bridge Equation says that applying an alien deriva-

tion
•
∆ω to the resurgent object at hand is equivalent to applying an ordinary

partial differential operator Aω. Moreover, the operators Aω in question

happen to be analytic invariants of the original object X or F . Lastly, the

“resurgence lattice” (i.e. the set of all indices ω such that
•
∆ω may act

non-trivially) happens in this case to be the canonical resurgence lattice

Ω spanned by the multipliers λ1, . . . , λν (with addition of the universal

component 2πiZ for diffeos). See [E.1], [E.3] etc.
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(F ′′
3 ) For the main non-intrinsic associated objects, on the other hand, such

as the “remarkable” prenormal forms, we still have resurgence, but of a very

special sort: it no longer involves the holomorphic invariants Aω; it is of

“rigid type”; and the relevant “resurgence lattices” are often more intricate

than Ω (See [E. V. 1], [E. V. 2]).

(F4) Analytic linearizability of the corrected form

The corrected form Xcarrd or F cerrd of resonant objects stands apart from

most other “associated objects” (both intrinsic or non-intrinsic) since it dis-

plays neither divergence nor resurgence. More precisely, under the sole

diophantine hypothesis of Brjuno, it can be shown to be both analytic and

analytically linearizable (See Sect. 4, Sect. 5 and Sect. 6 below).

The present paper is devoted to the correction, the corrected form, and the

latter’s canonical linearization. The follow-up paper [E. V. 2] will deal with

the four most remarkable prenormal forms (“distinguished”; “trimmed”;

“regal”; “royal”). The nilpotent part and its divergence-resurgence proper-

ties was investigated in a previous paper [E. S.]. Lastly, the formal integral

and the analytic invariants are the subject-matter of an entire book [E. 1].

Remark 1. What survives of the linearization theorem in the resonant case?

Since Brjuno’s diophantine condition (1.9) still makes sense for reso-

nant objects, and may or may not be fulfilled, the question arises as to its

implications when it is fulfilled. Clearly, the answer cannot lie in the conver-

gence of the linearizing maps, since even formal linearization is generally

impossible in that case. Nor can it lie in the convergence of the normalizing

or prenormalizing maps, since these are known to be generically divergent

(see (F ′
3)). So what? Well, it would seem that the above-mentioned theorem

(F4) about the analyticity of the correction, and analytical linearizability of

the corrected form, provides what is probably the closest and most natural

counterpart, in the resonant case, of the classical linearization theorems pi-

oneered by C.L. Siegel and improved upon by A.D. Brjuno (for vector fields)

and H. Rüssmann (for diffeos).

Remark 2. Earlier work by G. Gallavotti and L. H. Eliasson

So far as we know, the notion of “correction” was first introduced (under

the name of Wick invariant and for Hamiltonian vector fields) in [G.] by

the theoretical physicist G. Gallavotti. He was motivated by an analogy with

renormalization in quantum field theory, and conjectured the correction’s an-

alyticity. Prior to us, L. H. Eliasson established this analyticity in a series of

recent articles [E.1], [E.2], [E.3], but only for the correction of vector fields

(not diffeomorphisms) and under unnecessarily restrictive diophantine con-

ditions (Siegel’s rather than Brjuno’s). These pioneering papers by Eliasson

found a large echo, especially among theoretical physicists, because at the

time they represented the first and only attempt at a purely analytical or di-
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rect treatment of the small denominators of classical mechanics and KAM

theory. But the main difference between his and our approach lies in this: L.

H. Eliasson was under the impression that small denominators with “high

multiplicities” were really present, and he had to resort to hard analysis to

show that they somehow “compensated” each other. We, on the other hand,

establish by purely algebraic manipulations that these small denominators

actually do not exist: they are an optical illusion, as it were, and so the

question of compensating them does not arise. Since then, we had several

exchanges with L.H. Eliasson, who read our first draft and passed useful

comments. We wish to thank him for that.

Remark 3. Why bother about the “correction”?

Let us consider vector fields for definitness. Since the correction Xcarr

of a field X depends on the chart, it is sometimes dismissed as an “artificial”

notion, of little or no significance for the dynamics of vector fields. This is

a gross misconception, which two simple examples will suffice to dispel.

Fix two local vector fields X and Y with identical linear parts and

assume that Y is linearizable. X and Y may be anything but, to avoid trivial

situations, think of them as being resonant. Use “A ∼ B” as short-hand for

“A formally conjugate to B” and consider these two problems:

Problem 1. Find a local field Z1 such that

(1.21) X − Z1 ∼ Y

(1.21∗) [X, Z1] = 0

Problem 2. Find a local field Z2 such that

(1.22) X − Z2 ∼ Y

(1.22∗) [Y, Z2] = 0

It so happens that each of these problems always admits a unique formal

solution, Z1 or Z2, which is obviously chart-invariant. In other words, the

fields Z1 and Z2 are “intrinsic” or “geometric” functions of the pair (X, Y )

and, as such, they have a lot to say about the joint dynamics of X and Y .

If we now place ourselves in a chart where the linearizable field Y
actually is linear, we see at once that in that chart:

(1.23) Y = X lin; Z1 = Xnal;Z2 = Xcarr

Thus, despite the deceptive similarity, Problem 1 is akin to the search for

the nilpotent part, and its solution Z1 is, generally speaking, divergent-

resurgent; while Problem 2 is akin to the search for the correction, and its

solution Z2 is always (under Brjuno’s diophantine condition) convergent.
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That said, it would be easy to generalize both examples, and to produce

two long lists, say List 1 and List 2, of Lie-bracket equations or systems,

involving local vector fields and exhibiting exactly the same features as,

respectively, Problem 1 and Problem 2.

Summing up, we may say that the “correction” derives its importance

from three facts:

(i) when considered in its proper setting, it is a perfectly geometric notion;

(ii) it is the simplest representative of a whole class (“List 2”) of similar

problems;

(iii) it is the most elementary object where we come across the already

hinted-at “non-appearance of multiple small denominators”, and there-

fore an ideal test-bench for the study of this fascinating phenomenon.

2. Reminder about moulds, amplification and arborification

The operations (+, ×, ◦) on moulds

A mould M• is a family of elements Mω of a given commutative ring

or algebra, with upper indexation by sequences ω = (ω1, . . . , ωr), which

include the “ empty sequence” ∅. These sequences have arbitrary lengths

r = r(ω) ≥ 0 and their components ωi range over a set Ω that may be any

abelian group or semigroup. Throughout, we use the notation:

(2.1) ‖ω‖ = ω1 + . . . + ωr if ω = (ω1, . . . , ωr)

and denote by ω
1
ω

2 the juxtaposition of two sequences ω
1 and ω

2. For

greater clarity, we use bold-face with upper indexation for sequences (ω,

ω
j etc.) and italic characters with lower indexation for their components

(ωi, ωj
i etc.).

The addition A• + B• on moulds is trivially defined, while the multipli-

cation

A• × B• = C• (non-commutative but associative)

and composition

A• ◦ B• = D• (also non-commutative but associative)

are defined by:

(2.2) Cω =
∑

ω
1
ω

2=ω

Aω
1

Bω
2

(2.3) Dω =
∑

ω1ω2...ωs=ω

1≤s;ωi 6=∅

A‖ω
1‖,‖ω

2‖,...,‖ω
s‖ Bω

1

Bω
2

. . . Bω
s
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Observe that the summation rule in (2.2) allows for only two factor sequences

ω
1, ω

2, any of which may turn empty, so that the sum includes the terms

A∅Bω and AωB∅ at both ends; whereas the summation prescription in

(2.3) allows for more than two factor sequences, but rules out empty factors

ω
i.

The arch-trivial moulds 1• and I• defined by:

(2.4) 1∅ = 1; 1ω1,...,ωr = 0 if r ≥ 1 (∀ωi)

(2.5) I∅ = 0; Iω1 = 1 (∀ω1); Iω1,...,ωr = 0(∀r ≥ 2,∀ωi)

clearly behave as units for mould multiplication and mould composition

respectively.

Mould-comould contractions

Let the “object” Ob be either a local vector field Y without linear part:

(2.6) Ob = Y =
∑

Bn (Bn homogeneous)

or a local, identity-tangent diffeo G:

(2.7) Ob = G = 1 +
∑

Bn (Bn homogeneous).

To any such Ob we associate an operator-valued “comould” B• by putting:

(2.8) B∅

def
= 1;Bn1,...,nr

def
= Bnr . . . Bn2

· Bn1

and we let moulds M• with indices ωi in C act on these Ob through mould-

comould contraction:

(2.9) ActM•

(Ob)
def
=
∑

M•B• =
∑

r≥0

Mω1,...,ωrBn1,...,nr

Obviously, the action of M• is chart-dependent, and relative to a fixed scalar

product:

(2.9∗) n1 → 〈n1, λ〉 = ω1, . . . , nr → 〈nr, λ〉 = ωr.

Moreover, we have:

(2.10) (ActM•

· ActN•

)Ob = ActM•◦N•

· Ob

(2.11) (ActM•

Ob)(ActN•

Ob) = ActN•×M•

· Ob.

(Note the order reversal in (2.11), but not in (2.10)).
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Useful moulds tend to display special “symmetries”. Four classes in

particular stand out: they are the symmetral, alternal, symmetrel, alternel

moulds.

Their quickest characterization is in terms of their action on local objects:

(2.12) symmetral turns field into diffeo

(2.13) alternal turns field into field

(2.14) symmetrel turns diffeo into diffeo

(2.15) alternel turns diffeo into field.

The analytical translation of these properties is as follows:

(2.16)

(M• symmetral) ⇒ Mω
1

Mω
2

=
∑

Mω (ω ∈ sh(ω1, ω2))

(2.17) (M• alternal) ⇒ 0 =
∑

Mω (ω ∈ sh(ω1, ω2))

(2.18)

(M• symmetrel) ⇒ Mω
1

Mω
2

=
∑

Mω (ω ∈ ctsh(ω1, ω2))

(2.19) (M• alternel) ⇒ 0 =
∑

Mω (ω ∈ ctsh(ω1, ω2))

All sums are finite. The identities hold for any pair ω
1, ω2, except that in

(2.17) and (2.19) we must assume ω
1 6= ∅, ω

2 6= ∅. The abbreviations sh

and ctsh stand for “shuffling” and “contracting shuffling”. More precisely,

sh(ω1, ω2) is the set of all sequences ω that can be obtained by intermin-

gling the sequences ω
1 and ω

2 under preservation of their internal order;

while ctsh(ω1, ω2) contains all these sequences ω, plus those that can be

derived by contracting (pairwise) adjoining elements from ω
1 and ω

2.

Thus, if ω
1 = (ω1) and ω

2 = (ω2, ω3), the set sh(ω1, ω2) contains

(ω1, ω2, ω3), (ω2, ω1, ω3), (ω2, ω3, ω1),

while ctsh(ω1, ω2) contains two additional sequences, namely

(ω1 + ω2, ω3) and (ω2, ω1 + ω3).

Mould action also gives the key to the numerous stability properties of

moulds, such as:
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(Symmetral) × (Symmetral) = (Symmetral)(2.20)

(Symmetrel) × (Symmetrel) = (Symmetrel)(2.21)

(Alternal) ◦ (Alternal) = (Alternal)(2.22)

(Symmetrel-1•)◦ (Symmetrel-1•) = (Symmetrel-1•)(2.23)

As often as not, mould expansions in the raw form (2.9) are ill-suited

for studying the convergence or divergence properties of local objects, and

it takes adequate regroupings to disentangle the situation. Sometimes it is

necessary to take hold of a “principal part” Ob◦ of the object Ob (usually,

Ob◦ consists of resonant components only) and to regroup all terms stem-

ming from Ob◦ in suitable “clusters”. In terms of mould expansions, this

translates into an operation known as mould amplification.

In other situations, one has to replace the fully ordered sequences ω

occuring in mould expansions by partially ordered sequences ω
<. The

effect on moulds of these re-orderings is known as mould arborification. In

certain cases, one must take recourse to both techniques, amplification and

arborification, at the same time.

The technique of mould amplification is pertinent whenever we deal with

divergent-resurgent objects, such as the nilpotent parts or the continuous

prenormalizations. But it has no direct bearing on the present investigation,

and so we will be content here to describe mould arborification (which,

stricto sensu, applies only to symmetral or alternal moulds, i.e. those that can

be made to act on vector fields) and its natural variant, mould erborification

(which applies to symmetrel or alternel moulds, i.e. those acting on diffeos).

Our excuse for burdening the reader with these notions is, first, that we

absolutely require them and, second, that they have a very wide range of

application.

Arborification and coarborification

Arborification consists in replacing fully ordered sequences ω by sequences

ω
< endowed with an arborescent partial order (meaning that each element

ωi in ω
< has at most one immediate predecessor ωi−).

For any pair (ω, ω<), we define sh

(

ω
<

ω

)

(resp. ctsh

(

ω
<

ω

)

) as be-

ing the number of order preserving bijections (resp. contracting surjections)

of ω
< into ω.

For symmetral or alternal (resp. symmetrel or alternel) moulds, we resort

to arborification proper (resp. erborification), which obeys the formula:

(2.24) Mω
<

=
∑

sh

(

ω
<

ω

)

Mω

(

resp.
∑

ctsh

(

ω
<

ω

)

Mω

)
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The dual relations for comoulds obviously read:

(2.25) Bn =
∑

sh

(

n<

n

)

Bn<

(

resp.
∑

ctsh

(

n<

n

)

Bn<

)

.

But whereas (2.24) fully defines M
<
• in terms of M•, (2.25) does not

suffice to determine B<
•

. So we impose additional natural conditions. For

instance, for a “cosymmetral” comould B• built as in (2.8) from the ho-

mogeneous components Bni
of a vector field, we define Bn< as being the

differential operator that acts on any given test function ϕ(x) in C{x} ac-

cording to:

(2.26) Bn<ϕ(x)
def
={Bnr . . . Bn1

}<ϕ(x) (here n< = (n1, . . . , nr)
<)

where each operator Bni
within {. . .}< is made to act on ϕ(x) alone if ni

has no predecessor in n<, or else on the monomial xni− implicit in Bni−
if

ni− is the (necessarily unique) predecessor of ni in n<.

Since arborification-coarborification (like erborification-coerborification)

are dual operations, we have:

(2.27)
∑

M•B• =
∑

M
<
•B<

•
(formally)

but in numerous instances the seemingly harmless passage from • to
<
•

restores normal convergence, meaning that

∑

|M
<
• | ‖B<

•
‖

may converge even when

∑

|M•| ‖B•‖

diverges.

Some elementary examples (for illustration and future use)

For any sequence ω = (ω1, . . . , ωr) with ωi ∈ C, we put:

‖ω‖ = ω1 + . . . + ωr; ω̌i = ω1 + . . . + ωi;

ω̂i = ωi + . . . + ωr (∀i).(2.28)

Then we introduce six moulds Sa•, invSa•, Ta•, Se•, invSe•, Te• (defined

“almost everywhere”), by putting:

Sa∅ = invSa∅ = Se∅ = invSe∅ = 1; Ta∅ = Te∅ = 0(2.29)

Saω1,...,ωr = (−ω̌1)
−1 . . . (−ω̌r)

−1(2.30)
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invSaω1,...,ωr = (ω̂1)
−1 . . . (ω̂r)

−1(2.31)

Taω1,...,ωr = Saω1,...,ωr−1 = invSaω2,...,ωr if ‖ω‖ = 0(2.32)

= 0 if ‖ω‖ 6= 0

Seω1,...,ωr = e−‖ω‖(e−ω̌1 − 1)−1 . . . (e−ω̌r − 1)−1(2.33)

invSeω1,...,ωr = (e−ω̂1 − 1)−1 . . . (e−ω̂r − 1)−1(2.34)

Teω1,...,ωr = Seω1,...,ωr−1 = invSeω2,...,ωr if ‖ω‖ = 0(2.35)

= 0 if ‖ω‖ 6= 0

Lemma 2.1 Sa• and invSa• are symmetral and mutually inverse (Sa• ×
invSa• = 1•)

Se• and invSe• are symmetrel and mutually inverse (Se• × invSe• = 1•)

Ta• is alternal and Te• is alternel.

Lemma 2.2 For any non-resonant vector field X as in (1.4) and B• as in

(2.8), we have the formal linearization:

(2.36) X = ΘX linΘ−1

with two reciprocal diffeos:

(2.37) Θ =
∑

Sa•B• ; Θ−1 =
∑

invSa•B•

Lemma 2.3 For any non-resonant diffeo F as in (1.5) and B• as in (2.8),

we have the formal linearization:

(2.38) F = ΘF linΘ−1

with two reciprocal diffeos:

(2.39) Θ =
∑

Se•B• ; Θ−1 =
∑

invSe•B•

Lemma 2.4 Under Brjuno’s diophantine condition (1.9), although the mould

expansions (2.37) and (2.39) are generically non-convergent (in norm), ar-

borification restores normal convergence in (2.37) and erborification re-

stores it in (2.39).

Lemma 2.5 Under arborification (resp. erborification) the moulds invSa•

(resp. invSe•) retain their expression (2.31) (resp. (2.34)) except that the

sums

ω̂1 = ωi + . . . + ωr

now extend to all components ωj which are posterior (or equal) to ωi relative

to the arborescent order of ω
< (Sa• and Se• do not arborify so simply).
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3. Mould expansion and variance of the correction

Throughout, we will consider local, analytic, resonant vector fields

X = X lin +
∑

Bn

or diffeos

F = (1 +
∑

Bn)F lin

in a “prepared chart” (1.4) or (1.5). We are going to expand the principal

“associated objects” by contracting the comould B• introduced in (2.8) with

suitable moulds. Although our immediate concern in this paper is with the

corrected forms, we must briefly recall, for future use, some basic results

about the nilpotent parts.

Mould expansion of the nilpotent part Lemma 3.1. The nilpotent part

Xnal (resp. F nel) of a resonant vector field X (resp. diffeo F ), which was

defined by equation (1.12–12*) (resp. (1.13)), admits a mould expansion:

(3.1) Xnal =
∑

Nal•B• (Nal• alternal)

(3.2) F nel =
∑

Nel•B• (Nel• alternel)

with well defined moulds Nal• and Nel• explicitly given by:











Nalω =
∑

ω=aω
1
ω

2...ωsb

(

(daa)s−1

(s − 1)!

)

×[(invSaaa) · Taaω
1

· Taaω
2

. . .Taaω
s

(Saab)]

(3.3)











Nelω =
∑

ω=aω
1
ω

2...ωsb

(

(dee)s−1

(s − 1)!

)

×[(invSeea) · Teeω
1

· Teeω
2

. . .Teeω
s

(Seeb)]

(3.4)

As this lemma is mentioned simply for information, we will be content with

expliciting the ingredients of Nal• and Nel•.

Whereas the moulds Sa•, invSa•, Ta•, Se•, invSe•, Te• introduced

in (2.29)–(2.35) were defined almost everywhere, but possessed definite

“symmetries”, we now require similar moulds, marked with a double vowel

(aa or ee), which will be defined everywhere, will coincide with them almost

everywhere, but will be neither symmetral/el nor alternal/el.

For any given sequence ω of length r = r(ω) we set:

(3.5) invSaaω = invSaω, invSeeω = invSeω if ω̂1ω̂2 . . . ω̂r 6= 0
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(3.5∗) invSaaω = 0, invSeeω = 0 otherwise.

(3.6) Saaω = Saω, Seeω = Seω if ω̌1ω̌2 . . . ω̌r 6= 0

(3.6∗) Saaω = 0, Seeω = 0 otherwise.

{

Taaω = Taω , Teeω = Teω

if ‖ω‖ = 0 and ω̌1ω̌2 . . . ω̌r−1 6= 0 6= ω̂2ω̂3 . . . ω̂r
(3.7)

(3.7∗) Taaω = 0 , Teeω = 0 otherwise.

Of course Saa∅ = invSaa∅ = See∅ = invSee∅ = 1, Taa∅ = Tee∅ = 0.

Then we require derivations daa and dee which act as follows on the above

symbols:

(daa)s

s!
(Saaω)

def
= Saaω

∑

1≤i1≤...≤is≤r

(ω̌i1)
−1 . . . (ω̌is)

−1(3.8)

(daa)s

s!
(invSaaω)

def
= invSaaω

∑

1≤i1≤...≤is≤r

(−ω̂i1)
−1 . . . (−ω̂is)

−1(3.9)

(daa)s

s!
(Taaω)

def
= Taaω

∑∗

1≤i1≤...≤is≤r−1

(ω̌i1)
−1 . . . (ω̌is)

−1(3.10)

= Taaω

∑∗

2≤i1≤...≤is≤r

(−ω̂i1)
−1 . . . (−ω̂is)

−1















(dee)s

s!
(Seeω)

def
= Seeω

×
∑

1≤i1≤...≤is≤r

(eω̌i1 − 1)−1 . . . (eω̌is − 1)−1(3.11)















(dee)s

s!
(invSeeω)

def
= invSeeω

×
∑

1≤i1≤...≤is≤r

(e−ω̂i1 − 1)−1 . . . (e−ω̂is − 1)−1(3.12)



































(dee)s

s!
(Teeω)

def
= Teeω

×
∑∗

1≤i1≤...≤is≤r−1

(eω̌i1 − 1)−1 . . . (eω̌is − 1)−1

= Teeω

∑∗

2≤i1≤...≤is≤r

(e−ω̂i1 − 1)−1 . . . (e−ω̂is − 1)−1 .

(3.13)
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The sum (3.3) (3.4) extend to all factorizations of ω into any number of

subsequences a, ω1, . . . ωs,b (a and b may be empty) but only those few

factorizations which involve non-degenerate, zero-sum factors ω
i make an

effective contribution. Each operator
(daa)s−1

(s−1)! is made to act like a derivation

on the symbols standing to its right. Thus:



















(daa)s

s!
(Taaω

1

Taaω
2

)

def
=

∑

s1+s2=s

s1,s2≥0

((

daa)s1

s1!

)

Taaω
1

)((

daa)s2

s2!

)

Taaω
2

)

(3.14)

with (daa)0 acting like the identity.

Mould expansion for the “corrected form” of a vector field

Lemma 3.2. We have the expansions.

Xcarr =
∑

Carr•B•(3.15)



















Xcarrd def
= X − Xcarr

= X lin +
∑

(I• − Carr•)B•

= X lin +
∑

Carrd•B•

(3.16)

with a well-defined alternal mould Carr• calculable by stationary mould

composition:

(3.17) Carrd• = I• − Carr• = stat limn→+∞(I• − M•)◦n

where M• may denote any of the following moulds:

(3.18) some fixed prenormalizing mould Pran• as in (1.16 *)

(3.18∗) the mould Nal• which expands the nilpotent part Xnal

(3.18∗∗) the elementary mould Taa• introduced in (3.7).

The adequacy of the first two choices is easily proven: indeed, with M•

as in (3.18) or (3.18∗), we have:

(3.19) 0 = I0 − M0 = Iω − Mω if r(ω) ≥ 2 and ‖ω‖ 6= 0 .
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Therefore, for any sequence ω of length r we have:

(I• − M•)◦r = (I• − M•)◦(r+1) = (I• − M•)◦(r+2)

= . . . (mod r(•))(3.20)

So the stationary limit in (3.17) exists and, due to the meaning of M• (related

to either prenormal forms or the nilpotent part) that limit cannot but coincide

with I• − Carr•.

The real difficulty lies in establishing the legitimacy of the last choice,

which paradoxically involves the far simpler mould Taa•. For that choice,

(3.19) still holds and the stationary limit in (3.17) still exists, but there is no

obvious reason why it should coincide with I• − Carr•. We will postpone

the proof to the end of Sect. 4, where the identity (3.17) with M• = Taa•

will yield elementary linearizability criteria.

We may observe, meanwhile, that I• − M• is alternal with M• as in

(3.18) or (3.18∗), but not with the choice (3.18∗∗). That, however, involves

no contradiction: the composition of alternal moulds always yields alternal

moulds, but so does, on occasion, the composition of non-alternal moulds.

Mould expansion for the “corrected form” of a diffeo

Lemma 3.3. We have the expansions.







F cerr =
∑

Cerr•B• ;

(F cerr)−1 =
∑

invCerr•B•

(3.21)



















F cerrd def
= (F cerr)−1F

=
(

∑

((1• + I•) × (invCerr•))B•

)

F lin

=
(

∑

Cerrd•B•

)

F lin

(3.22)

with two pairs of well-defined, mutually inverse symmetrel moulds:

(3.23) Cerr• × invCerr• = 1• ; Cerrd• × invCerrd• = 1•

which may be calculated by stationary mould composition:

{

invCerrd• = ((1• + I•)−1 × (Cerr•) − 1•)

= stat limn→+∞((1• + I•)−1 × (M•) − 1•)◦n(3.24)

{

Cerrd• = ((1• + I•) × (invCerr•) − 1•)

= stat limn→+∞((1• + I•) × (M•)−1 − 1•)◦n(3.25)
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where M• may denote any of the following moulds:

(3.26) some fixed prenormalizing mould Pren• as in (1.16∗∗)

(3.26∗) the mould Nel• which expands the nilpotent part F nel

(3.26∗∗) the elementary mould Tee• introduced in (3.7) .

As with vector fields, the adequacy of the first two choices is easily

proven; the tricky part is to justify the third choice, which paradoxically

involves the far simpler (though admittedly non- symmetrel) mould Tee•.

Remark. The identities (3.17), (3.24) with M• as in (3.18) etc. or (3.26)

etc., yield useful information about Carr• and Cerr• (and elementary lin-

earizability criteria will be based on them) but, from a practical viewpoint,

the variance rules, which we will proceed to derive, lead to even simpler

calculations.

Variance of the correction

If to a vector field X there corresponds a vector field Y under some mould

action:

(3.27) X = X lin +
∑

Bn → Y = X lin +
∑

M•B• (M• alternal)

then any infinitesimal automorphism acting on X:

(3.27∗) X → X + δX = (1− εC)X(1+ εC) = X + ε[X, C] (mod ε2)

(3.27∗∗) C homogeneous vector field of degree n0 with 〈n0, λ〉 = ω0

induces a concomitant variation of Y :

(3.28) Y → Y + δY with δY =
∑

i

(variM
•)(CiB•) (mod ε2)

with:
{

(CiB)ω1,...,ωr

def
= Bωr . . . Bωi+1

CBωi−1
. . . Bω1

(resp. = 0)

if ωi = ω0(resp. 6= ω0)
(3.29)











(variM)ω1,...,ωr
def
= ωiM

ω1,...,ωr

+Mω1,...,ωi+ωi+1,...,ωr

−Mω1,...,ωi−1+ωi,...,ωr

(3.30)



270 J. Ecalle, B. Vallet

Similarly, if to a diffeo F there corresponds a diffeo G under:







F =
(

1 +
∑

Bn

)

F lin → G

=
(

∑

M•B•

)

F lin (M• symmetrel)
(3.31)

then any infinitesimal automorphism acting on F :

(3.31∗) F → F + δF = (1 − εC)F (1 + εC)

(with C as in (3.27∗∗)) induces a concomitant variation of G:

(3.31∗∗)

G → G + δG with δG =

(

∑

i

(veriM
•)(CiB•)

)

F lin(mod ε2)

with CiB• as above (see (3.29)) and:











(veriM)ω1,...,ωr
def
= (eωi − 1)Mω1,...,ωr

+eωiMω1,...,ωi+ωi+1,...,ωr

−Mω1,...,ωi−1+ωi,...,ωr

(3.32)

It is often useful to consider the decomposition veri = ver+
i − ver−

i with

(3.32∗) (ver+
i M)ω1,...,ωr def

= eωi(Mω1,...,ωr + Mω1,...,ωi+ωi+1,...,ωr)

(3.32∗∗) (ver−
i M)ω1,...,ωr def

= Mω1,...,ωr + Mω1,...,ωi−1+ωi,...,ωr

The more direct the geometric meaning of a mould M•, the simpler its

“variance” variM
• or veriM

• tends to be.

Let us concentrate here on the correction moulds.

Proposition 3.1. Variance of Carr•.

The alternal mould Carr• is calculable by the induction:















(vari Carr)ω =
∑

aωibc=ω

CarraωicCarrb

−
∑

abωic=ω

CarrbCarraωic
(3.33)

with vari as in (3.30) and with the initial conditions:

(3.34) Carr∅ = 0; Carr0 = 1; Carrω1 = 0 if ω1 6= 0.

Proposition 3.2. Variance of Cerr• and invCerr•.
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The symmetrel moulds Cerr• and invCerr• are calculable by any one of

the four inductive systems:

(3.35) ver+
i Cerrω =

∑

abωicd=ω

invCerrb(ver−
i Cerraωid)Cerrc

(3.36) ver−
i Cerrω =

∑

abωicd=ω

Cerrb(ver+
i Cerraωid)invCerrc

(3.37) ver+
i invCerrω =

∑

abωicd=ω

Cerrb(ver−
i Cerraωid)Cerrc

(3.38) ver−
i invCerrω =

∑

abωicd=ω

Cerrb(ver+
i Cerraωid)Cerrc

with ver+
i , ver−

i as in (3.32∗), (3.32∗∗) and with the following initial con-

ditions:

(3.39) Cerr∅ = invCerr∅ = 1

(3.40) Cerr0 = 1 but invCerr0 = −1

(3.41) Cerrω1 = invCerrω1 = 0 if ω1 6= 0

Remark 1. The above relations do provide an inductive scheme, by ex-

pressing Carrω, Cerrω, etc., in terms of a finite number of values Carrω
∗

,

Cerrω
∗

, etc., for strictly shorter sequences ω
∗. Since relations (3.33), (3.34)

etc. can be applied for any i less than r(ω), we have in fact a heavily

overdetermined induction – which is very convenient for cross-checking the

calculations and also for eliminating illusory poles (see Sects. 4, 5).

Practically, we may take i = 1 or r(ω), so as to cancel one of the two

sums on the right-hand side. Thus, for i = 1, the relation (3.33) becomes:

(3.42) ω1Carrω1,ω2,...,ωr +Carrω1+ω2,ω3,...,ωr =
∑

ω1bc=ω

Carrω1cCarrb .

Likewise, we get a closed induction for Cerr• (resp. invCerr•), that is to say,

an induction involving only Cerr• (resp. invCerr•) by taking either (3.35)

with i = 1 or (3.36) with i = r(ω) (resp. either (3.37) with i = r(ω) or

(3.38) with i = 1).

For the purpose of eliminating the “illusory denominators”, however, we

shall have to apply the variance rules with other, suitably chosen values of

i (see Sects. 4, 5). The fact that the intermediary values of i yield a mixed
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induction, involving both Cerr• and invCerr•, is of course inconsequen-

tial, since Cerr• and invCerr•, being mutually inverse, symmetrel moulds,

interrelate under the standard involution:

invCerrω = (−1)r(ω)
∑

Cerr‖ωs‖,...,‖ω2‖,‖ω1‖

Cerrω = (−1)r(ω)
∑

Cerr‖ωs‖,...,‖ω2‖,‖ω1‖

with finite sums
∑

extending to all factorizations ω = ω
1
ω

2 . . . ωs (s ≥
1; ωi 6= 0) (mark the order reversal).

Remark 2. Special values of the correction moulds.

It is clear, both from the induction (3.33) or the obvious addition rule:

(3.43) (X + X0)carr = Xcarr + X0 if [X lin, X0] = 0

(which itself follows from the correction’s uniqueness) that

Carr0 = 1 and Carrω = 0

if ‖ω‖ 6= 0 or again if ω has length r(ω) ≥ 2 and at least one zero-

component ωi = 0.

Things change slightly for Cerrω and invCerrω. These coefficients still

vanish if ‖ω‖ 6= 0, but we have:

(3.44) Cerr0 = 1; Cerr0,0 = Cerr0,0,0 = . . . = 0

{

invCerr0 = −1; invCerr0,0 = 1; invCerr0,0,0 = −1; . . . ;

invCerr0,...,0 = (−1)s (s zeros).
(3.45)

More generally, Cerrω = 0 as soon as ω has length r ≥ 2 and begins

or ends with a zero-component (i.e. ω1ωr = 0), and

Cerrω = (−1)sCerrω
∗

if ω carries exactly s zero-components ωi = 0 at inside positions only

(so that ω1ωr 6= 0) and if ω
∗ denotes the sequence ω deprived of its

zero-components. For invCerrω the rules are somewhat simpler: for any

sequence ω with exactly s zero-components, at whatever location (interior

or lateral), we have:

invCerrω = (−1)sinvCerrω
∗

where again ω
∗ is ω minus its zero-components.

Short proof of Proposition 3.1 and 3.2. The proof splits into three auxil-

iary lemmas. But first, we must introduce suitably compact notations. For
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any Lie element Bωi
, let B̄ωi

denote the adjoint operator adj(Bωi
) (so that

B̄ωi
Bωj

def
≡ [Bωi

, Bωj
]) and for any sequence ω, let us put:

(3.46) (B̄)ω = (B̄)ω1,...,ωr

def
= B̄ωr . . . B̄ω1

(3.47)

B[ω] = B[ω1,...,ωr]
def
= B̄ωr . . . B̄ω2

Bω1
= [Bωr . . . [Bω2

, Bω1
] . . .].

Lemma 3.3. Let ω = (ω1, . . . , ωr) be a sequence of length r and assume

that the number ω0 occurs exactly r0 times in it. Then, for any alternal mould

M•, the identities hold:

(3.48)
∑

Mω
′

Bω
′ = (1/r)

∑

Mω
′

B[ω′] = (1/r0)
∑

Mω
′′

B[ω′′]

with the first two sums extending to all sequences ω
′ equivalent to ω upto

order, and with a third sum extending to all sequences ω
′′ beginning with

ω0 and equivalent to ω upto order.

Proof of Lemma 3.3. M• being alternal, the first sum is in fact a Lie element

and so, by the classical projection theorem, it is equal to the sum of the

corresponding brackets divided by the length r. Hence the equality with the

last sum easily follows, by using the identity:

(3.49) Maω0b = (−1)r(a)
∑

Mω0c (c ∈ sh(ã,b))

which holds for any alternal mould M• and allows us to move any interme-

diary element ω0 to the front position. Note that the sum (3.49) extends to

all sequences c obtainable by shuffling b with ã, the latter being the reverse

sequence of a, i.e:

ã = (ar(a), . . . , a1) if a = (a1, . . . , ar(a)) .

Lemma 3.4. If Proposition 3.1 holds, then any infinitesimal automorphism

(3.27∗) taking X into X + δX , automatically takes Xcarrd into Xcarrd +
δXcarrd with:

(3.50) δXcarrd = ε[X, C] − ε
∑

ω

Carrω0ω(B̄)ω[Xcarr, C]

Conversely, if (3.50) holds for any infinitesimal automorphism induced by

an homogeneous field C of arbitrary degree n0 (with ω0 = 〈n0, λ〉 as usal),

then Proposition 3.1 is true.

Proof of Lemma 3.4. According to (3.28) we may write:

δXcarrd = δX − δXcarr

= ε[X, C] − ε
∑

i

∑

•

(variCarr•) (CiB•)(3.51)
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But if the formula (3.33) holds, then it is an easy matter to check that, for any

fixed integer i, the mould vari Carr• inherits the alternality of Carr• itself.

We may therefore take advantage of the identities (3.48) to move the index

ω0, implicit in the last sum (3.51), into front position, and thus to transform

(3.51) successively into:

(3.52) δXcarrd = ε[X, C] − ε
∑

ω

(var1Carrω0ω)(B̄)ωC

(3.53) δXcarrd = ε[X, C] − ε
∑

ω
1,ω2

Carrω0ω
2

Carrω
1

(B̄)
ω

2(B̄)
ω

1C

(3.54) δXcarrd = ε[X, C] − ε
∑

ω
2

Carrω0ω
2

(B̄)
ω

2 [Xcarr, C]

which is the same as (3.50). The only point calling for comment is the

absence from (3.54) of the multiplicity factor r0 occuring in the last sum

of (3.48): this is because (CiB)ω is non-zero for exactly r0 distinct values

of the index i, so that, by linearity, the multiplicity r0 cancels out. Thus

the truth of Proposition 3.1 implies that of (3.50) for any C. Conversely,

by going through the above identities (3.52), (3.53), (3.54) in reverse order,

we easily see that the validity of (3.50) for any C implies the splitting rule

(3.48).

Lemma 3.5. For any homogeneous field C of degree n0 (with ω0 = 〈n0, λ〉
as usual), the following identity holds:

(3.55) [X, C] −
∑

ω

Carrω0ω(B̄)ω[Xcarr, C] ≡ [Xcarrd, C − C∗∗]

with a vector field C∗∗ given by:

(3.56) C∗∗ =
∑

ω

Rectω0ω(B̄)ω[Xcarr, C]

relative to a mould Rect• defined by:

(3.57) Rectω0• def
=(Saaω0•) ◦ (I• − Carr•) (with Saa• as in (3.5))

or more explicitly:











Rectω0ω =
∑

ω
1...ωs=ω

Saaω0,‖ω
1‖,...,‖ω

s‖

×(Iω
1

− Carrω
1

) . . . (Iω
s

− Carrω
s

).

(3.57∗)
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Proof of Lemma 3.5. The mould translation of (3.55) reads:

(3.58) C∗∗ =
∑

ω

Regω0ω(B̄)ωC

with a mould Reg• such that:










(ω0 + ‖ω‖) Regω0ω +
∑

ω
1
ω

2=ω
Regω0ω

1

(Iω
2

− Carrω
2

)

≡ −Carrω +
∑

ω
1
ω

2=ω

Carrω0ω
2

Carrω
1(3.59)

If we look for a solution Reg• of the form:

(3.60) Regω0ω =
∑

ω
1
ω

2=ω

Rectω0ω
2

Carrω
1

we see that (3.59) transforms into:

(3.61) (∇Rect•) + (1• + Rect•) × (I• − Carr•) ≡ 0

with ∇ denoting multiplication by ‖ω‖ and with the initial conditions:

(3.61∗) Rect∅ = 0; Rectω1 = 0 (∀ω1).

Now, the mould Reg• defined by (3.60) verifies, like the auxiliary mould

Saa• (see (3.6))

(3.61∗∗) Regω = Saaω = 0 if ‖ω‖ = 0

and, just like Saa• and Carr•, it is defined for any sequence ω. Using this

remark, it is immediate to check that the mould Rect•, as defined by (3.57),

satisfies the mould equation (3.61), so that the corresponding mould Reg•

satisfies (5.59) and, by way of consequence, the identity (5.55) holds.

We are now in a position to complete the proof of Proposition 3.1. Indeed,

for any infinitesimal automorphism (3.27∗) acting on X, Xcarr and δXcarr

are characterized respectively by:

(3.63) [X lin, Xcarr] = 0 and {Xcarrd conjugate to X lin}

{

[X lin, Xcarr + δXcarr] = 0

and {Xcarrd + δXcarrd conjugate to X lin}
(3.64)

Therefore the characterization (3.64) may be replaced by:

{

[X lin, δXcarr] = 0

and {Xcarrd + δXcarrd conjugate to Xcarrd}.
(3.65)
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But the identity (3.51) shows precisely that, when defining δXcarrd as in

(3.50), the field Xcarrd + δXcarrd is conjugate to Xcarrd under the infinites-

imal automorphism:
{

Xcarrd → Xcarrd + δXcarrd

= (1 − ε(C − C∗∗))Xcarrd(1 + ε(C − C∗∗))
(3.66)

with C∗∗ as in (3.56), (3.57).

This ends the proof of Proposition 3.1. We omit that of Proposition 3.2,

since it is exactly on the same lines. But we shall mention an alternative

proof of Proposition 3.1, which is both simpler and more informative. It

involves proving the following:

Lemma 3.6. When X is subjected to an infinitesimal automorphism:

(3.67) X → X + δX = X + ε[X, C] (homC = ω0 6= 0)

as in (3.27∗), the correction and corrected form change according to the

rules:

(3.68) δXcarr = ε[Xcarr, C∗]

(3.69) δXcarrd = ε[Xcarrd, C − C∗∗]

with

(3.68∗) C∗ =
∑

ω

Carrω0ω(B̄)ω[Xcarr, C]

(3.69∗) C∗∗ =
∑

ω

Carrω0ωω00(B̄)ω[Xcarr, C]

with sums extending to all sequences ω (including ω = ∅, in which case

(B̄)∅ = 1) and with a last componant ω00 defined by

(3.69∗∗) ω0 + ‖ω‖ + ω00 = 0

Remark. We observe the usual “complementarity” between the field C∗,

which carries only resonant terms, and the field C∗∗, which carries only

non-resonant terms. Indeed, the resonant terms of C∗∗, if there were any,

would correspond to ω00 = 0 in (3.69∗∗), but when ω00 vanishes, so does

Carrω0ωω00 . Conversely, one may show that C∗∗ is the only vector field

without resonant terms which, when bracketed with Xcarrd as in (3.69),

yields the variation δXcarrd.
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Simultaneous proof of the variance rule (3.33) and of Lemma 3.6.

Due to the variational characterization (3.65) of the correction, all that is

required is establishing the compatibility of the variance rules (3.33) with

the explicit variations of Lemma 3.6. Now, (3.33) trivially implies (3.68),

(3.68∗). But it also implies (3.69), (3.69∗).

Indeed, if we consider the expression:
{

−δXcarrd + ε[Xcarrd, C − C∗∗]

≡ −ε[X, C] + ε[Xcarr, C∗] + ε[X − Xcarr, C − C∗∗]
(3.70)

with C∗ and C∗∗ as in Lemma 3.6, we see that, for sequences ω of length

r(ω) ≥ 2, the term:

(3.71) (B̄)ωC
def
=[Bωr . . . [Bω2

, [Bω1
, C]] . . .]

occurs in (3.70) with a scalar factor Γω of the form:

(3.72) Γω ≡ −Carrω + Γ 1
ω

+ Γ 2
ω

+ Γ 3
ω

+ Γ 4
ω

with:

(3.73) Γ 1
ω

= +
∑

ab=ω

Carrω0bCarra = +
∑

Γ 1
a;b

(3.74) Γ 2
ω

= +
∑

ab=ω

ω∗Carrω0bω∗Carra = +
∑

Γ 2
a;b

(3.75) Γ 3
ω

= −
∑

ab=ω

b6=∅

Carrω0b
′ω∗∗Carra = +

∑

Γ 3
a;b

(3.76) Γ 4
ω

= +
∑

acd=ω

CarrdCarrω0cω∗∗∗Carra = +
∑

Γ 4
a;c;d

Here, ω,a,b, c,d denote sequences and b′ in (3.75) denotes the sequence

b deprived of its last component (which makes sense, since b 6= ∅). As for

the components ω∗, ω∗∗, ω∗∗∗, they are so defined as to secure a vanishing

sum for the sequences which they conclude:

(3.77) ω0 + ‖b‖ + ω∗ = 0; ω0 + ‖b′‖ + ω∗∗ = 0; ω0 + ‖c‖ + ω∗∗∗ = 0

The sum Γ 1
ω

stems from [Xcarr, C∗], and all other terms stem from the

bracket [X−Xcarr, C−C∗∗]. It is then an easy matter to check that Γω = 0.

Indeed, when ω0 + ‖ω‖ 6= 0, we see that:

(3.78) Γ 1
ω

= 0; −Carrω + Γ 2
ω;∅ = 0
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(3.79) Γ 2
a;b + Γ 3

a;b +
∑

cd=b

Γ 4
a;c;d = 0

The latter identity results from applying (3.33) to Carrω0bω∗ with i =
r(ω0bω∗).

Similarly, when ω0 + ‖ω‖ = 0

(3.80) Carrω = 0

(3.81) Γ 2
ω

= 0 (since ω∗ = 0 if ‖a‖ = 0)

(3.82) Γ 4
ω

= 0 (since ω∗∗∗ = 0 if ‖a‖ = ‖d‖ = 0)

(3.83) Γ 1
ω

+ Γ 3
ω

= 0 (since (b′ω∗∗) = b if ‖a‖ = 0)

One deals in the same way with the far simpler case when the sequence ω

has length r(ω) = 1. Thus, Γω ≡ 0. Therefore, the variance rule (3.33) is

compatible with the variation formulae of Lemma 3.6 and, as a consequence

(due once again to (3.65)), both are valid!

Remark. We may check that our earlier formula (3.56) + (3.57) for δXcarrd

agrees with our new and simpler formula (3.69). Indeed, (3.57) may be

rephrased as:

(3.84) Rectω0• ≡ (Taaω0•ω00) ◦ (I• − Carr•)

with ω0 + ‖ • ‖ + w00 = 0. But since, as we shall establish towards the end

of Sect. 4:

(3.85) Taa• ◦ (I• − Carr•) ≡ 0

and since Taa0 = 0, it is plain that the right-hand side of (3.84) reduces to:

(3.86) Rectω0• ≡ 0−(Taaω0+‖•‖+ω00)(I−Carr)ω0•ω00 ≡ +Carrω0•ω00

Uniqueness of the correction

Lemma 3.7. For any vector field X = X lin +
∑

Bn (n ∈ N) with diagonal

linear part X lin and homogeneous components Bn, there exists exactly one

“correction” Y characterized by:

(3.87) (X − Y ) formally conjugate to X lin

(3.88) [Y, X lin] = 0
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Proof. In search of a contradiction, let us assume that there exists a correction

Y distinct from Xcarr. It is necessarily of the form:

(3.89) Y = Xcarr + Z =
∑

n∈N0

(Xcarr)n +
∑

n∈N∗
0

Zn

Here, N0 denotes the set of all multi-integers n orthogonal to λ (i.e. 〈n, λ〉 =
0) and N∗

0 denotes the non-empty subset of N0 which corresponds to non-

vanishing components Zn of Z:

(3.90) {n ∈ N∗
0} ⇔ {Zn 6= 0}

Further, let min(N∗
0) denote the set of all minimal elements of N∗

0 (relative

to the natural order on N ) and let int(N∗
0) be the set of all n in N0 such that

n be strictly superior to some n∗ in min(N∗
0), again relatively to the natural

order.

We may write X − Y as a sum of homogeneous components:

(3.91)

{

X − Y ≡ X − Xcarr − Z ≡ Xcarrd − Z
≡ X lin +

∑

n∈N (Xcarrd)n −
∑

n∈N∗
0
Zn

}

But since we assumed Y to be a “correction”, we must have:

(3.92) (X − Y )nal = 0 i.e. (Xcarrd − Z)nal = 0

where (. . .)nal denotes the nilpotent part of (. . .), expanded as in (3.1).

Within the resulting expansion, let us sort out the parts A, B, C which are

respectively of degree 0; 1; or ≥2 in Z. We clearly have:

(3.93) (Xcarrd − Z)nal = A + B + C = 0

(3.94) A ≡ 0 (degree 0 in Z)

(3.95) B ≡
∑

n∈min(N∗
0)

Zn +
∑

n∈int(N∗
0)

(. . .) (degree 1 in Z)

(3.96) C ≡
∑

n∈int(N∗
0)

(. . .) (degree ≥ 2 in Z)

Therefore:

(3.97) (Xcarrd − Z)nal =
∑

n∈min(N∗
0)

Zn +
∑

n∈int(N∗
0)

(. . .) = 0

But the first bracket on the right-hand side of (3.97) represents, by construc-

tion, a non-zero vector field. So (Xcarrd −Z)nal itself ought to be 6= 0. This

contradiction establishes the lemma.
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4. Analyticity of the corrected form (for vector fields)

Proposition 4.1. Let X be a local, analytic, resonant vector field whose

spectrum λ = (λ1, . . . , λν) meets Brjuno’s diophantine condition (1.9).

Then the correction Xcarr and corrected form Xcarrd def
= X − Xcarr are

analytic, and their arborified mould expansions:

(4.1) Xcarr =
∑

Carr
<
•B<

•
; Xcarrd =

∑

Carrd
<
•B<

•

are normally convergent.

Elucidations. “Arborification” of course means that we subject Carr• (resp.

Carrd•) and B• to the dual changes introduced in (2.25), (2.26), (2.27).

“Normal convergence” means that:

(4.2)
∑

|Carr
<
• | ‖B<

•
‖U,V < +∞ ;

∑

|Carrd
<
• | ‖B<

•
‖U,V < +∞

for a suitable norm ‖ • ‖U,V defined on the endomorphisms of C{x} and

indexed by a pair U ⊂ V of small enough neighbourhoods of 0 ∈ Cν . The

definition is as follows:
{

‖B‖U,V
def
= Sup‖ϕ‖V ≤1‖B · ϕ‖U

{B ∈ Endo(C{x}); ϕ ∈ C{x} }
(4.3)

with the usual sup norm on ϕ:

(4.4) ‖ϕ‖V
def
= Supx∈V |ϕ(x)| {ϕ ∈ C{x}; x ∈ V }

Proof of Proposition 4.1. The proof rests entirely on the variance rules which

govern the inductive calculation of Carr• and Carr
<
• . At each inductive

step, these rules allow great flexibility in the choice of the index i in vari;

which flexibility can be taken advantage of to avoid the occurence of illusory

multiple poles or, to put it another way, to establish the non-repetition of the

“small denominators”.

Lemma 4.1. Arborification of the variance rule.

The variance rule (3.33) arborifies as follows:


















































variCarr
<
ω =

∑







ωi in
<
a

<
b follows ωi







Carr
<
a Carr

<

b

−
∑







ωi in
<
c

<
b precedes ωi







Carr
<

bCarr
<
c

(4.5)
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Here, the sums extend to all connected subsequences
<
b of

<
ω either directly

following or preceding ωi, and
<
a (resp.

<
c) denotes the remaining part of

<
ω,

with the arborescent order inherited from the parent sequence
<
ω. As for the

arborified variance operator vari, it acts as follows:

(4.6) vari Carr
<
ω = ωi Carr

<
ω − Carr

<
η +

∑

Carr
<
σ

where
<
η denotes the unique arborified sequence obtained by contracting

ωi with its immediate predecessor ωi−; and the
<
σ denote the sequences

<
σ

obtained by contracting ωi with any one of its immediate successors ωj (i.e.

ωj− = ωi).

The verification is straightforward. One first checks that the definition

(3.30) of the variance arborifies according to (4.6). Then one checks that the

right-hand side of (3.33), under arborification, yields the right-hand side of

(4.6). Three points, however, deserve mention. First, due to the alternality of

Carr•, it is enough to consider connected sequences
<
a,

<
b,

<
c i.e. sequences

with one root only, since for disconnected sequences
<
a,

<
b,

<
c, the arborified

expressionsCarr
<
a ,Carr

<

b,Carr
<
c vanish. Second, saying that

<
b immediately

follows (resp. precedes) ωi means that the root ωj of
<
b has ωi as its direct

antecedent (resp. that the direct antecedent ωi− of ωi lies in
<
b). Third, the

sequences
<
a,

<
b,

<
c inherit the arborescent order of

<
ω. For

<
b this presents no

difficulty. For
<
a (resp.

<
c), however, it means that the components of

<
ω which

(possibly) immediately follow
<
b (resp. the component which precedes

<
b)

become direct successors of ωi in
<
a (resp. becomes the direct predecessor of

ωi in
<
c) although, within the original sequences

<
ω, these components were

“separated” from ωi by
<
b. Thus,

<
a and

<
b are connected “in themselves”, but

not necessarily as subsequences of
<
ω.

Lemma 4.2 Non-repetition of the denominators in Carrω.

For sequences ω, of a given length r and of a fixed degeneracy pattern

of order d (see below) the correction mould Carrω, as a rational function of

its (r − d) independent variables ωi, has only poles of the form (η)−µ, with

linear combinations η of the ωi obtained by splitting unbreakable zero-sum

subsequences ω
∗ of ω:

(4.7) ±η = ‖ω
′‖ = −‖ω

′′‖ (ω′
ω

′′ = ω
∗ = (ωi, . . . , ωj))

and with a multiplicity µ no larger than the number of unbreakable, zero-

sum sequences ω
∗ which, when split, can produce η. Moreover, although
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there is in general no canonical “best way” of decomposing Carrω, there

always exist decompositions of the form:



















Carrω =
∑

p

np(ηp,1)
−µp,1(ηp,2)

−µp,2 . . . (ηp,sp)
−µp,sp

(

∑

i

µp,i ≡ r − 1

)(4.8)

which involve only effective poles η, with a multiplicity never exceeding their

effective multiplicity µ; and with integral coefficients np bounded by:

(4.9)
∑

p

|np| ≤
(2r − 2)!

(r − 1)!r!
≤ 4r (r = r(ω); np ∈ Z − {0})

Comments and proof A fixed degeneracy pattern of order d is a set of d
pairs (i, j) verifying 1 ≤ i < j ≤ r and such that the sequence ω

∗ =
(ωi, . . . , ωj) be unbreakable with zero-sum. “Unbreakability”, once again,

rules out non-trivial factorizations ω
∗ = ω

′
ω

′′ with either ‖ω
′‖ = 0 or

‖ω
′′‖ = 0, but it does not rule out non-trivial factorizations of the form

ω
∗ = ω

′
ω

′′
ω

′′′ with a zero-sum middle factor ‖ω
′′‖ = 0.

What the above lemma tells us about the multiplicities µ of the poles

(η)−µ amounts to saying, in effect, that the denominators η of Carrω un-

dergo no repetitions unless they are already repeated within the sequence

ω, these repetitions being induced by the degeneracy pattern itself. This is

in complete contrast with the behaviour of most other moulds, such as Saω,

invSaω, Nalω, and all prenormalizing moulds Pranω.

Thus, if ω has an even length r = 2r′ and the following degeneracy

pattern:

(4.10)
0 = ω1 + ωr = ω2 + ω3 = ω4 + ω5 = ω6 + ω7 = . . . = ωr−2 + ωr−1 = 0

(which leaves as independent variables ω1 and ω2, ω4, ω6, . . . , ωr−2)

we have on the one hand, for all Pranω that are free of parasitical singu-

larities:

(4.11) Pranω = −(ω1)
−r′

r′−1
∏

i=1

(ω1 + ω2i)
−1

with a “huge” multiplicity (either r′ or 1+ r′) for ω1; and on the other hand,

calculating Carrω by the procedure which we shall spell out in a moment,

we find:

(4.12) Carrω ≡ (−1)r′−1(ω1)
−1

∏

1≤i≤r′

((ω2i)(ω1 + ω2i))
−1
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in full agreement with the above lemma, and with no unwarranted repetitions

of poles.

As for the proof of Lemma 4.2, it is amazingly simple and rests entirely

on the repeated application of the variance rule (3.33) relative to an index i
subject to a simple selection rule [C1] + [C2] (infra), which automatically

takes care of the non-repetition of poles.

Let us fix a sequence ω with a given length r = r(ω) and a given degen-

eracy pattern of order d, which leaves exactly r − d independent variables

ωi. We make no assumption whatsoever on the nature of the ZUS in ω (from

now on, ZUS will stand for “zero-sum, unbreakable sequence”) except that

all should have length ≥ 2, for otherwise Carrω would be ≡ 0. That aside,

ω may have as many as r − 1 different ZUS and these may overlap in any

conceivable way.

We say that a ZUS ω
∗ is adjacent to a component ωi if ωi either initiates

or terminates ω
∗ (i.e. if it is its first or last element) or if it immediately

precedes or follows ω
∗. Thus, any ωi has at most four distinct adjacent ZUS.

If ωi initiates a (necessarily unique) ZUS ω
+, we set r+

i = r(ω+) = length

of ω
+ and, if not, we set r+

i = 0. Similarly, if ωi terminates a (necessarily

unique) ZUS ω
−, we set r−

i = r(ω−) and, if not, we set r−
i = 0.

The selection rules for the index i of vari read:

[C1] {0 < r+
i + r−

i }

[C2]

{

{0 < r+
i ≤ r+

i+1 or 0 = r+
i+1}

and {0 < r−
i ≤ r−

i−1 or r−
i−1 = 0}

and they can be interpreted as follows:

[C1] says that ωi should be the first or last component of some ZUS, or

both.

[C2] says that ωi should not be squeezed in between two adjacent ZUS

ω
∗ and ω

∗∗, with ω
∗ included in ω

∗∗. It says, too, that if ωi is externally

adjacent to a ZUS ω
∗, it should also be internally adjacent to another ZUS

ω
∗∗ which overlaps with ω

∗ (but doesn’t contain it!).

It is immediate that there exist exactly 25 = 52 distinct adjacency types

T1, T2, . . . T25 and that only 8 = 32 − 1 of them, namely T1, T2, . . . T8 are

allowed by the selection rule [C1]+[C2]. All licit and illicit adjacency types

are listed in Table 4.1.

Let us show that ω has at least two licit components ωi and ωj . Indeed,

suppose that ω1, ω2, ω3, . . . , ωs−1, ωs are not allowed by [C1] + [C2]. By

induction on p = 1, 2, . . . , s + 1, we check that this is possible only if:

(4.13a) for each p in {1, . . . , s + 1}, ωp initiates a ZUS ω
p.
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Table 4.1 The licit and illicit adjacency types

(4.13b) for no p in {1, . . . , s + 1} does ωp terminate a ZUS.

(4.13c) ω
1 ⊃ ω

2 ⊃ ω
3 ⊃ . . . ωs ⊃ ω

s+1 6= ∅

which in turn is possible only if 2s+2 ≤ r. Therefore, at least one component

ωi with i ≤ r/2 is licit and, by symmetry, at least another component ωj

with j > r/2 is licit too. (Sometimes, there are only two licit components,

but sometimes there can be as many as 2d).

Next, a linear combination η = ωp + . . . + ωq is said to be a formal

pole of the sequence ω if it can be obtained by breaking up some ZUS, as

in (4.7); and the formal multiplicity

[

η
ω

]

of η in ω is defined as being the

number of ZUS which, when split, can produce η.

We now fix some licit component ωi, which is automatically (by [C1])

a formal pole of ω, with a formal multiplicity

[

ωi

ω

]

= l ≥ 1. Associated

with ωi, there is a unique factorization of ω of the form:

{

ω = w∗,mwmwm,m+1wm+1 . . .w−1w−1,0w0w0,1w1

. . .wn−1wn−1,nwn,∗(4.14)

with non-empty sequences ws and possibly empty sequences w∗,m, ws,s+1,

wn,∗ such that:

(4.14a) w0 = (ωi) = (one term only); ‖ws‖ = (−1)sωi (∀s)
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(4.14b) m ≤ 0 ≤ n and n − m = l =

[

ωi

ω

]

≥ 1 (m, n ∈ Z)

(4.14c) w[s,s+1] def
= wsws,s+1ws+1 is a ZUS (∀s ∈ [m, n[)

{

ws,s+1 has zero-sum and factors into ls,s+1

different ZUS (with ls,s+1 ≥ 0)
(4.14d)

Alongside the ZUS of the form w[s,s+1], there may of course exist in

ω many other ZUS (which may or may not overlap with the w[s,s+1] and

among themselves) but these additional ZUS have no bearing on the formal

multiplicity of the pole ωi.

Now, the variance rule (3.33) may be rewritten as:

Carrω ≡
1

ωi

{

+Carrω
1

− Carrω
2

+
∑

Carrω
3

Carrω
4

−
∑

Carrω
5

Carrω
6
}

(4.15)

with:

(4.15a) ω
1 = (. . . , ωi−1 + ωi, . . .); ω

2 = (. . . , ωi + ωi+1, . . .)

(4.15b) ω
3 = ω

3,4ωiω
4,3 with ω = ω

3,4ωiω
4
ω

4,3

(4.15c) ω
6 = ω

6,5ωiω
5,6 with ω = ω

6,5
ω

5ωiω
5,6

(Take care to distinguish ω
i, ω

i,j from ws, ws,s+1).

Reverting to (4.14), we may now calculate the formal multiplicity of ωi

within ω
1, ω2, ω3, ω4, ω5, ω6. We find:







[

ωi

ω
1

]

= l − 1(resp. l − 2) if ωi

has no (resp. 1 or 2) left-adjacent ZUS

(4.16a)

{

[ ωi

ω2

]

= l − 1(resp. l − 2)

if ωi has no (resp. 1 or 2) right-adjacent ZUS
(4.16b)

(4.16c)
[

ωi

ω
3

]

= l − 2p;

[

ωi

ω
4

]

= 2p − 1;

[

ωi

ω
3

]

+

[

ωi

ω
4

]

= l − 1 (2p ≤ n)
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Table 4.2 The decrease of formal multiplicity under a licit inductive step

Adja- Carr
ω

Carr
ω

1

Carr
ω

2

Carr
ω

3

Carr
ω

4

Carr
ω

5

Carr
ω

6

cent

type

T1

[

ωi

ω

]

= 1
[

ωi

ω1

]

= 0 nothing nothing

T2

[

ωi

ω

]

= 1
[

ωi

ω1

]

= 0
[

ωi

ω2

]

= 0 nothing nothing

T3

[

ωi

ω

]

= 2
[

ωi

ω1

]

= 0
[

ωi

ω2

]

= 0 nothing nothing

T4

[

ωi

ω

]

= l ≥ 2
[

ωi

ω1

]

= l − 1
[

ωi

ω2

]

= l − 2
[

ωi

ω3

]

÷
[

ωi

ω4

]

= l − 1 nothing

T5

[

ωi

ω

]

= l ≥ 2
[

ωi

ω1

]

= l − 2
[

ωi

ω2

]

= l − 1 nothing
[

ωi

ω5

]

+
[

ωi

ω6

]

= l − 1

T6

[

ωi

ω

]

= l ≥ 3
[

ωi

ω1

]

= l − 2
[

ωi

ω2

]

= l − 2
[

ωi

ω3

]

÷
[

ωi

ω4

]

= l − 1 nothing

T7

[

ωi

ω

]

= l ≥ 3
[

ωi

ω1

]

= l − 2
[

ωi

ω2

]

= l − 2 nothing
[

ωi

ω5

]

+
[

ωi

ω6

]

= l − 1

T8

[

ωi

ω

]

= l ≥ 4
[

ωi

ω1

]

= l − 2
[

ωi

ω2

]

= l − 2
[

ωi

ω3

]

÷
[

ωi

ω4

]

= l − 1
[

ωi

ω5

]

+
[

ωi

ω6

]

= l − 1

(4.16d)
[

ωi

ω
5

]

= 2q − 1;

[

ωi

ω
6

]

= l − 2q;

[

ωi

ω
5

]

+

[

ωi

ω
6

]

= l − 1 (2q ≤ |m|)

if ω
4 (resp. ω

5) incorporates 2p (resp. 2q) factors ws (see (4.14)).

The total picture is summed up on Table 4.2.

Thus, we see that the formal multiplicity of ωi in ω
1, ω

2, (ω3; ω
4) or

(ω5; ω
6) is always less than in ω, but since we divide the right-hand side

of (4.15) by ωi, all we can say is that the formal multiplicity of ωi does not

increase under the licit inductive step (4.15). The same also holds for all

poles η other than ωi, but for a much simpler reason – namely, because the

passage from ω to ω
1, or ω

2, or (ω3; ω
4), or (ω5; ω

6) cannot increase the

number of distinct ZUS capable of producing η by splitting. Indeed, these

η-generating ZUS are also interlocked in a chain of type (4.14), except that

(4.14a) must be replaced by:

(4.17) ‖w0‖ = η; ‖ws‖ = (−1)sη .

Therefore, any contraction or split of the total sequence ω can only lower,

or at most leave unchanged, the total number of factors ws in the chain of

η-generating ZUS.

We then apply the inductive scheme to each of the new terms on the

right-hand side of (4.15), by choosing each time some new licit component.

After (r−1) inductive steps at most, we get Carrω expressed as a sum (4.8)

and that sum involves only the original formal poles η of ω (because of the
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selection rule [C1]) and that too with an actual multiplicity µ no larger than

their formal multiplicity
[

η
ω

]

.

Our selection rule [C1] + [C2] is thus an algebraic, mechanical, and

utterly simple device that keeps at bay, simultaneously, all illusory multiple

poles.

As for the bound (4.9), we observe that the right-hand side of (4.15)

carries at most two linear terms Carrω
′

, with r(ω′) = r − 1, and at most

(r−2) bilinear terms Carrω
′′

Carrω
′′′

, with r(ω′′)+r(ω′′′) = r. Therefore,

the iteration procedure, when it comes to a halt, has produced a total number

of terms which cannot exceed the number cat(r) of maximal bracketings

of a given, non-associative word consisting of r letters. That number cat(r)
is none other than the “Catalan number”, which is the middle term of the

inequalities (4.9).

Remark 1. This bound for
∑

|np|, though quite sufficient for our purpose,

is rather coarse. In fact, the “extreme” examples which are to follow (See

Ex. 2 and 3 infra) would seem to suggest that the best bound is not cat(r)
but cat(r′) with r = 2r′ or r = 2r′ − 1 depending on the parity.

Remark 2. Different licit choices of i usually (though not always) lead to

different decompositions of Carrω. This latitude in the choice of i both

explains and reflects the non-existence of a canonical “best decomposition”

(4.8) for Carrω.

Remark 3. “Non-repetition” of poles rather than “compensation”.

Let η = ωi + . . . + ωj (i ≤ j) be a formal pole of the sequence ω, with its

formal multiplicity l =
[

η
ω

]

and its chain (4.14) of generating ZUS. (Recall

that (4.17) must replace (4.14a) whenever i < j). If we were to calculate

Carrω by applying the induction (4.15) with illicit indices at each step, we

would of course still get the correct answer, but the decomposition (4.8)

might involve illusory poles (η)−µ∗ of order µ∗ nearly as large as:

(4.18) µ∗ = l +
∑

ls,s+1 (with m ≤ s < n and ls,s+1 as in (4.14d)).

Obviously, these illusory poles, or rather these poles with illusorily high

multiplicities, would cancel each other within the sum (4.8). However, what

we witness here is not a true compensation phenomenon, because these

phantom poles have no genuine existence: they are just will-o’-the-wisps,

“optical illusions” conjured up by an ill-adapted calculational strategy.

Remark 4. “Flexible” versus “rigid” inductions.

Actually, one may argue that these illusory poles and illusory multiplicities

are not totally bereft of reality, since they have an insidious way of smug-

gling themselves into the expressions of Carrω and Carr
<
ω whenever the
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calculations are conducted according to a rigid induction, which does not

take into account the particular degeneracy pattern.

One such rigid scheme, which produces cart-loads of illusory poles, is

the already mentioned composition formula:

(4.19) I• − Carr• = lim statn→∞(I• − Taa•)◦n

with the elementary mould Taa• defined as in (3.7), (3.7∗).

Another rigid, and for that very reason flawed, calculation scheme con-

sists in applying the variance formula variCarrω = (. . .) systematically

with the first or last i (i = 1 or i = r(ω)).

Example 1. Minimal degeneracy order (d(ω) = 1)
For r(ω) = r and the following (“minimal”) degeneracy pattern:

(4.20) 0 = ω1 + ω2 + . . . + ωr

we may apply the above inductive scheme with i = 1 at each step, and we

find:

(4.21) Carrω = (−1)r−1(ω1)
−1(ω1 + ω2)

−1(ω1 + ω2 + . . . + ωr−1)
−1

Example 2. Maximal degeneracy order (d(ω) = r(ω)−1)
For r(ω) = r = 2r′ and the following (“maximal”) degeneracy pattern:

(4.22) 0 = ω1 + ω2 = ω2 + ω3 = ω3 + ω4 = . . . = ωr−1 + ωr

we have only one independent variable ω1, since ωi = (−1)i−1ω1, and the

standard inductive scheme yields in this case:

(4.23) Carrω = −
(2r′ − 2)!

(r′ − 1)!r′!
(ω1)

1−r (r = 2r′)

The calculations leading to (4.23) may be given a concise and elegant form

by considering the generating function:

{

Carr(t)
def
= t2Carrx,−x + t4Carrx,−x,x,−x

+t6Carrx,−x,x,−x,x,−x + . . .
(4.24)

and by applying the induction rules to Carr(t) itself.

Example 3. Intermediary degeneracy order (d(ω) = r(ω)/2)
For r(ω) = r = 2r′ and a degeneracy pattern:

(4.25) 0 = ω1 + ωr = ω2 + ωr−1 = ω3 + ωr−2 = . . . = ωr′ + ωr′+1
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we have r′ independent variables ω1, ω2, . . . , ωr′ , and the standard scheme

yields a sum (4.8) which involves several terms, each with a coefficient

np = 1. Moreover, the total number of these terms is exactly:

(4.26) cat(r′) =
(2r′ − 2)!

(r′ − 1)!r′!

It is thus equal to the multiplicity of the only term of (4.19). For instance we

find:
{

Carrω1,ω2,−ω2,−ω1 = −(ω1ω2ω12)
−1

(with ω12
def
= ω1 + ω2)

(4.27)

{

Carrω1,ω2,ω3,−ω3,−ω2,−ω1 = (ω1ω2ω3ω12ω23)
−1

−(ω1ω3ω12ω23ω123)
−1(4.28)

{

Carrω1,ω2,ω3,ω4,−ω4,−ω3,−ω2,−ω1 = five terms

(because cat(4) = 5)
(4.29)

Example 4. Juxtaposition of zero-sum, unbreakable sequences.

If the degeneracy pattern is:

(4.30) 0 = ω1+. . .+ωi1 = ω1+i1 +. . .+ωi2 = . . . = ω1+is−1
+. . .+ωis

or, in other words, if ω factors into a product ω
1
ω

2 . . . ωs and carries no

other zero-sum, unbreakable sequences than the above ω
i, then a simple

induction, based on the standard scheme, yields:

(4.31) Carrω ≡ 0 .

If, however, the first and last factor-sequences have sums different from 0 (i.e.

‖ω
1‖ = −‖ω

s‖ 6= 0) and all others have zero-sums (0 = ‖ω
2‖ = ‖ω

3‖
etc.), then Carrω is generally 6= 0, as the example (4.12) testifies.

Lemma 4.3. Non-repetition of the denominators in Carr
<
ω.

For arborescent sequences
<
ω of a given length r and of a fixed degeneracy

pattern of order d, the correction mould Carr
<
ω, as a rational function of

its (r − d) independent variables ωi, has only poles of the form (η)−µ, with

linear combinations η of the ωi obtained by splitting unbreakable zero-sum

subsequences (ω∗)< of
<
ω:

(4.32) η = ‖(ω′)<‖ = −‖(ω′′)<‖ ((ω′)<(ω′′)< = (ω∗)<)

and with a multiplicity µ no larger than the number of unbreakable, zero-

sum sequences (ω∗)< which, when split, can produce η. Moreover, although
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there is in general no canonical “best way” of decomposing Carr
<
ω, there

always exist decompositions of the form:






















Carr
<
ω =

∑

p

np(ηp,1)
−µp,1(ηp,2)

−µp,2 . . . (ηp,sp)
−µp,sp

(

∑

i

µp,i ≡ r − 1

)(4.33)

which involve only effective poles η, with a multiplicity never exceeding their

effective multiplicity µ; and with integral coefficients np bounded by:

(4.34)
∑

p

|np| ≤ (16)r (r = r(ω) ; np ∈ Z − {0})

The proof is exactly like that of Lemma 4.2, except that it now relies on

the “arborified” variance rule (4.6), subject only to the choice of licit indices

ωi, under selection rules [C
<
1] + [C

<
2] which are the literal arborification of

[C1]+[C2]. As for the (admittedly very coarse) bound (16)r in (4.34) instead

of (4)r in (4.9), it simply reflects the larger number of “bracketings” for trees

than for fully-ordered sequences.

We might now wind up the proof of Proposition 4.1, but for greater clarity,

we shall slightly rephrase our two key-lemmas. This rephrasing involves the

alternal mould Ta• and its arborification Ta
<
• , whose definition (see Sect. 2)

we recall:

(4.35) Taω1,...,ωr def
= Saω2,...,ωr def

=(ω̂2ω̂3 . . . ω̂r)
−1

(4.36) Ta(ω1,...,ωr)< def
= Sa(ω2,...,ωr)< def

=(ω̂2ω̂3 . . . ω̂r)
−1

if ‖ω‖ = 0 or ‖
<
ω ‖ = 0 and if

<
ω has only one root ω1.

In all other cases we put:

(4.37) Taω = Ta
<
ω = 0

Corollary of Lemma 4.2 and Lemma 4.3.

Let ω and
<
ω be two zero-sum sequences, totally ordered (resp. arborescent),

and each with a given degeneracy pattern. The key-identities (4.8) and (4.33)

actually express Carrω and Carr
<
ω as sums of elementary moulds Ta

<
η

indexed (in both cases) by non-repetitive (see below) sequences
<
η obtained

by suitably reordering the components ωi of ω or
<
ω

(4.38) Carrω =
∑

n

(

ω

<
η

)

Ta
<
η (with n

(

•
•

)

∈ Z)
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(4.39) Carr
<
ω =

∑

n

(

<

ω

<
η

)

Ta
<
η (with n

(

•
•

)

∈ Z)

The integral-valued coefficients n

(

•
•

)

satisfy, of course, (4.9) and (4.34).

All the arborescent sequences
<
η have η1 = ω1 as their single root, and they

respect the order of ω or
<

ω in as far as they do not alter the internal order

of each uncut sequence ω
∗ or (ω∗)< of ω or

<

ω (“uncut” of course means

“uncut by the zero-sum unbreakable sequences” of ω or
<

ω). All the partial

sums
<i
η =

∑

i≤j ηj of
<
η are true poles of Carrω or Carr

<
ω.

Furthermore, the sequences
<
η are non-repetitive in the sense that:

(4.40)
<i
η 6=

<j

η whenever i < j within
<
η .

Lastly, for any fixed licit induction, like the first-licit-choice or last-licit-

choice induction (see below), all the terms of the decomposition (4.38) and

(4.39) are mechanically and unambiguously defined.

Thus, although there is no “canonical best way” of expanding Carrω and

Carr
<
ω as sums of “simple elements”, there exist two symmetrical expan-

sions that come very close to it. The first-licit-choice (resp. last-licit-choice)

induction, of course, consists in taking, at each inductive step, the first (resp.

last) licit index i (which usually differ from the first and last indices in ab-

solute terms).

We observe that the above statement clearly implies Lemma 4.2 and

4.3 and, conversely, that Lemma 4.2 and 4.3 essentially contain the above

“corollary”, because any licit inductive scheme automatically produces an

arborescent structure on the components ωi; automatically respects the inter-

nal order of all uncut subsequences; and automatically precludes repetitions

of the η̂i for pairs of comparable indices (i, j). Indeed, if (4.40) was vio-

lated, the actual multiplicity µ of the poles η would often exceed their formal

multiplicity

[

η

ω

]

, contrary to what we have established when proving the

Lemma 4.2.

Actually, the lemmas 4.2 and 4.3 and their above corollary are simply

two different ways of looking at the same decomposition of Carrω and

Carr
<
ω, but the corollary could also be established, directly and rather sim-

ply, under any licit inductive scheme. But rather than inflicting on the hapless

reader a repetition of the induction drudgery (which followed the Lemma

4.2 and constituted its proof), we prefer to show how the last-licit-choice

induction works on five typical examples, some of which involve multiple

overlappings. In each case, the components ωi which stem from the same
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ZUS (other than the full sequence ω) are marked by some distinctive sign

(like ◦, ∗, etc . . .) to facilitate their visual identification and to show how the

repetition-preventing mechanism works. Of course, i stands everywhere for

ωi, and the forward-going arrows denote the arborescent order on
<
η.

Example 5. ω = (ω1, . . . , ω9)
with the following two ZUS: ω itself (unmarked); (ω4, ω5, ω6) (marked ◦).

We find Carrω = −Ta
<1
η − Ta

<2
η with:

Example 6.

ω = (ω1, . . . , ω14)
with the following three ZUS: ω itself (unmarked); (ω4, ω5, ω6) (marked

◦); (ω9, ω10, ω11) (marked ∗).

We find Carrω = n1Ta
<1
η +n2Ta

<2
η +n3Ta

<3
η +n4Ta

<4
η with: n1 = n2 =

n3 = n4 = 1 and:
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Example 7. ω = (ω1, . . . , ω7)
with the following three overlapping ZUS: ω itself (unmarked); (ω2, ω3, ω4)
(marked ◦); (ω4, ω5, ω6) (marked ∗).

We find Carrω = n1Ta
<1
η + . . . + n5Ta

<5
η with: n1 = n2 = n3 = n4 = 1;

n5 = −1 and:
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Example 8. ω = (ω1, . . . , ω8)
with the following three overlapping ZUS: ω itself (unmarked); (ω2, . . . , ω5)
(marked ◦); (ω4, . . . , ω7) (marked ∗).

We find Carrω = n1Ta
<1
η + . . . + n8Ta

<8
η with: n1 = . . . = n6 = 1;

n7 = n8 = −1 and:
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Example 9. ω = (ω1, . . . , ω10)
with the following overlapping three ZUS: ω itself (unmarked); (ω2, . . . , ω5)
(marked ◦); (ω5, ω6, ω7) (marked ∗); (ω6, . . . , ω9) (marked ∆).

We find Carrω = n1Ta
<1
η + . . . + n20Ta

<20
η with: n1 = . . . = n6 = −1;

n7 = 1; n8 = . . . = n13 = −1; n14 = 1; n15 = . . . = n20 = 1, and:
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These nine examples will suffice for illustration.

We can now pick up the thread and conclude the proof of Proposition

4.1. The non-repetition of poles, as guaranteed by the Lemmas 4.2 and 4.3,

together with the estimates (4.9) and (4.34) on the number of terms, makes

it plain that Carrω and Carr
<
ω verify the standard Brjuno estimates (see

[B]):
{

|Carrω1,...,ωr | ≤ (c1∗)q1+...+qr

(

ωi = 〈ni, λ〉 ; qi = |ni| =
∑

nij

)(4.41)







|Carr(ω1,...,ωr)<

| ≤ (c1)
q1+...+qr

(

ωi = 〈ni, λ〉 ; qi = |ni| =
∑

nij

)(4.41∗)
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quite simply because, according to (4.38) and (4.39), Carrω and Carr
<
ω are

sums of elementary terms Ta
<
η , each of which verifies the standard Brjuno

estimates (due to the non-repetitiveness (4.40)) and also because the total

number of such terms is bounded by (4.9) or (4.34).

The mould estimates (4.41), (4.41∗) may now be paired with the comould

part of the expansions:

(4.42) ‖Bn1,...,nr‖U,V ≤ r!(c2∗)q1+...+qr‖Bn1
‖U,V . . . ‖Bnr‖U,V

(4.42∗) ‖B(n1,...,nr)<‖U,V ≤ (c2)
q1+...+qr‖Bn1

‖U,V . . . ‖Bnr‖U,V

Since the vector field X is assumed to be analytic, we may, for each given

ε > 0, ensure that:

(4.43) ‖Bni
‖U,V ≤ ε (∀ ni)

merely by choosing V small enough, and then U small enough within

V . Moreover, there exists a constant c3 (depending on the dimension ν
alone) such that (c3)

q be larger than the number of arborescent sequences

(n1, . . . , nr)
< of total “weight”

∑

|ni| less than q (see [E.3], pp. 94–95)

Piecing all this information together, we get:

(4.44)
∑

|Carr
<
• |‖Bn1

‖U,V ≤
∑

1≤q

(εc0c1c2c3)
q

which establishes the normal convergence of the arborified expansions and,

a fortiori, the analyticity of the correction and corrected form. The same,

however, does not hold true for the non-arborified expansion
∑

Carr•B•,

due to the unremovable factor r! in the estimates (4.42). Actually, by looking

at proper subseries of
∑

Carr•B• for each term of which the estimates (4.41)

and (4.42) are sharp, one immediately concludes that the mould expansion

∑

Carr•B•

in its raw, non-arborified form, is generically divergent in norm (except,

of course, in the trivial case when all eigenvalues λi are located in one

complex halfplane with boundary passing through the origin, because in

this case there appears in the estimates (4.30) a factor 1/r! which exactly

offsets the factor r! of (4.42)).

Remark 5. As always, arborification owes its success to the fact that it

removes the factor r! in the comould estimates, without reintroducing it

in the mould estimates. The removal of r! in the comoulds is the natural

consequence of the coarborification transform defined in (2.26), but the

non-appearance of r! in the moulds is much less “automatic”: it is due to
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specific identities which our moulds happen to verify, and which say, roughly

speaking, that these moulds essentially retain their shape after arborification:

in the present instance, Carr
<
• verifies a “variance rule” very similar to that

of Carr• (compare (4.5) with (3.33)).

Remark 6. The crux of the proof of Proposition 4.1, however, lies in the

phenomenon of “cancellation”, which applies both before and after arbori-

fication, and has to do with the ”non-repetition” of denominators in Carr•

(and Carr
<
• ), which sets this mould apart from most others, like Nal• and

all prenormalizing moulds Pran• etc.

Remark 7. The work of L.H. Eliasson on small denominators.

Professor L.H. Eliasson has been one of the first analysts to make a sys-

tematic use of “arborification” in the study of small denominator problems

aggravated by resonance, and he has proven a number of difficult theorems

in this field. However, despite our common, and clearly inevitable, recourse

to “trees”, we must say that Eliasson’s methods are vastly different from

ours. The main difference lies in this: whereas we majorize expressions like

Carrω by expressing them, via a purely algebraic mechanism, as finite sums

of elements which, taken separately, possess obvious, or at least well-known,

bounds (modulo the work of Siegel and Brjuno), Professor Eliasson seems

to be under the impression that the poles of “abnormally high order” are

“actually there”, and so he must resort to a very complex and subtle, but

non-algebraic machinery of “sign compensations” to keep some control on

the sums of these poles. Indeed, until now, the consensus among the experts

on resonance-cum-small-denominators seems to be that no purely algebraic

mechanism can account for the phenomenon of “compensation”.

We, however, have shown that there does exist a very simple, and quite

fascinating, algebraic mechanism (at least in the case of Carrω, Carr
<
ω,

Cerrω, Cerr
<
ω, but also, we suspect, in many similar instances) and that

this completely does away with the need for any form of compensation.

Indeed, once Carrω has been purged of its illusory poles, there is nothing

left to compensate, and it is our firm belief that no significant compensation

occurs among the terms of the sums (4.8) = (4.38) or (4.33) = (4.39). By

“significant compensation” we mean one which could make the difference

between divergence and convergence. Of course, by a “clever” choice of

some specially suited licit induction, one might perhaps manage to reduce

somewhat the constants c1∗ and c1 in (4.41) and (4.41∗) but that is totally

immaterial.

The main bonus we get from our algebraic method (apart from pure con-

ceptual insight), seems to be the weaker diophantine assumptions (Brjuno’s
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instead of Siegel’s) under which we are able to prove the convergence of the

correction.

Remark 8. Ecalle’s “compensators” and the Liouvillian small denomina-

tors.

To preclude any terminological confusion, let us point out that the no-

tion of “compensation”, as used by Professor Eliasson, bears no relation to

Ecalle’s notion of “compensation”, which belongs to an altogether different

context, namely that of Liouvillian or non-diophantine spectra, and serves

the purpose of ramified-seriable linearization (see above Sect. 1, (F2); and

also [E.2]). “Compensation” in Ecalle’ s sense involves the so-called “com-

pensators” of the form:

zσ0,σ1,...,σr def
=

r
∑

i=0

zσi

∏

j 6=i

(σi − σj)
−1 (z ∈ C•; σi ∈ R+)

When the exponents σi are pair-wise different, but very close to each other,

the coefficient in front of the power zσi (which have a genuine, individ-

ualized existence) become very large and yet, due to a true phenomenon

of compensation, the finite sum on the right-hand side of (11.36) remains

bounded.

Algebraic complements. Elementary linearizability criteria

We append to this section a few lemmas which shed some additional light

on the structure of Carr• and Carr
<
• and, above all, lead to very simple

linearizability criteria for resonant vector fields.

Let Carr• be as in (3.15) and Taa• as in (3.7) (3.7∗).

Lemma 4.4. The alternal mould Carr• can be calculated from the non-

alternal mould Taa• by:

(4.45) I• − Carr• = stat lim
n→+∞

(I• − Taa•)◦n

This corresponds to (3.17) with the choice (3.18∗∗), the legitimacy of

which was left open in Sect. 3 (unlike that of the choices (3.18) or (3.18∗)).

A short but indirect proof of (4.45) consists in deducing this identity from

the induction rule (3.33). Let us sketch a direct, though somewhat lengthier

proof, based on the identity:

(4.46) Mω

n = Nω

n if r(ω) ≤ n

with

(4.46∗) M•
n

def
=(I• − Nal•∗)

◦n ; N•
n

def
=(I• − Taa•)◦n
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for a mould Nal•∗ defined by Nalω∗ ≡ Nalω (resp. 0) if ‖ω‖ = 0 (resp.

6= 0). See (3.3) and (3.18∗). Since, as mentioned in Sect. 3, M•
n coincides

with I• − Carr• for r(•) ≤ n, (4.46) clearly implies (4.45).

Let us first calculate Mω

n for sequences ω admitting only one maximal

factorization aω
1
ω

2 . . . ωsb as in (3.3), and that too with factors ω
i of

length ri ≥ 2 and a = b = ∅.
{

ω = ω
1
ω

2 . . . ωs with ‖ω
1‖ = . . . = ‖ω

s‖ = 0 ;

ω
1, ω2, . . . , ωs 6= ∅

(4.46∗∗)

(ωi unbreakable; r(ωi) ≥ 2).
Using the convenient short-hand:

Nalω
1

∗ = s1; Nalω
1,ω2

∗ = s1,2;

Nalω
1,0,ω2,ω3,0,ω4

∗ = s1,0,2,3,0,4 ; etc.(4.47)

and applying the rules (2.3) for mould composition, we get the following

expressions for Mω

n when n ≥ s:

(4.481) Mω
1

n = −s1

(4.482) Mω
1,ω2

n = −s1,2 + s0,2s1 + s1,0s2























Mω
1,ω2,ω3

n = −s1,2,3 + s0,2,3s1 + s1,0,3s2 + s1,2,0s3

−s0,0,3s1s2 − s0,2,0s1s3 − s1,0,0s2s3

+s0,3s1,2 + s1,0s2,3 − s0,3s0,2s1

−s0,3s1,0s2 − s1,0s2,0s3 − s1,0s0,3s2

(4.483)

etc. . . .
By Lemma 3.1 we can express everything in terms of the derivatives

(daa)ni(Taaωi) which, for short, we write: Dni(si) (ni ≥ 0; i 6= 0).
Thus we find:

(4.492) Mω
1,ω2

n = −D(s1s2) + s1D(s2) + s2D(s1) ≡ 0































































Mω
1,ω2,ω3

n = −(1/2)D2(s1s2s3) + (1/2)s1D2(s2s3)

+(1/2)s2D2(s1s3) + (1/2)s3D2(s1s2)

−(1/2)s1s2D2(s3) − (1/2)s1s3D2(s2)

−(1/2)s2s3D2(s1) + D(s1s2)D(s3)

+D(s1)D(s2s3) − s1D(s2)D(s3)

−s2D(s1)D(s3) − s3D(s1)D(s2)

−s2D(s1)D(s3)

≡ 0

(4.493)
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Let us show that the cancellation goes on, and that we have:

(4.49n) Mω
1,ω2,...,ωs

n ≡ 0 for n ≥ s ≥ 2 .

In view of the formal equivalence between Newton’s binomial formula

for (a + b)n and Leibniz’s rule for calculating Dn(ab), proving (4.49n) is

the same as proving the identity:

0 ≡ AK
def
≡
∑

J⊂K

(−1)card(J)(aJ)card(K)−1 (with card(K) = n ≥ 2)

(4.50n)

for any sequence a1, a2, a3 . . . of real variables, and with the partial sums:

(4.51) aJ
def
≡
∑

j∈J

aj (if J is a finite subset of N).

Thus, for K = {1, 2} or {1, 2, 3}, (4.50n) is obviously true since it reads:

(4.502) 0 = A{1,2} = (a1 + a2) − (a1) − (a2)

{

0 = A{1,2,3} = −(a1 + a2 + a3)
2 + (a1 + a2)

2

+(a1 + a3)
2 + (a2 + a3)

2 − (a1)
2 − (a2)

2 − (a3)
2 .

(4.503)

The truth of (4.50n) follows by induction. Indeed, for any k in K we have:

(4.52) ∂ak
Ak ≡ (1 − card(K))AK−{k}

so that AK is necessarily constant, and in fact ≡ 0 if card(K) ≥ 2.

This establishes (4.49n) for n ≥ 2 and shows in effect that, for sequences

ω of type (4.46∗∗), when we express Mω

n as a polynomial of the variables:

(4.53) Dni(si)
def
= Dni(Nalωi

∗ ) ; D0(si)
def
= si

all the “derivatives” of order ni ≥ 1 cancel out. The same cancellation also

takes place for general series ω admitting several maximal factorizations

aω
1 . . . ωsb (with empty or non-empty factors a and b), as can be seen

by repeating, for each such factorization, the above argument, based on the

identities

0 = AK for card(K) ≥ 2.

So what is left in the expression of Mω

n is the sum of all “derivative-

free” terms. But this is exactly what we get when calculating Nω

n , with Nω

n



304 J. Ecalle, B. Vallet

defined as the n-th self-iterate of I• − Taa•. This establishes (4.46) and

proves Lemma 4.4.

Now, for any sequence
<

ω = (ω1, . . . , ωr)
< with an arborescent order

on it (see Sect. 2), we define the usual forward sums ω̂i:

(4.54)

ω̂i =
∑

ωj for all j ≥ i relative to the arborescent order of
<

ω

Next, if
<

ω has exactly one “root” or “least element” ω1, we put:

{

Taaa
<
ω def

= (ω̂2)
−1(ω̂3)

−1 . . . (ω̂r)
−1

if ω̂1 = 0 and ω̂2ω̂3 . . . ω̂r 6= 0
(4.55)

{

Taaa
<
ω def

= 0

if ω̂1 6= 0 or ω̂2ω̂3 . . . ω̂r = 0
(4.55∗)

If
<

ω has more than one “root”, we also put Taaa
<
ω = 0.

Lastly, for r(
<

ω) = 0 or 1, we put:

(4.55∗∗) Taaa∅ = 0; Taaaω1 = 0 if ω1 6= 0; Taaa0 = 1.

It is easy to check that Taaa
<
ω is “almost”, but not exactly, the arborifi-

cation of Taa•. Indeed, the identity:

(4.56) Taaa
<
ω =

∑

ω

sh

(

<

ω

ω

)

Taaω (see Sect. 2)

holds true only for sequences
<

ω such that:

(4.57) ω̂i 6= ωi for each “branching index” i.

(i is dubbed a “branching index” if it has more than one immediate successor

in
<

ω).

Lemma 4.5. Despite the fact that Taaa
<
• is not the arborification of Taa•

(or, for that matter, of any other mould), the relation (4.45) nonetheless

possesses an “arborescent” counterpart, namely:

(4.58) I
<
• − Carr

<
• = stat lim

n→+∞
(I

<
• − Taaa

<
•)◦n

The composition D
<
• = A

<
• ◦ C

<
• implicit in (4.58) is the natural exten-

sion of the mould composition as defined in (2.3):

(4.59) D
<
ω =

∑

A(‖ω1‖,...,‖ωs‖)<

C(ω1)<

. . . C(ωs)<
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Here, we break up, in all possible ways, the arborescent sequence
<
ω into a

“product” of connected, non-empty subsequences (ωi)<. Each factor (ωi)<

inherits its arborescent order from
<

ω, and so does the sequence
<
η = (η1, . . . ,

ηs) formed with the sums ηi = ‖ω
i‖. The composition law (4.59) is clearly

associative, and there are two distinct reasons why it deserves to be called

the natural arborification of the mould composition (2.3).

First, if A
<
• and C

<
• happen to be the arborification (2.24) of some moulds

A• and C• (which is not always the case, as with Taaa
<
• ), then D

<
• as defined

by the composition (4.59) happens to be the arborification of D• as defined

by the composition (2.3).

Second, if we fix a spectrum λ and a vector field Y =
∑

Bn as in (2.6);

then construct B<
•

from B• as in (2.25) (2.26); and lastly define the action

of M
<
• on vector fields by:

(4.60) ActM
<
•
(

∑

Bn

)

=
∑

M
<
•B<

•

we obtain a new vector field if and only if M
<
ω = 0 whenever

<

ω has

more than one root (since B<
n

as a differential operator has an order equal

to the number of roots in
<
n). Moreover, composing the action amounts to

composing the arborescent moulds:

(4.61) ActM
<
•

ActN
<
•

= Act(M
<
• ◦ N

<
• )

but the verification of (4.61), which we leave to the reader, demands greater

care than that of its prototype (2.3). Indeed, (4.61) would fail if we tampered

ever so slightly with the definition (2.26) of B<
•

.

So much for the meaning of Lemma 4.5. Now to its proof . As with

Lemma 4.4, there is a short but indirect proof which deduces (4.58) from

the straightforward arborification of the induction rule (4.5). Let us sketch

a more direct proof, which runs parallel to that of Lemma 4.4.

To do this, we require the arborified version of the identity (3.3). It

involves on the right-hand side all maximal factorizations of
<

ω:

(4.62)
<

ω = (a)<(ω1)<(ω2)< . . . (ωs)<(b1)<(b2)< . . . (bt)<

with one initial factor (a)<; with a connected cluster of middle factors

(ωi)<; and (unlike in (3.3)) with any number of end factors (bi)<. The

effect of the “derivations” (daa)s−1/(s − 1)! on Sa
<
a , Ta

<
ω, Sa

<

b, are still

defined as in (3.3) (relative to all the subordinated, fully-ordered sequences)
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but with a slight modification in the case of S
<
a : we must modify the order on

the arborescent sequence
<
a so as to turn it into an antiarborescent sequence

<
a∗ (i.e., whereas each element in

<
a has at most one predecessor, each element

in
<
a∗ has at most one successor) by retaining the order on the (necessarily

unique) branch of
<
a that borders on the connected cluster of the middle

factors (ωi)<, and by reversing the order on all the other branches of
<
a which

do not border on that cluster. Once we are equipped with this arborescent

version of (3.3), we can check the cancellation of all derivatives in M
<
•
n in

much the same way as we did with M•
n (see (4.46∗)).

Lemma 4.6. Linearizability criterion.

If for any resonant vector field, formal or not:

(4.63) X = X lin +
∑

Bn

we define the “deviations” Xaa and Xaaa by:

(4.64) Xaa =
∑

Taa•B• ; Xaaa =
∑

Taaa
<
•B<

•

then the equivalences hold:

(4.65) {X formally linearizable} ⇔ {Xaa = 0} ⇔ {Xaaa = 0}

Corollary of Lemma 4.6. Characterization of Xcarr.

The correction Xcarr is characterized by each one of the relations:

(4.66) (X − Xcarr)aa = 0

(4.66∗) (X − Xcarr)aaa = 0.

Proof of Lemma 4.6.

If we define:

(4.67) Xaad def
= X − Xaa = X lin +

∑

(I• − Taa•)B•

(4.67∗) Xaaad def
= X − Xaaa = X lin +

∑

(I
<
• − Taa

<
•)B<

•

then (4.58) in combination with (4.61) implies that the following sequence

converges towards Xcarrd:

(4.68)

X −→ Xaad −→ Xaad2

−→ Xaad3

−→ . . .
lim
−→ Xcarrd = X − Xcarr
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(4.68∗)

X −→ Xaaad −→ Xaaad2

−→ Xaaad3

−→ . . .
lim
−→ Xcarrd = X − Xcarr

On the other hand, (4.58) also implies:

(4.69)
(X−Xcarr)−(X−Xcarr)aa = (X−Xcarr)−(X−Xcarr)aaa = X−Xcarr

which is exactly (4.66) and (4.66∗).

Now, if X is linearizable, we have Xcarr = 0, and in that case (4.69)

says that:

Xaa = Xaaa = 0

Conversely, if we assume Xaa = 0 or Xaaa = 0, then Xaad = X or

Xaaad = X and so all terms in the sequences (4.68) and (4.68∗) including

the limit Xcarrd, are equal to X , which means that X is formally linearizable.

Remark: The linearizability criteria (4.65) are remarkable in so far as Xaa

and Xaaa are defined by the utterly elementary moulds Taa• and Taa
<
•

(compare for instance their definitions with the calculation procedures for

Carr• or Nal• or Ray•). However, of the two, only Xaaa is a vector field, so

that verifying Xaaa = 0 reduces to verifying Xaaaxi = 0 for each variable

xi (i = 1, 2, . . . ν). The operator Xaa, on the other hand, is neither a vector

field nor an automorphism. Therefore, in order to check that Xaa = 0,

it seems a priori necessary to check that Xaa.xm = 0 for all monomials

xm, and not just for the single variables xi. This somewhat detracts from the

usefulness of Xaa for providing linearizability criteria, but does not prevent

it from providing very convenient obstructions to linearizability !

5. Analyticity of the corrected form (for diffeos)

Proposition 5.1. Let F be a local, analytic, resonant, torsion-less diffeo

whose spectrum l = (l1, . . . , lν) meets Brjuno’s diophantine condition (1.9).

Then the correction F cerr and corrected form

F cerrd def
= (F cerr)−1F lin

are analytic, and their arborified mould expansions:

(5.1) F cerr =
∑

Cerr
<
•B<

•
; F cerrd =

∑

Cerrd
<
•B<

•
;

are normally convergent.

Since we are now dealing with diffeos, the relevant arborification is of

course “symmetrel arborification” (or “erborification”) as defined in Sect. 2,

with due allowances for component contractions. That aside, the proof of
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Proposition 5.1 exactly mirrors that of Proposition 4.1 and like with vector

fields, everything rests on the cancellation or rather non-appearance of

multiple poles. That in turn is proved exactly as with vector fields, but by

resorting to the variance rules (3.35), (3.36), (3.37), (3.38), instead of (3.33).

The lemmas 4.1, 4.2 and 4.3 have their literal counterpart; the avoidable and

unavoidable poles or “denominators” are the same as with fields; and the rule

which, at each inductive step, permits certain indices i in veri and prohibits

others, is the same as in Sect. 4 with vari.

6. Analytic linearizability of the corrected form. Explicit conjugacy

Proposition 6.1. Explicit conjugacy for vector fields.

Let X = X lin +
∑

Bn be a resonant, analytic, local vector field with a

spectrum fulfilling Brjuno’s diophantine condition (1.9). Then the corrected

form Xcarrd is analytically linearizable. Moreover, there exists an explicit

analytic conjugacy:

(6.1) Xcarrd = ΘcarrX
linΘ−1

carr

with mould expansions:

(6.2) Θcarr =
∑

Scarr•B•

(6.3) Θ−1
carr =

∑

invScarr•B•

which after arborification become normally convergent. These expansions

involve symmetral, mutually inverse moulds Scarr• and invScarr•, which

are inductively defined by a system patterned on that of the “royal form”,

namely:

(6.4) Scarr• × invScarr• = 1•

(6.5) ∇ωScarr• = −Scarr• × Carrd•

(6.6) lan Scarr• = Carra• × Scarr•

with the mould derivation lan which simply multiplies Mω by the number

r∗(ω) of non-vanishing components ωi in ω; with the customary alternal

mould Carrd• = I• − Carr•; and with a new alternal mould Carra• which

is determined by the above system under addition of the usual condition:

(6.7) Carraω = 0 if ‖ω‖ = 0 (“complementarity” to Carrd•)
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Comments and sketch of proof.

By itself, the existence of an analytic linearization of Xcarrd is a con-

sequence of the analyticity of Xcarrd, as proved in Sect. 4, and of classical

theorems about the analytic prenormalization of certain exceptional reso-

nant objects. Indeed, Brjuno gave in [B], (pp173–174) conditions (bearing

on the prenormal forms) for a resonant field to be analytically prenormal-

izable. For general resonant fields these conditions are rarely fulfilled, but

they automatically are in the case of a formally linearizable (and analytic)

field like Xcarrd, whose prenormal forms are necessarily ≡ 0.

So the real point of the above proposition is the “canonical” (though

chart-dependent) conjugacy (6.1) with its explicit expansions (6.2), (6.3).

The existence of such a canonical analytic conjugacy, which once again

rests on the cancellation of multiple small denominators, can in no way

be taken for granted because, as we shall prove towards the end of this

section, although each prenormalization induces an explicit linearization of

the corrected form, these induced linearizations are generically divergent,

due precisely to the persistence in them of multiple small denominators.

Both Scarrω and invScarrω admit decompositions of type (4.8), with

coefficients np bounded by (4.9) as in the case of Carrω. The only, very

slight, difference lies in the nature of the poles η and their multiplicities µ.

In the case of Scarrω (resp. invScarrω), to the poles η defined in (4.7) we

must add the poles of the form:

(6.8) η = ω̌i = ω1 + . . . + ωi (resp. η = ω̂i = ωi + . . . + ωr)

and each pole η has a multiplicity µ defined as in Lemma 4.2 (we recall that

µ was the number of decompositions (4.7)) except that one must augment

µ by one unit if η happens to be also of the form ω̌i (resp. ω̂i).

Moreover, to establish these assertions, one does not need to duplicate

the reasoning of Sect. 4 and to write down the variance rules for Scarr•

and invScarr• (i.e. the effect on them of the operators vari), but merely to

plug the results established in Sect. 4 for Carr• (see Lemma 4.2) into the

induction (6.4), (6.5), (6.6).

We shall merely give a few examples, for various degeneracy patterns,

and with the usual abbreviations (ωij = ωi + ωj , etc.)

Example 1: If ω3 + ω4 = 0, then:

Scarrω1,ω2,ω3,ω4 = −(ω1ω12ω3ω123)
−1

Example 2: If ω2 + ω3 + ω4 + ω5 = 0; ω3 + ω4 = 0, then:

Scarrω1,...,ω5 = +(ω2
1ω12ω3ω123)

−1 − (ω2
1ω2ω3ω23)

−1
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Example 3: If 0 = ω1 + . . . + ω6 = ω2 + . . . + ω5 = ω3 + ω4, then:

Scarrω1,...,ω6 = −(ω2
1ω12ω123ω2ω3)

−1 − (ω2
1ω12ω123ω23ω3)

−1

+(ω2
1ω

2
12ω123ω3)

−1 − 1/2(ω2
1ω

2
12ω

2
123)

−1

Exemple 4: If ω has no degeneracy at all, then:

Scarrω = Saω =
r
∏

i=1

(−ω̌i)
−1 (r = r(ω))

Example 5: If ω1 + . . . + ωr = 0, then:

Scarrω =

(

r−1
∏

i=1

(−ω̌i)
−1

)

(

∑

(ω̌i)
−1
)

Example 6: If r = 2r′ and 0 = ω1+ω2 = ω3+ω4 = . . . = ωr−1+ωr = 0,

then:

Scarrω = (−1)r′ (2r′)!

4r′(r′!)(r′!)
(ω1)

−2(ω3)
−2 . . . (ωr−1)

−2

Proposition 6.2. Explicit conjugacy for diffeos.

Let F = (1 +
∑

Bn)F lin be a resonant, analytic, local diffeo with a

spectrum fulfilling Brjuno’s diophantine condition (1.9). Then the corrected

form F cerrd is analytically linearizable. Moreover, there exists an explicit

analytic conjugacy:

(6.24) F cerrd = ΘcerrF
linΘ−1

cerr

with mould expansions:

(6.25) Θcerr =
∑

Scerr•B•

(6.26) Θ−1
cerr =

∑

invScerr•B•

which after erborification (see below) becomes normally convergent. These

expansions involve symmetrel, mutually inverse mouldsScerr• and invScerr•,

which are inductively defined by a system patterned on that of the “royal

form”, namely:

(6.27) Scerr• × invScerr• = 1 .

(6.28) e∇ωScerr• = Scerr• × invCerrd•

(6.29) len Scerr• = Cerre• × Scerr•
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with a mould derivation len analogous to lan; with the customary symmetrel

(not alternel) mould Cerrd•; and with a new alternel (not symmetrel!) mould

Cerre• which is determined by the above system under addition of the usual

condition:

(6.30) Cerreω = 0 if ‖ω‖ = 0 (“complementarity” to Cerrd•)

Complement. Prenormalization of X and linearization of Xcarrd

Any continuous prenormalization X = ΘpranX
pranΘ−1

pran with the moulds

Spran•, invSpran• and Pran• that go with it, automatically induces an

explicit (formal) linearization

Xcarrd = ΘpracX
linΘ−1

prac

of the corrected form Xcarrd, with the expansions:

(6.31) Θprac =
∑

Sprac•B• ; Θ−1
prac =

∑

invSprac•B•

(6.32) Sprac• def
= Spran•◦Carrd• ; invSprac• def

= invSpran•◦Carrd•

for the simple reason that Pran• ◦ Carrd• = 0.

All these induced linearization of Xcarrd, however, suffer from the same

basic flaw, and differ from the “canonical” one of Proposition 6.1. Indeed:

Proposition 6.3. (Inadequacy of the induced linearizations).

Each induced linearization involves generically divergent automorphisms

Θprac and Θ−1
prac, due to the persistance in the mould expansions (6.31),

both before and after arborification, of multiple powers (of arbitrarily high

order) of the small denominators.

Corollary of Proposition 6.3. The “canonical” linearization of Xcarrd con-

structed in Proposition 6.1 is not induced by the “royal” prenormalization

nor, for that matter, by any other continuous prenormalization.

7. Examples. The simplest non-trivial case

Elementary objects

Fix a resonant spectrum λ = {λ1, . . . , λν} and a set {ω1, . . . , ωs} of pair-

wise distinct complex numbers. Clearly, the space L{ω1,...,ωs} spanned by

all homogeneous vector fields Bn of degree n with 〈n, λ〉 ∈ {ω1, . . . , ωs}
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is a Lie algebra in three cases only, namely for the sets {0}, {0, ω1} and

{0, ω1, ω2} with ω1 + ω2 = 0. Vector fields X with spectrum λ and com-

ponents Bn in L{0} are trivial in every respect (at least for one degree of

resonance). Vector fields with components in L{0,ω1} are more interesting,

in the sense of having non-trivial analytic moduli, holomorphic invariants,

divergent associated objects, etc. but their correction Xcarr is trivial, since

it reduces to the series of all resonant components. Vector fields with com-

ponents in L{0,ω1,ω2} are the most promising ones from this paper’s point

of view: they have both non-trivial moduli and non-trivial corrections; and

yet they are elementary enough to permit a fully explicit description of the

principal associated objects, beginning with the correction.

So we will turn to these vector fields, and to the corresponding diffeos, for

an illustration of our main conclusions, by verifying in this simple instance

the convergence of what should converge (correction) and the divergence of

what may diverge (nilpotent part; trimmed form, etc.).

Elementary vector fields and their correction

Let us investigate resonant analytic vector fields X and Y of the form:

(7.1) X = (a0(x
m) + xm1

a1(x
m) + xm2

a2(x
m))X lin = X lin + . . .

(7.1∗) a0(x
m), a1(x

m), a2(x
m) ∈ C{xm} ; a0(0) = 1

(7.2) Y = X + Xres = X lin + . . .

with a common linear part:

(7.3) X lin = Y lin =
∑

λixi∂xi

with at least one degree of resonance and homogeneous components in

L{0,ω1,ω2}:

(7.4) 〈m, λ〉 = 0 ; m = (m1, . . . , mν) ; (mi ≥ 0) ; m1 + m2 = m .

(7.5) 〈m1, λ〉 = ω1 ; 〈m2, λ〉 = ω2 ; ω1 + ω2 = 0 , ω1 6= 0 6= ω2

and, inside Y , one homogeneous component Xres that does not annihilate

the resonant monomial xm:

(7.6) Xres · xm = −(xm)2 ; Xres = xm
∑

τixi∂xi
; 〈m, τ〉 = −1 .
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The coefficients a0, a1, a2 are convergent power series of the resonant mono-

mial xm, and since a1(0) ≡ 1, the linear part of both fields is indeed given

by (7.3).

For instance, in dimension ν = 2, we may take:

(7.7) (λ1, λ2) = (1, −1) ; xm = x1x2;x
m1

= x1 ; xm2

= x2

(7.8)
X lin = x1∂x1

−x2∂x2
; Xres = x1x2{τ1x1∂x1

+τ2x2∂x2
} ; τ1+τ2 = −1

Now, if we put:

(7.9) U0 = X lin ; U1 = xm1

X lin ; U2 = xm2

X lin

we have the obvious Lie brackets:

(7.10) X̄ · Ui
def
=[X, Ui] = A0

i U0 + A1
i U1 + A2

i U2

with coefficients Ai
j as follows (we write ai for ai(x

m)):

(7.10∗) A0
0 = 0 ;A1

0 = −ω1a1 ; A2
0 = −ω2a2

(7.10∗∗) A0
1 = 2ω1x

ma2 ; A1
1 = ω1a0 ; A2

1 = 0

(7.10∗∗∗) A0
2 = 2ω2x

ma1 ; A1
2 = 0 ; A2

2 = ω2a0 .

The matrix A = {Ai
j} has as its characteristic polynomial:

(7.11) det(A − t Id) = −t3 − (4xma1a2 − a0a0)t
2 .

When X reduces to its linear part X lin, we have a0 ≡ 1, a1 ≡ a2 ≡ 0, and

so in this case:

(7.12) det(A − t Id) = −t3 + t2 .

Now, if a general X of the form (7.1) is conjugate to X lin, it is so within the

algebra L{0,ω1,ω2}, and therefore the two characteristic polynomials (7.11)

and (7.12) must coincide, yielding the condition:

(7.13) a0a0 = 1 + 4xma1a2 (with ai = ai(x
m) ∈ C{x}) .

This, however, means that the corrections of the fields X and Y as given by

(7.1) and (7.2) are respectively:

(7.14) Xcarr = (a0(x
m) + α0(x

m))X lin

(7.15) Y carr = Xcarr + Xres
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with a convergent power series α0 = α0(x
m) given by:

(7.16) α0 = (1 + 4xma1a2)
1/2 = 1 +

∑

r≥1

2 · (−1)p+1Catp(a1a2x
m)p

with the Catalan numbers:

(7.17) Catp =
(2p − 2)!

(p − 1)!p!
(p ∈ N) .

It is a nice exercise to check that the general formula:

(7.18) Xcarr =
∑

CarrωBω =
∑ 1

r(ω)
CarrωB[ω]

tallies exactly with (7.16) (7.17).

Indeed, in view of (7.9) and of the opposite homogeneousness of Carrω

and Bω, we can assume {ω1, ω2} = {1,−1}, and (7.18) transforms into:

(7.19) 2(−1)p+1Catp =
∑

εi=±1

Carrε1,ε2,...,ε2pΓε1,ε2,...,ε2p

(7.19∗) 2(−1)p+1Catp = (2p)−1
∑

εi=±1

Carrε1,ε2,...,ε2pΓ[ε1,ε2,...,ε2p]

with:

(7.20) Γε1,ε2,...,ε2p

def
= ε1(ε1 + ε2)(ε1 + ε2 + ε3) . . . (ε1 + . . . + ε2p−1)

(7.20∗) Γ[ε1,ε2,...,ε2p]
def
=(ε1−ε2)(ε1+ε2−ε3) . . . (ε1+. . .+ε2p−1−ε2p) .

With the help of the generating induction (3.33) for Carr•, one can then

verify the identities (7.19) and (7.19∗) with Catp as in (7.17). Note that the

sum (7.19∗) involves far fewer terms than (7.19), since the only non-zero

contributions to (7.19∗) come from sequences {εi} such that:

(7.20∗∗) 0 = ε1 + ε2 = ε3 + ε4 = . . . = ε2p−1 + ε2p

So much for the corrections Xcarr, Y carr and their convergence in this ele-

mentary case. The other associated objects relative to X are also convergent,

but those relative to Y are generically divergent, and always resurgent (in the

variable z = (xm)−1). For the intrinsical objects (Y nal, Θnar, etc.) we have

canonical resurgence, governed by the Bridge Equation (1.19), with only

two acting alien derivations, namely ∆ω1
and ∆ω2

, and the two holomorphic

invariants Aω1
and Aω2

that go with them. But the continuous prenormal

forms are also generically divergent, and resurgent, with their own special

resurgence lattices (see [E.V.2]).
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Elementary diffeos and their correction

The natural counterparts of X lin, Xres, X , Y are diffeos F lin, F res, F , G
of the form:

(7.21) F lin · xm = xm

(7.21∗) F lin · xm1

= eω1xm1

(7.21∗∗) F lin · xm2

= eω2xm2

(7.22) F res · xm = xm(1 − xm)−1

(7.22∗) F res · xm1

= xm1

(1 − xm)τ1

(7.22∗∗) F res · xm2

= xm2

(1 − xm)τ2

with τ1 + τ2 = −1 as earlier on

(7.23) F · xm = xm

(7.23∗) F · xm1

= (axm1

+ b)(cxm1

+ d)−1

(7.23∗∗) F ·xm2

= xm/(F ·xm1

) = (dxm+m2

+cx2m)(bxm2

+axm)−1

with, of course, analytic coefficients:

(7.23∗∗∗) a, b, c, d ∈ C{xm} ; xm1

xm2

= xm

and lastly:

(7.24) G = F resF .

Now, the correction F cerr is necessarily of the form:

(7.25) F cerr · xm = xm

(7.25∗) F cerr · xm1

= γxm1

(7.25∗∗) F cerr · xm2

= (1/γ)xm2
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for a suitable power series γ = γ(xm). Moreover, the corrected form

F cerrd = (F corr)−1F is characterized by being conjugate to F lin. Therefore

F cerrd, which acts on xm1

like the Möbius map:

(7.26) xm1

−→ ((a/γ)xm1

+ b)((c/γ)xm1

+ d)−1

must be conjugate to the homothety induced by F lin:

(7.27) xm1

−→ eω1xm1

which yields the condition:

(7.28) eω1(a + dγ)2 − (1 + eω1)2(ad − bc)γ ≡ 0 .

This second order equation admits one acceptable solution γ(xm) = 1+. . .,
which is a convergent power series of xm whenever a, b, c, d are themselves

so, i.e. when the diffeo F is analytic. But knowing F cerr we know Gcerr

also:

(7.29) Gcerr = F resF cerr .

Thus we see that the corrections of both F and G are convergent, in full

agreement with the general theorems, but in contrast with the other objects

associated with G, such as Gnel, Gprem etc., which are generically divergent

and resurgent. Amongst these, the intrinsic objects, such as Gnel, Θner etc

. . ., display canonical resurgence, and satisfy the Bridge Equation, with

acting alien derivations ∆ω and holomorphic invariants Aω whose indices

ω are of the form:

(7.30) ω = 2πik (k 6= 0) or ω = ω1+2πik or ω = ω2+2πik (k ∈ Z) .

As for the objects F nel, F prem associated with F , they are of course con-

vergent, due to the absence in them of the crucial factor F res.

8. Conclusion

For conciseness, this recapitulation mentions vector fields only, but of course

each of the coming remarks extends to the diffeomorphisms as well.

The bulk of this paper was devoted to the correction Xcarr of resonant

vector fields X . Despite its outward similarity to most other objects associ-

ated with vector fields, such as the nilpotent part Xnal and the continuous

prenormal forms Xpran, which are generically divergent and resurgent, the

correction turns out to possess completely different properties: it converges

under the sole diophantine condition introduced by A.D. Brjuno to prove

the analytic linearizability of non-resonant vector fields. Indeed, one may
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view the convergence of the corrected form Xcarrd := X − Xcarr and its

analytic linearizability as the natural extension to the resonant case of the

classical Siegel-Brjuno-Rüssmann linearizability theorem.

There is no doubt that the correction Xcarr is a very important object, as

borne out by the remarkable variance rules (3.33) which it verifies, and by

the non-occurrence in it of highly multiple poles. It would certainly be rash

to dismiss Xcarr on the mere ground that it lacks geometric significance. In

fact, the correction becomes a geometric notion as soon as we regard it as

depending, not on X alone, but on the pair (X, X lin). See Sect. 1, Remark 3.

Moreover, the correction is not an isolated curiosity or freak of nature: the

system of Lie-bracket equations of which Xcarr is the solution, is merely the

simplest instance of a large class of similar systems, whose common feature

is a “miraculous” non-occurence of multiple small denominators. And even

though Xcarr, when looked upon as a function of X alone, is non-intrinsic,

its vanishing (i.e. Xcarr = 0) carries intrinsic significance, and provides us

with one of the simplest available criteria for the linearizability of X .

A noteworthy features of our proofs is their constant use of moulds, and

the prominent part which specific mould identities, of a distinctly algebraic

or combinatorial nature, play, even when it comes to proving results about

convergence/divergence.

One question left partially unanswered in this paper is: just how “com-

plex” is the correction? For instance, what exactly is the nature of Xcarr

when X is a polynomial vector field? One would expect endless analytic

continuability with isolated singularities (like in the semi-elementary ex-

amples of Sect. 7), but where precisely do these singularities lie?
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