Resurgent analysis of singularly perturbed
differential systems: exit Stokes, enter Tes.
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In memory of Professor Boris Yu. Sternin.

Abstract. Singular and singularly perturbed differential systems display a
dual divergence-cum-resurgence regime, ‘equational’ and ‘coequational’, de-
pending on whether we expand the solution in power series of the time variable
or the perturbation parameter. In this survey, we compare the two situations
and highlight the main difference: complex valued Stokes constants there, dis-
crete valued tessellation coefficients here.
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2 Jean Ecalle.

1. Introduction. Model problem.

The formal solutions of singular differential systems, when expanded in inverse-power
series of the ‘critical variable’ z, tend to exhibit divergence, but of a regular and well-
understood type: resummable and resurgent, with a resurgence regime completely gov-
erned by the now classical Bridge equation. When one introduces a singular perturbation
parameter ¢ and expands the solution in powers of the same, divergence and resurgence
still rule the show, but the picture becomes incomparably more complex: the resurgence
calls for two new Bridge equations, not one; the familiar Stokes constants make way for
the radically different tessellation coefficients; and it takes the operator scram to fully
unravel the mechanisms responsible for this new level of complexity.

1.1. Model problem. Consider the following paradigmatic instance of a doubly
singular differential system — a system not only singular in itself (relative to the
time variable t) but also singularly perturbed (by a small parameter € ~ 0):

t~0 (variable)

1
e ~0 (parameter) e

0=ctdy’ + Ny +V(Ley',....y") (L<i<v) {

It is advisable, both technically and theoretically, to change to the problem’s ‘crit-
ical variables’ z and z, i.e. to set z := 1/t ~ o0 and = := 1/e ~ o0 s0 as to prepare
for working in the conjugate Borel planes ¢ and &. This leads to the system:

Y ={Y%}, B={B'}, A = diag.matr.{\;}

PV BT {BZG(C{z_lw_l,Y} or €ClzY) ¥

From the viewpoint of x-resurgence, choosing the series B’ independent of z,
i.e. taking them in C{z7!, Y} rather than C{z~!, 271 Y}, makes little difference
to the resurgence pattern in the &-plane, and none at all to the location of the
singularities. So we shall henceforth stick with this simplifying assumption.

To respect homogeneity, we may re-write our system in compact form:

_ ) 14+n;=0 ]
0.yl = Yi (/\ia: + Y B Y") (1<i<v) (3)
ny204f j+i

with coefficients B (z) € C{z!} analytic at infinity and z-free.

Let us assume that the multipliers \; are neither resonant nor quasi-resonant.? To
rid the formal solution of ramified terms z”i(p; ¢ Z), which complicate the formal
expansions without adding anything of substance to the Analysis, we also assume
Bi(z) = 0. Separating the exponentials from the power series, we get for (3) a

1For the sections §2-§8 of the present Survey a more detailed treatment may be found in chap.4
of [5]. However, the material presented here in sections §9-§12 is original.
2meaning that the combinations —\; + an20 nj A are all + 0 and do not approximate 0 abnor-

mally fast (diophantine condition).
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formal solution of type? :
1+n;=0
?i(z,x,T) = f”(z,a;) + Z fffl(z,x) ™ et <nA>) ze (4)
n;>0if j+i

1.2. Multiple resurgence. As just pointed out, our formal solution Y, or rather

Y, can be expanded in power series of z=! or z~!. Both types
of expansions are generically divergent yet Borel-summable, but with distinctive
singular points, singularities and resurgence patterns. Some form of the Bridge
equation applies in both situations, but with distinct index reservoirs €; and
above all with this crucial difference: whereas the ordinary, first-order differential
operators A, that govern the z-resurgence in BE; do not depend on z, the differ-
ential operators IP,, that govern the z-resurgence in BE5 have coefficients that are
themselves divergent-resurgent in x and therefore require a third Bridge equation
BEj; for their description:

Despite these far-going differences, there is bound to be a certain kinship
between the two types of resurgence, since in the special case when B, (z) = B¢, /z
with B!, scalar, the variable z and the parameter z coalesce into the block zx.
It is this loose kinship, or lax ‘duality’, that justifies the label equational for the
z-resurgence and co-equational for the z-resurgence.

its components Y

1.3. The normalisers ©*!. Rather than handling the general solution Y of our

system, it is often advantageous to work with the information-equivalent but more

flexible normalising operators O~

( w1, ur )
By w2, 1) Dir ... D

(e 1 2 1< 9|u|mz W
n Up (5)
( 1., :

ik, Tk

-1 _ 1<r r_|ulzz YA Bi} sy Byl 7 [
07! =145, (—)relulz= e (z,z) Dt ...Di
with ug (=< ng, A >, ]D)ﬁfk = Tk Tikﬁﬂ.k 1< <v, 0T, € N and a

symmetral (see §2.2) mould we inductively defined by W? =1 and

az <e|u|;pz W( BiLll o B,f{”,r )(Z, x)) _ _e‘u|mz W
The operators © and ©~! are (mutually inverse) formal automorphisms
O (Z1(r).32(r)) = (0513:(7)) (0'32(m))  (#i & Cllr]] = Cllm, -, 7 )

Moreover, they exchange the general solution Y of our system (3) and the elemen-
tary general solution Y, of the corresponding (linear) normal system:

nor nor

@lN/i(z,x,T)EYi (z,z,7) ; O71Y}

nor

{@Yi =\aY? i Yaor(z,z,7) =7 %2 (1<i<v) )

IlOI‘(Z’ :E, T) = YZ(Z7 x’ T)

3The tildas, as usual in resurgence theory, signal formalness. They are often omitted when the
very context implies formalness.
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1.4. Elementary multilinear inputs: biresurgent monomials. In the above expan-
sions of ©F, the sensitive (i.e. generically divergent) ingredients are symmetral
monomials W*(z, ) carrying a two-tier indexation ( 5 ) = () with scalar ‘fre-
quencies’ u; € C and germs b;(z) € C{z~!} holomorphic at z = o0. Removing the
exponential factors, the induction rule (6) can be rewritten as

(0: + |ulz) wlil ‘51')(z,g;) _ ol )(m) by (2) (8)
with biresurgent monomials W*(z,x) (- separately resurgent in z and x -) that
hold the key to everything.

Equational resurgence: The z-Borel tranform turns the induction (8) into (9)

n—1

Boiz ey o W) BO) L Wza) - W)

—~( u1 up (w1 Y1 )
W00 = s SR @ - e

and readily yields all the information we need: location of singularities, Stokes
constants, pattern of z-resurgence, etc.
Coequational resurgence: The z-Borel tranform turns the induction (8) into (10)

n—1

By :x ™ A W (z,2) — BoWV(2,8)

,,,,,,,,,

(10)

,,,,,

with Bow 8 )(2,0) = 0 vr = 2. For = 1, BoW(i ) (2,¢) = L by (2 E)
but no such simplistic formula can be expected for B,W?*(z,£) when r > 2, and

we must then resort to the weighted convolution weco, to be introduced in §3.1.

2. Reminders on resurgence, moulds, and hyperlogarithms.

2.1. Reminders about resurgence.

Resurgent functions. They exist simultaneously:

(i) in the formal model, usually as divergent power series @(2) := > ¢ 2~
(ii) in the convolution model, as Borel transforms $(¢):=>c,¢("*/(n—1)! conver-
gent at ¢ =0, with endless (usually highly ramified) analytic continuation and at
most exponential growth at infinity.

(iil) in the geometric model, as sectorial germs g(z) = Sarg<:0 P(¢)e~*CdC.

n

~ —_——

Alien derivations. The linear operators A,, (w € C — {0}) act in this way

1<i<r-1 1

. Lol et en —
Ay @ (€)= Z Cr ﬂ@(ﬁl ----- “T)((er) with w, := w and {p ZEF*’

P L olsise
q:iZm rl q,_ZEFi 1

in the convolution model. The finite sum on the right-hand side is first defined for
small ¢ € [0,w], and then analytically continued in the large. Here wy, ws... denotes

(le ‘‘‘‘‘

the sequence of singular points lying between 0 and w,. :=w, and @ «1---- o) denotes
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the corresponding determination of @. The operators Aw and their pull-backs A,
in the multiplicative models (formal/geometric) are derivations:

~

Ao (@r#32) =(Dudr) P2+ P14 (DuB2) , Aulpr2) = (Awp1)p2 + o1(Au g2)

The related ‘invariant derivations’ A, :=e**A,, verify [0,, A, ] = 0. Lastly, the
axis-crossing automophisms Ry and full-turn rotators Ry 9,2 are defined by:
Ry := exp(Qﬂi ZarngQ AW) ’ R[979+27"[ = H9S01<9+wﬂ' jo (07 l)
with the factors Ry, arranged according to decreasing values of 6;.

Active alien algebras. The full Lie algebra ALIEN generated by all A, is free, but
its concrete incarnations, the active alien algebras ALIEN,, tend on the contrary
to be isomorphic to algebras of ordinary differential operators. Here, A denotes
any algebra of resurgent functions; I 4 the bilateral ideal of ALIEN that annihilates
all elements of A and their alien derivatives; and ALIEN, := ALIEN /1 4.

2.2. Reminders about moulds. Moulds M*® depend on index sequences e. Put
another way, they are functions of a wvariable number of variables. There exist
about a dozen main symmetry types for moulds. Chief amongst these are:

A* alternal = 0 = Dwesha(w w47 Yw', w”
S symmetral < S<'S¢" = Zwesha(w'7wﬂ) S Yo', w”

where sha(w’,w”) denotes the set of all shufflings of the sequences w’,w’. Moulds
can be subjected to various operations, chiefly multiplication and composition :

multiplication : C® = A® x B®* < C* ="~ wu' gu' gu”
_ 1 s s s
composition :  C* = A*oB* < C* =31 “uplutl - el gut | pu

Lie bracket : lu(A*,B*) := A* x B* — B* x A*
The units for mould multiplication resp. composition are 1* and Id*:
19=1; 1" =04 r+0, Id*=1; Id""" =0 if r+1
Multiplication respects symmetrality; composition and [u respect alternality.

2.3. Hyperlogarithmic monomials and monics. We require hyperlogarithmic resur-
gence monomials, i.e. resurgent functions as elementary as possible, yet capable
of approximating all others. We also require their resurgence constants, or hyper-
logarithmic monics, to approximate all Stokes constants. Moreover, coequational
resurgence makes simultaneous use of multiplication, which keeps singularities in
place, and convolution, which ‘adds’ them. This forces us to juggle two indexations:

e incremental, with sequences (wq, ..., w;) (Wi = a; —a;—1)
e positional, with sequences [aq, ..., a;] (i =wy + ... +w;)
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The o-friendly monomials V* and their monics V* are thus defined:

~ _ < Cs G2
le,...,wr(c) Ev[al,...,ar](c) ::J dCr ‘[ dC? J dc:l (al :+: 0) (11)

0 CGr—ar 0 G—az)y G-
V(C) = e V() V*(2) := Borel pull-back of V*(C) (12)
AL V¥ (2) = EV"’/ VY (2) with W' =w and |w'| = wp (13)

V* is alternal, while V*(¢) and 9'(§ ) verify the symmetrality relations:
( 9 [a'] . 9 [a"])(c) = Zaesha(a’,a”) ]7 [Oc](c) ) (9 “ * 9“’"> (C) = Z“’ESha(“’/a‘””) ]}“’(C)

We will repeatedly require the partial derivatives of the monics V'* and their mono-
mials V*(z). Dropping the tilda for convenience, we get for r = 1: w10, V“' =0
and w10,V (2) = 20,V (2) =—1—w1 2 V¥ (2) and for r > 2:

wlaw VWi owr — _VW1+W27~~7W7‘

1

wjaw_vwl,...,w,\ — _’_le,...,wj,l-&-w]',...,wT _ le,...,wj-&-ijrl,...,wT (14)
J

wrawrvwl,...,wr — _|_Vw1,...,wr_1+wT

W1 (D, + 2) VI () = —P @t ()

Wj(awj + Z)le’“"wT(z) — +Vw1,...,wj,1+wj,...,wr(Z) — le,...,wj+wj+1,...,wT (Z)
WOy + 2) VI (2) = LY @it () P Wiroi (2)

2(0s + |w]) Ve (z) = V@ (z)

(15)

Transition equations for the monics. The monics V* are uniform analytic functions
of their indices on a number of domains of C”, but they undergo discontinuous
changes of determination from domain to domain according to the formula:

D wytoto; V@heoWr = Qpg [ WL Wi Wikl Wr (16)

Wiyt twr

with jump operators D, F(z) := lim._,o(F(x +i¢€) — F(z —i¢€)) (t,e € RT).

3. Weighted products.

3.1. The weighted convolution weco.
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Proposition 3.1. For u; € C and ¢;(§) € C{{}, the following integrals

ey - Lo &
weco 17 (§) = o Cl(ul) (17)
ul , ug 9*,\ ~ 1 . &+ §2=¢
weco' @1 - ”2)(5) = L C2(&2) d&2 Cl(fl)uf1 with {Z: :1: 5?51 iu2)71 (18)
..................... L L
weeol 5 10 () = $o 0401(@)‘1’3 Ss%c:—l(@—l)ffr‘l'l“ (19)
- Se, Ca(83)dSs §, C2(82) dS2 1 (&) 5,

urr+turr =§
with 0= (6 — (ui&i+ - +ur &) (ur + -+ i)™
Ori1 =& (ur + - +u) 7!

unambiguously define germs wecol 1 Z:)(f) € C{&} provided uy+...+u; £ 0. The
mould weco® (§) is symmetral relative to the ordinary (i.e. non-weighted) convolu-
tion product in &.

The symmetrality property, not immediately obvious from the above formulae,
will result from weco being the Borel image of a weighted multiplication wemu.

3.2. The eighted multiplication wemu.

Proposition 3.2. The weighted multiplication wemu acts in the multiplicative plane
on analytic germs at 0: (c1(x), ..., ¢ (x)) € (C{x_l}r'—»wemu( e “:)(x) e C{z~1}.
When ui + -+ +u; £ 0 and v; F v;11, it is defined by the integrals

- 1 B yeees
wemu' Cllvar)(x) = , nga(zi vvvvv 1)(33) c1(z1)...cr(zy) doy...dz,  (20)

with a symmetral kernel Sale1 =) (z) = | (u1+..‘+fu')11’%:131+...+ﬂ?') and integra-

tion along loops T'; large enough to fall within the domains of definition of the
integrands c;. The variable x itself must be chosen large enough for Sa®(x) to re-
main pole-free while the integration variables x; run through these loops T';. The
resulting mould wemu®(x) is symmetral relative to ordinary multiplication.

We clearly have weighted distributivity of the z-differentiation and x-shift
relative to the weighted multiplications:

,,,,,

s]
z
=
:A
o
o
L]
S
~—
I
2
@
=R
N
X
.
3 e
a3
3
—~
2
—~
N
®
%
\'Q)
R
I
®
£
3
D
SN—

(21)
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Proposition 3.3. Just as ordinary convolution is the Borel image of ordinary mul-
tiplication, the weighted convolution weco is the Borel images of the weighted mul-
tiplication wemu:

Borel ~ ~
ca(z),...,co(x) 2286, ..., 8.8 )
wemu 4 1) (2) B wecoE TR (¢)

3.3. Link with the biresurgent monomials.

Proposition 3.4. The biresurgent monomials W*(z,x) of (8) and their Borel trans-
forms x — £ can be expressed in terms of weighted products:

{wa“% ’’’’’ ) (2,6) = weco &t (€) with E(€) = —bi(z — €) (23)

Wl 1 ’Z:)(z,x) — wemu( et 35)(5) with ci(x) :={' 78 (&) e "Edg

—100 (3

with z chosen close enough to o for the inputs ¢;(§) to be regular at £ = 0.

4. The scramble transform.

4.1. The ordinary scramble. The scramble is a bimould transform of type:

) {w _ (u1 ..... Uy )
scram : M* — SM*® with SM"Y = ZA% MY and TR (24)
o
with coefficients A}, = +1. The new indices u; either reduce to some original u; or
to a gapless sum of such u;’s, while all new indices v; either reduce to some original
v; or to a pairwise difference of (not necessarily consecutive) v;’s. Moreover, the
‘scalar product’ is preserved: > u; v; = Y, u} v}. These, incidentally, are standard
features of the so-called flexion structure, as is the use of shorthand notations for
partial sums and pairwise differences: w; .. ; := u1 + ... + uj, vij 1= v; — v;.
To actually define the expansion (24) we proceed by induction on r and make use
of the index removal operators cutfi"® and cutla™® (fi for first, la for last):

(25)

(cutfi®® M)wWirwr = Mw2oWr o Gf g =wy and 0 otherwise
(cutla®™® M)witr = MWoenWr=1 gf 4o = w, and 0 otherwise

We have the choice between two very dissimilar, yet equivalent inductions:

Forward induction: Let SM*® := scram M*® and w = (Zi ZT) We start the in-

duction by imposing SM** := M™*, and for r > 2 by imposing cutla}? SM™ =0
except for wo of the form (77), (, v ),(, ' ), in which case we set:

Vi—Vi+1 Vi—Vi—1
(cutlalir spr) a7 ) =y gug G (26)

(¥1 e Uit p e ury

Cojminy) .
(cutlaMl it 5]\4)(”1 """ vr’l = 4 SMv o Vigl e v (1 <i< ,,,) (27)

(o)) 1
(cutlaM’ it SM)(’”1 """ vt = —=SM* v Viel e oo (I<i<r) (28)
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The lower index M in cutla’yf signals that this operator is made to act, not on

SM*, but linearly on the various M*-summands of the expansion (24).

Backward induction: This time, we impose cutfi}) SM™ = 0 except for wy of the
form ("**F" ) with i < j <7, in which case we set:

(“1 +.,‘.+u]‘ )

(cutfi, SM)w = symlin(SM2, iUSMUw; , SMw) (29)

: M u ey Uq— b Uq ey Uy — U4 ey U
with 'w=( Loeen i 1),'w=( il -7),'w=( FHLoes T) and
V1 ey Vi—1 Vit ey Vg Vj+1 5000y Ur

UL ey Uy

FGM m (—1)T SMY e GM gt e GM e )

and concat (‘concatenation’) and symlin (‘symmetral linearisation’) so defined:
concat(SMwl, SM“’z) = St w? symlin(SM“’l, SM“’2) =), 2y SM™
The relation S« S«* = ZwESha(wlwa) S« characterises symmetrality. But in the

backward induction the rule (29) always applies, even for SM*® non-symmetral.
Both inductions are equivalent due to the commutation [cutfi}}, cutlaj?] = 0 and

wesha(w?!, w

. . {A® alternal} = {scram.A® alternal}
scram respect the basic symmetries: . .
{S* symmetral} = {scram.S°® symmetral}

Analytical expression: The backward induction makes it clear that scram A%:%r
involves r!! := 1.3.5...(2.r—1) summands. Thus, for r = 1,2,3, we find:

uy uy
(scram M) o1 = ML)

up , ug uy, ug uy, 2, ul uy 2, ug
(scramM)(vl op) = MGl ) - e
(scram M) wiwaivs) = 4 M GLEes) p pGon T k) — Gl )

v1,2, U1 ,u3 U1,2, U2 »”3)

—|—M( v vv1;2vv3)—M( vi 21, V3

uy g, uz, uy u,2,ug, ug
+M( vy ’U:Sv’UI:Q)—z\4( vi -,v37v2:1)
u1,23,u2 3, u3 uy,23, U2 3, U3 u1,2,3, uz ., u2
+M( v1 ,v2;1,v3:2)—2\4( vl yv3:1~v2:3)—|—i\4( 522 vaer, vz )
uy123, ul, u3 uy23, uz, ul
( ) gl )

— V25 v1:25V3:2
u1,2,3, U1, ug u1,2,3, 1,2, U2 ¥1,2,3:81,2, U1

—|—M( 13373v'01:3~v2:3)—M( v3 w'U1;3»'U2;1)—|-M( U3, v2:3,v1:2

V2 5 V3:2,V1:2

4.2. The v-augmented scramble. It turns ordinary bimoulds M™ into v-augmented
bimoulds SM* with w,; = (") and lower indices v, that are sequences. Mark the

ot . _ P I ® _ / Y %, (0 ot
abbreviations: v; = (v, v}, ..., v}, v;), vf = (vi, v}, ..., v}), *v; = (V] .., 0], v;)
Forward induction. For r=1 and w; = ("1) = ( L 1) we start the in-
v V1,V7,V7 ., 07,0

(v U, UL, UL, w1
’ " ’ " "

. . 1 Sl g sl ol Lt 1 T_ 1)
duction by setting: SM i) = i v e e proceed, we
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distinguish four cases, depending on the nature of the last index wqy of the se-
quences w in the various summands M™ occuring in the expansion of SM*%:

wy = ’;:) with #(v,) =1 and r = #(w)

wy = ’Uzu—i’uf) with  #(v;) = 2 (30)
wy = v:f";:ﬂ with 1 <r = #(w)

wo = () with 1<i

The linear operators cutlay; are defined as in §4.1. They act by removing the
last index of M™ (not of SM* !) if that last index happens to be wg, and by
annihilating M™ otherwise. We set:

Uy

(1)
cutla,;m SM*1tr = +SM¥1oBr—1
w,
(”I:”%) Wy ey W w w¥ w . % u;
cutla,, SM vt = f SME e with wi =
w, 23
Groot,,) b
cutla,,* "' SM®v-otr = 4 + + SMEL oSt
M s 2 i1 €W
7
(UT7UT 1) w W w
cutla,* 71 SM®retr = % _ o SMEUEeLer o
Wi i1,

with indices QZ 41 and w;, ; running through the sets

+ L U U 41
Wi UQ”;JHEsha(ﬂ?‘&TH) {(Eji_*_l,'uz_'_l)} (31)
W L U Uj—1FU

—1,0 Q”; 1, Esha(v7 1507 ) ¥ 1

i—1,i0Yi—1
Backward induction. The only operators cutfi}; acting non-trivially on the SM*
(viewed as a sum of M summands) have indices wy of the form ("1+;lj+“j ), where
v; is the first element of some v, with 1 <4 < j . The corresponding rule reads:
(u1+ ctug )

cutfi,, SM*® = symlin (concat (symlin(SM%, SN UQ) L BSM ) , SM Q)

—

With Q = (Mla '“7&7«) ) Q = (M17 "'7&171) 9 Q = (ﬂi+17 7@]) ’ Q = (Mj+17 "'7&7‘)
and the following conventions:

(ul ........ up ) WY e , up
SMy 21 e v ) SM<21*”0 ,,,,,,,, vy ug)

o :

( 1 seeeens s ur,~) ( U ey uq )
ZUSM V] peeeeen s Up = (_1)7”SM Vp—UQ seeeeeny v1—vQ

v )
’ // ///
uSM AR AR SR A SM v —vg,v] —vo, v/ —vg.. ) (vi gets removed)
. / "

v; — o := (vi — vo,v; — Vo, Vi — vo...) if v; = (vi, v, v

4.3. Weighted convolution with polar or hyperlogarithmic inputs.

Proposition 4.1. The weighted convolution of simple poles m;(€) = (£ —a;) ™t coin-
cides with the x-Borel transform S*(§) of S*(x) for indices w; = ('). Similarly,
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the bi-resurgent monomials W*(z,x) of (8) with polar inputs bi(z) := (z — a;) 71,

coincide with S* (x) for indices w; = (7, ). In other words:

weeol s m (€)= Sl e with mi(€) = (32)
W ) (2,2) = SGran S ) (@) with bi(z) = 1 (33)
z— Oy

Proposition 4.2. The weighted convolution of hyperlogarithmic functions m;(§) =
V0ail(¢) coincides with the z-Borel transform S%(€) of S¥(x) for indices w, =
(o). Similarly, the bi-resurgent monomials W*(z,x) of (8) with inputs b;(z)

f;[gi](z), coincides with a finite sum of S (x) with indices w; = (", ).

wecolm w) (g) = Slat el (g) with (&) = VIeot-1(g)  (34)
(1 B o oo
Wit .o b (Z,J?) — Z & 7r(z)8 oy ™ (.’17) (35)

The above statements assume uq +...+u; #+ 0 and, failing that hypothesis, call
for minor modifications. Their proof reduces to showing, based on the identities
(14), that the expressions found for the biresurgent monomials verify the required
differential properties in z, z, and all indices. Lastly, (35) relies on decompositions
Ve(z—¢) = o €& (2)V2" (€) with coefficients ¢ (z) independent of &.

5. Hyperlogarithmic monomials under alien differentiation.

How do we calculate the alien derivatives of the monomials S*(z)? In a sense,
we already ‘know’ the answer: having expanded S°(z) into finite sums of hy-
perlogarithms V*(x) and possessing with formula (12) a prescription for alien-
differentiating each V*(z), we have all it takes to calculate A, S*(z). In practice,
however, we require explicit and compact formulae covering each one of the many
possible situations. This is the object of the present section.

5.1. The ordinary monomials S* (z).

Proposition 5.1 (Alien derivatives of S (x)). The only alien derivations A, act-
ing effectively on a given monomial S¥(x) = Slon g ) correspond either to

sitmple indices wqy of the form (36) or to composite ones of the form (37) :

wo = |ulve with w=ww, WD , |u] =8|+ us+ |4 (36)

o 1 s e o
wo = |[ut|vis + .+ |[ut|vs s with {'w W WL W W7 Wi W0 (37)

u?| = || + wis + |47
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For a simple index wy, the operator A, acts as follows:

Tw;u'; = SW iygw ; 7:)1;:,11: = S;A:k WS;A;
Awo S’w(x) _ T’w,w(x) Su‘;’(x) ivswl,...,wr — (_l)r SWrew1 (38)

Vg
( )
= S'vi—vg oo vr—vy

For a composite wg, a new ingredient comes in: the tessellation bimould tes®,
defined as the scramble of the mould V'* or rather its bimould extension V°:

Ay S¥(x) = testh 10D gttt () §B(p)  (39)

Vs

»»»»» Ur
ore

with V* as in (12), vy )= Yu vt v gnd tes® = scram. V.

5.2. The v-augmented monomials S¥(z). To enunciate suitably compact state-
ments, we need the following:

Definition 5.1. Let v, be some element (- first, middle, last -) of some lower

index v, inside a sequence w = (' VF W) A v, -splitting of w is a joint
Yy Yy 5eees Yy

o W) if Iy " may b
factorisation of all v; such that i (ﬂf ) Z{ L % Ly ,(On Y E; may be &)
v, = (vy,vs,v) (both v, and v}, may be )

%

To each v, -splitting we associate (i) a non-ordered sequence {v'} consisting of
.. - e .

ordered sequences v} (ii) two ordered sequences w" and w" (i) a lone index w’

(that may be empty). They are defined in this way:

{y/} = {U17U27 72’*7 7224_111};}

w’ = (w,.,wl, ) = (Z’ll’ :7 ) with w, earlier than w,
W' = (e w,) = (000 n) with w; later than w,
wy = (GF) (wh =g if v} :=0)

Proposition 5.2 (Alien derivatives of S*(z)). Once again, the only alien deriva-
tions A, acting effectively on a general monomial S¥(x) = Sl HIE TR o

respond to indices wy either simple (40) or composite (41):

wo = |u| v with w =wW.w, WA, [u| = ||+ ux + || (40)

wo = Z |ui|vi* with

1<i<s
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but with vy (resp. vis ) now denoting some element* of the sequence v, (resp. v, ).
For a simple wy, the action of A, involves the so-called texture mould tex®:

Noys@) =Y texl) T (1) 59(a) (42)
vy -split
Tﬂl wh w? := concat (symlin (Sﬂl , “’822),83*)
. LU ’lU2 1 . 2 w
with 7;* TR = concat(symlin(Sﬁ”T,WS%),S@*)

{wgssus) w,
tex Uk T desha(gl;m;gs) V[U il
For a composite index wy, the action involves a v-augmented tessellator vtes®:

,,,,, 7//

Aoy S2(x) = Y vtesofoan 1700 H T () §8(a)  (43)
vy -splits J=1

with vtes® := vscram.V*® (see §5.7). The sum (42) extends to all vy-splittings of

(W, w,,w), and the sum (43) to all vy-splittings of (w*, wz*,wz).

6. The tessellation coefficients.

Since the tessellator tes™ := (scram.V)™, its v-augmented variant vies® :=
(vscram.V)®, and the closely related tes®, though defined in terms of hyper-
logarithms V', turn out to possess remarkable properties of local constancy in
their indices, and since both encapsulate some sort of ‘universal geometry’ that
governs co-equational resurgence, we must pause to take a closer look at them.

6.1. The ordinary tessellation coefficients tes®.
Consider sequences w of length r, introduce ‘long’ coordinates ( uy, l) defined
> — v, ug = —(ur + .. + up), vg = 0 and consider the set of

by u? = Ui, V]
“homographies” H; j on C*" defined by:
{Hi,xw) = Qui(w)/(< w0 > = Qiy(w)) (i—j+ 0505 €Lrs)

- (44)
Qi,j (’LU) = Zcirc(i<q$j) U‘Z (Uz - UI;) (Z?jv q € ZT‘+1)

Proposition 6.1 (Local constancy of tes™). Outside a finite number of hypersur-
Jaces S(H; j(w)) = 0 of C*", the tessellation coefficients tes™ := Y, €¥, VY are
constant in each upper index u; and each lower index v;.

Proof: Based on the jump rules (16). Note that( except at depth r = 1, where
tes™1 = 1) the tessellation coefficients are not globally constant. Indeed:

Proposition 6.2 (The jump rule for tes™). It is only when w crosses a hypersurface
= {w e C*; H; j(w) € RT} that tes® can change its value. Let w be any

4any element, not necessarily the first or last.
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point on Hifj and wr,w™ two points close by, with SwT > 0, Sw~ < 0. Then

+ - . * L]
tesV —tesV = 2mi tes” tes"™ (45)
: w* o= (e cire(i < p <j) €Zra
with x AT
(i1 e vy .
w** .= (v1+717v7: """ B, circ(j < g <1i) € Zri1

This begs for an alternative, simpler expression of tes™, or rather, to get rid of

the 2mi factors, of the normalised variant tes®l:¥r = (277)" ! tes?1ir - %r.

Proposition 6.3 (Calculating tes*). We fir ¢ € C*, set R. : 2 € C — R(cz) €

’ ’ —

R and define: o= </ v'><u,v>"1, g¥ = <!, Rov'><u, Rpv>""
. " " —
o= <u” v"><u,v>"1, g¥ = <u”, Rov'><u, Rgv>"!

From these scalars we construct the crucial sign factor sig which takes its values
in {—1,0,1}. Here, the abbreviation si(.) stands for sign(S(.)).

(si(fa'— ") — si(gie —g")) x
. ’(ll/ w . w/ ’UJN ]_ . w/ wl . ’UJ/ ’UJ/
sig? = sig? = o 4 (L4si(fE /o) si(fE —gw) X (46)
(1 + Si(f;}””/g:ﬂ”) Sl(f::; ! _g:g//))

Nezxt, from the pair (w', w”) we derive a pair (w*, w**) by setting:

o' Rov' " Rev”
% <u,v> <u,Re.v> sk <u,v> <u,R.v>
v" = det N , v = det 0,

a<u’ v'> <u Rev' > a<u” v > a<u” Rev”>

<u,v> <u,R.v> <u,v> <u,R.v>
From these ingredients, we construct an auxilliary urtesy,,, then tesy, itself:
[ * *%
urtespy, = sig” ™ tespo, teShor ((w',w”) + (w*,’w**)) (47)
w/w’ =w
tesmor = Z push™ urtes;,, (Yce C* | with push as in (7)) (48)

0<n<r(e)

Proposition 6.4 (Main properties of tes®). .
P;: tes® is invariant under the involution swap and the idempotent push:

(u1 ,,,,, ur) ( Vp e v3—vy , vy—Ug , Ul_“2) 5 .
swap. A\ 1 vr) = A\uit.tur .o, upfugtug s uituy o up (swap — 1den) (49)

—up..—up wy o, U ..., Up_q

push.A(ti i) 2 A( Tur MITUR v2TUr s ’”7‘*1*“") (push™™' =iden)  (50)
Ps: the bimould tes® is bialternal, i.e. alternal and of alternal swappee.
Ps: tes?,,. assumes all its values in Z and |tes < (r=1Yr+1)! (unsharp)
Py: Asrincreases, the set where tes” £ 0 has surprisingly small Lebesgue measure
on S27 (S being the Riemann sphere).
Ps: in presence of vanishing u;-sums, local constancy in the v;’s fails.
Pg: in presence of v;-repetitions, local constancy in the u;’s fails.
Pr: in the semi-real case, i.e. when either all u;’s or all v;’s are aligned with the
origin, the tessellation coefficients vanish as soon as 2 < r.

W seen, W
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6.2. The v-augmented tesselation coefficients vies* and tes®.

To enunciate the main statement, we require the lower (or positional) mould
composition o, which is what becomes of ordinary mould composition o when we
switch from the incremental wi,ws... to the positional indexation ag, ..., with
w1 = oy and w; = a; — a1 for 2 < i. Here is the formula:

1<s
P P P I R
a:alaqyl...asais 1<k<s

with the notation Cgl % 1= C1 =%k =% and (since there is no index a,)
with the convention ng;,al = "1 for the first term in the product [](...). Of

course, some of the factor sequences a®, even all of them, may be empty. Thus,
when reduced to its two ‘extreme’ terms, (51) reads:

ACar = BOr QO (L ) + Borsmargergeater | gar—ara

Proposition 6.5. (Local constancy properties of vtes® and tes®.) The coefficients
vtes® := (vscram V)® are locally constant in each index w; but not in the indices
Lol of the lower v;. However, they admit a unique decomposition:

’Uiavw 7

vtes® = tes® o VIl (VI = hyperlog. monics in positional notation) (52)

with a second factor V il absorbing the non-elementary part of the v,;-dependence,

and a first factor tes® locally constant in each u; and each v;, v}, v!...

7. Weighted products under alien differentiation.

6.1. The second Bridge equation. Purely for notational convenience, we shall state
the results in the z-plane, i.e. in terms of wemu, welu rather than weco, welo.

Proposition 7.1 (Alien derivatives of wemnu, hence weco). The only alien derivatives

A, acting effectively on wernu 1 - Z:)(x) correspond either to simple (s=1) or

composite (s=1) indices wy of the form

k K
Uu:
wo = |ut|vf, + -+ [ufv] withutuw? . ut Tt uf ut = uoand (C;’“) € (ck)
ik
k k k
with each (% ) re-indexed for convenience as (Z,ﬁ ’“’Z;k ). The formula reads:
177 Tl
1 s
(oo, g% )
Z{)’? over v¥ Tes "1 = ! ° x
J ik
k k k
S Wk e uk
Awgwemuull,“,c,?)(x) — (f,;c cffw(%k kk) ok cf;k) (53)
H1<k<s welu ik ) %

(uik U )
PN

wemu 1 % (x)
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with an alternal mould welu® carrying one §-marked index and defined by:

i .
Wiy, Wy ey, Wr W1y, We—1 W,
)

welu = concat(symlin(wemu wemu ) wemnu®s (54)

7.2. The third Bridge equation. Since (54) expresses welu® in terms of wemnu®, (53)
gives a indirect way of alien differentiating welu®. But here is a direct formula:

Proposition 7.2 (Alien derivatives of welu, hence welo). The only alien derivatives

WY seesf Ui \H ey U
A, acting effectively on weluler (e ) e )(az) correspond either to simple (s =
1) or composite (s > 1) indices wy of three possible types — initial, final, global:

. *
ini _ | 1‘ 1 w®| o2, with ul Lwtut = (z;)ﬁe(z*) (55)
wo = |u vy o u | v, we k ke
’ " i A b +0and (F) € ()
. )
. *
" | 1‘ L wof. with *uul L ut=u ; (Z]])ne(*’;) -
Wy = UV et U v, we k K
" ' Ay el +0and () € ()
ik
. - ul . uf=u
glo. . e Sl? ith k * 57
Wo |u |U11 + + |u |vzs wt Avfkcfk =+: 0 and (:;k ) = ("Zk) ( )
ik
k k k
with each (%) re-indexed as (1} :,:k- ). The alien derivatives are given by:
Ko ok
( wll el )
+kaovervk Tes A ry EE AN s X
ok uk i uk
UL () G (e, ) o 0w )
Awgwwelu(cl """ <CJJ') """ C")(JC) = H1<k<5 welu e A“kk ik U Tk (x) x
¢ #
(o () )
ko, S N %
welu ! “ T (x)
( 1‘“1‘.1 ,,,,, g\us\s )
Dok over gk Tes TLrotrL BT trs
'k
k wk § Wk
uy WiNg s Up ( “1 ,,( ip ) e TR )
A gwelu et (Vs e () s el oot o ) -
Fuy u; ) Fupy
(T
( lwll R )
+ Dok overyk Tes TLrtrn IS T
ul Ui\ Uy
A gloWelu(Cl """ (Cj) ""’CT)(w) = ( wh ( “fk )“ ,,,,, ury )
“o ok ko, A k) ok ok
I1 welu '  k ThTh )
1<k<s

For meromorphic inputs, Tes® coincides with tes® of §6.1. For general ramified
data, it essentially coincides with tes® of §6.2, although that assumes that we
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properly define the shifts i)f We cannot enter into these details here, and in any
case what really matters is (i) the existence of Tes® (ii) its alternality (iii) its local
constancy (tempered by the caveats Ps, Pg of Proposition 6.4).

8. The Bridge equations LILIII.

7.1. Equational resurgence. First Bridge equation. It is the classical identity:
BE1 [A,,07']=A,07" (58)

with A, = e “* A, (z-resurgence) and, due to W*’s alternality:
uy L ur _ _ 4
Ao = —Z<—1>TZW(B”1 """ % Ny i, D

(1" g (o, 000 ) i i
= —ZTZW Bty Bl () [L[DE DI DY ]
Since any two D,,, and A, commute, (58) lends itself to indefinite iteration:
[Awr s [Aww [Aun ’ 6_1]"] = Aun Awg Ay, o' (59)

8.2. Coequational resurgence. From the molecular to the higher levels.
Coequational resurgence already forced us to distinguish two levels of complexity
— the ‘atomic’ V*’s and the ‘molecular’ S*’s. It will shortly impose two more:

(*) a ‘microscopic’ level, where we deal with derivation operators Q,, obtained by
contracting alternal products welu with ordinary differential operators. The result-
ing sums being usually infinite, the gap from molecular to microscopic is large.®
(**) a ‘macroscopic’ level, where we deal with new derivation operators P,, ob-
tained by contracting the tessellation mould with the previous Q. These new
sums, too, tend to be infinite, making the gap from microscopic to macroscopic as
large as the earlier ones, although in some relatively rare but important instances
the relation between the Q,’s and the P,’s simplifies.

The distance between the P,,’s and the Q,,’s will be least when the tessellation
coefficients Tes® connecting the two will be simplest. For elementary indices w; =
(Z ), Tes® coincides with tes® and each of these four conditions, when met, tends
to simplify the coefficients: (i) no vanishing u;-sums. (ii) no identical consecutive
v;’s. (iii) all u; are aligned with the origin (iv) all v; are aligned with the origin

Imposing (i) in our model problem (§1) leads to a general solution Y with
components Y,;! that reduce to finite sums of monomials W*(z, z).

Imposing (ii) means restricting oneself to the linear case. It leads to interest-
ing results provided we are dealing with a true system, i.e. for v > 2.

The conditions (iii) or (iv), are perfectly reasonable. They lead to massive
simplifications by ensuring that tes® = 0 for all w of length r(w) > 1 that meet
the conditions (i) and (ii). For w of length 1 we have of course tes** = 1.

We should expect, and do in fact get, particularly simple results when the
convolands ¢; are meromorphic, or hyperlogarithmic, or again when they enjoy

S5even if the convergence of these sums in the space of resurgent functions is not really an issue.
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special closure properties under w-shifts and A -derivations, globally for the same
w’s. In any case, since ¢;(§) = —b;(z — £), it stands to reason that to get full -
resurgence we must assume each b;(z) to possess endless analytic continuation (on
the Riemann sphere, starting from o0), whereas for z-resurgence it was enough for
the b;(z) to be locally analytic at oo (with suitable uniformity conditions in ).

8.3. Coequational resurgenge. Second and third Bridge equations. Let us give some
illustrations, mostly in the meromorphic context. To lighten notations, we write
the results when our model system (3) reduces to a single (non-linear) equation, i.e.
when v = 1, because in that case the operators Di, = 7;7™0,, correspond one-to-
one with the weights v and can be re-indexed as Dy, = 77*19,. The transposition
to the case v > 1 offers mainly notational complications but deserves special
consideration because it allows non-aligned weights u =< A\, >.

Second Bridge equation.

(BE2) [A,, 071 = P,07! (60)
with A, 1= e “*A, (z-resurgence) and:
UL ey Uy
Pw = Z Tes(z—al ..... z—ap )Q[Z}] e Q[z:] (61)
Yui(z—a;)=
UL ey Wi B e, up
Qruoy = enoco ) welu o-e1 s (aage )0 “‘O‘C’")D\\ul o Dju, (62)
2 ui=uq

Here Tes® coincides with the elementary tes®.
Third Bridge equation.

+ U+ us=u ]P)w “1 Q u
(BE?)) AWQ[ZB] _ { Z 1t+us=uo 1[0(01]@ [ag] (63)
7Zu1+u2:u0 Q[gé] w,[zg]
with
Zuz:uo ( . . )
Pozoy = - >, | Tesea o1 a0 e Qg Qo) (64)
Ui (Qp— O ) =W

Remark 1: With the notations of (64), the operator P,, of BE2 may be rewritten

as P, = >, P, ). The P, in BE2 are locally (though not globally) constant in

z, just as the operators P,, [ « 1 in BE3 are locally (not globally) constant in ay.
)

Remark 2: In the important instances when the tessellation coefficients Tes™t*r

turn trivial (i.e. =1 for » = 1 and = 0 for r 4 1), BE3 simplifies:

uy (@p—ay)=w

(BE3)  A.Qu; = > Qg Q) (65)

u1tuz=ug
and one can check the equality of the exponential factors on both sides:
Remark 3. (BE2) and (BE3) also extend in the opposite direction, when the

inputs b;(2) (and thus ¢;(£)) are no longer meromorpic, but hyperlogarithmic, or
general ramified functions. But we must now switch to a multiple indexation a; —
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&; and the third Bridge equation becomes saddled with a third term, corresponding
to the case A% welu® of Proposition 7.2. We get:

+ D us=uo P [ 217 Q2

(BE3)  AuQuuo) = =2 usmuo Q21 Pu2] (66)
-HP’w’[ “0
&0

9. The equational-coequational link at the monomial level.

To elucidate the eq.-coeq. link at the most basic level, let us write down BFE; and
BE, for the biresurgent monomials W*(z, x) of §1, and compare their resurgence
coefficients, respectively W (z) (entire in ) and Ty (z) (resurgent in z).

9.1. Equational resurgence and its entire coefficients W,* ().
BE, ZA|u|:1: W(Z ) (Z, ZE) _ ef|u|mzﬁ"/(2)(x) — o lulzz o <uo>x VV*(Z)(.I’>

To calculate the resurgence constants W,? (x) attached to the monomials W= ) (z,z) :=
e~ <> W(a) (2, x), we resort to the following decomposition

17\/\; (z,2)  z-resurgent
Wi(z,2) = (V*(2) o Wi, (2)) x Wiy (2, ) 17\/\;*(2,33) z-holomorphic at oo

W (x) x-entire

If, applying (12) and taking into account the z-convergence of W, (z,x) at o0, we
alien-differentiate the above relation, we find that our coefficients W (z) neatly
split into a universal part V'* hyperlogarithmic in «w but constant in a and z, and
a sensitive part W, (x) entire in u, a, and z. Explicitly:

2<s w? 1<s wt
%) ) 1w %) 1 e 9
Wy (x) = Weg ' (2) + Z yluhelu IH Weg"(2) = Z yluhelu H Weg™ ' (2)
ul u=u 1<i<s ul u=u 1<i<s

The crucial monics W, (x), along with the monomials W;*(@ x) or rather their
z-Borel transforms W;, ((, z), are given by the joint induction:

jul gp3tan i arTy)
* U

U ey Uy + """
( ) ) = SO . * ( P
*2221 W**l vvvvv

L

+ Sé W* 1 r—1 (:Z?to,it) earr(t*ur*to) dto

----- Ur

i ar 1 . a1 ad) e oStaat A
Wes! (at,x) = —lul _25:11 Wis' (x) o (xto, x)dto

..... U

Note that in the last equation the sum {... on the right-hand side vanishes for
t = |ul, so that Wg((, ) is entire not just in = but also in ¢ = tz.
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9.2. Coequational resurgence and its resurgent coefficients 7, (z).

#

"

B Z zA'“h’jgw(x): Z e"“”a‘wﬁf}

wiEw w wiw’=w
J FWiW;

(LB) _ ef\u|zze<u,a>z f:kw(x)

' E o

with T (x) =2 %eijjijj(x) and with 7~'er], (x) denoting "7:';0(1') multiplied by its
natural exponential factor e %(*i=¥1)* Thus, to the expansion 7% (z) =] ¥V (z)
there corresponds an expansion Te®(z) = Y. ¢ Ve(z) with Ve“(x) := el«l*Ve(x).
But any Laplace sum Ve (z) admits a decomposition Veg(x) =V x A%(x) x Vel(z)
with three symmetral mould factors: an hyperlogarithmic V' constant in z; an
elementary A*(x) := (—logz)"(*)/r(e)! ; and a mould Vel () that is an entire
function of x characterised by

: R dt
Vet er () = f (Ve (8) = Ve (1) ') T (67)
0

Moreover, one easily checks that the z-rotators R (see §2.1) leave the z-resurgent
Ty (z) invariant. Their Laplace sums are therefore unramified at infinity. So, if
we decompose their summands 7~'ev], (x) into subsummands Ve (x), and further

decompose these into factors V7, A*(z), ]76; (z) as above, the ramified part A®(z)
will vanish, leaving only elementary, z-independent hyperlogatithms V; and a
sensitive part Tg, (z) entire in w,v and z. Lastly, although v; := z—a«;, only the
combinations v;.; :=v; —v; feature in T, (), making it independent of z.

9.3. The equational-coequational linkage W,!, (v) < T.5. ().

Proposition 9.1. The coefficients Wi (x) and Ty (x) which respectively govern the
z- and x-resurgence are fully determined by their logarithm-free parts W2, (z) and
Ty (x), and these, despite being expressed by markedly distinct integrals, do in fact
coincide: Wa,(x) =Ty, (x).

(4 e

Thus, leaving aside the trivial identity W' =Tee' =1, we get for r = 2, 3:

uy , ug u1,2 (e (ti—u1)z _ 1 eag(ulftl)z u12 (o0 (ta—u2)z __ 1
0 1 —u 0 lo —ug
tu2 jaqgotx 1
_ J Rt
g t

Tﬂ(‘:f% 25)(1.) _ J‘L (euz v2:1t el1 V12 t) @
t
0
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wy , ug
U —~( ) _
+S 1,2,3 *:;1 , g (fEtlQ, I’) €a3(u1’2 tlg) dtlg
uy, ug,ug 0 .
( 043) “ (“20u3)

1 .
Wit 7% () = —Wiil )(x) o B Wy 03 (whas, x)dtas
wy s ug (U3
Wt @) [ W (ot )ty
o +Ve:2y3y2:1,u3v3:2 (CC) o V€:2,3U3:17u2v2:3 (.Z') + Ve:3v3:17u21}2:1 (CC)
Ti:l lazlay) (x) _ _Ve:wla,uavsa (l‘) _ Ve:wa:z,uwl:z (l‘)

+Ve:1v1:3,u2v2;3(z) _ Ve:1,21}1:37u2v2:1 (I) + V6:1,2U2:37u17}1:2 ($)

with the auxiliary integrals:

o1 (P—tr—uz)e_ gy jag(ug—ty)e

A dt
(M1 el (t—up)e _ 4 (Y12 +SO « ) t1—u 1
W, (zt,z) = —— o W Y12 (g g = ot (e¥2 (ta—up)e_q)
s (02 t—uy TR (@t @) t—uyo fo f2-u dtz
tug eX1:2t0% 1
—u] %o dto
z dxy (T1 dxo £ dxy (T2 dzq
Ve:bw2(z):j 7J (176w2m2)77J ew2 T2 j (1 —e¥171)
0o 1 Jo T o zo Jo z1

10. The equational-coequational link at the global level.
We now examine the global eq.-coeq. link on a concrete example.%

10.1. The time-independent Schrédinger equation with polynomial potential.
h2
o 02U (q,h) = W(q)¥(q.h) with W(q) =¢" +a1¢" "+ ..+ (68)

Relative to the critical variable z and parameter x, (68) becomes (69), then (70),
which is a special case of our model problem but with a (2+v)-ramified z:

{Z = 2(q) = $V/W(@)dg = g = q(z) ~ (@) 77z ., z=¥m
U(g,h) = ¥(z,2) = Cy(2)e2¢ (2)2 ¢, (2,2) + C_(2)e”27%¢'(2)2p_(2, )

2 A 2 / , 1q"(2) 1 1
st adps = ()= (es with H) - 350 ~ 520t (69)
: Lg" ¥4 Yy
Yy taYy = H-HY? th =+ F==4+ =
0.Yy + Yy s wi 2q’+g0i _$1_Y+ (70)
10.2. Equational resurgence.
BE A0, (2,2) = Ai(2) o _(2,2) (1=2,4,...,v+2)
! GA_g 0 (2,2) = Ai(z) . (z,2) (1=1,3,...,v+1)

with points +x; above +x in the (2+4v)-ramified Borel (-plane.

6The results about the z-resurgence are essentially due to Y. Sibuya; those about the z-resurgence
were conjectured by A.Voros. Convergence in the {-plane and isography were established by us.
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10.3. Coequational resurgence.

on (@B, = PL@e (5a), PLeClle]
2 (x)A—z—AJ P (Za ‘T) = ]DJ—(‘I) Py (Za LE) s /\j = S’Yj V (W(QO)dQO

If v is even, we make the simplifying assumption §+/(W (go)dgo = 0 (loop around
), 80 that 355 0, Aj = 2 oaa Aj- The exact shape of the P, , (z) depends on the
configuration {\1,..,\,}, but they are always rational functions of v coefficients
E;(z) bound by (71) and verifying (for W (q) close to ¢¥ —1) the system BEs:

Ei(2)Ba() ... Ey(z) = 1 (j e Z/J/Z) (71)
2m An)\i:jEk(iL') (]C =+= i,j 5 )\i:j = >\i_>\j)
BE3 . _ .1 n * _ Eij1Eiye. Ej
2mi Apx,, Bi(w) = +5Ei(z) (=Fi(2))" nel*, Fij = g oy

Setting R;.; := exp(}; , 2mi A,), we get the axis crossing identities:

arg w=arg \;.

R;:FE; = FE; (1 iz T F;.. -t
Ry jEy = Ey if k14,5 and 7 (L+e N ) (72)
Ri;jEj = Ej (1 + e~ Nid® Fi:j)
10.4. Isographic invariance. Setting 7;.; := %, the change:
ti =t e (¥ g, (“DF Ajrk) f v odd
ti = tjexp (g e (CD)YTRE Nk — Avgjin)  if v=20" even

implies T;.; 1=+ eT i T;; mod (ty...t, — 1). In view of BE3, the mapping;:

1
An/\i;j e~ Nig T A’I’L)\i:j = Dy ETZLJ (tiat,i — tjétj) (’L,j €”Zy,,n€ Z)

induces an isomorphism of the active algebra (see §2.1) ALIEN, of A := {E\,..,E,}
into the algebra D generated by the ordinary differential operators Dy,;; ;.

Proposition 10.1 (Isographic invariance). All elements of D ~ ALIEN, annihilate
the ‘isographic form’ (73) which, even for v odd, does not depend on k:

dt; dt;
ati 4ty

iso:: _11/k
o = (-1) A

v

vk mod (t1...t, — 1) (73)

(k<i<g)gm

10.5. Idempotence of the rotator. Set v/ := [§]. The one-turn rotator is given by:

R = RE*,RY_, .. RYRIRSRS with {3 1 Lliskaw Rivkeir— (74)
HORE
R;f* = lochcr Rithsj+24v—k
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Reverting to the more convenient ¢;-variables with the corresponding substitution
operators R;.j, ¥, R¥*, and defining 7;.; as above, we find:

=t (14 Teagw—i) " if 1<k
=t L+ Ttk k) if 1+v
B =ty t7F =t
(REFM)(t1, .., tw) = MEF*, . 2E*) with A GF* =t (14 Thorw—i)" " if2<k <V
* =t (L + Togw—k 1 k) if2+0V <k<v
Let P be the permutation operator (PM)(ty,..,t,) = M(t,,t1, .., ty—1)

(REM)(t1, .., t) = M(t¥, .., xf)  with {

Proposition 10.2 (Autarky). The rotator R admits a simple factorisation:
R=(P"R{*R§P"™")...(PT'RE*REP') (RS RY) = (PRY*RE)”  (75)

and we can show that (PRE’;*RB")VQ: id (Yv) and (PRE’;*RB“)VIH: PY (Vv even).

Thus the rotator R is idempotent of order v+2: R"*? = (PRE)“*RS‘)V(VH) =id.

10.6. The equational-coequational linkage {A;(z);j = 1.0} < {E;(z);j = 1.2+v}.
The rotator's idempotence shows that all Laplace sums FE;(x) of the resurgent
coefficients Ej (z) are (142)-ramified at oo: for = large enough, Fj(z) = Y ¢j 2~ 72,
In fact, these E;(x) stand in birational correspondence with the earlier coefficients
A;(x) which, as off-shoots of the z-resurgence, are automatically entire functions

of z#2 . That correspondence depends on the geometric configuration of the A;.

11. Isography and autarky.

11.1. Universality of isography. An active alien algebra isomorphic to an ordinary
differential algebra D that annihilates an ‘isographic’ differential 2-form — these
are general features of coequational resurgence, which survive even in presence of
non-trivial tessellation coefficients. We saw an instance in §10. Here is another:

meromorphic in z

0.Y (2) = 2 Y (2)+B_(2) + By (2) Y?(2) with B+(z){ (76)

analytic at z = o©

+

For this Riccati equation with Bi(z) = >, Z[j—f)\, the third Bridge equation
involves resurgent functions E;(z) and alien derivations Ay, ; (with Agj:=Ai—\;)
The corresponding active algebra is isomorphic to the algebra D generated by
ordinary derivations D;.jwhich in turn annihilate the isographic form (78):

1
Ay, — Dij:= tit; 6t;" — t;‘* t; at:k* + 5152‘ t;“*(@tJ —0,) (77)
iso 1 * sk 2 * g okok
@' =) —dtf A dt] mod 2 — t¥t#* = Const; (78)

Y
11.3. Autark functions. Isographic invariance is intimately bound up with the
presence of idempotent rotators. Both facts combine to produce so-called autark
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functions — i.e., roughly speaking, entire functions whose asymptotic behaviour in
the various sectors is fully described by resurgent asymptotic expansions, which
in turn generate, under alien differentiation, closed finite systems. Despite being
‘transcendental’, autark functions have therefore a strong algebraic flavour. Their
prototype is the inverse gamma function. They are quite common, too: thus, most
Stokes constants are autark relative to their various parameters.

12. Conclusion.

At the end of this tour of coequational resurgence, we find a clear four level stratification:

o The atomic level, populated by objects such as simple poles or hyperlogarithms.

e The molecular level, consisting of huge clusters of atoms, namely the wemu and
welu products, with unsuspected emergent properties.

e The microscopic level, consisting of derivation operators Q,,, usually infinite chains
of molecules contracted by elementary derivation operators.

e The macroscopic level, consisting of new derivation operators P, assembled from
the earlier Q.

e The passage from the atomic to the molecular level is mediated on the Analysis side
by weighted convolution and on the combinatorial side by the scrambling transform.

e The passage from the molecular to the microsopic level is rather mechanical — mere
growth by accumulation.

e The passage from the microscopic to the macroscopic level, arguably the most
interesting of the three, is mediated by the tessellation coefficients. While much is
known about them, it would seem that just as much remains to be discovered.

e To ensure equational resurgence, it is enough for the inputs b;(z) to be holomorphic
germs at infinity (and to verify uniform growth bounds).To ensure coequational
resuregence, the b;(z) must also be capable of endless analytic continuation.

¢ Equational resurgence typically involves Stokes constants that are transcendental”
to the inputs b;(z). Coequational resurgence typically involves Stokes constants that
are immanent® to these inputs. And for unramified (e.g. meromorphic) b;(z), co-
equational resurgence dispenses altogether with the continuous-valued Stokes con-
stants, and relies instead on the discrete, integer-valued tessellation coefficients.

e All three active alien algebras generated by the A, occurring in BE1, BE2, BE3
tend to be isomorphic to ordinary differential algebras D1, D2, D3, but D2 and Ds,
unlike Dy, typically possess the property of isographic invariance.
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