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Abstract. The present paper addresses two seemingly unrelated topics —
the analysis of singular-and-singularly-perturbed differential systems; and the
arithmetics of multizetas — but with a strong unifying thread, provided by the
three scrambling operators.

The operators in question — scram, viscram, discram — properly belong to
the field of combinatorics and mould algebra. Their properties are many, but
one stands out: generating rich symmetries and sophisticated operations out
of poorer or more elementary ones.

The formal solutions of singular differential systems, when expanded in
verse-power series of the ‘critical variable’ z, tend to exhibit divergence,
but of a reqular and well-understood type: resummable and resurgent, with a
resurgence regime completely governed by the now classical Bridge equation.
When one introduces a singular perturbation parameter € and expands the
solution in powers of the same, divergence and resurgence still dominate,
but the picture becomes incomparably more complex: the resurgence calls for
two new Bridge equations, not one, and it takes the operator scram to fully
unravel the mechanisms responsible for this new level of complexity.

The closely related operators viscram and discram, on their part, render
distinguished services in multizeta algebra, especially for dissecting what is
arguably the most pivotal case: the bicoloured multizetas. For one thing,
they assist in proving the independence of the standard system of bicolour
generators. But their real contribution lies elsewhere. The fact is that, due
to the simultaneous play of weigths s; € N* and colours ¢; € %Z/Z, there exist
for any given (large) total weight s, a huge number of k-coloured multizetas.
Yet there is a saving grace: the double symmetry (known as arithmetical
dimorphy ) which constrains these multizetas induces so strong a rigidity that
the whole information can be recovered from relatively sparse boundary data
(somewhat like with harmonic or analytic functions). The phenomenon is
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particularly striking in the case of bicolours and their three satellites: the
‘Tlower satellite sa, with all degrees set equal to 0; the ‘first upper satellite
sa*, with all colours (simultaneously) set equal to 0 or %; and the ‘second
upper satellite’ sa**, similar in shape to the first, but completely different
in origin. We show, with ample assistance from viscram and discram, how
each of these three satellite systems not only morphs into the other two, but
also leads to the complete system of bicolours — each conversion finding its

expression in remarkably explicit formulae.
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1 Introduction. The three scrambling opera-
tors.

1.1 Roadmap and main results.

The present paper is about a family of operators — the scrambling opera-
tors — and their wide-ranging applications to Combinatorics, Algebra, and
Analysis. In keeping with this prospectus, and although we shall present a
fairly large number of new results along the way, our chief concern shall be
one of bridge-building and unification, of bringing order and structure to a
seemingly loosely-knit, in places even chaotic mathematical subject matter.

The scrambling operators.

They are three in number — scram, discram, viscram — and their proper set-
ting is at the intersection of combinatorics and mould algebra. The secret of
their usefulness lies in their two main properties. First, they turn the straight-
forward, uncomplicated, uninflected mould operations into the subtler, more
complex, inflected operations which govern bimould algebra. Second, they
transmute simple symmetries into double ones. Some of them, like viscram,
also preserve double symmetries. This makes them ideally suited for tackling
arithmetical dimorphy.

Singularly perturbed differential system and co-equational resur-
gence.

There is a distinct kinship, but also a sharp gap in complexity, between
equational resurgence (i.e. the divergence-resurgence relative to the criti-
cal variable of a singular differential system) and co-equational resurgence
(i.e. the divergence-resurgence relative to a critical parameter in such a sys-
tem). The gap manifests at every level. At the global level: while equational
resurgence is entirely described by one so-called Bridge equation (relating
alien and ordinary differential operators), co-equational resurgence calls for
two Bridge equations, each of a far more intricate structure. At the an-
alytical level: while equational resurgence and equational Stokes analysis
require only simple resurgence monomials (elementary resurgent functions)
and monics (elementary transcendental numbers), co-equational resurgence
calls for incomparably more complex monomials and monics. Lastly, at the
methodological level: while the shape and nature of equational resurgence
may be established almost calculation-free, by formal manipulations involv-
ing the alien derivations and supplemented by only a modicum of Analysis,



co-equational resurgence allows no such short-cuts, not even for performing
the very first step: locating the singularities on the various Riemann sheets
of the ‘Borel plane’.

As it happens, this gap in complexity faithfully reflects the divide be-
tween uninflected mould algebra, developed in the late seventies, largely as a
handtool for equational resurgence, and inflected bimould algebra, developped
from the mid-eighties for tackling co-equational resurgence. We survey the
question in section §2.

An outstanding feature of co-equational resurgence is the centrality of
combinatorics to the subject — a combinatorics moreover that is entirely
dominated by the scramble transform, and even, in the case of ramified z-
data, by a generalised version of it. One may balk at the complexity of certain
developments, and resent the notational acrobatics they force on one, but one
would do well to remember two things. First, the combinatorics in question
has nothing artificial about it: it is entirely, rigidly, univocally imposed by
the nature of this particular, very prevalent form of resurgence. Second, while
the combinatorics is complex enough in its own terms, it neatly disentangles
and tidies up mathematical situations that are incomparably more complex.
Consider for instance this system, with generic, depth-4 hyperlogarithmic
coefficients b;:

(0, +wiz)Yi(2) =Y 1(2) bi(2) (1<i<4,Yy=1) (1)

It is a honest-to-goodness differential system, linear to boot, and fairly sim-
ple. Yet its resurgence in x generates, in the corresponding Borel £-plane,
close to 100 distinct singularities, living on as many Riemann sheets. Sit-
uations like this may seem well-nigh intractable, yet the tool-kit presented
here, in §2, leads to a complete, surveyable description of all their aspects.
This should never be lost sight of when assessing the cost-effectiveness of the
analytico-combinatorial apparatus introduced here.

Moreover, while combinatorics may dominate our treatment of coequa-
tional resurgence, when it comes to stating the results, it is two other objects
that occupy center-stage. They are:

(i) the weighted multiplication or rather its Borel image, the weighted con-
volution, which leads to the specific ‘resurgence monomials’, which in turn
manifest co-equational resurgence at the most basic level.!

(ii) the tessellation coefficients, indispensable but also sufficient for express-
ing the alien derivatives of these convolution products.

IMore precisely, everything rests on two weighted multiplications, wemu® and welu®,
and the corresponding weighted convolution, weco® and welo®. The symmetral operations
wemu® /weco® are essential for understanding the Second Bridge Equation; the alternal
operations welu®/welo® for understanding the Third Bridge Equation.



The passage from (i) to (ii) is precisely where combinatorics comes in:
the integrals underlying weighted convolution are so intricate, so impossibly
ramified, that the rules governing their alien differentiation cannot be estab-
lished directly, but only over the detour through a special set of functions
(- the hyperlogarithms -) sufficiently numerous to reflect the general picture,
yet simple enough to allow a complete formalisation.

Multizeta algebra: monocolours and bicolours.

Soon after their introduction in Analysis, the scrambling operators and the
flexion structure were found relevant to multizeta arithmetics, and began to
be successfully applied there. This should not come as a surprise, since the
multizetas are, among other things, one of the most basic systems of monics
(they are the main transcendental ingredient in the Stokes constants of local
resonant diffeomorphisms) and the most seminal instance of arithmetical
dimorphy.

We have already devoted several investigations to the subject, and are
planning many more, but in this paper (§3, §4, §5), we concentrate on just
two classes of multizetas — the monocolours and bicolours — and keep the
focus on one main issue: the search for a suitable filtration, as a way of
overcoming the curse of retro-action. Let us explain.

Multizetas, whether taken in scalar form or collected inside the more
convenient generating series zag®/zig®, admit three basic filtrations: by total
weight s, by length r, and by degree?.

The s-filtration is fine as far as it goes: the two basic ‘symmetries’ (i.e. the
two, conjecturedly exhaustive, systems of ‘quadratic relations’) constraining
the multizetas do indeed respect the filtration and even the gradation by
weight, but as s increases, the multizetas of weight < s get much too numer-
ous for practical handling, especially in the case of bicolours.

The s-filtration, when refined by the s-filtration, looks more promising,
but it remains blighted by the curse of retro-action. That curse, moreover,
manifests in two sharply different, almost complementary ways for mono-
colours and bicolours, especially when one works in the relevant Lie algebra,
namely ARI il oy monocolours, the two symmetries nicely allow the con-

ent

struction of a system of generators following the (s, r)-filtration, but do not
a/il .

fully determine the decomposition of the general element of AR/, in terms

of these generators: at each level (s,r) there is generally an indeterminacy
which is removed only when we proceed to the level (s,r +2). For bicolours,

2s0-called, because in the approach based on the generating series zag®, d does indeed

correspond to the global polynomial degree in the u-variables.



the position is exactly the reverse: once we get hold of a system of genera-
tors, the decomposition of the general element of ARI Z*%Ll is fully determined
at each level (s,7), but the generators themselves resist construction accord-
ing the (s, r)-filtration: at most levels (s,7) there appear parasitical degrees
of freedom, which get removed only when we proceed to the higher levels
(s,r+ 1), (s,7 + 2) etc.

That leaves the s-filtration refined by the d-filtration (d = s—r). It suffers
from neither drawback (- no retro-action there, at least for bicolours -) but,
starting as it does from low values of d and correspondingly high values of r,
it saddles us with cumbersome polynomials of r variables.

These two distinct forms which retro-action can assume call for quite
distinct remedies.

For monocolours, the best (though by no means the only) way out of
trouble is to move from the polynomial to the perinomal setting. i.e. to work
with plurivariate meromorphic functions with a very specific pole structure.
We show in §5 how this simple and very natural trick enforces rigidity by

removing all indeterminacy not only in the stepwise construction (along the
al/il

o but also in the stepwise de-

Jal/i

ent

r-filtration) of canonical generators of ARI

composition (again along the r-filtration) of elements of AR in terms of
these generators.

For bicolours, the key notion is satellisation, i.e. the replacement of the
huge quantity of multizetas (consequent on the introduction of colours) by
sparse ‘boundary data’ or ‘satellites’; far smaller in size yet containing all
the information, and that too in algorithmically retrievable form. There are
three such ‘boundary systems’, each self-sufficient, but all three contributing
in an essential way to the overall picture. The lower or root satellisation
sa retains only the bicolours of zero degree.®> The first upper satellisation
sa*, retains only the monochromous bicolours, either all-white (colour 0) are
all-black (colour ). The second upper satellisation sa** resembles the first
in outward shape, but results from a completely different construction.*

Two remarkable phenomena are, in combination, responsible for the suc-
cess of the satellisation scheme. First, the basic ‘symmetries’ that underpin
dimorphy® impose on the bicolours a strong rigidity which makes it possible
to recover the ‘whole’ from suitable ‘parts’, much as harmonicity or analyt-
icity makes it possible to recover the whole of a function from its boundary

data. Second, in the ARI algebra and the flexion structure in general, we ob-

3all their partial weights s; are therefore equal to 1.

41t derives from the zero-degree multizetas by a procedure known as amplification.

®They are technically known as symmetrality/symmetrelity when we work with the
scalar multizetas, and as symmetality/symmitrility (resp alternality/alternility) when we
turn to the corresponding group (resp. algebra) of generating series.
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serve a quite unexpected affinity of behaviour between v-dependent, discrete
bimoulds® and u-dependent, polynomial-valued bimoulds.” As explained in
84, this discrete < polynomial duality governs the whole system of corre-
spondences between the three satellites as also between each satellite and
the ‘global picture’.

Specific new results.

We give a systematic account of the three scrambling operators and
their main uses.

We introduce the full analytical machinery necessary for tackling co-
equational resurgence — chiefly weighted multiplication and weighted
convolution; the resurgence monomials S* and T*; the universal tesse-
lation and texture coefficients (tes® and tex®) .

We survey the Bridge equations II and III through the whole range
of possible situations, from linear to non-linear, from meromorphic to
hyperlogarithmic to general.

We establish the independence of the basic bicolour bialternals. Though
this was a conjecture of long standing, the proof (- based on a trans-
parent formula -) turns out to be surprisingly, almost embarrassingly
simple.

We show that the first and second upper satellites, though a priori
unrelated, in fact correspond under a remarkable involution K. That
involution respects the d- rather than the r-filtration, but we revert
to the more convenient r-filtration via an explicit d < r exchanging
isomorphism.

We give an elegant formula for deriving the odd-degree components of

bimoulds in ARI :sz,l from their even-degree components.

We derive the ‘Green-like’ formulae, based on wviscram and discram,
that lead from the ‘boundary data’ (i.e. each of the three satellites) to
the full system of bicolours.

6

more precisely, bimoulds that depend only on the colours v; (usually denoted e;)

ranging through the discrete ring 17/Z.

2

"that depend only on the complex variables u;.



e Turning to monocolours, we give three pairs of formulae® that highlight
the contrast between the rigidity of the perinomal and the looseness of
the polynomial framework.

e The last section, alongside reminders (§6.1) and tables (§6.3, §6.7, §6.8),
presents some scattered results (§6.2, §6.6) and conjectures (§6.4, §6.5)
about multizetas and the flexion structure, including a rather myste-
rious arithmetical interdependence (modulo Bernoulli related numbers)
for the length-4 bialternals.

1.2 Origin and properties of scram.
Origin:

The scramble operator is a bimould transform

scram : M®w— SM* with SM"Y = Z AY, MY (2)
UL ooy Uy ;U w
and  w = ( ), w=(, "), A =1

Vlyeony Uy V] e, U

that we first introduced in the late 1980’s for calculating the weighted convo-
lution products® weco' et 1::)(6) of simple polar functions ¢;(§) := (£ —a;) 1.
It soon gave rise to the so-called flexion structure, with the algebra ARI and
the group GARI as its centre piece. These tools were later brought to bear
on multizeta arithmetics.

Construction: In the expansion (2) of SM* all new indices u; either reduce
to some original u; or to a gapless sum of such u;’s, while all new indices v}
either reduce to some original v; or to a pairwise difference of (not necessarily
consecutive) v;’s. Moreover, the ‘scalar product’ is preserved: > u;v; =
> vi. These, incidentally, are standard features of the flexion structure, as
are the shorthand notations for partial sums and pairwise differences:

Wi ji=U+ e U , Viyj 1= U — U (3)

To actually define the expansion (2) we proceed by induction on r and make
use of the index removal operators cutfi”® and cutla™ (fi for first, la for last):

8See Propositions 5.1, 5.2, 5.3.
9They are central to co-equational resurgence. See §2.2 infra.



(cutfi® M)Wt =

{MwQ"“’wT Zf Wy = W1 (4)

0 otherwise

(cutla®® pf)wvr =

MWW=t gf g = w,
{ .

0 otherwise

We have the choice between two very dissimilar, yet equivalent inductions:

Forward induction:

Let SM*® := scramM*® and w = (“IUT) For r = 1, we start the induction

V] 5eees Ur

by imposing SM™' := M™"', and for » > 2 by imposing cutlajy} SM™ = 0
except for wy of the form (:}‘:), (" ) ), in which case we set:

vi—vi41 /v~

(cutlal s snr) HTED) _ gy .
(cutlag\;if%’;ﬂ>SM)<2111:,2§:) S VA R (1<i<r) ™)
(cutla;;i—%,ﬂ sar) D g NI (1 <i<r) )

The lower index M in cutla’y) signals that this operator is made to act, not
on SM*, but linearly on the various M*-summands of the expansion (2).

Backward induction:

Let again SM*® := scramM*® and w = (:jig:) This time, we impose
cutfiyy SM™ = 0 except for wo of the form (“* ™) with ¢ < j < r, in
which case we set:

u1+...+uj )

(cutfi,, " SM)" = concat (symlin(S’Mg‘;’, “SM), SM@) 9)

: M UL 5oy Uj— - (7 Uy -2 U4 cees U
Wlth’wZ( 1, 711),w:(1+17 73)7,w:(1+17 ) 7‘) and
VL, Vi1 Vit 1 o5 Uy Vi1 see Ur

*SMwl""’wT = (_1>r Ser,...,wl ’ SMUSI ..... vy = SM(”lzi”O ,,,,, UTu,UO

and with bilinear operators concat (‘concatenation’) and symlin (‘symmetral
linearisation’) so defined

concat(SM™", SM™*) = Spw w* (10)
symlin(SM®", SM™*) = Z SM™ (11)

wesha(w?!, w?)
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Remark: As is well known, the relation S«* S¢* = Dwesha(w!,w2) S charac-
terises symmetral moulds. In the backward induction, however, the rule (11)

always applies, whether SM*® is symmetral or not.!°

Analytical expression:

The backward induction makes it clear that scramA™" " involves r!! :=
1.3.5...(2.r—1) summands. Of these, (r!!+1)/2 are preceded by a plus sign,
and the remaining (r!!—1)/2 by a minus sign. Thus, for r = 1,2, 3, we find:

(scramM)(zl) = M)
(scrarnM)(zi ) = e vl vs) + M(uvlf o) — M“‘ulfivii)
(scram M) Corognd) = ArCnngeg) 4 Gl 3 hnl) — prCon 357
P MCE )
—1—]\4(%22 Zg v7112) (ugiQIZ;)’:vzzgl)
) )y )
M) )
FMCEE ) g CESREE) L )

Main properties.

(i) Turning uninflected into inflected operations:
When acting on alternals, scram turns the ordinary [u bracket into ari, and
when acting on symmetrals, it turns ordinary mould multiplication mu into
the gar: product:
scram . lu(A®, B*) = ari(scram.A*, scram.B*) (12)
scram . mu(R*,S*) = gari(scram.R®, scram.S*) (13)
Actually, for (13) to hold, it is enough for the second factor S* be symmetral.
In (12), though, both factors have to be alternal.
(ii) Respecting simple symmetries:
{A® alternal} == {scram.A* alternal} (14)
{S*® symmetral} == {scram.A® symmetral} (15)

(iii) Creating double symmetries:

If A* is alternal and even separately in each w;, them scram.A® is bialternal.
Likewise, if S*® is symmetral and even separately in each w;, them scram.S*
is bisymmetral.

10Tn actual fact, SM*® is symmetral if and only if M* is.
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1.3 Origin and properties of discram.
Origin:

The operator discram arose almost accidentally, while searching for a means
of expressing all bicolored multizetas from a very small subset — the subset
of ‘all-blacks’.!! Unlike scram, discram acts not on bimoulds, but on moulds
M 12 Like scram, discram produces bimoulds, but of a very special sort:
their lower indices v; = ¢; range through %Z/Z. They are ‘colours’, either 0
(‘white’) or 3 (‘black’).

discram : M* — Sy with Sy = > AW MY (16)
w = ("ot ,ou = (uf, .. ul)
and Lot w
€1,...,6 € 5L/ 7 ;A ==+1
Construction:

(i) We start from the expansion (2) of scram.M®.
(ii) To each of the sequences w’ = ( ) occurring on the right-hand side,

’ ’
UG eeny UL
/ /
V] ey UL

we attach two elementary sequences

ﬂ(w/) = (6/1’ "'76;) J I/(UJ/) = (017 "'701{)

defined in this way:

, 0 if at least one v;, in w' is of type v; — v; (17)
€. —
’ 1 otherwise
-1 if €=0
o = { f L1 (18)
+1 Zf € = 5
(iii) For each sequence (eq,...,€,) we set:
Cerner) w oo,
Sy = Z AL, MO (19)

lu'(w/):(elv“'ve?“)

1ie. the subset of multizetas carrying the sole colour 3. See §4.2.

12In this paper, we shall have to handle moulds nearly as often as bimoulds. As far
as feasible, we shall use calligraphic capitals A®, B°... for moulds and ordinary capitals
A*, B*... for bimoulds.
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The only trivial cases are

S/Vlj """ 2 = MUrour (‘all—blackS‘) (20)
ST g (‘all-whites) (21)

For most other sequences (€1, ...,€,) the right-hand side of (19) inevitably
carries a rather large number of summands, since according to (16) the 7!!
terms in the expansion of scram.M™ get redistributed among only 2" se-
quences (€1,...,€.).

Main properties:

(i) Turning uninflected into inflected operations:

When acting on alternals, scram turns the ordinary [u bracket into ar:, and
when acting on symmetrals, it turns ordinary mould multiplication mu into
the gar: product:

discram . 1u(A®, B*) = ari(discram..A*, discram.B*) (22)
discram . mu(R*,S*) = gari(discram.R°, discram.S*) (23)

Once again, for (23) to hold, it is enough for the second factor S* to be
symmetral.

(ii) Respecting simple symmetries:

{A* alternal} = {discram.A* alternal} (24)

{S°® symmetral} = {discram.S* symmetral} (25)

(iii) Creating double symmetries: We know of no simple, non-tautological
necessary and sufficient condition on M* for S3, to be bialternal or bisym-
metral, but there is an elementary sufficient (far from necessary) condition:
if M* is even separately in each w; and alternal (resp. symmetral), then S§,
is bialternal (resp. bisymmeral).

(iv) “Recovering the whole from a part”:

If a bimould M*® with lower indices ¢; € $7Z/Z is bialternal and if we set

Mot = M

Uy .., Ur
(i ), then the reconstitution identity holds:

(discram. M) e e) = MQTIE) (e, L e) % (0, .., 0) (26)
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1.4 Origin and properties of viscram.
Origin:

Here also, the first impulse came from multizeta algebra.!®. But although
viscram has a definition patterned on that of discram, in outward shape it
more closely resembles scram. Like scram, it turns bimoulds into bimoulds:

viscram  : M® — viSMo with viSM’w _ 2 65// Mw// (27)
wll

"
) 7 w//: (u17"'7ur) 7 €$” — il

and w = ( ) ;
V..., Uy ()

However, compared with the sequences w’ of (2), the new sequences w”
exhibit slight sign changes, which look innocuous enough but greatly enhance
the properties and usefulness of viscram.

Construction:

We start from (2) and define p(w’), v(w') exactly as in §1.3. But this time
we retain all lower indices v; and merely change the signs in front of some of
them.

,,,,,

gD o S am bt ) (28)

Since the upper and lower indices undergo exactly the same sign changes, we
still have conservation of the scalar product > u; v; = > ul v in (27).

i

Main properties:

(i) Turning uninflected into inflected operations:

When acting on neg-invariant'* alternals, viscram turns the ordinary lu bracket
into art, and when acting on neg-invariant symmetrals, it turns ordinary
mould multiplication mu into the gari product:

viscram . lu(A®, B®) = ari(viscram.A*, viscram.B*) (29)

viscram . mu(R*, S*) = gari(viscram.R*, viscram.S®) (30)

As usual, for (30) to hold, it is enough for the second factor to be symmetral.

13See §4.6.
14We recall that neg MWt Wr 1= MW TWr
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(ii) Respecting simple symmetries or improving on them:

{A® alternal} == {viscram.A® alternal} (31)

{S* symmetral} — {viscram.A* symmetral} (32)

If on top of the simple symmetry, we impose the mild requirement of neg-
invariance on A® and S°, then wviscram.A*® acquires push-invariance on top
of its alternality: this amounts to “one symmetry and a half”. Likewise,
viscram.S® acquires spush-invariance!® on top of its symmetrality.

(iii) Creating double symmetries:

If A® is alternal and even separately in each w;, them wviscram.A® coincides
with scram.A® and is therefore bialternal. Likewise, if S* is symmetral and
even separately in each w;, them wviscram.S*® coincides with scram.S®, which
makes it bisymmetral.

(iv) Respecting double symmetries:

{A* bialternal} —> {viscram.A® = (2"®) — 1).4A%} (33)

Here, r(w) denotes of course the length of w. The above relation means that,
up to a simple renormalisation, the viscram transform leaves all bialternals
invariant. This is a huge improvement on scram. For the rest, property (i) for
scram is slightly stronger than (i) for viscram, but property (ii) for viscram
is much stronger than (ii) for scram. So — advantage viscram!

1.5 The scrambling operators: synopsis.

Origin and progeny:

operator oTigIn progeny

scram analysis, weighted convolution co-equational resurgence
discram  multizeta algebra flexion structure
wiscram — multizeta algebra flexion structure

Synoptic analytical expression:

(scram]\/[)(gi::g) | (viscramM)(EszQ) | (discmm./\/l)(ti:g22 (e1,€2)
VL I VC T I I T )
PUUE | aMCE D M (0 h)
M) o ) | —M(m2—u2) (1,0)

15 spush-invariance is the natural equivalent in GARI of push-invariance in ARI See...
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(“1!"2!“3) (ul,uQ,u3)

. . up,uz,u3z
(scram M) viwzes’ | (viscram M)*vivzes | (dlSCIamM)(el’EQ’CS (€1,e2.€3)
Uy, Uy , U up o, U, U
_}_M(vi,v;,v‘g) | +M(vi,v§,ug) | +M(u1,UQ,U3) (l l l)
27272
uy o, u , us Uy, u , —us
MG S s | MG ) | — M (1 u2,3,~u3) (l 1 0)
272
Ul 93 ,Ux 3, U U193, —Uy 3, U
g R ) | — (%23 00 ) | —Masweau)
u Uy u Uy, u —u
MG U ) | Mo L ) |+ Muuza—u2) (1,0, 1)
212
up2 ., u ,ug up,2 , —uz , U3
— ( 1}1’ , V2.1 s v3) | — ( '317 , V1.2 v3) | _Mu(1,27_u27u3) ''''''
u ,u3 , u u ,u3 , —u
M e ) R ) | oMz
u , U , u u y —U » U
+ ( 175?’3 ; v;;? , v3?2) | +M( 113?’3 , v1?2’3 71)3?2) | —|—M(“172737*“2a3’“3) ,,,,,,
u u , u u —u u
+M( 55 s o) | +M( 550 s’ o) | MWz —u2u)
u , U, us u , —uUq o, US
M0 el el) | M5 e es) | + M (u1,2,~u1,u3) (0 1 l)
1272
u ,u3 , U u U3, U
F M e ) e ) | e MOmzus—w)
u u , w u —u u
MR | R ) | pqsecuaes

(41,2,3, U3 5 U2y (¥1,2,3, ~u3, —ug)

+ M 01 vaa s vaa | + M 1 v vi | +M(u1,2,3,—u3,—u2) (l 07 O)

up3, ul , u3 uy g3, —up, —ug
_M( 557 o1 ) van) | —M( 557 vt ) vay) ‘ — M (ur.2,3,—u1,~us) (0, %, O)

u 3, ug , u u 3, —ug , —u
— M 175;’3 ,vs?z . v1:12) | — M 1133’3 , v2:§ ; UQ:}) | _M(u172,3,—u3,—u1)

(¥1,2,35 v1 5 U2 (¥1,2,3 5 ~u1, —ug)

+ M v vz ovas | + M v vz vsa ‘ +M(u172,3,—u1,—u2) (0,0 l)

Synoptic properties:
e All three scrambling operators respect simple symmetries.

e When made to act on bimoulds separately even in each index, they
even turn simple into double symmetries.

e When restricted to a proper setting, they have the remarkable prop-
erty of turning the uninflected operations [u, mu into their inflected
counterparts ari, gart.

e Only wiscram has the distinction of leaving bialternals essentially in-
variant: it merely multiplies them by an elementary factor (27(*) —1).

The above list of properties is far from exhaustive. There is in fact every
reason to believe that the scrambling operators are robust mathematical ob-
jects, destined to occur in more areas than the two (— singular perturbations
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and multizeta algebra —) examined in this paper, and that they possess more
useful variants than the three just reviewed in this section. Consider for
example the statements of §2.10 about the local constancy and global non-
constancy of the bimould scram.V* derived from the hyperlogarithmic mould
V*. These statements reflect a central fact about hyperlogarithms, rather re-
condite perhaps but ultimately not-to-be-missed. Which again means that,
had scram not been already in existence, any thorough-going investigation
of hyperlogarithms would have led to its discovery.

2 Singularly perturbed systems and co-equational
resurgence.

2.1 Equational vs co-equational resurgence.
Model problem.

Consider the following paradigmatic instance of a doubly singular differential
system — a system not only singular in itself (i.e. relative to the time variable
t) but also singularly perturbed (by a small parameter €):

0 = et?0y + Ny +b(tey',. .., y") (1<i<v) (34)
0 (variable)

e ~ 0 (parameter)

4

It is advisable, both techically and theoretically, to change to the problem’s
‘critical variables’ z and =z, i.e. to set

z: =1/t~ | x:=1/e ~ 0 (35)

so as to prepare for working in the conjugate Borel planes ¢ and £. This
leads to the system:

0.Y = xzAY + B(z,z,Y) with (36)
Y ={Y"}, B={B'}, A = diag.matr.{\;}
BeC{z"ha YL, ... )Y"} or eC{z 1Y, ... )Y}

From the viewpoint of z-resurgence, choosing the series B* independent of
z, i.e. taking them in C{z7!,Y} rather than C{z~! 27! Y}, makes little
difference to the resurgence pattern in the £-plane, and none at all to the
location of the singularities. So we shall henceforth stick with this simplifying
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assumption.
To respect homogeneity, we may re-write our system thus:

1+n;=0
oY= eAY'E Y B LY (sisy) 6]
n;=0if j+i
or in compact form:
‘ ' 14+n;=0 )
oY = Y <>\ix+ 3 B;(@Y”) (1<i<v) (38)
n;=0if j+i

with coefficients B (z) € C{z~'} analytic at infinity and z-free.
Let us assume that the multipliers ); are neither resonant nor quasi-resonant.
The general solution, with its full set {71,...,7,} of integration parameters,

may be formally!” expanded in powers of either z=! or x7!:

~ ~

Y =Y(z,2,7) e C[[z " or 27| @ C{m 2™ ... 7,2} (39)

with p; € C denoting the coefficient of 27" in Bj(z) = Bj__ (%)

To get rid of the ramifications z”* (which complicate the formal expan-
sions'® without adding anything of substance to the Analysis) we shall set
not only p; = 0 but also Bj(z) = 0."

Double divergence, double resurgence.

Separating the exponentials from the power series, we get for (38) a formal
solution of type:

1+n;=0
}N/i(z, T, T)= }N/i(z, x) + Z Yi(z,z) ™ ePit=nA>)ze (40)

n;=0f j+i

As just pointed out, our formal solution 57, or rather its components }7;3,
can be expanded in power series of 27! or #7!. Both types of expansions

are generically divergent yet Borel-summable, but with distinctive singular

6meaning that the combinations —\; + 27”20 n;A) are all + 0 and do not approximate

0 abnormally fast (diophantine condition).

1"The tildas, as usual in resurgence theory, signal formalness. They are often omitted,
when the very context implies formalness.

8keeping the ‘residues’ p; would merely force us to replace the exponential blocks
et <nA>) 27 in (40) by the mixed blocks 2Pt <mP> gAit<mA>)zz

90nce we have set p; = 0, a simple, analytic change of coordinates can also remove the
whole of Bg(z).
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points, singularities and resurgence patterns. Some form of the Bridge equa-
tion applies in both situations, but with distinct index reservoirs €2; and
above all with this crucial difference: whereas the ordinary, first-order differ-
ential operators A, that govern the z-resurgence in BE; do not depend on
z, the differential operators P, that govern the x-resurgence in BE5, have
coefficients that are themselves divergent-resurgent in x and therefore require
a third Bridge equation BE3 for their description:

Equational resurgence: Y =Y (2,2, 7) (expanded in z~! with z fixed)

BE; : A,Y = A, Y V woe (41)

~

Co-equational resurgence: Y = Y (z,z,7) (expanded in z7! with z fixed)

BE2 . Aw()? = ]INDwO i} \Y Wo € QQ (42)
BE; : Ay By, = Fup ({Po,}) Y wo e Qs (43)

Despite these far-going differences, there is bound to be a certain kinship
between the two types of resurgence, since in the special case when B (z) =

i /z with 3! scalar, the variable z and the perturbation parameter x coalesce
due to the underlying homogeneousness, so that the z- and z-expansions
assume the same form:

ji
Yi(z,z,7) = Y'(zz)+ Z Z Vi(ow) rn eQitena=) = (44)

TLj?O n;=—1

with Y(zz) and Y} (zz) € C[[(z2)~]].

It is this loose kinship, or lax ‘duality’, that justifies the label equational
for the z-resurgence (z being the variable with respect to which we differen-
tiate in the system (38)) and co-equational for the x-resurgence. Equational
resurgence is by far the simpler of the two, since the general shape of BE;
with its operators A, and their indices w, can be inferred from purely formal
considerations, directly from the differential system (38). Equations BEg
and BEj3 with their index reservoirs €25, €23, are harder to derive, yet here
too we are fortunate in having a general machinery, with a strong algebraic-
combinatorial flavour to it, that addresses the general case.

The normalisers O*!.

Rather than handling the general solution Y of our system, it is often advan-
tageous to work with the information-equivalent but more flexible normalis-
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ing operators ©%!:

1<r N( ul11 ..... ur )

O = 1+ Z elwlzz YA By B ) Dy ...DY (45)
T, M
1<r ( UL ur ) ' '

O = 1+ Y (=1)ellEwted B ) DR L DE (46)
i, M

, Up =< Mg, A >, Dy, o= 1" %0,
with {1 <ip<v o e (47)

and with a symmetral mould we inductively defined by W2 = 1 and

( o tr—1 )
B ..., tp—1

B ) ) = e O e ) B () (48)

Since W* is symmetral, the operators © and ©~! are (mutually inverse)
formal automorphisms of C[[7]] := C[[r,...,7]]:

o (Bi(m)-5a(m) = (0551(m) (695:(r))  @ieClrl)  (49)

Moreover, they exchange the general solution Y of our system (38) and the
elementary general solution Y, of the corresponding (linear) normal system:

oYL =NaYl o Yielz,r,T) =7 M7 (1<i<v) (50)

nor nor

@?i(z,a:,T) Y? (z,2,7) ; oly! (z,x,r)szi(z,x,‘r) (51)

nor nor

To check this, we first observe that the induction rule (48) translates into
the following interaction between 0, and ©:

0.0 =0 0. —(26““3‘ l)@ (with w =< n,A>)  (52)

0.0 =070+ 67 (N BL(D,)  (withui=<n x>) ()

Next, we define a ‘tentative’ solution }Zen of our basic system (38) by setting
Yien := O™V, Applying both sides of (53) to Yo, we find successively:?”

0.0 Y,y = @—1aznor+@—1(2 " * B (DY, )Y% (54)

nor

IlOI'

0V = O7 Ao +67! ZBZ Vi (Yao))  (55)

aZ}N/ten = >\ x Y:cen + Z Bz Y;Zen(Yten) (56)

20We use the fact that ©~! is an automorphism to change © 1 (Yy,0:)™ to (07 Y,0r)™.
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Since the last equation (56) coincides with our initial system (38), it follows
that Yie, = Y, which establishes (51).

2.2 The weighted convolution product weco.
Elementary multilinear inputs: biresurgent monomials.

In the above expansions of ©F the sensitive (i.e. generically divergent)
ingredients are symmetral monomials W*(z, x) carrying a two-tier indexation
(Buh) = (;) with scalar ‘frequencies’ u; € C and germs bi(z) € C{z™'}
analytic at z = oo. Dispensing for simplicity with the tilda and removing the
exponential factors, the induction rule (48) can be rewritten as

(0. + |u| x) W(Zi o Zl')(zjx) — fW(le S )(z,x) b,(2) (57)
Equational resurgence: Under the z-Borel tranform
n—1 ~ o~
R e BRLC U CERR CP PR T
the induction rule (57) becomes
(i) L (o)
Wbt e br (C,l’) = WRoL e b (Chx) bT‘(C_Cl) le (58)
C=lulz Jo

and readily yields all the information we need: location of singularities,
Stokes constants, pattern of z-resurgence, etc.

Coequational resurgence: Under the z-Borel tranform

fn—l
(n—1)!
things are far more complex. The induction rule takes the form of a partial
differential equation:

B, : 7" —

W*(z,x) — BV (2,€)

..... UY yeeny

@ +lulog B = e ) 59
with for 7 > 2 the limit condition BmW(:ll - Z:)(z,()) = (60)

For r = 1, solving (59) in decreasing powers of x and then applying the Borel
transform x — &, we find:

Wil (z2) = = Y (wa) 7 (-a)" bi(z) = (61)
EWRGe = - N L o) - —Li- £ o



,,,,,

and we must take recourse to the notion of weighted convolution.

Weighted convolution weco.

Proposition 2.1 For u; € C and ¢;(§) € C{z}, the following integrals

weeo(g) = () (63)
u , ug O
wecol @« e )(f) = f C2(&2) dés /C\l(fl)uil (64)
0

0* = S(ul + u2)_1

(1 b 2(E,) dE, gg: e1(&o1) ey ..
e Ba(8s) dés S Ea(6) d&i(€)
u1€1+"'+ur€r:§
with ;= (E— (W& + - +u&))(ug + -+ uimq) ™!
Op i =E(ug + - +u,)!

with {U1€1+U2§2=§

unambiguously define germs weco el 31)(§) e C{¢} provided that uy + ... +
u; £ 0. The mould weco® is symmetral relative to the (ordinary) convolution
product.

A more symmetric definition reads

weco 1 o er’ (€)= J (&) . .oep (&) dEy .. dE, (66)
with integration on a contorted multi-path:
0<§r<§r—1<”'<§2<§1

Pt = (Ul+"'+Ui)€i+(Uz‘+1fi+1+"‘+u7~€,«)<§ (2<Z<T’)
ulgl + ~--ur€r :f

While these integral representations have their use for majorising the weighted

convolution products, for establishing the symmetrality of the mould weco®(§),

even for predicting where its singlarities will project on the &-plane, they are
pretty hopeless for finding the precise addresses of these singularities on the
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wildly ramified £-surface or for deriving the corresponding resurgence equa-
tions. Fortunately, however, when the inputs ¢; or simple poles or even
polylogarithms, there exist for weco® transparent formulae that answer all
these questions, as we shall see in the sequel.

Meanwhile, weco® answers our immediate concern— expressing the biresur-
gent monomials W* in the Borel plane &.

Proposition 2.2 The Borel transforms x — £ of the biresurgent monomials
W?* can be expressed in terms of weighted convolution products

,,,,,,,

BxW(le vvvvv br)(z,é) = weco

(“1 ~~~~~ ur

Grel() with B =~bi(z-€)  (67)
with z chosen close enough to o for the inputs ¢;(€) to be reqular at & = 0.

The proof, tedious but straightforward, lies in checking that the weighted
convolution integrals (65) with the inputs ¢; as in (67) do indeed verify the
partial differential relation (59) together with the limit condition (60).

We may note in passing a seeming incongruity: formula (67) defines ¢;
(an analytic germ at 0 in the convolutive &-plane) directly as a translate of
b; (an analytic germ at oo in the multiplicative z-plane). This interference of
the two structures is a standing feature of coequational resurgence.

Weighted multiplication wemu.

Proposition 2.3 Just as ordinary convolution is the Borel image of ordinary
multiplication, weighted convolution weco is the Borel image of a weighted
multiplication wemu:

Borel A~ ~
ci(x),...,c.(x) — c(§),...,c () (68)
wemu' a1 o) (z) 229 wecol el ) (&) (69)

For u; > 0 and Rz positive and large, weighted multiplication is defined by
the integrals:

sy, ] f”"o c(xy)...co(zy) dxy ... dx,

wemu e ()= (2ri)" %oonzj ((u1+. ) = (214 —Hjl)) "

Integration is along vertical azes Sx; = a; < u; R but with «; large enough
for cj(x;) to be holomorphic on o < Rx;. The definition is then extended
for general weights u; by continuous contour deformation, which is always
feasible provided the partial sums u; + - - - + u; remain + 0.
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Proof: Obvious for r=1 since wemu(zll)(x) =c1(uy x), weco(zi)(aﬁ) =-—C1(=>).
But even for » > 1 the argument is straightforward:

(i) assume u; > 0 and Rz >> 1

(i) write ¢;(z;) = (2u71rz)_1§rej(£j) exp(—x;&;)dx;
(iii) calculate weco B E"r)(g) for inputs E,, (&;) := exp(—z;&;)
111 ,,,,, ur
(iv) subject weco By 4 By )(f ) to the Laplace transform.
Moreover, we clearly have weighted distributivity of the z-differentiation

and z-shift:

o wemu' -1 ;;j;;”;:)(x) _ Z w; wemu' et 04 Z‘I)(x) (0:=2,) (71)
1<i<r
7 wemu'e1 1::)(1‘) = wemu'zi ::::1:2’“)(%) (I =0T = euﬁa) (72)

Alternal marking.

One can easily check that the mould transforms almark and almalk:
almark(M)tl’""tI'""’tT' := concat (Symlin(M“’“"ti’l, Nttty Mtz) (73)
almalk(M)tl""’tI‘""’tT := concat (Mtj', symlin(*p1tiot) Mt"“""’tr)) (74)

*Mt1,...,tr = (_1)T Mtr,...,tl
with symlin( MY, M) := Dteshace, ey M (75)
concat (Mtroti Mttt = Jf0tr

turn any mould M* into marked moulds M*, M* of alternal type. Here,
‘marked’ means that we distinguish one of the indices t; by marking it with
the ‘dagger’ sign f. If M* itself is alternal, then M* = M* = M*, but
otherwise all three moulds tend to be quite distinct. If on the other hand M*
is symmetral, as will be the case in most of our applications, then the factor
*M* occuring in the definitions (73)-(74) coincides with the multiplicative
inverse nvmuM®.

Of course, when the marked index is tI happens to be the first or the
last, the vanishing subsequence in the definition is simply neglected. Thus,
if M* := almarkM?*, we get:

Mtitatats . prtatatat

Mt1,t;,t37t4 - +Mt1,t4,t3,t2 +Mt4,t17t3,t2 +Mt4,t3,t1,t2

Mt1,t27t;t4 .

Mt1,t2,t3,tj; = tt2tsita

_Mtl,tz,m,ts _ Mtl,t4,t2,t3 _ Mt47t1,t2,t3
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The alternal operations welo and welu.

In co-equational resurgence, one constantly requires the (alternal) weighted
multiplication/convolution welu/welo derived from wemu/weco by right al-
ternal marking:

welu® := almark.(wemu®) ;  welo® := almark.(weco®) (76)

Although this defines welu/welo as large sums of % distinct terms

of type wemu/weco, the form of the integrals does not become significantly
more complex. Thus, the passage from wemu to welu reduces to changing a

fully factorisable kernel S*® by an equally factorisable S°:

wemu'et e e () = L glel el

UL 4.y U (ul ey gt ur)

weluler et Z:)(x) = (80 e ) (1) [T () d

U ey Ug yeny Up . —1
Slat el ) () = [T (w + o +w) o — (2 + .+ xl)>
Up ey 'u.j+1)

- (w1 + 4 u)z—(z1+ .. +,))

(77)

This would not be the case at all, had we defined welu® and S*® based on the
left alternal marking almalk. Thus, of the two alternal markings, the one we
require also happens to be the simpler (in this instance). Similar sweeping
simplifications occur in the definition of the integration multi-path behind
the alternal convolution welo. The reader is invited to work out the form of
that multi-path for himself.

Remark 2: Simple vs weighted convolution.

The basic weighted convolution weco is symmetral, but otherwise devoid of
any associativity-like properties. The following pair of formulae bring out
the difference with ordinary convolution:

(€5 % %85,)(§) = Esp4s, (§) with  €5(§) = (s—1)! (79)
weco @1 o (€)= By, (€) HUE TS (80)

The symmetral mould H* doesn’t depend on &. For any fixed positive integers
s1, the coefficient H(s) is a rational funcion in the weights w;, of the form:

H's1 000 s — P(gll o Z:) H (ul 4+ o+ uj)j*1*(81+...+8j) (81)

1<j<r
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The numerator P(s) is a homogeneous polynomial, with non-negative integer
coefficients and with total degree in u:

U yeeny up 1
deg(PUs1 w)y = Z (r—g)s;—=r(r—1) if s, eN (82)
1<j<r—1 2
This makes H* homogeneous in u of total degree d = — > s;.
(i) For identical powers s; = s > 0 and a fixed set of weights {us, ..., u,},

the coefficients H(s) are always largest (resp. smallest) when the weights u;
are arranged in increasing (resp. decreasing) order.

(ii) Conversely, for identical weights u; = u > 0 and a fixed set of positive
powers {si,...,s,}, the coefficients H() are always largest (resp. smallest)
when the weights u; are arranged in decreasing (resp. increasing) order.

(iii) Since the weighted convolution product remains defined for all complex
valued weights s; (see below), the coefficients H(s) possess an analytic ex-
tension to the whole of C2", single-valued in s but multivalued in w, with
singularity locus u;{uj + ... + u; = 0}.

(iv) For real positive powers s;, the influence of the weights is strongest (resp.
weakest) when the powers increase to +00 (resp. decrease to 0). In particu-

lar, limg, o e — Tl' irrespective of the weights u;.
(v) Apart from symmetrality, u-homogeneousness, and the s-shift relations
gl 3 _ WS O (83)
e

which simply reflect (71), the coefficients H (5) do not appear to be subject
to other algebraic constraints.

(vi) Whereas r-multiple convolution products tend to decrease like Const/r!,
r-multiple weighted convolution products tend to decrease like Const/(r!)?.
This is particularly obvious in the case of positive weights u;, which precludes
sign compentations in the following sum

Z Weco(féjj;’ . Zj((:;)

o6,

and makes each of its summands, on average, equal to 1/r! times the right-
hand side of (84), which is itself small of order 1/r!. This, however, appears

to lead to an anomaly: the very same biresurgent monomials Wi 2260 (z,x)
give rise, in the (-plane, essentially?! to ordinary convolution products that

2ndeed, if we neglect the factors (¢ — |u|z)~! which have almost no impact on the rate
of decrease at a given (, the induction (58) amounts to an ordinary convolution product
with r factors.
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decrease roughly like C /7!, and in the &-plane to weighted convolution prod-
ucts that decrease roughly like Cy/(r!)%. The answer lies simply with the
convolands, which differ in both cases: in the (-plane, we have the rather
small b;(¢), and in the &-plane the much larger® ¢;(€) := —b;(z — £). So on
the whole things balance out just fine.

Remark 3: The case of non-integrable minors ¢;.

Like with ordinary convolution, when dealing with convolands ¢; that are
non-integrable at ¢ = 0, we must resort to so-called majors ¢;%* and replace
the path integrals (65) by suitable loop integrals that avoid the origin. For-
tunately, in §2.11 we shall come across a formula which gives us the exact
form of these loop integrals.?*

In particular, when all convolands ¢; are equal to the convolution unit
0 (dirac distribution at the origin), we find that the weighted convolution
ceases to depend on the weights:

8 ey 5)(§>E—(S Vul,...,ur (85)

Remark 5: Weighted convolutuion and the diracs.

This last remark takes us to the case when one or several convolands ¢; are
equal to 0. When only one is, and the others are regular, we find:

B weco' e (€) if & =0 (86)
0 otherwise

When exactly k& convolands ¢; are equal to ¢ and the others are regular, we
find:

1 " . ~ ~ ~
(5L ) - {% WeCO( e r—k (5) Zf Cr—k+1 = Cr—k42 = ... Cp = o

0 otherwise

Remark 6: The case of vanishing sums u; + - - - + ;.

When some of the partial sums u; + --- + u; vanish, the integration multi-
path in (65) ceases to be finite. This either renders the integral meaningless

22Compare for instance b;(¢) := ¢"1/(n; — 1)! and by(z) 1= 2",

Byerify ¢;(§) = — 55 (G;(€e™® — &;(¢e™ ™).

24Unlike with ordinary convolution, the multiplicative plane is of no direct help here,
since non-integrability at £ = 0 in the integrals (65) automatically translates in non-

integrability at z = +i00 in the integrals (70).
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(when the germs ¢; cannot be continued to infinity) or again (when they can,
but display singularities) opens the way to massive indeterminacy. In our
problem, however, two fortunate circumstances save the day:

(i) in the Second Bridge Equation, the ¢; that occur are all of the form
Gi(&) = =bi(z — &), with z large and b; analytic and small at co. So here
we have in the &-plane a privileged path to infinity?®, which we choose. We
shall see in §2.8 how this translates in analytical terms: we must replace the
resurgence monomials S*(x) by the amended monomials S¥, ().

(ii) in the Third Bridge Equation, the convolands ¢; carry no z-shift, but here
all terms with vanishing sums u; + - - - + u; cancel out!

Remark 5: The need for a detour through combinatorics.

After the weighted convolution products, the other tool required for master-
ing coequational resurgence is a recipe for alien-differentiating them, more
precisely, for expressing Awweco(zl ) and Awwelo(gl1 &) in terms of
weighted convolution products of the alien derivatives A, ¢; of the individ-
ual convolands. However, the integrals (65) that define weighted convolution,
and especially their analytic continuation in the large®® are so impossibly
long, intricate and contorted that they defy visualisation. So an analytical-
combinatorial approach is required instead, which consists in focusing on
well-chosen convolands ¢;, with well-chosen meaning two things:
(i) the ¢; should be sufficiently simple to yield explicit weighted convolution
products
(ii) they should be numerous enough to approximate all ramified functions.
Fortunately, there is a set of functions that meets both conditions and
that will eventually lead us to the rule for alien-differentiating the convolution
products: they are the hyperlogarithms. The next sections (§2.3 through
§2.8) will be devoted to them or to constructions based on them.

2.3 The elementary monomials V*(z) and monics V°.

The z-resurgence (‘equational’), which manifests in the dual {-plane, turns
out to be totally independent of what singularities the coefficients B¢ (z)
of our model system (38) may or may not possess: they depend only on its
‘multipliers’ \;. The z-resurgence (‘co-equational’), however, which manifests
in the dual &-plane, depends on both the multipliers A; and the singularities
of the B}, (z), which live directly in the z-plane, at or over some points ;.

Znamely arg(z — &) = arg(z).

26technically: the weightedly self-symmetrical and self-symmetrically shrinkable multi-
paths that we would have to consider for a direct ‘geometric’ treatment.
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The same holds for our resurgence-carrying monomials W*: the singu-
larities of B, W in the (-plane depend only on the weights w;, while those
of B, W in the &-plane depend on the u;’s and on the singularities a; of the
coefficients b;(z) in the z-plane. More concretely, the former singularities lie
over points of the form z (u; + - -+ + ;) and the latter over subtle bilinear
combinations of the wu;’s and the differences z — a;.

So we find ourselves once again facing a highly unusual but inescapable
interference of two structures:

(i) the multiplicative structure, which leaves the singularities in place,
(ii) the convolutive structure, which adds singularities, in the sense that:
(singularity over wy)x(singularity over wy)= (singularities over w; + ws).

Then, messing up things still further, we must contend with the weighted
convolution weco, which also adds singularities, but via weighted rather than
straightforward sums. This forces us to juggle two systems of notation:

e incremental, with sequences (wy, ..., w,) (Wi = a; — ;1)
e positional, with sequences [aq, ..., a,] (i =wy + ... +wy)

The ideal tool for understanding this hybrid structure is the hyperloga-
rithms, with their two encodings®”, their stability under two products®® and
two sets of exotic derivations ?° and, not least, their density property: any
given resurgent function in the Borel plane is the limit, uniformly on any
compact set of its Riemann surface, of a suitable series of hyperlogarithms.
Here are the main definitions and properties:

Hyperlogarithms in the a and w-encodings:

~[a1,...,ar] T dTr S dr T dr
| T (s7)
0

o Tr — Oy 0 T2 — Qg T — 0

AW ey ~[a1,..,0r]
T) = Y (1) with a; =wi+...4+w; (Vi) (88)
1 [a1,een 00 o lonar]
plavanl(r)y = 0, Y (1) (89)
Verwn(z) = o,y (7) (90)

27
28
29

i.e. incremental and positional.

i.e. ordinary pointwise multiplication and convolution.

i.e. the alien derivations A, and the less important foreign derivations V,, (which
shall play no part in this paper).
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Functional dimorphy:

AR TR T NG (01)

(v v )m = Y v (92)
wesha(w’ ,w")
(V2V) () = Ve(r) (93)

~ o]
(91) says that ) is symmetral relative to pointwise multiplication. (92)

and (93) say that Y and V* are symmetral relative to the convolutions *
and ¥ respectively.

Remark 1: Here * stands for the convolution

(P17 Ba)r) = f By (r— ) d Pa(m) (94)

whose unit (namely ¥ (7) = 1) coincides with the unit of point-wise mul-
tiplication — a definite advantage in this context. To fall back on the more

familiar convolution # or simply * (whose unit is the dirac at 0):

(G133)(7) = j "Bt — 1) Palr) dry (95)

0

it is enough to change ¥; (1) to @i(7) := 0, ¥, (7).

Remark 2: When some «;’s coincide or, equivalently, when some w;-sums
vanish, the definition (87) remains in force, but the conversion rule (88) has
to be slightly modified.?® Indeed, in the extreme case when all a;’s and
therefore all w;’s vanish, to ensure the double symmetrality, the definitions
have to be:

7 times

[0,..,0]

]; (1) = (b’i—!ﬂr (a-encoding) (96)
7 times

-~ 0,50 (log )" r i ;

% (r) =g 4 ... = [(—00) (m)]gzo (w-encoding) (97)

with the dots in (97) standing for a polynomial in log7 of degree < r.

30The modification is imposed by the need to adopt two different re-normalisations in
presence of divergence. It has an exact analogue for multizetas, namely the factor mono®
which tweaks the conversion rule for zag® and zig®. See §3.2.
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Hyperlogarithmic monics.

In the incremental encoding, the hyperlogarithmic monics V* are defined
inductively by:

Aw1+...+wrvw1,...,wr(z) = Wiewr Z P Wi Vwi+i7...,wr(z) (98)

Wit1+...+wr=0

and in the positional encoding by the usual re-indexation:
V[al,...,ar] = J/ana2—ar.ar—ar_1 (99)

The hyperlogarithmic monics are central to equational resurgence, where they
serve as elementary building blocks in the calculation of the Stokes constants,
and to co-equational resurgence, where they enter the definition of the im-
portant tesselation and texture coefficients.

2.4 Index dependence of V*(z) and V°.

In the sequel, we shall have repeatedly to differentiate the hyperlogarithmic
monomials and monics with respect to their variable and their indices, and
that too in both models (multiplicative and convolutive) and in both en-
codings (incremental and positional). So we collect in this section the main
formulae:

Monomials in incremental indexation.

W10 V¥ (2) = 20,V (2) = —1—w2V*(2)
Wl(awl 4 Z) le,.‘.,wr(z> _ _Vw1+w2,...,wr(z)
wj(awj 4 Z) le,...,wr (Z) — _|_Vw1,...,w]~,1+wj,...,wr(z) _ le,...,wj'+w]~+1,...,wr(Z)
Wy (O, + 2) V& #r(2) FYP L () P WL ()
Z(az + |w|) le,...,wr<z> — _Vw1,...,u)r,1 (Z)
W10V () ==C0V () ==C(C—w)"
AW ey W ~W1tw2,...,Wr
w1 (0w, +0¢) V €)=-V (€)
AWy, Wre AWy Wi —1 FWj e, Wr AW yeeny Wit W41y Wr
w;j (0w, +0¢c) V ) =+V €)-v (©)
AW e, Wi AWy, W1+ Wy AW ey Wr—1
wr (O, +0¢) V ) =+V (Q)— (€)
C—lwhov —(©=-v  (©



Monics in incremental indexation.

wlawl le = O,

wlawl Verw2 _le+w2 _
(A)QanleyUJQ — pywrtez 4]
wlaw le """ wr Vw1+w2 ,,,,, W
1
wj&uijl ..... Wr = Y Wj—1+Wysewr A VAR Wi W) 415 Wr
wTawle ..... Wro W@ 1w

Monomials in positional indexation.

o V() = (=0 — ()

~[a1]

&V ()= (¢(—a)!
L@ 1,045,005 41,50 ]

+V (€) (aj—aj1)™

Q105,04 150 ]

Oa; V =49-y i (€) (g —aj1) '+ (a1 —a;) ™)
+VTI (g gy
~[a1,....0r—1,0r]
o 9[011 ----- ar] (C) _ + E[al ..... o] (C) (047“ 057"71)
-V (€) ((ar—ar—l)il + (C_O‘T)il)
~[at,...,ar] ~lat,..,ar—1,8r]
oV €)=+V (€) (=)™

The hat above v; always signals the omission of v;.
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Monics in positional indexation.

0,V o2l — _/[Ar.00] (1) +(az—ar)™) = —(a1) ™" = (2 — )"
0o, V10002) = gV 1002l —ay) ™" = (ag—ay) ™!

0 V[al,.“,a,«] . {_V[al’a%""ar] (Oé;l + (042—041)_1)
o1 =

+V [011,612,...,04,«] (012 _a1>—1

4V [@i1,05,0541,0..] (aj—aj_q)7t
aajV[m,...,ar] = —V[A..,aj—17aj:04j+1""]((Oéj_@jfl)_l"i'(aj+1_aj)_1)

01,065,854 1 )L
+V Lty (0 —ay)

+V [+ @r—2,00—1,0r] (047,_1 _OZT—Q)il
—V Lear—2,6r1,00] ((Ozr_1 —a, o) ' (an *047"—1)71)

aarv[al,...,ar] _ _|_V[a1,..‘,6zr_1,ozr] (ar_arfl)il

Transition equations for the monics.

Outside a finite number of singular points, the resurgence monomials V*
are ramified, holomorphic functions of their indices w; or «; and of their
variable z (in the multiplicative plane) or ¢ (in the Borel plane). Not so the
corresponding monics V'*: these are uniform, non-ramified analytic functions
of their indices on a number of domains of C", but undergo discontinuous
changes of determination from domain to domain,?! according to the formula:

D wyepwy VI = Qg Yt i (100)

Wit Fwr

Dﬂv[ah...,ar] =D o V[al,...,ar] 2 V[al,...,ai] V[ai+17ai,.‘.7arfai] (101>

ar ar—ao;

with jump operators

D, F(x) :=lim(F(x +i¢e) — F(z —ie)) (t,e e RT) (102)

e—0

2.5 The special monomials S°*(x).

To construct the monomials S*(z) and the associated tesselation coefficients
tes® , we first turn the moulds V*(z), V* into bimoulds V*(z), V* and then

31This reason lies their definition (??): it involves the operators A, which are them-

selves uniformly defined for all wy € C, := C — {0}, but whose action on a given resurgent
function is of course discontinuous in wg
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subject them to the scramble transform:

,,,,,

S*(z) :=scram.V*(x)  with Yl 3:)(33) =P ULt () (103)
tes® = S* :=scram.V*®  with y“fi B (104)

Thus, we the usual shorthand w5 := uy + ug, V1.2 := v1 — V2, We get:

S(Zi)(x) = Vi (x)
(i)

S vy, vy (ZL’) = VU1 V1, U2 v2(.7}) _ V“l,? V1, U2 V2:1 (CL’) + VU1,2 V2, Ul V1:2 (.T)

Proposition 2.4 (Weighted convolution for polar inputs) .

We assume here that all partial sums uy + --- + u; are + 0, so that all
integration bounds 0; in (65) are finite. Then the weighted convolution of
simple polar functions m;(€) = (€ —a;) ™! coincides with the x-Borel transform
S*(€) of the bimould S*(x) for indices w; = (o). Simalarly, the bi-resurgent
monomials 3 W*(z,z) of (57) with polar inputs b;(z) := (z — ;) ™", coincide
with the bimouls S*(x) for indices w; = (. ). In other words:

UL ey upr AL U] 5eeey Up 1
weco i (6) = Sleivel(e)  with m(©) = - (105)
WY yeeey Ur U ey upr 1
Wl ) (2 ) = Sma e ) () with bi(z) = (106)
z — QO

Sketch of proof: Based on the rules of §2.4 for the w;-differentiation of the
hyperlogarithmic monomials V, we find that the S*(x), defined as superpo-
sitions of V(x)-monomials, verify

(0, + Ju(e)|2)S* () = =8*(x)xT* (107)
T :=Ui , JYotr =0 af r$1 (108)
1

2.6 The generalised scramble.
Approximating ramified z-functions by hyperlogarithms.

Our singular, singularly perturbed model system (38) may, instead of mero-
morphic coefficients th_(z), possess coefficients which, though analytic at oo
on the Riemann sphere, are ramified away from oo. The proper framework
for approximating such creatures is the space of hyperlogarithmic functions:

~[at,e.ar] A[al_l,...,af.l] _
N (€ (109)
Plerl(Q) = Pl (110)

32viewed as resurgent functions of their second variable z, in any of the multiplicative

models — formal or geometric.

34



considered in the Borel plane, but with ( replaced by z ! This overlap of con-
volutive and multiplicative structure, of (- and z-planes, should not surprise
us in view of the remarks at the beginning of §2.3.The theoretical superiority

% and T* over ]? and V* is also clear: while the two sets of hyperloga-
rithms have exactly the same singularities®® and are easily convertible into
one another, the former are reqular at infinity, the latter ramified.>*

In this brief paper, however, to avoid the headache of yet another system

of monomials, we shall stick with the familiar hyperlogarithms ];. and V*. In
a sense, this shall enable us to tackle the more general situation of coefficients
B: (z) in C{z~'}®C][[log z]] rather than in C{z~'}. But there is a downside:
our hyperlogarithms having no natural, privileged determination at co in their
Borel plane, we shall have to specify one.?

From indices w; = (") to indices w, = ().
v; v

In §2.5 we succeeded in expressing the complicated weighted convolution of
elementary polar functions 7;(£) := (£ — ;) ™! with the help of the scramble

,,,,,,,,,,,

transform S - “v')(x) of the hyperlogarithmic bimould V1 = or )(x), with
simple lower indices v; = «; standing for poles. In the light of the preceding
considerations, the challenge is now to repeat the trick for general hyper-
logarithmic inputs m;(€) := VI@v-@imil(¢) taken, for technical convenience,
in the positional encoding.®® This will force us to construct a generalised
scramble transform

scram : M* — SM*  with - u (111)

leading to a bimould SM* whose lower indices

v; = (U1, 0o, 0], 0]) = (s e, Qi) (112)
are no longer simple scalars, but finite sequences of arbitrary length m;.
The present section is devoted to that construction. As in the case of
the ordinary scramble, it relies on two equivalent inductions — forward and
backward — both of which are indispensible for a rounded picture. The next
section shall validate the construction after the event and dispel its seeming
artificiality by providing the link with the weighted convolution product.

33away from 0 and oo.

34hut with simple logarithmic singularities.
35usually by analytic continuation from 0 to co along a singularity-free axis.
36For m; = 1 we recover the polar inputs since VI*i(€) = (¢ — ;).
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Forward induction for the generalised scramble M" — SM*:

For r=1 and w, = (Zi) = (v1 o o i UT) we start the induction by setting:
IR R 1Y%

vy,

(ul , oul o, //ul L ”;” PR T“l i)

SM(E) T VAR R T B e R G N v Y
To continue the induction, we must distinguish four types of sequences w,
depending on the nature of the last index w,, of the sequences w in the
various summands M™ occuring in the expansion of SM*:

Wo = (W) with #(Qr) =1 and T:#(w) (113)
/UT’
Uy .
T <yl—g§> with  #(v;) = 2 (114)
wo= () wt i<r= ) (115)
Wy = (Q;[_ﬂffl) with 1 <1 (116)

The linear operators cutla}; are defined as in §1.2. They act by removing
the last index of M™ (not of SM*® !) if that last index happens to be wy,
and by annihilating M™® otherwise.

cutlajp SM*1r-% =0 if wy not of type (113)-(116)

(D)
cutlayy’ SM 21t = Gy (117)
GO il o, g b (U
cutla,, * SM®v®r = L GN®r iR qith w) = <UT> (118)
Gl ) :
cutlags T SM s = N gl (119)
wl €Wl
oy ) .
cutla,y 7 SM e = S gy e, (120)
w, , €W

—i—1,% i—1,7

with indices w;;,; and w;", ; running through the sets

Wi = U {(Uuﬁu“f )} (121)

*
T V:
* E ~i,0+10 Yi+1
v7 ip16sha(vi vy ) ’

T VIR (i S

* * * —~i—1,2
v%_, ;esha(vi_;,vf) ’
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When each v; reduces to a single element v;, the case (118) is automat-
ically ruled out, and the rules (117),(119),(120) simplify to the earlier rules
(6),(7),(8) governing the ordinary scramble.

Interpretation: To construct the set W%, of indices w;;,, we always take
u;+u;y1 as upper index. To define the lower indices, we start from the se-
quences v}, v;,, obtained by depriving v;, v, of their last element vl, ZT +1-
Next, we con81der all sequences v7;,; obtainable by shuffling the sequences
v, U Lastly, to each of these v, ; we attach, as last element, the last
element Ui—i—l of v;, . Since #(vf U;_l) = #(v}) +#(vE,) —1, the rule (119)
amounts to a proper induction step.

Of course, when either v; or v;,, reduce to a single element, the set W%,
also reduces to a Single element. And when both v, or v,,; reduce to a Slngle
clement, the set W%, ’s single element is (“;:fl“), so that we fall back on
the induction rule (7) for the ordinary scramble.

The same remarks apply for the set W7, ;. We may note in passing
that the induction steps (118),(119),(120) essentially respect the left-right
symmetry.3” So we might expect the generalised scramble to obey a backward
induction very similar to the forward one. As we shall see in a moment, this
is not at all the case. The reason lies in the innocuous-looking rule (117),

which on its own completely upsets the left-right symmetry.

Backward induction for the generalised scramble M"™ — SM*:

The linear operators cutfi}; are defined as in §1.2. They act by removing the
first index of M™ (not of SM*® !) if that first index happens to be wy, and
by annihilating M™ otherwise.

The backward induction says that the only operators cutfi}; acting non-
trivially (i.e. without yielding 0) on the SM*% (viewed as a sum of M™
summands) are those with indices wg of the form (") where v; is the
first element of some sequence v, with 1 <7 < j . And for those particular
wy, the backward induction rule reads:

(u1+ +uj)

cutfi,, " ~SM* = concat <concat (symlin(SM, ,l%, *SM U%), “SM. ), SM Q)
U}Zth {Q: (wlw"vwr) )

w = (wi—i-la"'?wj) )

= (wla '-->Mz‘—1>

= (Mj-t,-lw“awr

(123)

ISTIE

Some of the three factor sequences w, w, W, may be empty. The operators
concat and symlin are defined as in §1.2. They act directly on the SM*® terms,

37 Apart from the opposite signs in front of the right-hand sides of (119) and (120).
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not on their M* summands. Regarding the four SM*-terms occurring on the
right-hand side of (123), the notations are as follows:

SM’UOEI """"" Ur SM( V1=V yererens V=0 (124)
UL geereeny ur UP  yeennnny u
*SMqEOEl ........ gr) = (—1)TSM(ET*UZ' 7777777 21*1”0) (125)
Cop oot ) A
BSMyy S Y A AR (v; gets removed)  (126)

Here and henceforth, we use the self-explanatory shorthand:

v, —vg = (v; — Vo, V; — Vo, V] — Vg...) if ;= (v;,05,0]..) (127)

U, iy Ug eee

Proposition 2.5 The forward-going formulae (113)-(116), which tell how to
add an index in final position, and the backward-going formulae (123), which
tell how to add an index in initial position, are equivalent. They define the
general scramble transform scram, which turns symmetral (resp. alternal)
w;-indexed bimoulds into symmetral (resp. alternal) w;-indezed bimoulds:

scram : M®— SM* with SM* =) €., MY (128)
w/
Uy U ) u
and = (" = (e gy
Vyyeooy U, (AN 1

The w'-sequences on the right-hand side of (128) tend to be much longer than
the w-sequence on the left-hand side, since their common length 1’ is Y, #(v;).
Their most important feature®®, however, has to do with their contracted

initial sums Y, ul v}, which are all of the form:

1 )
wp v+l = [ut v o U] v (129)

relative to some factorisation w = w' ... w®@ and to a selection of indices
Vi, each of which belongs to the lower sequence v;, of some simple index
w,, = (Z:) inside w'.

Sketch of proof: One way of verifying the equivalence of the two induction
rules — forward and backward — is to iterate each one and check that “they
meet in the middle”. In this regard, we may mention that, in §2.9, in order
to find the form of the alien derivatives of the monomials S*, we shall per-
form an operation which, in fact, is tantamount to iterating the backward
induction rule for the generalised scramble.

381t shall determine the form of the alien derivations A, that act effectively on the
monomials S*(z). See §.. below.

38



Remark 1: huge number of M°*-summands in SM°.

The number pu(w) = p(myq, ..., m,) of M*-summands in the standard expan-
sion (128) of SM* depends only on the lengths m; := #(v;) of the partial
sequences v;. It tends to be huge. Thus:

r times

|

~—

1.35...(2r—1) = rll
29135106 ~ 29 10°
22855560 ~ 23 10°
23963940 ~ 24 106

S— N
I

TET T T TTTT

NN N AN N N N N N
w\IH:JkCDHkCﬂr—A
W Ul W b ot ot
W W Ut b O Ot

4) = 10050665625 ~ 10 10°
,3,5,7) = 349098750 ~ 0.4 10°
,5,3,1) = 539188650 ~ 0.5 10°
,3,3,3,3) = 60575515000 ~ 60 10°
1,2,3,4,5) = 6067061000 ~ 6 10°

1(5,4,3,2,1) = 9641071440 ~ 10 10°

Remark 2: multiplication and symmetral linearisation.

When applied to a symmetral M*, the generalised scramble transform pro-
duces a symmetral SM* defined as a sum of symmetral M*-summands. This
opens two paths for the calculation of products SM'. SM="

/ ” symmetral linearisatiom
SM¥' . SMw Y 5 S SMw

M?*-expansion l l M?*-expansion l M?*-expansion

(Z Ew/Mwl) . (Z Ew,,Mw”) Symmetrﬂearisation Z e M

The path expansion followed by linearisation always leads to a number of
M*-summands considerably less than the path linearisation followed by ez-
pansion, but the latter gives rise to massive (pair-wise) cancellations, ensuring
the same end result.

2.7 The general monomials §°*(z) and S:,.(z).

Definition 2.1 (The general monomials S*(z)) .
The general monomials S*(x) are simply the general scramble transform of

-----

the familiar hyperlogarithmic bimould Yl ”:)(a:) =P UL ()

Since V*(z) and V*(z) are both symmetral, S*(z) is symmetral as well.
For r=1 and w, = (') = (, ./, ), the definition yields

vy v1,0],07 ..

"o\ m

Sﬂl(ﬂf) = V[u1v171,u1v1 ..... ulvl,vl...](x)

Yuv 7u1(vi—vl)7u1(v’1'—v’1)7U1(U’1”—U’1')---(3;)
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In this case, the positional notation is obviously more advantageous, but
it ceases to be so when r grows. For instance, for r=2 and w, = (vﬁ' ),
"1

wy = (U“Q, ), we find in the incremental notation the following expansion,
2,VUg

which would look much worse in the positional notation:

Ul o, U
8(31 ) vy ) (l’) — +Vu1v1 yURV2,U2Vo1 .o, U1 V11, (.Z‘) +Vu12v2,u12v1 2,U12Vqor,1,U1V/,o/ (l’)

_|_Vu1v1,ugvg,ulvl/zl,ugvy:? (x) V’U,lg’vl yUV2:1,U1 V7,1 ,U2Vs/ .o ( )

+Vu1’l]1,U1U1111,U2’U2,U2’U2/:2 (ZE) VUlQUl,'LLlQ’Ul/ 1,U2V5.17,U2Vo/ .o ZL‘)

_|_VU12U1,U12’U2;1,u11}1/:2,UQv2/:2 (:L,) Vu12v2,ulgv1 2,U12V717,1,U2Vs/.1/ (1.)

+Vu121)1,u121)2;1,u121)2/:2,u1’ul/:2/ (.Z') Vum’ul ,U120V2:1,U12V1/.9,U2Vo/ .1/ (x)

+Vu1202,u12v2/:2,u1v1:2/,u1v1/:1 (II?) Vulzvz,ulgvl 2,U2Vqyr,1,U1Vq/.q (l‘)
)

4 ) ¥12V2,U1V1:2,U2Vs/10,UL V1 /1 (ZL’) — ) U12V1,U202:1,U2Vs1 1,UL V1 /1 (

4 ) U1202,U1V1:2,UL V11UVl o (.I‘)

According to (67), the bi-resurgent monomials W*(z, ) with inputs b;(2)
reduce, in the -plane, to weighted convolution products with inputs ¢;(§) :=
bi(z — ). Thus, to get rid of the variable z in b;(z — £) for hyperlogarithmic
data b;, we require an addition identity for hyperlogarithms:

Proposition 2.6 (The addition law for hyperlogarithms) .

For suitable determinations of our multivalued functions®, we have:
~[e] ~[o] ~[e—t1]
YV (t1+ta) =V (t1)x VY (t2) (130)
Or again, more explicitely
~lats...,ar] ~lat,...,ar] ~lat,eai—1] ~loj—t1,..ar—t1]
V (t1+t2) =) (t)+ YV )y (ty) (131)

1<g<r

Sketch of proof: 1t is again a question of checking that the above addition
formula is stable under 0d,,, 04, , 0i,, with the proper limit conditions. Thus,
using the rules of §2.4 and applying ¢d;, to the identity (131) with r = rg, we
find the same identity with r = rq — 1.

What we shall require is actually the following variant of this addition
law. Setting ¢; := z, to := —& in (131), then using the homogeneousness

—_ ~[z—¢]
V (=& =y (€), and lastly applying 0¢, we find:

17[a1,..., r] Z Y

1<y<r

alv O — 1

() VEmzml(e) - (132)

Note here the unusual juxtaposition of monomials ]A/ and ]7

39Beside the usual abbreviations uj o 1= u+uz, v1.9 1= v1 — v We write vi/.1 = V] —v1.
40See the important remark below
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Definition 2.2 (The general monomials S, (z)).

The monomials S:,,(x) carry lower indices of the form

v, =z—q,=(z—a,z—a,z—al,...) (133)

and are derived from the monomials 8*(z) under the adjunction of corrective,

~[e]
x-constant, z-dependent terms of type (— Y (z)), which should be taken as
=1 when a reduces to the empty sequence:

a0

_ / J
o, = (o, al, ..., q

with af = (o, al, .. q; (0 <m; <mny)

gfk* — (O{(mi)

(my) .

(ni—1) ok (ni—1)
sen0 ) ==z =)

Note that in (131) the sequences a are always + (J, unlike the sequences
of*, which turn empty when m; = 0, in which case one should of course set

<— ]’}\Q (Z)) := 1. Therefore:

Scor 1T (1) = Slemay 1 z—ﬂr)(x) + shorter monomials

Proposition 2.7 (Weighted convolution with hyperlog inputs) .

We still assume here that all partial sums uy + --- + u; are £ 0. Then the
weighted convolution of hyperlogarithmic functions m;(§) = Ylaiai..] (&) co-
incides with the x-Borel transform 8*(€) of the bimould S*(x) for indices

w, = () = (% ). Similarly, the bi-resurgent monomials W*(z,z) of

(7?) with hyperlogarithmic inputs b;(z) = V1@2-1(2), when viewed as resur-

gent functions of their second variable x, coincide with the corrected bimould
Grilia)e) = Slay an) ~ (&) = Plaiai,..]

weeoln (€)= $@ A (€)  with m(¢) = VIwtl(e)  (135)

( UL ey Up ) ~

W(Zl """ Zr)(z,x) — Spire e z—ap (l’) with bZ(Z) — V[ai,oc;»..](z) (]_36)

Sketch of proof: As in the case of the simple S (), it is a matter of pure com-
binatorial drudgery. Here again, we make massive use of the differentiation
rules of §2.4 to check that

(0, + (uy + -+ + uy) &) SLr 2 () = —SWrr1 () x Plrl(z)  (137)
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Mark the alternation of variables: z inside S*(z) but z inside VI%(z).

Remark 1: Both S, (z) and V*(z) behave as symmetral moulds under

ordinary multiplication (as power series of z7!). The existence of a unique
expansion of S (x) into a finite sum of V¥ (x)-terms leads therefore to a
commutative diagram:

w’ w” symmetral linearisatiom w
Sc?r * Sc?’r Z cor
hyperlogarithmic l l hyperlogarithmic l hyperlogarithmic

expansion expansion expansion

(Z EQ_,/V“’/) . (Z €wﬂku) symmetrallg)earisation Z ewV“’

The same already held true, of course, for the mould S*(x) but this immedi-
ately followed from the definition 2.1 combined with the earlier commutative
diagram involving SM*® and M™. The point here is the preservation of the
diagram'‘s commutativity after the change (134) from S%(x) to S% (z).

Remark 2: Bounds for $%(¢) to 8% (¢). The huge number of hyperloga-

rithmic summands V*(z) present in the expansion of S%(z) and S (x) (see
Remark 1 towards the end of §2.6.) doesn’t prevent our monomials from ad-
mitting excellent bounds on the compact sets of the ramified Borel &-‘plane’.
The hyperlogarithmic expansions are useful, indispensable even, for under-
standing the resurgence pattern. But for the purpose of majorisation one
should turn to the weighted convolution product weco®. The corresponding
integral may look messy, but it leads to even better bounds than the ordi-
nary convolution integral: for r convolands, a second factor Tl, comes into

play instead of just one!

2.8 Vanishing u;-sums and amended monomials S;, ().

When some of the partial sums (u;+- - - +u;) vanish, some of the end points 0;
in the multiple integral (65) become infinite. Since we consider integrands of
the form ¢;(&;) := b;(z — &) for z large and for inputs b;(z) which, even when
ramified away from oo, are assumed to be analytic in some neighbourhood of
o0, this is no obstacle to the continued existence of the weighted convolution:
we can always arrange for all integration variables &; to move within the safe
neighbourhood of . However, the analytic expression of W*(z, x) in terms
of §*(z) (polar case) or S, (x) (ramified case) ceases to be valid, forcing us
to resort to ‘amended’ monomials S, () or S, (). Let us begin with the
polar case:
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Proposition 2.8 (z-derivative of S*(z)) .
In presence of vanishing u;-sums, the x-derivative of Slemay Z*M)(m) no
longer verifies the relation (476), but a modified form of it:

(0, + |u(e)|2) S*(z) = =8*(z) x T* + H*(x) x §*(x) (138)
The definition of the elementary alternal bimoulds J°* remains unchanged.
That of the corrective alternal bimould H® is as follows:

1

T = — JWotr =0 qf r£1 (139)
1
/ " Swl Wi g Swﬂ ) = O
Hw(l,) - Zw w;wT=w vj ('I) ‘7 mu vy (x) Zf |u| ’ (140)
0 otherwise
Sy = SYL TS (@) with vy = v — v (141)

Sketch of proof: The repetition of consecutive v;‘s modifies the behaviour of
SY under 0,,, while the vanishing of partial u;-sums modifies the behaviour
of 8" under 0,, (mark the criss-cross). The exact rules are these:

0u, S = Pluy) (5(%4 —0;) S + 8(v; — Uj+1)5wj’j+l> (142)
0,8 = P Y d(utuu?]) SY eSS (143)

wlew2w3:w

with § standing here for the discrete dirac.*! From (142) we then derive the
modified formula (138) with its corrective term H®(z) x S*(z).
Let us now decompose H"™ into a finite sum of terms 7-[;‘; = S]j;/ J Wi invS}fj“
and then set
|lwl|=0,...,|]ws|=0
w . w? w*® Vs yeeny Vjg
K®(z) = D D HE () HY () A (144)
wh..w® =w  Vjpie Vjs

with an elementary symmetral mould unambiguously defined by the condi-
tions

1 1
0, XVl = Y VeeUsm1 (recall that v 1= ) (145)
Vs &= O
—1)s
XVl ( ') (log 2)* for z ~ o on main sheet  (146)
s!

We are then in a position to construct the amended mould S;,,,:

So(x) = K*(z) x §*(2) (147)
415(0)=1,6(t)=0if t + 0.
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Proposition 2.9 (The amended monomials S?, (z)) .
As the product of two symmetral factors, the bimould S, () is symmetral
and clearly verifies

1 ;
(0. + [ty ) Sty () = =Sy () — (wi =

)) (148)

zZ— 04

Changing S8°*(x) to S;,.(x), we can extend the earlier identities (105)-(106)
to identities valid in all cases:

U ey wpe (Zi - Zl) 1
wecolm in ) (€) = Sand U T(E) for mi(€) = ‘- a (149)
(Lo P e P oy 1L
Whot s br(2,2) = Sam (x) for bi(z) = (150)
z — Q4

2.9 Alien derivatives of the monomials S*(z),S?,.(z).

In a sense, we already ‘know’ the answer: having expanded S*(x) and S, ()
into finite sums of hyperlogarithms V*(z) and possessing with formula (98)
a prescription for alien-differentiating each V*(x), we have all it takes to
calculate A,,,S*(x) and A, S5, (x). In practice, however, we require explicit

and compact formulae covering each of the many possible situations. This is
the object of the present section.

The special monomials S*(z).

Proposition 2.10 (Alien derivatives of S*(z)) .

The only alien derivations A, acting effectively on a given monomial S*(x) =
Slor 1wk ) correspond either to simple indices wy of the form

, W = W.W,. W. W
wo = |u| v, with _ .
] = || + u. + [

or to composite ones of the form

w = whw ... W ws. w0

1 s .
Wo = U |V + ...+ |u’|v with . ) .
0 = I foe . {|uz|=|u1|+ui*+|w|
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For a simple index wy, the operator A, acts as follows:
Ay §"(x) = T7"(x) S (x) (151)

T = S¥(invmu.S)¥

T = §% (invmu.S,,, )®

(invmu.S)w0r = (—1)" SWrwn

Sv:l """ vr = S('ulf'u* ..... Vp—Ug )

with (152)

For a composite index wy, the action involves a new ingredient: the locally
constant bimould tes®, or tessellation bimould, defined as the scramble trans-
form of the hyperlogarithmic mould V'*.

lw™] ..., |u®| .11 .5 g _,
Ay S¥(x) = tes' v e TS () TN () ST () (153)
with tes® := scram.V* and Vel o) =y (154)

The general monomials S%(z).

To enunciate suitably compact statements, we need the following:

Definition 2.3 (Notion of v,-splitting) .
Let v, be some element (-first, middle, last-) of some lower v, in a sequence

w= @1 Z: Z;) A v, -splitting of w is a joint factorisation of all v; such
that

v, = (u,07) if v+ v, (only v! may be &)

v, = (¥, v, %) (both v', and v" may be &)

To each v, -splitting we associate

e a non-ordered sequence {v'} consisting of ordered sequences v’
- N/
e two ordered sequences w' and w

e a lone index w’, (that may be empty)

defined in this way:

{v'} = {05000
s " " ULy eeey Ugy . .
w' o= (wy, .., )—( ” " ) with w; earlier than w,
yl: 721' PR
[/ ” N cey Uj g ooy Up .
w' = (L, w,) —( ” ”) with w, later than w,
7,017 '727»
u .
o= () (W= i = o)



Proposition 2.11 (Alien derivatives of S%(x)) .
As was the case with simple monomials S* (x), the only alien derivations A,

acting effectively on a general monomial S¥(x) = Slur lu ) correspond
to simple (155) or composite (155) index wy:
w=w.w,w.w
wo = |ul v with L (155)
| = [@] + u. + [t

wo = Z |u| v with

1<i<s

(156)

w=wtw,, 0. .  ww, w0
[ut| = |4} + wiy + |6

but with this important difference that v, (resp. v;.) now denotes some ele-

ment*? of the sequence v, (resp. v,,).

For a simple index wy, the action of A, involves the so-called texture mould
tex® which, unlike the tessellation bimould, doesn’t depend on the weights u;:

Doy Su(@) = 3 texld T (4) ST () (157)
vy-split
Tiowhs . concat (Symlin (8%, (invmu.S)%), Sﬂ*>
: b,wl, 4 . _ by oW
with To, ™ := concat (symhn (8%, (invmu.S,, )2 ,S@*)

textr o) — Dvtesha(vy.in,) Vel
When w, = & the definition of Towkt redyces to
Tl symlin(S%, (invmu.8)%) = S (invimu.S)®
For a composite index wq, the action involves both tes® and tex®:

I S e R P e .
A, S¥(x) = Z tes( vy e s )(HT/ e (3:)) S%(x) (158)
vy -splits j=1
The sum (157) extends to all vy-splittings of (w, w,,w), and the sum
(158) to all vy-splittings of (w*, w;,,w") For simple sequences w, all texture

coefficients become texz{,{?} = 1, so that (157) reduces to (151) and (158) to
(153).

Short proof: The index postponement identity.
(post, A)*@i® = (—1)"(@) Z A VA® € alternal (159)

iesha(w,w)

42n0t necessarily the first or last, but any element.
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applies only for alternal moulds A®, but since the expansion on the right-hand
side of (159) is fully determined, it follows that the postponement operators
always verify

post,; post; = post; (Vi, 5) (160)

whether the moulds on which they act are alternal or not. If we now write
the backward induction rule in the case W = J, we get

Ju . )
cutﬁngi )SMM = concat (symlin(SM2, *SM¥), tiSM%Z‘)

Formally, this is nothing but a postponement identity for the index w,, fol-
lowed by the removal of the first element v; of v, and by the subtraction of
that same v; from all elements of all lower sequences v;. We can easily iterate
the process. For a v,-splitting of w and v° € sha({v'})

v® = (v3,...,v) € sha({v'}) = sha(v);...;2))

let us calculate

|

|
vo) (o)
"cutfi,,t SM*

| ( [u|
1)%—1}%71

('u —$
cutfi,,* " cutfi,, ...cuth

Using the crucial identity (160) , we arrive at a result
concat (symhn(SMﬁ ,SSME ), SM@*)

that does not depend on the choice of v® in sha({v'}).
As a consequence, if we now calculate

Alufos S (T) = Au(va—03)+ul(vg —05_y )+l (w3 —09) +ul (1) S (Z)

and apply the backward induction rule (123) and the prescription (98) for
alien-differentiation , we find

Aoy80(r) = 3 (V) Tl (p)

Vy-split

which, in view of the definition of tex*® (see after (157)), is exactly the identity
(157) in the case W = .

The argument for proving (157) when @ + ¢F is no different. Lastly, to
establish (158) for composite indices wy of type (155), the only additional
result required is the factorisation lemma for gentes® in Proposition 2.11.
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2.10 The tessellation and texture coefficients tes®/tex®.

Since both the tesselation coefficients tes® := (scram.V)* and their gener-
alised variant gentes® := (gen.scram.V )®, despite being defined in terms of
the transcendental hyperlogarithms V“, turn out to possess remarkable prop-
erties of local-constancy in their upper and lower indices, and since both en-
capsulate some sort of ‘universal geometry’ that governs co-equational resur-
gence, we must take a closer look at them.

The tesselation bimould tes®.

We recall its definition, which is based on the scramble transform of the
monics V'* taken in incremental notation:

,,,,,,,

tes® := scram.V*® with M(zll ’’’’’ v 1= VUVt
— tes? = Y €0 VY with €% e{xl}, Dleu|=r!

The natural setting for studying tes® is the biprojective space P™" equal to C*"
quotiented by the relation {w! ~ w?} < {u! = \u?, v! = pov? (\, ue C*)}.
But rather than using biprojectivity to get rid of two coordinates (u;, v;), it
is often useful, on the contrary, to resort to the augmented or long notation,
by adding two redundant coordinates (ug,vo). The long coordinates (uf,v?)

17 7
relate to the short ones (u;, v;) under the rules:

— ot

v = v — v} (1<i<r) (161)

The long uf are constrained by ug + - +ul = 0 while the long v} are,
dually, regarded as defined up to a common additive constant. Thus we
have <u®, vf>=<u,v>.The indices i of the long coordinates are viewed as
elements of Z,.; = Z/(r+1)Z with the natural circular ordering on number
triplets cire(i; < iy < i3) that goes with it. Lastly, we require r*>—1 basic
“homographies” H; ; on P™", defined by:

H;j(w) = QF;(w)/Q7j(w) (t—J+05i,)€Zrya) (162)

Lw) = YT b (vf =) (163)

circ(i<q<j)

Qi (w) = Z ug(vg—vg) = <u,v> —Q;,;(w) (164)

cire(j<q<i)

Proposition 2.12 (Local constancy of tes™) .

Outside a finite number of hypersurfaces S(H, j(w)) = 0 of C* (see (162)
below), the tessellation coefficients tes® are constant in each upper index u;
and each lower index v;.
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Sketch of proof: By repeated application of the formulae in §2.4 for the partial
differentiation of the hyperlogarithmic monics.

On the other hand the tessellation coefficients are not globally constant
as soon as r > 1 (for r = 1, tes®* = 1). Indeed:

Proposition 2.13 (The jump rule for tes™) .

It is only when w crosses a hypersurface H; = {w € C*; H; j(w) € R*}
that tes™ can change its value. More precisely, let w be any point on H;FJ
and let w,w™ be two points close by, with Sw™ > 0, Sw~ < 0. Then

*

+ - * *
tesV —tesV =tes" tes" (165)
* o Ui+l 5oy Up  yeeey Uy 3 ) y
with w" (lefvi yeey Up—Uj ey vjva') Cll"C(Z <p < j) € ZT"‘l
w** = ( Uil e Ug e Ui—1 ) circ(j <q< ’L) € Zyi1
Vj+1=Vi yeeey Vg—UVi 5oy Vi1 Vi

Proof: Start from the hyperlogarithmic expansion of tes® and apply the
jump formula (100)-(101) to each individual hyperlogarithmic summand.

This begs for an alternative, simpler expression of tes™, or rather, to get
rid of the 27 factors, of its normalized variant tes™ :

nor:

tesWLer = (277) ! testr (166)

nor

The following induction rule, based on the jump formula (100)-(101) applied
to each individual hyperlogarithmic summand, provides such an elementary
alternative:

Proposition 2.14 (Calculation of tes”) .
We fiz some c € C* and set R, : z€ C— R(cz) e R. Then we define:

’ _ ’ _

fo = < v'><u,v>"" ) gY = </, Rpv'><u, Rgv>"" (167)
” _ ” _

2= < v'><u,v>"" ) g2 = <u, Ryv"><u, Rgv>"" (168)

From these scalars we construct the crucial sign factor sig which takes its
values in {—1,0,1}. Here, the abbreviation si(.) stands for sign(3(.)).

(si(f2' = fo") — si(g% —g¥")) x

- ww” . aww” 1 . w' w' . w' w'

sigh” = sigt " = o (14 si(f2'/gw’) si(fu'—gu')) % (169)
(14 si(f2"/ge") si(f2" —g2")

Next, from the pair (W', w") we derive a pair (w*, w**) by setting:

*

u* =u , v*

— / _ ’
=v <u,v>""Sg¥ — R <u,Roo>"' Y (170)

o Ly — Ro” <u, Roo>"1 S (171)

u* = u", v =" <u,v>"
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or more symmetrically:

v %CU/ o §Rc’U”
<u,v> <u,R.v> <u,v> <u,R.v>
v* = det ¢ , v = det g ¢

<u > o<u Rev'> a<u’v'>  <u’ Rev'>
<u,v> <u,R.v> <u,v> <u,R.v>

Lastly, from all these ingredients, we construct an auzilliary bimould urtes?

by setting:

nor nor nor

urtesy) = = Z sig? " tes? tesW (('w’,w”) + (w*,w**)) (172)

w/'w’=w

Then the tessellation bimould can be inductively calculated from:

tesy,, = Z push” urtes? . (Ve e CY) (173)

nor
0<n<r(s)

Proof: The jump formulae (100)-(101) make it clear that the locally conctant
tes® can change values only when w crosses one of the > — 1 hypersurfaces

S(H;j(w)) = 0, which themselves can be derived from the r—1 hypersurfaces
o <u/,v'>
‘S<u”,'v”>
that tes® takes the same value at the points w = (%) and w = () with
U :=v <u,v>"", and further that tes® = 0 at the semi-real point w = (%)

= 0 under repeated application of the push-transform. We also note

with v := R.v <u, R.v>"1. So it all becomes a question of comparing tes™
and fes®. To that end, we set w(t) := (,;) with v(t) == v + 1.(v — v).
The line {w(t);t € R} joins the points w (for ¢t = 0) and w (for ¢t = 1) and

o <u,v'> oy . .
crosses the hypersurface s = 0, for some critical t = ¢y, at the point

wrw** = (1:::::), with u*, v* and u**, v*
three factors in the expression (169) of sig® ™" their interpretation is as
follows:

(i) the first factor is £2 (resp.0) if w and w lie on distinct sides of the
hypersurface %::/::Zi = 0 (resp. on the same side).

(ii) the second factor is 2 (resp.0) if the critical value tg is > 0 (resp.< 0).
(iii) the third factor is 2 (resp.0) if the critical value ¢y is < 1 (resp.> 1).
Thus, formulae (172)-(173) exactly reflect the changes which tes® undergoes
when w moves from the semi-real w to w ~ w after crossing some of the
r? — 1 hypersurfaces S(H, ;(w)) =0. [

*

as above. Lastly, regarding the

Remark 1: In the induction (174) we might exchange everywhere the role of
u and v and still get the correct answer tes;, ., but via a different auxilliary
bimould wrtess,,,.

Remark 2: The above induction for tes® is elementary*® in the sense of

43and easily programmable.

30



being non-transcendental: it depends only on the sign function. But on the
face of it, it looks non-intrinsical. Indeed, the partial sum relative to the
choice ¢ = €:

nor nor

o ap * Hok . waw!, wF wi*
urtesy’ := Z sig¥ " tesy tesy = Z sig(py " tesnortesnar  (174)

w/'w’=w w'w’=w

is polarised, i.e. O-dependent. However, its push-invariant offshoot :

tesy,, = Z push” urtesy (175)

0<n<r(w)

is duly unpolarised. We might of course remove the polarisation in wurtesg
itself by replacing it by this isotropic variant:

21

urtes,, = —
1SO 2 ﬂ_ 0

urtesp df (176)
but at the cost of rendering it less elementary, since urtes;,, would assume its
value in R rather than {—1,0, 1}. It would also depend hyperlogarithmically
on its indices, and thus take us back to something rather like formula (104),
which we wanted to get away from. Thus, the alternative so far for our
bimould tes® is: either an intrinsical but heavily transcendental expression,
or an elementary but heavily polarised one.

Remark 3: Let h;; := sign(SH, ;(w)).
(i)For r = 1, we have trivially tes"* = 1.
(ii) For r = 2, we find:

U101

21 2k U2(U2 - Ul)
0:1( ) U Vs ) 172(11)) (U1 + UJ2)U1 ’ 270('11])

(ug + ug)vy

U (Ul - Uz)

and the corresponding signs h; ; determine tes™:

o {izm iff ho(w) = hys(w) = hao(w) = +1 -

0 otherwise

(iii) For r > 3, the r* — 1 independent signs {h; ;; i,j € Z,41,j — i + r} do
not suffice to determine tes®, except in some very special cases, like:

{hij(w) = +1 Vi, j} = {tes" " = (+2mi)" "'} (178)
{hij(w) = —1 Vi, j} = {tes" " = (=2mi)""'} (179)

Remark 4: To be able to determine the tessellation coefficients purely in
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terms of ‘signs‘, we must revert to their expression as sums of 7!! hyperloga-
rithms tes® := Y, 6V*" = > e, V¥i“r and set:

w

, Y Vi o i
By (W) = sz’gn%(—§ﬂ<ﬂ<ﬂ ) { T J2 I (180)
J2<j<j3 ~J

31,92,J3 i O0<n<ja<gz<r

Unfortunately, these hé-hjmg(w) are far too numerous (even taking into ac-
count their dependence relations) to be of practical assistance, and we know
of no simple rule for inferring tes® from them. So, at the moment, the

induction formula (173) remains the simplest way of calculating tes™.

Proposition 2.15 (Main properties of tes®) .
P, : tes® is invariant under the involution swap and the iden-potent push:

(“1 u ) ( Vo e, v3—vyg , VQ—U3 , 1'171'2) 2 .
SW&pA VY yeens vp — A uyt...+upr ..., uptugtugy , uptugy , uq (Swap — lden)

(u1 ,,,,, UT) (ﬂl‘..fw wp . U e up_q ) .
pUShA VY eees vp - A —ur V1—=Ur , V2=Ur .-y Vp—1—Vr (pushr+ = lden)

Ps: the bimould tes® is bialternal, i.e. alternal and of alternal swappee.

Ps: tes;,, assumes all its sole values in Z and |tes™ | < (r — 1)!(r 4+ 1)!
(far from sharp)

Py: As r increases, the set where tes® £ 0 has surprisingly small Lebesque
measure.

tes®t =

tes*t*2 € {0, £1} P(|tes® 2| = 1) ~ 0.21
tegW,W2,ws = {0’ —_}—]_} 7)(|tesw1,w2,w3| = 1) ~ 0.026
P(|tes?t"4| = 1) ~ 0.0037

tegWirowa e {0, +1, +2
{ } P(|tes®r4| = 2) ~ 0.0000037

Ps: in presence of vanishing u;-sums, we no longer have local constancy in
the vjs.

Py conversely, in presence of v;-repetitions, we no longer have local con-
stancy in the u;s.

Py: in the semi-real case, i.e. when either all u;s or all v;s are aligned with
the origin, the tessellation coefficients altogether exit the picture, since in
that case test " =0 as soon as 2 < r.

Ps: for r fived, the hypersurfaces S(H; j(w)) = 0 limit** but do not sepa-
rate® the sets Ty := {w, tes® = k}.

44that is to say, the boundaries of these sets lie on the hypersurfaces.
“5that is to say, none of the three sets can be defined in terms of the sole signs h; j(w) :=
sign((H; ;(w))), at least for r = 3. See Remark 3 and 4 supra.
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The swap-invariance of tes® is quite unexpected, since the involution swap
exchanges the upper and lower indices which, in this context, have completely
different origins.

The texture mould tezx®.

We recall its definition, which is based on the monics V [*] taken in positional
notation:

textZ =1 texliembo= 3yl (181)

viesha(vy;...;v,)

The system of texture coefficients is stable under differentiation:

{vi;-52 Hi;"‘;ﬂr} -1 -1
0 texltiein} _ ) THXe (i)™ + (vig —vin) ™)
V4,1 X’U* - {v Ve ,.LHQM'?ET} 1
+teX vy (Ui,2 - Ui,l)
EI RN e SN _
+texo, i (Vi — vig_1)""
{vy550,.) CIERBIINIRRIIN ) 1
O, bexi 18l = 4 —tex,,, ((Uzk — Vik—1)"" + (Vigs1 — Vi) )
{01550 555500}
Fexy, I 0 — )
av*tex{’uy*l,,ﬂ,r} — Z teX{U17 77l7 7UT}(U* _ ,U’j.)—l

I<i<r

Here, v. g and v denote the sequence v; minus its element v; ; or v; j11,

—’L k+1
and v} is simply v, minus its last element viT . If v, ;. happens to be the last
element of v;, the corresponding identity should be changed to:

{'Ul’ ’7’LHE\1;“‘;QT}
= -1
e HteX v, (Vi — Vik—1)
Oy,  texiiitn) — (
(8 Ux V5.0

LITNRNL I _ _
—texy, " (Vi — Vigp—1) ™t 4 (V4 — vig) )

These identities are clearly compatible with the 0-homogeneity of the texture
coefficients:

(v*(?* + ZZvi,kavi’k)tex“;il?"*ﬂr} =0
ik

For single-element sequences v, = {v;}, the whole system reduces to:

On texciiivrt - = KMWW“M%mr%um—wrﬁ (182)
8v*tex{q)”;;"*”’“} = + Z tex{vl’ ik (y — )71 (183)
1<isr

where 0; signals the omission of the term v;.
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The generalised tesselation bimould gentes®.

Proposition 2.16 (Local semi-constancy of gentes®) .

The coefficients gentes® are locally constant in each weight u; but not in
the indices v;, vi, v} ... that constitute the lower sequences v;. However, they
admit a decomposition of the form:

gentesa o) = tes oyl yled (184)

with UJ denoting the last element of v, and with the hyperlogarithms V %l
absorbing all the non-trivial part of the v;-dependence.

Sketch of proof: The above decomposition follows from the following three
facts, which are straightforward in a sense but extremely tedious to check:*6
(i) the expression of all partial derivatives of gentes®, whether in the upper
or lower indices, are compatible with (174)

(ii) all jump formulae (derivable from (100)) that describe the transition from
one domain of holomorphy of tes® to the next, are compatible with (174).
(iii) for axially aligned upper indices u;, i.e when all ratios w;/u; are > 0,
both sides of (174) simultaneously vanish.

2.11 The three Bridge equations at the molecular level.
Equational resurgence. First Bridge equation.

At monomial level, the alien derivatives in z are exceedingly simple, and
totally insensitive to the ramifications that the lower indices b;(z) (they are
regular germs at c0) may or may not possess away from oo:

OG-0 .
AWS () = YT W) () Wh)(z,2) (185)
w=z [ul|
The new ingredients — the alternal monics W*(z) — do not depend on z.
They are well-defined entire functions of z — Stokes constants, basically. The
above equation can therefore be indefinitely iterated and contains all the
information about the z-resurgence of W*(z, z).

46For an alternative approach, based on an a priori formula for the alien differentiation
of weighted convolution products, see §2.11.
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Coequational resurgence. From the atomic to the molecular level.

The position is altogether different, and far more complex, with the z-
resurgence. Our monomials W(Z)(z,x) must now be viewed as weighted
products wemu'<)(z), and their Borel transforms as weighted convolutions
weco')(€). The z-dependence migrates to the lower indices ¢, which are
themselves defined in terms of the b; via ¢;(§) := —b;(z — &). So, while the
z-resurgence demands only the local analyticity of the germs b;(z) at oo, to
get full z-resurgence?” we must assume the endless analytical continuability
of these same b;(2).

The alien derivatives in z still consist of two factors. One of these (the
equivalent of the monics W* in the z-resurgence) sheds its z-dependence,
but both retain their dependence on, and resurgence in, x. This compli-
cates the calculation of higher-order alien derivatives. It also forces us to
negotiate two quite distinct levels of complexity: even when the data ¢; (the
‘atoms’) are simple (poles or hyperlogarithms), their weighted convolutions
(the ‘molecules‘) tend to be superpositions of huge numbers of such atoms.
This accounts for the emergence®® of completely new properties and opera-
tions (the flezion structure).

Ridding the general tessellator of the v-dependence.

The aim is to move from the general tesselation coefficients tes® which are
locally u-constant (like the special tes™) but not locally v-constant (unlike
the tes™), to coefficients Tes* that are locally u- and v-constant and (barring
the case of alignments) assume integer values. The reason for the absence
of local v-constancy in the general tes® is that the formula we gave in §2.9
for A,S%(z) involves shifts that apply to the sequences v; := [v;, v}, v!...]
defining the hyperlogarithm associated with a given u;, and not shifts bearing
on the variable of that hyperlogarithm (in the {-plane). It is precisely the
v-dependent part of tes® (essentially, the ‘texture® part) that, in accordance
with the addition formula (130) combines with the shift on v; = [v;, v}, v/...]
to produce what is ultimately needed — a shift purely on the variable £. In
concrete terms, it takes us from formula (158) (recalled here as (186)) to

47 Actually, even when the b;(z) are not endlessly continuable, something of the a-
resurgence survives — all the relations namely which do not take us outside the maximum
domain of definition of these b;(z).

48somewhat like in organic chemistry, one might be tempted to say.
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formula (187):

[l .., |u®| J=s 720N Y 1)
Moo = Y e ([0 ) 55y s
Vg -splits 7j=1
(@1\ ..... \Eﬁ\) J=5 i w! aip? R
Ny 8%(x) = >0 Tes\ o v J(T]T % (x) S%(x)  (187)
Vs-shifts 7=1

However, the hyperlogarithms being ramified, a shift operator on them can-
not be defined by a single complex scalar v, but
(i) either by taut broken®® lines v = [vy, v, ..., v;] starting at the origin and
ending at v
(ii) or (preferably) by concatenations A, ... A,, followed by a straight™ shift
Vj+1 + ..Uk

The two operations are clearly not equivalent, but their linear combina-
tions are. Both lead to different definitions of the general tesselation mould
Tes®, but in both cases
(i) the double local constancy (in the upper and lower indices) of the tessel-
lation coefficients Tes® is restored, barring the usual exceptions®
(ii) the change from (186) to (187) leads to expressions of the (locally con-
stant) coefficients Tes® as superpositions of hyperlogarithms.

From the hyperlogarithmic S® to the general weco'<).

Let RES,¢, be the algebra of regular resurgent functions, ie. of all @(x)
such that ¢(£) and all its (simple and multiple) alien derivatives are reg-
ular (non-ramified) germs at the origin £ = 0. Since the hyperlogarithms
(as functions of €) span a dense subset of RES,,, (for that space’s natural
topology), the information we have collected on the behaviour of hyperloga-
rithms under weighted convolutions is sufficient to determine the properties
of that operation on RES reg- Actually, if we were to allow vanishing indices
w; (in the incremental notation) or identical consecutive indices «; (in the
positional natation), the enlarged class of hyperlogarithms so defined would
become dense in the whole RES, and their behaviour under weighted con-
volution (readily given by an easy extension of the formulae of §2.7) would
completely clarify the situation in RES itself. But for the moment let us
stick with RES,,.

Owith summits at the singular points of the test function.
50or, in the case of intervening singularities, by an unambiguous prescription for bypass-
ing them, e.g. by systematic right or left circumvention.

5lie. vanishing partial sums of u;’s or partial coinciding of v,’s.
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Alien derivatives of weighted products.

Although the system of all symmetral weighted convolutions weco is closed
under alien differentiation, in order to get compact expressions (and for other
reasons as well) we must supplement it with the alternal weighted convolu-
tions welo, whose definition we recall:??

. (Gromui-l j g/
concat (symhn(weco 1o =17 Fyweco G+ o )weco <

) . (UG+1 o v (%’)) (188)

When ¢; = 1, i.e. when ¢; is the convolution unit ¢, the definition reduces to

UL yeeny UGNt e up UL 5oy Uj—1 Ujp1 oo UT
welota (DN = ecola g (*WGCO(CJ+1 CT)) (189)
(1) R
= weco °l G- xweco o G+ (—1)7 (190)

This is a case of frequent occurence, because in the applications the marked
index is usually of the form (", ), which A,¢; often equal to .
Second Bridge equation.

Purely for notational convenience, we shall state the results in the z-plane,
i.e. in terms of the multiplicative counterparts wemu and welu of weco and
welo.

Proposition 2.17 (Alien derivatives of wemu, hence weco) .

The only alien derivatives A, acting effectively on wemu' et Z:)(x) corre-

spond either to simple (s = 1) or composite (s > 1) indices wy of the form

wtu?. . utlutut = u
1 1 s s .
wo = |u|v;, +---+ |u®|v]  with uk k 191
[’ g 7] te Avi-“k cfk + 0 and (cfz) € (’C‘k) (191)

with each factor sequence (% ) re-indexed for convenience as (7} "7%). The
1 C,rk

corresponding alien derivative is given by:

( 1 Jul] | . || )
% over v¥ Tes RREEE Ury oo U1 Urs X
J
( ulf """ ( ufk )T ,,,,, uﬁk
(u ury ol ek A gk /o ok ok
1 seees c — / . "
A, wemu r(x) =+ [T, welu ok o) x (192)
,,,,, %
wemu ‘1 Cry («T)

52for details, see §2.2.
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Third Bridge equation.

Let us now move on to the welu products. Since they resolve themselves
into sums (189) of wemu's and we have just seen how to alien-differentiate
these, the lazy option would be to say that we know how to alien-differentiate
the welu’s, and leave it at that. But that would yield unwieldy expressions;
worse, it would mean missing important cancellations and encumber us with
parasitical terms.

Consider for instance a length-9 term like wely' et DT Zg)(x) with
the marker T on the 5-th index. Formula (189) produces 70 summands, all of

Ug(1) o Yo(8) ,u5 ) o
the form wemu(cc’(l) """ Co(8) 5 ) (x). Taken singly, some respond non-trivially

to alien derivations A, with indices such as
W=uUv , W=UV] +U9Vs , W= U]V + UgV2 + U789y , etc

and yield non-zero terms, which however vanish from the final result, due to
cancellations resulting from the alternality of welu® or that of Tes® or both.
For other indices, like

W=1uoV1 +U3Vy , W=1Urgols , W =U23V3+ Us56789V7 , €lC

the non-zero terms do not vanish, but eventually re-group into single terms.
Once these cancellations and these clusters are taken into account, we get a
result both simpler, more elegant, and relying on welu alone.

Proposition 2.18 (Alien derivatives of welu, hence welo) .

WP eeey (1 veey
The only alien derivatives A, acting effectively on welu' et 30 e (x)
correspond either to simple (s = 1) or composite (s > 1) indices wy of three
possible types — initial, final, global. Respectively:

ul wtut =u o (V) e (%)
wém _ |u1|vl 4t |us|US with ok Cj & c* (193)
“ s Ay ch F0and ()€ ()
i
o ul ut =u ; (Uj T *u
Wl = [t ol + e o, with e ey (199)
i “ Ay 4 0and (Tr) e ()
i
z ul .. uf=u
Wil = |l - |, with ¢y (19)

ub u
A ch 0 and (") e (%)

ik

with each factor sequence (%) re-indexed for convenience as (UL ). The
10 Gy
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corresponding alien derivatives are given by:

( ( s u?l )
D ik ovep gk €S Lt Tt S
J
k uk 1 uk
(41 0 (1)t ) (e (0 ) )
Cl yeees Cj 7 yeeny cr — if k Tk
Aw(z)ruwelu J (:E) < H1<kj<s Welu vlk fL‘) X
*
(ui . (:j)T “;*)
welu 1 7T R ()
\

(u1 ceey (uj )1- ceey 'u,T)
A pawelu et oot e (x) = <
0

UY ey uj T veey U k k k
A gloWelu(Cl """ (cf) """ o )(x) = 4 ( Ul e ( i, )T »»»»» vy,
wo vf Cllc ,,,,, N Cf ..... f’lﬁk ok,
ol i
[ Ti<n<s Welu U )

Remark 1: In the last equation the marking (of the j-th index, on the left-
hand side) disappears and is replaced by the marking of the i;-index of the

factor sequence (16‘,1c ) that contains (7:;)7 This general rule — when occuring

inside the same sequence, the second marking abolishes the first — results from
a simple, but not entirely trivial combinatorial fact: let M* be the alternal
marking of some mould M* (with { as marker), and let M* be the alternal
marking of M*® (with { as new marker). Then } replaces (and removes) f.
Thus:

T i ) i
Mtlv"'7ti7"'7tj7"'7t7" — Mtl ----- tlv"'vtjr"vt?"

If the initial mould M* is already alternal, this is obvious, since in that case
almark amounts to the postponement identity of a marked index for alternal
moulds. But the statement holds for any M?*.

UL eery (U5 T, ur
(e 2 (G CT)(:U) = 0 whenever the f-marked index

Remark 2: A gowelu
0

cj is = 1 (i.e. when ¢; = §). Since this marked index in practice is itself

an alien derivative, this is often the case — and always so for meromorphic

convolands ¢;.
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Discrete coequational resurgence. Some examples.
Example 1: the case u;,v; € N.

Let Ram(N) be the space spanned by the hyperlogarithmic monomials taken
in incremental notation V¥'-+(£) (w; € N¥). Let £& = g1 with
e; € {+} be the point of C — N* of address™ €, and let 7¢(¢) be the element
of Ram(N) with a simple pole (of residue 1) at £¢ and at no other point.
Since {m¢} is clearly an alternative basis of Ram(N), which is itself stable
under convolution and weighted convolution (for weights u; in N*), both
products can be expressed in that basis, leading for these two structures to
a discretisation of sorts:

€:=(€1,...,€n 1,0)
(= 72) () = D HI 7€) < €= (€, Eimptse) (196)

n=ny+ ns

( €:=(€1,...,€q_1,0)
UL yeeny ur €1 ,..us €p €
(7761 ,,,,, € )(g) :Z Ke 7T (5) €; 1= (Ei,la ceey Gimg—1; .) (197)

n=uyng+- -+ un,

weco

In the case of convolution, we arrive at a structure already known from an-
other context: the Solomon algebra, with structure coefficients H®* € Z. In
the case of weighted convolution, the structure coefficients K* are in Q. The
theory provides for these K* a rather weird expression, polynomial in the hy-
perlogarithmic monics v*. However, based on the jump rules for these mon-
ics, this expression translates into a more convenient induction rule, which
translates back into algebraic relations for the transcendental monics.

Example 2: the case u;,v; € Z or u;,v; € Z + iZ.

The construction can be repeated for wu;,v; ranging through various dis-
crete rings such as Z or Z + iZ or complex quadratic rings. Here, the self-
symmetrically shrinkable integration multi-paths for convolution, simple or
weighted, soon become so unimaginably complex that the hyperlogarithmic
expression for the structure constants K* looks, by comparison, simple.

53¢€ is defined as accessible from 0 by moving forward under right (resp. left) circum-
vention of j if ¢; = + (resp. —)
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2.12 The three Bridge equations at the global level.
Equational resurgence. First Bridge equation.
It is the classical identity:

BE1 [A,,07']=A,07"! (198)
with A, := e “* A, (z-resurgence) and

A, = —Z(—1)TZW(B% 33335)@) Di: Diz ... D
= —2(_7“—1)TZW(B% 333333%)(3;) [.[Df Di].. . Dir |

mny?

Since any two D, and A,,, commute, formula (198) lends itself to indefinite
iteration (but mark the order on both sides):

(A, ... [A,,, [A,,071].] = Ay, A, ... A, O (199)

To prepare for the comparison with coequational resurgence, let us also men-
tion the case of a singular, singularly perturbed Riccati equation:

.Y =xY +b_(2)+b,(2)Y? (bi(2) e 271 C{z71}) (200)

Its general solution may be written in the form:

Te*Ti(z,2) + Ta(z, x) , T, Ty
Y 3 T) = th det =1 201
(2, 237) Te* Ty(z,x) + Ty(z, x) o ¢ [T3 T4] (201)
with
Ti(z,x) = 14+ Y Wit (z,x) , Ty(z,z) = DW= (2 )
T3(z, 1) = SIWutt (zox) 0 Ty(z,2) = 1+ D We—u+ (2, 1)

ﬁ((, x) and fg((, x) have all their singularities over {0,z u, }.
T5(¢, z) and Ty((, x) have all their singularities over {0,z u_}.
The (very elementary) resurgence equations read in this case:

Azu+T1 =y T Azu+T2 =0 Axu+T3 = 0y T, Aacu+T4 =0
Aazu_TQ = _ T1 Axu_Tl =0 Aazu_Tll = _ T3 Aazu_T3 =0
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Coequational resurgence. From the molecular to the higher levels.

Coequational resurgence already forced us to distinguish two levels of com-
plexity — ‘atomic’ and ‘molecular’. 1t will shortly impose two more:

(i) a ‘microscopic’ level. The objects here are derivation operators @, ob-
tained by contracting alternal products welu with ordinary differential oper-
ators. The resulting sums being usually infinite, the gap from molecular to
microscopic is large.?*

(ii) a ‘macroscopic’level. The objects here are new derivation operators P,
obtained by contracting the tessellation mould with the previous Q.. These
new sums, too, tend to be infinite, making the gap from microscopic to
macroscopic as large as the earlier ones, although in some relatively rare but
important instances the relation between the Q,,’s and the P,’s simplifies.

Some heuristics.

1) Recall first that alternate moulds A®, when contacted with ordinary deriva-
tions, always produce formal derivations:

w w. 1 W1 yeenyWp
ZA Lyeees TDM”'DUJT Z; AW [-.-[le,Dwg]-qu,«]

1
Z ; AWLwr [le .. [Dwr_n DUJ’V‘:I“:I

2) The distance between the P,’s and the Q,’s will be least when the tes-
sellation coefficients Tes® connecting the two will be simplest. In the case of
elementary indices w; = (), Tes® coincides with fes* and each of the four
following conditions, when met, tends to simplify the coefficients:
(i) no vanishing u;-sums.
(ii) no identical consecutive v;’s.
(iii) all u; are aligned with the origin
(iv) all v; are aligned with the origin

Imposing (i) in our model equation amounts to imposing that the criti-
cal coefficients B, in our model problem (i.e. the v coefficients without Y’
factors in front of them) vanish.>® This renders the problem uninteresting,
as its reduces each component Y;! of the general solution to a finite sum of
monomials W*(z, x).

54even if the convergence of these infinite sums in the space of resurgent functions is not

really an issue
5This is the so-called unilateral case, where all weights have the form u := )]
as opposed to the general or sesquilateral case, where u := —\; + Znizo A

)\iv

n; =0
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Imposing (ii) means restricting oneself to the linear case, which leads to
interesting results provided we are dealing not with a single equation, but
with a true system, i.e. when with v > 2.

The conditions (iii) or (iv), are perfectly reasonable. They lead to massive
simplifications by ensuring that test” = 0 for all w of length r(w) > 1 that
meet the conditions (i) and (ii). For w of length 1 we have of course tes** = 1.
3) We should expect, and do in fact get, particularly simple results when the
convolands ¢; are meromorphic, or hyperlogarithmic, or again, like in the case
(211) infra, when they enjoy special closure properties under w-shifts and A,-
derivations, globally for the same w’s. In any case, since ¢;(§) = —b;(z — &),
it stands to reason that to get full z-resurgence we must assume each b;(z)
to possess endless analytic continuation (on the Riemann sphere, starting
from o), whereas for z-resurgence it was enough for the b;(z) to be locally
analytic at oo (with suitable uniformity conditions in 7, of course).

Some examples.

Let us give some illustrations, mostly in the meromorphic context. To lighten
notations, we write the results when our model system (37) reduces to a
single (non-linear) equation, i.e. when v = 1, because in that case the op-
erators D}, = 7,7™0,, correspond one-to-one with the weights u and can be
re-indexed as Dy, = 7"710,. The transposition to the case v > 1 offers only
notational complications but deserves special consideration because it allows
non-aligned weights ©u =< A\, n >.

Second Bridge equation.

(BE2) [A,, 0671 = P,O7! (202)
with A, = e “*A, (z-resurgence) and:
U yeeey Uy
P, = 3 Tesl=em o) Quuy . Qpury (203)
Yui(z—ay)=w
e LJuoao® Cagiey 10 Cagd T g%,
Q[ag]. e ZZ welu “0-“1 0 0 Dy, -+ - Dy, (204)
Ui =ug

Here Tes® coincides with the elementary tes®.

Third Bridge equation.

+ P, Qpe

(BE3)  A,Qu; = Lo saamo Pl Q1) (205)
@Q —E @u H_‘D u
u1+u2=ug [al] w[2]

0 @0
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with

2 ui=uo
Py [wo) = 2 Tesao—a1 - ao—‘“)(@[ul] o Qe (206)

ag
> ui(ap—ay)=w

Remark 1: With the notations of (206), the operator P, of BE2 may be

rewritten as P, = >, P, (». It should be noted that P, in BE2 is locally

(though not globally) constant in z, just as the operators P, » | in BE3 are
ag

locally (though not globally) constant in «p.

Remark 2: In the important instances when the tessellation coefficients
Tes™ " turn trivial (i.e. = 1 for r = 1 and = 0 for £ 1), the Third
Bridge equation simplifies:

ut(p—o1 )=w

(BE3) A,Qpuoy) = Z [Qu1y, Qpezy] (207)

u1+u2=uop
and one can checks the equality of the exponential factors on both sides:
(i) A, carries a factor e @® = e (0w
(i)  Qquj carries a factor e"0®0® = glvituz)aos
@Q
(iii) ~ @Qpw carries a factor e"**1®
a1

(iv)  Qqu2j carries a factor e"2%0®
0

Remark 3. In the opposite directions, the results also extend to the case of
hyperlogarithmic (instead of meromorpic) inputs b;(z) (and thus ¢;(£)), ex-
cept that we must switch to a multiple indexation a; — ¢; and that the third
Bridge equation inherits a third term, corresponding to the case A% welu®
of Proposition 2.16. We get:

+ Zu1+u2:uo Pwv[gl] @[’%2]

0 vo
(BE3)  AuQror = 4~ Zurrue—uo Qi1 Pogiz) (208)

+Pw’[% ]

&Q
Remark4: the meromorphic Riccati case.

Let us return to the equation (200) but from the point of view of coequational
resurgence.

(BE2) ALY z,z) = P (2)Y™"(z,x) (209)

w|z
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Yz, x) = 1E,U+ZWemu(zz o e 32)@)
s U ey u Toaeens u_ o, u
Qm(x) = ZZWelu i e G Cﬁi)(x)
s UL ey u_ T ..... u s U_
Qﬂz(x) = Zzwelu piengs GO C—Hi)(;p)
+ Cot vy e o)
Pl (z) = Yjtes ™'t Qb (2)Q), (2) ... Q) (@)Qf, (2)
- e
P (z) = ) tes ™t an() (@) Qi (0)Q); (o)

o z(z)QZ (I’)
(BE3) AQT () = wl n (210)
QHZ (z) B (x)
UE  yeeny uTr T ,,,,, un
Qﬁ:”(m) ZZWelu(ceui ’’’’’ TR A CWHZ,)(:U>
ot i) - +
Fi@) Ztes v Mo QR (@) Q) (2) Qs (D) Q) ()

U Ug e,

ug
wHZ [E Ztes Vi Vigii v Vip_q1:i Vip:i Q‘”“z( ) Hlmz(l') H‘Zr 12( >QH|"1"Z< )

Remark 5: the hyperelliptic Riccati case.
This is again the case 0,Y = zY + b_(2) + b, (2) Y? but with

H() = 350
be(2) := +H(2) with {z=2(q) = §3(W(q)3dg (211)

W(g):=¢"+a¢g" '+ +a

This Riccati equation is of course in relation with the much investigated
. . 2 .

Schrodinger equation dZ1(q) = LW (q)¥(q) (x = %). It is also one of those

instances where, due to the self-reproduction properties of b4 (z) under shifts,

the relation between the P,’s and the Q,’s simplifies dramatically.

Before winding up this section, let us mention two elementary applications
and sketch a more interesting third one.

Application 1: Finding the singularities in the ¢{-plane.

(i) In the Second Bridge equation: all the singularities always lie over some
linear combination of frequencies and singularities v; == z — a;. Since the
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weights u; may add up to zero®, the corresponding combinations > u; v; will
be independent of z. But a proper determination®” of weco®(¢) will always
eliminate these parasitical, z-independent singularities from BE2.

(i) In the Third Bridge equation: the singularities always lie over some linear
combination of frequencies and singularities v;—v; := a;—q; of the individual
coefficients.

Application 2: Establishing the convergence in the ¢-plane.

It can (very easily) be established, first in the star of holomorphy; and then
gradually extended to the adjacent sheets by using the alien derivatives.
Multi-path deformations would be unfeasible here.

Remark 3: Finding ‘interesting’ instances, with finitely many gen-
erators and/or simple Q,-to-P, relations .

Since BE2 and BE3 give the alien derivatives of the QQ,’s in terms of the P,,’s,
and these in turn are expressible as sums of multibrackets of Q,’s, BE2 and
BE3 amount to a closed, indefinitely iterable system that contains all the
information about the z-resurgence. Together with the information about
weco and welo, BE2 and BE3 also give us a systematic tool for identifying
the situations that may narrow, or altogether remove, the gap between the
Qu‘s and the P,‘s. The Schrodinger-related Riccati equation (211) is an
important case in point. But it also tells us something else: namely, that
when spectacular simplifications occur, they may point to the existence of a
change of variable z — ¢ that renders the equation‘s coefficients polynomial
or rational or otherwise elementary. In such situations, working directly in
the ¢-plane may well prove more expedient. But as tools for systematic
exploration and as vehicles of in-depth understanding, the z- and z-planes,
with their Borel counterparts ¢ and &, remain irreplaceable.

By way of conclusion.

At the end of this tour of coequational resurgence, we find a clear four level
stratification:

e The atomic level, populated by objects such as simple poles or hyper-
logarithms.

56at least in the general or sesquilateral case. See preceding footnote.
5TAs we saw, each vanishing partial sum u; + ... + u; introduces a ramification in the
determination of weco®(£), but there is always a privileged choice.
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e The molecular level, consisting of huge clusters of atoms, with unsus-
pected emergent properties.

e The microscopic level, consisting of derivation operators Q,, usually
infinite chains of molecules contracted by elementary derivation oper-
ators.

e The macroscopic level, consisting of new derivation operators P, as-
sembled from the earlier Q,,.

e The passage from the atomic to the molecular level is mediated on the
Analysis side by weighted convolution and on the combinatorial side by
the scrambling transform.

e The passage from the molecular to the microsopic level is rather me-
chanical — mere growth by accumulation.

e The passage from the microscopic to the macroscopic level, arguably
the most interesting of the three, is mediated by the tessellation coef-
ficients. While much is known about them, it would seem that just as
much remains to be discovered.

3 Multizeta algebra: the independence theo-
rem for bicolours.

This brief chapter is devoted to

(i) some sketchy reminders about the flexion structure and multizetas

(ii) a discussion of the phenomenon of retro-action — the central difficulty
which complicates the decomposition of multizetas into irreducibles but as-
sumes quite distinct forms for monocolours and bicolours and calls for dif-
ferent strategies.

(iii) the proof of the independence conjecture for the basic generators for
bicolours.

3.1 Reminders about the flexion structure.

Elementary flexions.
Bimoulds M* have a two-tier indexation ¢ = w = (' ') with upper u;’s
1 5000y Ur

and lower v;’s that interact in a very special way, through four basic flexions

|,[ and |,]| -
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Thus, if w = w'.w” with w’ = (") and w” = (¥ " ") we set:
V1, U2 v3 , V4 , Us
'LU/J _ (ul , Ug ) [w//: <u1,2,37u47u5)
U1:3 , V2:3 Vg ,V4,7Us

'w'] _ (m 7U2,3,4,5> [w” _ (U3 , Ug , Us )

U1, U2 V3.2, U4:2 , Us:2
Throughout, we shall use the shorthand:
U jk... = Ui + Uj + Ugeoo y Vg 1= Uy — U

The products of upper and lower indices remain invariant:

w = w/w// , w* — le I’w/l , w**

Ui v = Djul vl = Yl or
du; ndv; =) duf AdvF =D dut* AdvF*
1 (] (3 1

=w'||w =

The core involution swap.

Ur e v3:4 > V2:3 > 'U1:2)

{B' — swap Ao} — {B(vl ,,,,, o) — A(u1 ,,,,, P U123, U125 Ul } (212)

Once again, the invariance holds: > w; v; = >, Vi U1,

e The swap transform (swap? = id) is as central to flexion theory as the
Fourier transform (F* = id) is to Analysis. There are even contexts where
the two coincide.

e Interesting bimoulds M* tend to possess a double symmetry: one for M*,
another for the swappee (swap.M?*).

Basic flexion operations: ari, gari.

Very loosely speaking, the flexion structure is the sum total of all interesting
operations that may be constructed from the four afore-mentioned flexions.
More specifically, one can show that, up to isomorphisms, there exist exactly
seven pairs {Lie algebra, Lie group} obtainable in this way. Of these sub-
structures, four have the added distinction of preserving double symmetries.
Moreover, when restricted to doubly symmetric bimoulds, these four sub-
structures actually coincide. So we choose to work with the simplest of the
four pairs: the Lie algebra ARI and the Lie Group GARI.
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The Lie bracket ari and the pre-Lie law preari are defined as follows:
w = abc w = abc
N* =arit(B)M* < N* = > Mg X' peleplt
ari(A*, B®) := arit(B*).A® — arit(A®).B* + lu(A°®, B®)
preari(A°®, B®) := arit(B*®).A* + mu(A°®, B®)
The corresponding associative law is denoted gari. It is linear in A® but
severely non-linear in B*:

s

w = [ atbic?
NQ _ garit(B')M' - N'w _ Z M[bl]..[bs] BalJ..BaSJBLCI BLC

gari(A®, B*) := mu(garit(B*).A*, B*) (B; := invmu B®)

The exponential from ARI to GARI, denoted expari®®, admits an ana-
lytical expression in terms of prear:, with pre-bracketting from left to right:

(r times)

expariA® = A®+ Z prgari (A%,...,A%) (213)
2<r
preari (AS,..., AY) = preari(...(preari(A3, A3), ..., A%)  (214)

3.2 Multizetas and their generating series.
The coloured multizetas wa® and ze®.

We first define the scalar multizetas in the convergent or reqular case. The
underlining signals convergence.

e Polylogarithmic integrals (c;; = 0 or unit root; <a1=|=0)):

as¥1
1 t 2
dts 5o dt 2 dt
W_aal,.,.,as L= (_1)50J . J 2 J ! (215)
OOés—ts 0 g — to 0 ap —ty
. i€ __ 3 . . Y.
e Harmonic sums (e; = €>™=unit root; s; € N*; () + (})):
gl ) = Dontter™ e (e = €¥79) (216)

ny>...>n,>0

e Conditional conversion rule (assuming convergence, i.e. () (}))

ze's1 sa o = Wael...67‘,0[57'—1]7,..76162,0[32—1],6170[31—1] (217)

e s = weight , r = length (or depth) , d := s—r = degree.

58to distinguish it from the ordinary mould exponential expmu and from the other
exponentials attached to the seven flexion substructures previously alluded to.
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Algebraic constraints on the scalar multizetas.

(i) First symmetry: wa® is symmetral, with a unique symmetral extension
wa® — wa® such that wa® = wa® = 0.

(i) Second symmetry: ze® is symmetrel, with a unique symmetrel extension
0

ze® — ze® such that ze(i) = 0.

(iii) Conversion rule: The conversion formula wa® < ze® has a non-trivial

extension wa® < ze®, best expressed in terms of the generating series zag®

and zig°®. Cf infra.
(iv) Colour-consistency: If pe N, Qg :=Q/Z, @p:z(%Z)/Z

€E1+T1 5oeey €r+Tpr €] 5eens €r
Z E( lsl o spr ) = p_dE(psll ,,,,, psr ) wzth d =8—7T (218)

TjEQp

(v) Conjecture: the above system of algebraic constraints is exhaustive.

Attached to each of the two encodings wa® and ze® there is a specific
symmetry type, which amounts to a specific way of multiplying the scalar
multizetas. This is the essence of arithmetical dimorphy — a phenomenon
that extends far beyond the multizeta landscape, but finds there its most
striking manifestion.

Dropping the convergence assumption while preserving the symmmetries,
i.e. extending wa®, ze® to wa®, ze®, is a purely formal-algebraic affair, but
it comes at the cost of a slight complication in the conversion rule and
colour consistency constraints. The modified constraints are best expressed
in terms of the generating functions zag®, zig® and of two suitable elements
in centre(GARI) : see (500),(226) infra.

The generating series/functions zag® and zig®.

The first way of defining zag® and zi¢°® is as generating series of the extended
scalar multizetas:

(ul """ uT) L 81,0[5171],...,67«,0[5'”71] s1—1, so—1 Sr—1
zag 1o er) = wa uy' T uyy ey, (219)
1<8j
€1 4ouns er €1 ey er
. 1 _
ziglo o) = Z zels Sr)vfl R T (220)
1<8j

Here ¢; € Q, = JZ/doZ and e; := exp(2mi¢;).

A second, equivalent definition introduces zag® and zig® directly as multivari-
1

ate meromorphic functions of the u;'s and v;'s respectively: Setting P(t) := ;
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and using the usual abbreviations, that second definition reads:
zag® = lgm (dozag; X cozag,;)
zig® = lgm (dozig,’c X Cozig;)

(ul ..... ur) B —m;
dozag' et v er’ = Z 1_[ e; 7 P(my, j—ui )

1<ijk 1<j<r

dozigl ) = Z H e; " P(n; — vj)

k=n1>..>n,.>0 1<j<r

(221)
(222)

(223)

(224)

The dominant factors dozag®, dozig® require the corrective terms cozag®,

cozig® to ensure convergence.

Algebraic constraints on the generating series.

(1) First symmetry: zag® is symmetral.
(i) Second symmetry: zig® is symmetril.

zig it s 7igCl D Plogs) 4 zigh ) Pug,)

(iii) Conversion rule: It reads

= gari(zag®, man®) = gari(man®, zag®)

swap.zig®
b8 {:mu(zag',man')

for a well-defined element man® of GARI cpe: see (230) below.
(iv) Colour-consistency: It reads
. ) = gari(d, zag®, lags) = gari(lagy, o, zag®)
Ly 78g A,
= mu(J, zag®, lag) (Vp e N)

for operators yi,, and 9, defined as follows:

(Gune) o (huny :
fpzag oo’ = p Z zag (p-averaging)
u u pe;zpzj /p ur/p
1 5w r _ /D seees ” ) ]
dp zagla i) = p7gaglar gy (p-dilation)

and for a well-defined elements lag, of GARIcenire: see (232) below.

The centre of GARI.
The elements ca® of GARI ., are all of the form:

() {ca,,ec if (v1,...,v,) = (0,...,0)

0 otherwise
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and verify for all Ma® € GARI:
gari(ca®, Ma®) = gari(Ma®, ca®) = mu(Ma®, ca®)

The central elements man®, mane®, lag, featuring in the conversion rules
(500), (236) and in the colour consistency constraints (226) correspond to
constants man,, mane,, lag, , so defined:

Emanrt’“ = exp(Z(—l)S_IC(S)E) (230)

1<r 2<s s
Z mane, t" = (231)
1<r
(—logp)” _ (Z1) "
lag,, =y =y ( 3 log(1 - a)> (232)

aP=1,a%1

The parity condition for length-one components.

The sets GARI®/® resp. GARI®/® consisting of all bimoulds of type
symmetral /symmetral® resp. symmetral/symmetril® and with length-one
components even in w; (i.e. S¥' = S™*1) are two important subgroups of
GARI

The sets GARI®/® resp. GARI®™/™ whose elements display the double
symmetry but whose length-1 components are not constrained by the parity
condition, are no subgroups of GARI, but they admit a right action of the
above subgroups:

GARI®™/* GARI®/* = GARI®/® (233)
GARI®™/* GARI*“/® = GARI“/* (234)

The same applies to the sets ARI® resp. ARIHL consisting of all
bimoulds of type alternal/alternal resp. alternal/alternil and with length-
one components even in wy: they are subalgebras of ARI, whereas the sets
ARI¥ resp. ART™™ are not.5!

Our generating series zag® is in GARI®/* not in GARI®/®. However, it
can be factored into a three-term GARI-product, with one exceptional factor
in GARI®/* and two main factors in GARI®/%

59
60

i.e. symmetral and with a symmetral swappee.
i.e. symmetral and with a symmetril swappee.

61Tt should be noted that, for the components of length = > 2, bialternality implies
global parity, i.e. invariance under a simultaneous sign change of all w;’s. For r = 1, on
the other hand, the bialternality condition, being empty, implies nothing.
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Adequation of the flexion structure to multizeta arithmetics.

(i) Moving from the scalar multizetas wa®/ze® to the generating series zag®/zig*
simplifies and compactifies everything.

(ii) The series zag®/zig*® clarify the expression of the double symmetry, con-
version rule (‘dimorphy’), colour consistency etc.

(iii)) GARI contains, alone of all competing frameworks, such basic, even
downright indispensible objects as the bimoulds pal®/pil® and tal®/til®.

(iv) The series zag®/zig® can also be viewed as meromorphic functions in w
or v respectively, with simple multivariate poles. This makes them ideally
suited for disentangling the algebraic identities between multizetas, which
seem to be wholly derivable from (iterated) polar identities of the form:

51732 51,52 81,8 51,52
_ Z X51,02 01,02 ) _ Z ( 701,02 4 o2 )

81 .82 g2 o1 ,,02 o1 01 ,,02
" Ny n1 N2 ”2 USN ny'ngh  ny'nih

01,02 01,02

3.3 The basic polar/trigonometric bisymmetrals.

Set P(t) := + and Q(t) := . Then there exists

(
(») an essentially unique pair of polar bimoulds pal®/pil®* € GARI as/as with
pal™ " r-homogeneous in the terms P(u;) and P(uj+...+ua;).

(¥+) an essentially unique pair of ‘trigonometric’ tal®*/til* € GARI™/* with
tal™ " r-homogeneous® in the terms 72, Q(u;) and Q(uy+...+uy;).

These two bisymmetrals pal®/pil® and tal®/til*

(i) admit several equivalent definitions/characterisations,

(ii) possess no end of remarkable properties,

(iii) are key to the understanding of multizetas (many times over!),
(iv) cannot be defined in any of the alternative frameworks.

For the pair tal®/til®, the conversion formula involves the central bimould
mane® in GARI enye (see (231)):

swap.pil® = pal® (235)

swap.til® gari(tal®, mane®) = gari(mane®, tal®) (236)

Since their length-1 components are odd functions of wy:

1 1
palt = ) P(uy) : talt = ~5 Q(uy) (237)

627 and Q(.) are both assigned degree 1, but 7 occurs only through its even powers.
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the bimoulds pal® and tal® are in GARI®/*, not GARI®/®. That prevents
their gari-inverses ripal® and rital® from being bisymmetral. These are re-
markable nonetheless. Thus, ripal® is in GARI*/*.

The double symmetry exchanger adari(pal®).

In multizeta algebra, the double symmetries that count most are al/il and
as/is, but we must also resort to the double symmetries al/al and as/as
which have the signal advantage of being iso-length, i.e. of involving only bi-
mould components of the same length. Hence the need for double symmetry
exchangers, assembled from the bisymmetral pal®:

GARI2/es "B G pRpasis

T expari T expari

ARIVal 4Rt ) prayi

and operating through adjoint action:

adgari(A®) B* := gari(A®, B®,invgari A®) (238)
adari(A®) := logari.adgari(A®).expari (239)

Mark here the first occurrence of pal®/pil®.

3.4 The double trifactorisation of zag®/zig®.
The basic trifactorisation.
We have the m2-isolating, parity-splitting identity:

zag® = gari(zagy, zagy, zagy,;) (240)

with zag! € GARI®/®, zagh € GARIS/s zagy, € GARI%E-

even ’

zag, = gari(tal®, invgari. pal®, expari.rgma®) (241)

zagy = expari( Z pii;"’skprgari(IQmagl, .., loma? )) (242)
k_even

zagy, = expari(z pik*Fpreari(lomay , ..., loma; )) (243)
k odd

Mark here the second consecutive occurrence of pal®/pil® and the first ap-
pearance of tal®/til®.

pe and pi,, denote two alternal moulds with values in the Q-ring of
multizeta irreducibles.
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The bimoulds rgma® and lgma® are both in ARI®/™ but intervene in
very different capacities. As a wu-function, r¢gma® must carry singularities
at the origin to cancel those of tal® and pal® and produce a singularity-free
zagy. The bimould [gma®, on the other hand, and its components lgma; of
total weight s, should from the start be free of poles at the origin, again to
produce singularity-free factors zag$, and zag$,,.

In the above formulae, preari denotes the pre-Lie product (214) behind
ari, and expari the natural exponential (213) from ARI to GARIL

An alternative expression for zag;,, zag;, would be

zagy = 1° + Z pfll""skprgari(lgmagl, ..., lgmag ) (244)
k_even

zagh, = 1° + Z Py *Fpreari(lgmal , ..., lgma; ) (245)
k odd

with two symmetral moulds pf, pf, that are none other than the mould-
exponentials of the alternal moulds p3,,, p3.-

Note that whereas separating zag;, from the first two factors is easy (a
simple flexion formula takes care of that), disentangling zag;, from zag; is
arduous and calls for the construction of an auxiliary bimould rema®/remi*
analogous to lgma®/lomi®.

3.5 Singulators, singulates, singulands.

Bimoulds like lgma® are elements of ARI z*fl/fl, i.e. of type al/il with values

in the ring of w-polynomials. To construct such bimoulds, we require a
machinery for singularity compensation: we must not only shuttle back and
forth between ARI Z*é/;*l and ARI %&l but also, at every second induction step,
remove unwanted singular parts of type al/al. This, however, is easier said
than done. It calls for sophisticated operators capable of producing, from
regular bimoulds, any given bisymmetral singularity at the origin of the u-
multiplane.
(i) The operators in question are the singulators.
(ii) The regular inputs are the singulands.
(iii) The singular, bisymmetral outputs are the singulates.

Here again, for the third time, the pair pal®/pil® turns out to be the con-
struction’s essential ingredient, in combination with the elementary operators

leng,., neginvar, pushinvar, mut. Here are the bare definitions.%.

We begin with the elementary singulators:

63For details, see [...]. Regarding the inadequacy of ari-composition by ufz for the
purpose of correcting bialternal singularities, see [...] on our homepage.
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e Singulator slank,: linear operator, turns S*® into 3°
e Singuland S*: regular, length-1 bimould (parity opposed to r)
e Singulate X*: singular bialternal with polarity of order r—1

slank, :  S* € BIMUyreguiar — 5° € ARIZE (246)
2 slank,.S* = leng, .neginvar.(adari(pal®))~'.mut(pal®).S*® (247)

= leng,.pushinvar.mut(neg.pal®).garit(pal®).S* (248)

with
mut(A°®).M* := mu(invmu.A®, M*, A®) (249)
neginvar := id + neg (250)
pushinvar := Z(id + push + push® + - - - + push”).leng, (251)
o<sr

By taking multiple ari-brackets (from left to right) of elementary singu-
lators slank,,, we easily arrive at the compsite singulators:

slank,, .. :  S* € BIMU, euiar — 2° € AR/ (252)

r,singular

e Singulator slank,, . : linear operator, turns S*® into X°.
e Singuland S°: regular bimould of length n bimould, with partial parities
in each w; opposed to 7;.

e Singulate X*: singular bialternal bimould with total polarity at the origin
of order r—n = >;(r;—1).

Symmetry-respecting singularity removal.

We are now in a position to construct elements loma®/lomi® of ARIYY
inductively on the length r (also known as depth). Start from length 1,
where the condition al/il reduces to parity in w;. Assume we have already
reached some higher odd length r. Apply the double symmetry exchanger
adari(pal®)~! = adari(ripal®) so as to get into the more congenial environ-
ment ARI. Then leave the component of length r+1 as it is but add a
suitable singulate’* to the component of length r+2. Lastly, apply adari(pal®)
to return to ARTY% where loma® /lomi® is now defined and reqular at u = 0

64i.e. a singulate that verifies the desingularisation equations of 19.
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up to length r + 2 inclusively.

lgma® |, e AR and regular at 0
| adari(pal®)™"
vilgma?®||, e ARI%/4 and singular at 0

| trivial extension

vilgma®||, ;1 e ARI%/4 and singular at 0
(desingularisation)
| adari(pal®) with correction if r even

lgpma® |, 11 e ARI%Y and regular at 0

So much for the general scheme, of which there exist three main specialisa-
tions, denoted by the vowels u, o, a in place of the unassigned, all-purpose
vowel g. See §5.6 and §5.7.

Constructing [gma® by desingularisation.

The first and simplest desingularisation occurs at length » = 3 with a com-
posite singuland 57’5

slank; .57 , = ari(slank;.S7, slank,.S3) with ST, = ST ® S5

For 57 ,, the desingularisation equation reads:

(“1 ’ “2) u2 ’ “1,2) “1 ) u1,2) ul 20 U2
€1 , € € , € € , € , €. .
Sis P+ S gt — S 22— S 1 = earlier terms

For uncoloureds and with conventional notations, we get:

Sy 4 Sy Sy G — earlier terms

For the general singuland S;'>', the desingularisation equation reads:

ZGUSU(““ VUk) = eqrlier terms (a € SLx(Z), €, € {0, il})

More generally, to proceed from length r to length r + 2 (r odd) in the
inductive construction of l¢gma®, composite singulands S7 . are required,
with2 <k <r+1,1 <, >, r,=r+2. The Correspondmg smgulates IR
are obtained as am—products of the simple singulates X7 and have polarity
of order 2 + r — k at the origin of the u-space. The step r — r + 2 actually
resolves itself into a sub-induction on k, from k = 2 (polarity of order r) to
k =1+ 1 (polarity of order 1).
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3.6 General difficulty: infinitude underlying the dou-
ble symmetry.

For any given length r, the first resp. second symmetry amounts to a set
of relations between A" and the various A% resp. between A™ and the
various A™", where 0 € G, and 7 € G} := swap.S,.swap. Combining the
two symmetries forces us to work with the group < &,, &} > generated by
the classical symmetric group &, and its copy &). That larger group is
infinite as soon as r = 3.

This complicates matters, e.g. by precluding the existence of functional
projectors of ARI onto ARI®/ or ARTYY.

For r=2, < &5, 63 > essentially reduces (modulo parity) to the anhar-
monic group. This explains why length-2 multizetas are quite elementary
and decidedly untypical.

3.7 Difficulties proper to the monocolours and bicolours.
Generators and irreducibles.

It should be clear by now that the construction of a system {p**} of
irreducibles involves two very distinct steps:

(i) The construction of a system of generators {lgma?, s odd}, according to
the general scheme of §3.5.

(ii) The expression of elements of ARI?/L in terms of these generators.

All known algebraic relations between multizetas respect the s-gradation,
but the multizetas of a given weight s soon become too numerous for practi-
cal handling. Hence the need to work with the finer grained (s, r)-filtration.
Here, however, the nuisance of retro-action raises its head — a nuisance which
assumes two distinct, almost opposed forms for the monocolours and bi-
colours, and call for distinct remedies.

Retro-action for monocolours.

(i) The construction of a generating system {loma?,s = 3,5,7...} of AR[%/%
can be carried out in accordance with the (s, r)-filtration. This means that
once all the relations implied by the two symmetries have been taken into
account up to length r, there is no retro-action to expect: the symmetry
relations for higher lengths »" induce no further constraints on the length-r

component.%

65This might a priori have been the case, since an alternality relation relative to two
partial sequence w', w? of lengths r1, 7o contrains all the sequences of length between
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(ii) However, the decomposition of an element of ARIT/L into multibrackets

of lema? cannot proceed entirely within the (s, r)-filtration. This is due the
well-known relations which exist between the length-1 bialternals, and which
induce on ART®L pnon-trivial relations of type

mono

Z Csy.oosn ari (loma ,....,lgsmal ) =0  mod length r+2 (253)

As a consequence, when decomposing ARI/L "into multibrackets of logma?
according to the (s,r) filtration, parasitical degrees of liberty are liable to

appear at length r that will be removed only at length r+2.

(iii) The remedy lies in perinomal analysis.

Retro-action for bicolours.

With bicolours, the position is exactly the reverse.

(i) Once we get hold of any system of generators {lgma?,s = 1,3,5...} (with
one generator for any odd weight and with nonzero length-1 component,
the decomposition of an element of ARI %ZJ into multibrackets can proceed
smoothly in accordance with the (s, r)-filtration, because of an independence

lemma (see next section) that precludes any relation of ari-dependence be-
tween the [gma? in ARIE

bico *

(ii) However, the construction of such a system cannot proceed entirely within
the (s, r)-filtration. At each odd length r < s/3, we are saddled with (abun-
dant) parasitical degrees of freedom which manifest in the construction of
the length-r component of [¢gma?, and these won’t be removed until we pro-
ceed to much higher lengths (not just r+2). A glaring manifestation of this
phonomenon already occurs at length » = 1. The double symmetry condition
there is empty and therefore any choice of type

1 “1

lomas o) = au™t | lomat'd) = Bul™t (o, e C) (254)

would seem to be acceptable — which of course it is not, given that the
colour consistency relation (226) implies

a+p=2""a (255)

Since the colour consistency constraints are themselves an algebraic conse-
quence of the double symmetry, (255) is a spectacular instance of retro-action.

sup(ry,re) and r1 + 7o
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(iii) Even adding the colour consistency constraints would not salvage the
(s,7)-scheme by ridding it of retro-action. At length r = 3, for instance, a
large number of parasitical degrees of freedom would remain. So we must
look elsewhere for a remedy — namely to the technique of satellisation, to
which the entire §4 will be devoted.

3.8 The independence theorem for bicolours.

Consider the homogeneous, length-1 elements of ARI® that verify the
colour consistency condition (226). They are all of the form b3 with

) uht if € =0, VYd; € 2N*
bdl1 = Clll —d . 1 % (256)
ui' (274 —1) if e =5, Vd €2N
ul 0 1 = 0
1 if =3

Proving the independence of these b3 under the ari-bracket is the same as
proving that of the following Bg,

u d d y *
(tH uit x™ if e=0,VdeN
Bd1 = ill dy . 1 " (258)
ut' (1 —2%) if e=5,VdieN
0 if e=0
Byt - 7o X (259)
L if ea=3

for x = 2 and even degrees d;, since 2% b3, = Bj |lz=2. It is actually no
harder to prove the independence for all integers x > 2 and all degrees dj,
even or odd. To do that, it suffixes to consider, for bimoulds M* with lower
indices v; = ¢; € Z/Z, the ‘parts’ saf.M* and sa’;M' so defined:

(Mg =sai M*} — (MUt = e 05y (260)
) Ur
My =sal M} = My = M E Py (261)

and to note how they behave under the ari-bracket:%
sag.ari(A°®, B*) = ari(saj.A®, saj.B*) (262)
—i—arit(saS.B').(sa”%.A') — arit(sa’ok.A‘).(sa’;B')

263
+lu(sa’;A',sa”%‘.B') (263)

saj.ari(A®, B%) = {

6see §4.2, where the procedure is systematised. Though the ‘parts’ sag.M*® and say M
are moulds, not bimoulds, we can subject them to all the flexion operation by regarding
them as bimoulds independent of the lower indices.
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The idea is to introduce the moulds
“oi= Vd; € N (264)

and to compare the lu-brackets of the A3 with the ari-brackets of the BY ,
or rather with the sa; part of these ari-brackets.

Let us fix a length r and a total degree d := d;+- - - +d,. For any sequence
d = (dy,...,d,) of non-negative integers d;, let us set

Ay = T (A, AL (265)
By = say.ari(B,...,B}) (266)

Let &g = {A%, A, - . ,A:ln(hd)} be a basis of all alternal, polynomial-valued
moulds of length r and total degree d. The alternal, polynomial-valued mould

B; can be expressed in that basis. We find:

/ ! d 0) == ]_
By =% () Ay with & (x)eZ a |l
y %:cd (x) Ay with ¢§(x) € Z[z] an {cg 0)=0if dd

(267)
The reason is quite simply that, according to formula (263), the z-constant
terms in B} can only come from the lu-bracketting. As a consequence, the
corresponding determinant, independent of the basis choice

det, 4(z) := Det [cgl (z);d,d'] =1+ Z%,r,k$k (Z Yo € L) (268)

is a polynomial in z, with integer coefficients and with 1 as constant term.
It is therefore #+ 0 for all integer values of x larger than 1. This establishes,
for all such values of x and in particular for x = 2, the ari-independence of
the bimoulds Bj.

Remark 1: The above argument would collapse if we were to work with the
swappees Cj = swap.By,:

. Tt f € =0, Vd eN*
eyt o=t v oa o (269)
! vt (1 —2™) if e =35, Vd e N
oL 0 ¢ =0
) = 7o _1 (270)
L if =3
and their monocolour ‘parts’ sig.M* and si’;M'
M? = sit M*) e (MO — gl ) 971
0 0 0
- 1
My =i M} = My = MO (272)



For one thing, there would be no closed identities like (262)-(263) to describe
the ari-action on the new ‘parts’. Then we would find that there exist, even
for x = 2 and even degrees d;, non-trivial dependence relations of the form:

Z . sig.ari(Cy,,...,C5) = 0 (cte) (273)
dy+otdr=d
Dt siani(Cy,..,Ch) = 0 (fez)  (274)
2

di+-+dr=d

though of course none of the form

1eeesdr ari(c{;p . 70(;) = ( (cd €Z) (275)

di+-+dr=d

Remark 2: The ari-independence of the al/al bimoulds b of (256)-(257)
automatically implies the independence of every possible al/il extension *bj
of these b} , since the length-r component of any dependence relation

i

¢t ari(*hy .. fby) = 0 (c*eZ) (276)
di+-+dr=d

would amount to a dependence relation between the b3.. The situation is

quite different for the monocolour generators of ARI Z%L/Ll they too are conjec-
tured to be independent, but their length-1 components are not independent

in ARI%/al

Remark 3: The only case relevant to multizeta algebra is when x = 2 and
all degrees d; are even.®” Remarkably, the case x = 2 is also the only one
when the prime factor decomposition of the integers det, 4(x) is arithmetically
‘special’: it systematically displays (large) prime factors coming from the
Bernoulli numbers. Moreover, to take into account the exclusive presence
of even degrees d; and isolate the interesting part of det, 4(x), one should
change the expansion (267) to

. ’ . i ’ Cd O = ]_
B3 even =; ct(x) Ay with % (x) e Z[z] and {cg/((o)) o did (277)

where B |even denotes the part of By even in each u;, and where A% runs
through a basis of all alternate, polynomial-valued moulds also even in each
u;. The corresponding determinant det; ;(x), defined as (268) but with all
sequences d, d' consisting only of even integers, is also an even function of

67The case when x is an integer > 3 is of no direct relevance to the z-coloured multizetas.
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x. These more basic determinants det; ;(t) have been tabulated in §6.3 (in
terms of ¢ := z?) and the reader may check on these tables how ‘special’ the
case r = 2 (i.e. t = 4) really is, arithmetically speaking.

e det; 4(2) carries all large prime factors of Bery o with multiplicity one.

e det; 4(2) carries all large prime factors of Berq, Bery o, Berg_4... with
multiplicity one.

e det; ;(2) carries all large prime factors of all [ [;_;,s_,, Bers, usually
with higher multiplicities, as soon as r > 4.

Remark 4: Replacing ari, lu by preari, mu in the previous argument, i.e.
setting:

Ay = mu (A5, AY) (278)
By = sa%.prgari (By,,---,B3) (279)

and using the identities that describe the behavior of preari on sao, say:

sag.preari(A®, B*) = preari(sag.A®, saj.B*) (280)
sal.preari(A®, B%) = arit(saj.B%).(sa].A") + mu(sa].A*,sa1.B%)  (281)

we can easily establish the preari- indepence of the generators B, . However,
we find that the determinants predet, ;(x) resp. predet; ;(v) calculated from
the coefficients 2 (z) of the re-interpreted expansions (268) resp. (277) carry
no new information: they turn out, unsurprisingly, to be entirely reducible
to the previous determinants det,. 4(x) resp. det; (). Concretely:

§ even 1<p
predet,. ;(x) :H predet, ; s(x H detr a(z) (Vdeven = 2) (282)
2<d<d plr.plg "
§ even 1<P<*—7”
predet;’ ; H predet;’ ; s(x H det a(z) (Vdeven =2r) (283)
2r<5<d 2 plr, ,0|2 pre

4 Multizeta algebra: the satellisation tech-
nique for bicolours.

Introduction.

The present chapter is devoted to the task of data reduction for bicolours.
As usual, rather than directly handling the scalar multizetas, we deal with
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their generating functions A®, S®, at home in either ARI i GARIZ/™

bico bico

ARIYE 5 40 = {AlT00) D yeC o, e {0,1/2)}

GARIZE 5 g+ = {15 | yeC | e{0,1/2))

bico

e We successively define three ‘satellites’ sa, sa*, sa**, consisting each of
a small number of boundary data.

e The lower or root satellite sa retains only the lower indices ¢;, i.e. the
colours 0 (white) and 1/2 (black) while discarding all multizetas with
partial weights s; larger than 1.

e The first upper satellite sa™ does the opposite: it retains only the upper
indices u; and sets all colours ¢; equal to either 0 (‘all-whites’ ) or 1/2
(‘all-blacks’).

e The second upper satellite sa** is deduced from sa under a construction
known as mould amplification, but in outward shape and behaviour
under ari/gari, it closely resembles sa*.

e All these constructions, initially performed in ARIZ or GARI%

bico bico?
acquire new significance when we move to ARI Z*féfjl or GARI ﬁ/f The
adjunction of the second symmetry rigidifies everything: each satellite
contains all the information, and the challenge is now to extract that

information.

e One of the first consequences is the existence of quite remarkable for-
mulae expressing all mould components of odd degree in terms of those
of even degree.®®

e Another consequence is the existence of an explicit procedure, based
on the operators discram and wviscram, for recovering the whole of a
mould M* in ARI Zjléfjl or GARI ﬁc/gﬁ from the sole knowledge of its first
upper satellite sa* M*®.

e Yet another consequence is the existence of a remarkably explicit cor-
respondence between the two upper satellites, so similar in shape yet
so different in origin. For the all-whites (correctly defined), we have
identity pure and simple, while for the all-blacks the correspondence
assumes the form of an involution K whose definition, unexpectedly,
requires us to perform a length < degree exchanging isomorphism.

68and that too in every meaningful setting, i.e. in both upper satellites as well as in the
whole of ARI®/™ or GART®/%

bico bico *
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That said, it should be borne in mind that the whole business of satellisation,
fascinating though it may appear, is not an end in itself. It is there only to
pave the way for the real task: the explicit decomposition of bicolours into
irreducibles. But this is another story, to be told some other time.

4.1 The lower or root satellisation sa: zero-degree bi-
colours.

Zero-degree elements.

In the lower or root satellisation (noted “sa”), the only extremal data we
retain are the scalar multizetas Ze'*y %) whose partial weights s; are all
equal to 1 or, what amounts to the same, whose total degree d := s —r is 0.
In terms of generating series, this amounts to setting all u;-variables equal
to 0.

A€ ARIZ s A =saA® with A9 = AT (284)
S* e GARIE, > S*—sa.§° with SO = §lalla) (285
bico

The extremal and penextremal algebra.

Needless to say, the extremal data sa.ARI %—CO and sa.GARI;:  provide no

bico
information at all regarding the — totally independent — rest of ARI %co and
GARI3;,. Things change completely, however, if we adduce a second sym-

metry. We shall see in the sequel that the whole of ARI ai/d (resp. GARI as/. ﬁ)

bico bico
al/il

can be recovered from the extremal algebra sa.ARI;~ (resp. from the ex-

as jg)

bieo ). This may sound improbable, if only because

[il/ll

bico ?

tremal group sa.GARI

only the first symmetry of, say, AR
internally in sa.ARI Z*fg The second one, i.e. alternility, necessarily takes
us beyond the range of 0-degree elements. However, we shall see that by
considering the penextremal algebra, that is to say by retaining all terms of
degree 0 or 1, we can overcome the deadlock:

(i) a fraction of the alternility relations becomes expressible within the penex-
tremal algebra

(ii) this fraction turns out to be equivalent to the full alternility

(iii) the alternility relations so obtained can, after elimination of the degree-1
elements, be re-phrased purely in terms of the degree-0 elements, that is to
say, within the extremal algebra.

i.e. alternality, can be expressed
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The colour-switch ideal.

For the moment we may note a simple but consequential — and easy to check
— fact: Those elements of the extremal algebra that are invariant under the
white < black colour switch

0., 0 0., 0 1
Ala ) AT €i=g e (286)

constitute an ideal of the extremal algebra.

In the trans-satellite equivalences yet to emerge, this colour-switch ideal
in the root satellite shall correspond to the ideals of vanishing all-whites in
the first and second satellites.

4.2 The first upper satellisation sa*: all-whites and all-
blacks

The first upper satellisation (noted sa*), or first satellisation for short, pro-
ceeds in exactly the opposite direction. Instead of retaining the sole colours,
as in the root satellisation, we now nearly completely eliminate them, and
retain only monochrome multizetas, either fully painted in the colour 0 ( ‘all-
whites” ) or in the colour £ (‘all-blacks’):

Ay A

)
&
Sx

bico
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A® e ARIZ s gsa*.A* with{
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bico

~—~

— sa*.S* with{

The real justification for this drastic data restriction will emerge in the sequel.
But right now we may observe that it has at least the merit of respecting
the ari/gari operations, in the sense that these remain expressible entirely
within the new framework.%’ Indeed:

%This is obvious enough for sa}, much less so for sa*. And it wouldn’t be true at all
2

if we had defined satellites si* A, si*.5* based on the swappes, by setting:
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-
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Proposition 4.1 (Impact of the first satellisation on ari/gari) .
Let as usual A®, B® etc stand for elements of ARI%-CO and S*,T* etc stand
for elements of GARIL. . Then:

bico
sag ari(A®, B*) = ari(sag A*,saj B®) (289)
sag preari(A®, B*) = preari(saj A*,sag B®) (290)
say gari(S°®, 1) = gari(sag S®,say 1) (291)

—Hu(sa’; A, saj B*)

saj ari(A%, B*) = 4 tarit(saj B*) saj A* (292)

—arit(sag A*) saj B*

+mu(sa} A* sa} B*)
2 2

293
+arit(sags B*) sal A* (203)

saj preari(A®, B*) = {
sa gari(S®,T°) = mu((garit(sag T*)sa} S*), sa] T°> (294)

4.3 The second upper satellisation sa**: amplification.
The amplification technique.

We have already used mould amplification to go from wa® to zag®. We shall
now use it once more to construct the second satellisation. Here are the basic
facts about the amplification transform amp,, :

(i) It acts on ordinary moulds M®.

(ii) It singles out the index w, for special treatment,

(iii) It adds a new indexation layer (here, the w; indices),

(iv) It preserves simple symmetries (alternality /symmetrality).
(v) Tt act according to the formula™:

UL ey wp [nq] [nr]
(ampw* ]\4)(w1 AAAAA o) = Z M WLWs e Wr Wi uTlllu?iQZ . '“?:.,r (295)

os<n,

(vi) If M* possesses no particular symmetry, the passage M* — amp,, M?*
entails a loss of information, since the right-hand side of (295) ‘ignores‘ all
terms M with sequences w beginning with a string of w,’s.

(vii) If M* is alternal or symmetral, so is amp,, M*, and there is no loss of
information, since in that case any M“ can be expressed in terms of M¥“*

n times

[n]

f_M
Here, wy" =0y, ..,ws and ug ;= u1 + .. + u; as usual.
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and of other M*’', for indices w’ without initial w,.

(viii) Mould amplification nearly commutes with mould multiplication, but
with a corrective term which involves the special index w, and whose form
depends only on the symmetry type of the second factor. Thus, for B*®
alternal and 7'* symmetral, we get the identities:

amp,, (S° xT*) = (exp(Tw*CDu) ampw*S') X (ampw*T') (296)
amp,, (A® x B*) = (ampw*A') X (ampw*B') + B“* 9D, (ampw*A') (297)

.....

with (D M) 8 = (uy 4 - 4 ) MU

The amplification of elements of sa.ARIZ or sa.GARI%

bico bico*®

We shall now amplify elements M* of the extremal algebra or group. These
are bimoulds, but for the circumstance we may treat them as plain moulds,

with indices either (8) or (V). That leaves only two possible amplications,
2

namely amp o, and amp g . Since, in either case, all the lower indices on the
2
right-hand side of (295) will be the same, % or 0 respectively, we can ignore

them as contributing no information. So, for any bimould M* in ARI %CO or

GARIy;. , we are justified in setting:
amg M* = amp o) saM® ,  amy M®:=amp ¢, saM® (298)
2

or more explicitely:

“—ni— —np—

0.,0,.,0,,., 0,0,.,0
(amg. M )"t = Z MGz l0 vz 0 o) ututh.ouyt (299)
osn,
“—nyi— —np—
— (0 0 v 000000 0 0y n
peenUr o 0,12 ,... 1/2, ,.., 0, Y2 .., /2 r
(amy. M) = Z M : : wtuty.oouy o (300)
o<n,

The impact on ari/gari.

For M* in ARI%CO (resp. GARIY: ), the amplifications amg.M*® and amy.M*
automatically inherit alternality (resp. symmetrality). The real question
is: how will amplification impact lu/mu and ari/gari? For the uninflected
operations lu/mu, the answer is provided by the earlier formulae (296), (297).
Not so for ari/gari. In fact, to get manageable formulae, we must work, not
directly with amg.M*® and am.M*, but with suitable combinations of the

two. This, together with the proposition immediately to follow, motivates our
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definition of the second satellisation, under the simplifying (and provisional)
assumption that the length-1 component of M*® vanish™':

Definition 4.1 (The second satellisation M* — sa™*.M*) .

For any A* in ARI%CO and any S* in GARIY:.  such that
0 0
AG) =A% — o, 96 = 54 — (301)
we set:
sap’ A® := —neg.amy A” + neg.am; A® (302)
sa’tlz* A* = —neg.am, A° (303)
sap’ S* = mu (invmu(neg.am0 S5°%),neg.am; S'> (304)
sy 5% = invmu(neg.am, S*) (305)

Here neg denotes the sign reversal of all indices, and invmu the inversion
(relative to the mould multiplication mu), which for symmetral moulds (- as
is the case here —) reduces to a sequence reversal with or without sign change
in front, depending on parity:

(neg“A4)“1 ..... Up - jb1fu1 ..... —Upr (306)
(invmu. M)t = (=1)" MU if M® symmetral (307)

Proposition 4.2 (Impact of the second satellisation on ari/gari) .
Let as usual A®, B* stand for elements of ARIZ  and S*,T* for elements of

bico
GARI;;, . Then
sap” ari(A®, B®) = ari(say* A®,say" B®) (308)
sag preari(A®, B*) = preari(say* A*, sa," B*) (309)
sap” gari(S°®,T*) = gari(sag" S, say" T°) (310)

Moreover, provided that

N—O
[NT)

A —AD _pO D g, s® 7D g 1 —¢  (311)

"It is mainly the relations (312)-(314) that require this simplifying assumption. It will
be removed in the next section.
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we have the further identities:
—l—lu(sa*%* A, say" B*)
say” ari(A®, B%) = +arit(sa* B*) sa’y” A* (312)

—arit(saf* A*) sa’y" B®

. +mu(sai* A*, sat* B*)
sa’y* preari(A®, B*) = o 2 (313)
2 +arit(saf* B*) say" A®
saly gari(S*,T°) = mu((garit(sa’g* T*)saly’ S°Y, sa’r T') (314)

In other words, under the (essential) assumption that all lenght-1 components
vanish, the second satellisation sa** affects ari/gari in exactly the same way
as does the first satellisation sa*.

Despite the formal similarity, the identities of Proposition 4.2 are com-
pletely different in nature from those of Proposition 4.1, and much deeper.
They also have this uncanny feature of relating the ari/gari operations on
sa.M*, which bear on the lower indices ¢;, to the utterly different ari/gari
operations on sa**.M*, which bear on the upper indices u;.

4.4 The mischief potential of log 2.

We are already familiar with the (mild) difficulties attendant on the diver-

gence of Ze(o) ~ > n~L. They merely introduce a correcting factor man® in
the identity (500) connecting zag® and zig®.

We are also familiar with the (more serious) difficulties related to the
scalar multizetas that belong C[[7%]]. These are responsible for the presence
of an irregular first factor zag} in the trifactorisation (240) of zag®. That
first factor belongs to GARI®™ but not GARIYZ which causes no end of
difficulties.

We must now prepare ourselves for the difficulties (of intermediate sever-

ity) resulting from Zelu) = S (=1)""'n~! =log2, or in other words, from
0
the presence of non-zero length-1 components M ( 1/2).(Let us recall that, tak-

ing our stand on the normalisation zag(g) = zz’g(g) = 0, we have already, once
and for all, ruled out any non-zero components M (o)).

Definition 4.2 (The second satellisation M*® — sa**.M* (bis)) .
0

(

In presence of a nonzero length-1 component M %), the earlier definition of
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sa** should be modified to:

0
sag A* = —neg.amy A® + neg.am, A'—s—A(%) I*
sai* A® := —neg.am, A° (315)
2
9 ([1))
sap' S° = mu(e’s *"? invmu(neg.am, S'),neg.am% S® e ")
satt S* = invmu(amgS*®) (316)
2

with ® denoting the elementary mould derivation:
(@A)ul ..... Uy e (U1 + - + ur) Aul ..... (78 (317)

In order to fittingly describe the interaction of sa** with ari/gari in the most
general situation, we must now introduce two mould operators:

ut(A*) B = —-AV DB (318)
gut(S*)B* = exp(-SYVD)B° (319)

ut(A®) is clearly a derivation relative to the mu-product, and gut(S*®) an
automorphism, again relative to mu.

In view of (315)-(316) and given that (saj*.M)® = M'} for M* in

ARIE or GARIE | the relevance of the operators ut(.A®) and gut(S*) is
rather obvious, and we are now in a position to remove the restrictive as-

sumption of Proposition 4.2.

Proposition 4.3 (Impact of the second satellisation on ari/gari (bis))

For general elements A®, B* in ARI%.CO and S*,T* in GARIY | the earlier

bico’

identities (308)-(314) have to be supplemented by the following terms in red
to account for the presence of non-vanishing length-1 components:

sag" ari(A*, B®) = ari(say* A®,say" B®) (320)
sag preari(A®, B*) = preari(say* A*, sa," B*) (321)
sap” gari(S°®,T*) = gari(say" S, say" T°) (322)
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+lu(sa’* A* , sy B*)
say ari(A*, B%) = +arit(sa0 )Sal* A*+ut(sa’” B*) sa’" A* (323)
—arit(saf* A*) sa* B*— ut(sa’ ) A®) say" B®
+mu(sa’y 1* A® sat* B*)

(324)
+ar1t(sa0*B ) sa 1* A'—Hlt(ba*1 *) s’y A*

sai preari(A®, B*) = {
2

saly gari(S5*, 1) = mu((garit(sao T*).gut(sa?y" 17).say" S* ), say’ T') (325)

= mu((gut.(sa*%* T*).garit(sag" T°).sa’’ S*), saly T’) (326)

Proposition 4.4 (Impact of the second satellisation on ari/gari (ter))

The relations
(A, B%) = lu(A*,B)+A’D B —B"D A (327)
= lu(A*, B*)+ut(B*) A* — ut(A*) B° (328)
mu*(S*,7°) = mu(exp(—7"D)S*,T°) (329)
= mu(gut(7°)S8*,7°) (330)
define a modified Lie bracket lu* and a modified associative product mu*.
With them, the identities (323)-(326) simplify:
+lu* (sal* A®,sat* B®)
sat" ari(A®, B*) = +ar1t(sa0* B') saf‘ A* (331)
2 2
—arit(saf* A*) sat* B
2
+mu*(saf* A®, sa*** B*)
sa’i" preari(A®, B®) = . 2 (332)
2 +arit(saf* B* )sal** A®

say* gari(S*, T*) = mu” (garit(safy* T°) sal S*, sal T*) (333)
2

4.5 The double symmetry and the even-to-odd-degree

extrapolation.
So far, we have reviewed the properties of sa, sa* * as defined on ARI cho
and GARIY. . Let us now move on to AR[%Z*Z and GARI ch/ols The in-

troduction of a second symmetry has momentous consequences, the first of
which is the possibility of deducing all odd-degree components of a bimould
M?* from its even-degree components.
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al/il

bico *

Even-to-odd extrapolation in ARI

Let us work in the algebra ARI %ZJ for simplicity™ and consider there some
homogeneous element A* of total weight s, with its various components A|.7« of
length r (1 < r < s) and total degree d = s — r. For the non-vanishing com-
ponent A} " of lowest length, the symmetry (al/il) actually implies (al/al),
i.e. bialternality. That component is therefore™ necessarily of even degree
dy. Let us now search for an explicit even-to-odd extrapolation formula:

(Oa ) 07 A|.r07 \.7"0+27 ) \.r0+2n") = (07 ) 07 A\.ro-&-l? |.r0+3’ ) |.r0+2n+17 ) (334)

based on the five-step induction already mentioned in §3.5:

Step 1: Calculate Af = e A e ARJ/

|[ro+2n

Step 2: Calculate *A? ., := adari(ripal®). Aj,12n € AR[4Val

Step 3: Define "A7 ., as "A? |, truncated at length ro+2n+1 (included!)

Step 4: Calculate ™Ay |, := adari(pal®).* A}, +2n € AR

Step 5: Define A7, 1, ., as the component of length ro+2n+1 of *A7 .,

If we now denote by trunc, the linear operator which acts on moulds by
retaining only their components of length < r and if further we set

0, := trunc,;iadari(pal®).trunc, . adari(ripal®) (335)
the above induction can be summarised as

° _ 97’0+2n<A;O+2n+07‘0+2n72("47."0+2n72+ """ (336)
ro+2n+1 ° .
...... +0r042(A7 1o T0r AT ). )

In theory, (336) could qualify as an even-to-odd extrapolation formula of type
(334). In practice, though, it is no good: pal® and its gari-inverse ripal® are
very complex bimoulds; the adjoint action adari is itself a highly complex
operation; and as 2n grows, the number of terms on the right-hand side
of (336) becomes, prior to simplifications, fantastically large. The miracle,
however, is that sweeping simplification do occur, leading in the end to a
formula that is both practical and beautiful.

But before enuntiating it we need to get a few definitions out of way.

First, we require the constants &,:

n+1
0 if n even

2027 g f n odd (Ber, = Bernoulli numb
‘, .:{ erpy1 if moo (Ber, ernoulli number) (337)

" analogous results hold for GARI %C/;*S
"See [...] §....
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1 1 1 17 31 691 5461 929569
Thus  a=-1,¢&=1,6=-1, =10, 6H=-3 =9 £3=—5401  ¢;-92950

S =1 , S i=(—x)" P(uy)P(uy+us) ... P(ui+...u,) (338)
T, = 2" Puy) P(up_1+u,) ... P(ur+...u,) (339)

Lastly, we require operators £, constructed from these ingredients:

. . M M (340)
M* = (id — 2B + 2 PBr)- (527" x (garit(S2).M*) x S2) (341)
(ul ,,,,, ur) L (eu_l€ ,, EuTile )
wlth (mRM) €1 sy €r = M 17€r s €p ] —€r P(ul _.I__|_ur)
(Br M)<’:11 e ppleze :::::5,_1161>P(u1 bt

We may note in passing the operators $), form a group:
~60 =id and fjx f)y = -6:1:+y (342)
The proof relies mainly on identities such as

(Pr— Po) M* = arit(M*) P* VM (343)
Sy = expari(—z Pa®) (344)

with the elementary mould Pa®:

UL yeney ur P ) == ].
PCL( VL 5o Ur) = <UI) Zf " A (345)
0 otherwise
Proposition 4.5 (Even-to-odd extrapolation on ARI%ZJ)

Let A* be a homogeneous element of AR[Z\ZZ*Z of weight s and let A2, (resp.
A2,,) the sum of its components of even (resp. odd) degree. These com-
ponents have of course lengths of opposite parities, and the extrapolation

formula reads:

A:)dd = (51'14;1)671) Hﬂﬂnzﬁn (346)

In other words, we expand (£),.42,.,) as a formal power of z and then replace
each " by &,. Given that &, = 0, this leaves in A?,, only components with
lengths of the right parity. Moreover, and though this is non-obvious, all
components of length » > s automatically vanish, as indeed they should.
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Even-to-odd extrapolation in the first upper satellite.

The change 9, : M* — M* admits an internal restriction to the first upper
satellite.™ Indeed, one easily checks that:

saﬁ]\r\f' = (id +xPr— w‘BL).(S;_l x (garit(S3).sagM*®) x S3)  (347)
~ +(S27t it(S2).sak M*) x S
N (527" x (garit(S}).saj M*) x S3) (348)
+2 (Pr — Pr). (927" x (garit(Se).safM*) x S3)
(./\/l('),/\/l'%) = (sa%o.M",sa*; . M*) (349)
(BM) ot = (ug .. Au,) T MO (350)
(DM = (gt uy) MO (351)

and denoting for uniformity the bimoulds S;,7 as simple moulds S?,7.°

(which is legitimate, since the former depend only on their upper indices),
the identitities (340)-(341) can be brought into more explicit shape:

(+T2 x Mgo(SexT* xT2) xSs

M = L —aPAL x T2 x Mo (S xI* xT?) xS (352)
| F2 P\ T x Mo (Sp xZI*xT2) xS xI*

(+T° x ,/\/l'% o(SpxZI*xTr) xS

—xPAZL x T2 x Mo (S xI*xT2) xS (353)
(F2B(To x MG (S x I x 7)) xSy x I°

N~ @
I
N

where Z* denotes the identity mould.™

Proposition 4.6 (Even-to-odd extrapolation in the first upper satellite.)
Let A* be a homogeneous element of AR of weight s. Let Aj := saj.A*

bico
and A1 = sa1 JA® be its all-white and all-black parts. Then, to perform the
even-to-odd extmpolatzon it suﬁﬁces
(i) to substitute the pair (A . en;

1 .even

) for (./\/lo,/\/l'%) in (852)-(353),
(ii) to set x" := &, in the correspondmg pair (MO,MQ).

"The fact is non trivial: it wouldn’t be true if we had defined that satellisation based
on swap.M*® rather than M*.
BT =1 and T =0 if r & 1.
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Remark 1: Using the identities
SoxTr=1", DP=id, DS, =—aS;, xIT*, DT> =zI°*xT; (354)

together with the fact that ® is a derivation relative to mould multiplica-
tion, we can recast the correspondence (A, A3) — (A5, A}) into an almost
involutive form:

St x (DM x T2 = (DM o (S xT* x T2 (355)
(+(D ')o(S'xI’xE‘)

Sy x It x T7) x (M} o(Se xI* x T7))
—(SexI* xT2) x (Mgo(SexI*xT2)) (356)
(/\/l‘% o (S xZI*x T‘)) (Sp xI* x T2

(/\/l(‘)o S‘xI’x’T')) (Sp xZI* xTr2)

_l’_

(.
(

8

Sx (DM x T =5

+

\

If we then set M%;o =M
further simplifies

- Mg, M5, = M — ./W('), the above system
2

N ®

Spx (DM x T = (DM§) o (St xT* x T;) (357)

+H(DM) o (Ssx I x Ty)
Sp % (DMi) x T = § +(S2 x I x T) x (M50 (82 x I* x T7?))  (358)

x T

(M0 (S x I x T7)) x (Sp x I x T;7)

Remark 2: organic moulds. The group identity $, $, = $,4, is inti-
mately connected with the strong stability — mainly under mould composi-
tion, but not only — of the so-called organic mould family generated by S?
and 77:

SixTr = 1
SITSoSIT, = SIT:,, with — SIT® =82 x I* x T
SIT, . oS8IT,, = SIT,,  ywy with SIT, , :=2'8 xI*xT;

The organic moulds occur in various other contexts, notably in alien calcu-
lus: they crucially enter the construction of the so-called organic derivations
A% which, unlike the standard derivations A, are well-behaved, that is to
say, possess optimal growth properties in w as |w| — 0.
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4.6 Recovering the general bicolours from the all-blacks:
the operators discram and wviscram.

The formulae we are going to enuntiate now may be thought of as Green-like,
in the sense that they express the ‘whole picure’ (here: the whole of ART Zjléfjl)
from ‘boundary data’ (here: any of the three satellite systems).

We shall start from the first upper satellite sa* and show how to recover
everything from it (next proposition). Then, in the next two sections, we shall
show how to go directly from the second upper satellite sa** to the first, and
back. Since the lower satellite sa was, from the very start, in biconstructive
correspondence with sa**, that will automatically provide indirect paths from
sa and sa** to ARIY™. But to arrive at a truly satisfying picture, we shall

bico *
also sketch direct paths from sa and sa** to ARI Zjléfjl

Proposition 4.7 (Recovering ARIE from sa*.AR[ﬂ/ﬁ) .

bico bico

Let A* be an element of ARI%g with (A3, AY) = (sa§. A%, sa}.A%) as usual.
Then the whole of A® is constructively determined by its all-black part A'%,
and even by the sole even-degreed components of A'%. Roughly speaking, the
all-white part A§ can be recovered from A'% via the operator viscram, and
the terms of mized colour via the operator discram. The exact procedure,
rather involved but entirely constructive and formula-based, is set forth in
detail below.

Explicit procedure: To ease the exposition, we shall slightly depart from
the previous notations. We now decompose A°® and its image *A*® under
adari(pal®) into all-white parts W, *IW* all-black parts B*, *B*, and (strictly)
mixed-colour parts M*®, *M*.

A* = W 4 M + B e ARIYE (359)
A = W 4+ *M*® +*B* € ARI%ZO/%entire (360)

For each mould, the length-r component is marked by a lower index r. We
can assume A* to be of weight s. The moulds of the upper series (476) have
at most s non-vanishing components (polynomial in w) while the moulds of
the lower series (476) usually have infinitely many components (rational in
u rather than polynomial).

Let Ay be the lowest component of A®. It coincides with the lowest com-
ponent of *A? ~of *A*, has even degree dy, and is automatically bialternal.”

The aim is to construct the whole of A® from the data B® , B .., B®

ro? Uro+2) “ro+4cce

76That lowest length 7y has the same parity as the weight s.
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Let us recall/introduce the operators trunc, and viscram*:™

trunc, S* = S;+ ST+ S5 +---+S; (361)
viscram*S® = (277 — 1) 'viscram S* if deg(S?) =d  (362)

°
ro+1

Starting the induction: from B; to A; and A

These three steps enlarge the even-degreed B, to the even-degreed A; :

Br, Ty (363)
° discram . °

B o 4B (364)

Bl — A=W+ M+ B (365)

This one step takes us from the even-degreed A7 to the odd-degreed A; . ;:

truncy+1 adari(pal®
-

DAL (An = AT but AT AT ) (366)

r

*A;O
Continuing the induction: from B3, to A3, ~and A}

2n+ro+1

The following step takes us from truncy, ,,—1 A* (already known) to *B3, .
(not yet known). It also produces parasitical terms **W5, . —and **M;
which bear no relation to *W3, . ~and *Ms, . .

truncen 4, adari(ripal®)

A;o +- A5n+ro—l + Bgn+r0 - (367)
*A;Q ot *A5n+r071 + **WZ.TL+7‘0 + **M2.TL+T‘0 + *B5n+'r’0 (368)
The genuine *W3, ., and *Mg, . are produced by the next steps:
vi * °
*BZn+7"o lscr;ar)n *W2n+ro (369)
*B5n+r0 dﬂm *M2.n+r0 + *B5n+r0 (370)
*Bgn-i-ro - *A5n+7“0 = *W2.n+r0 + *M2.n+ro + *Bgn-i-ro (371>

We are now in full possession of truncy,r, *A* and can proceed in one step
to truncopnry+1 A

truncen 4ry+1 adari(pal®

AT AL e ) e A (372)

This completes the induction []

"yiscram* is a normalised variant of viscram. The normalising factor (27¢ —1)~! stems

from the constraints of colour consistency. See (476).
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4.7 The double symmetry‘s reflection in the extremal
algebra.

Introduction. The extremal and penextremal algebras.

The extremal algebra ARI %C/gext consists of bimoulds of degree d = 0 and
therefore » = s. Since all alternility relations commingle components of
various lengths and degrees, there seems to be no way of expressing these

relations within ARI %cflm, at least directly so. If however we consider the
al/il

slightly larger ‘penextremal® algebra ARI ;)" ..;» consisting of all bimoulds
of degree 0 or 1, we can at least express weak alternility (see below) there,
since weak alternility involves only two consecutive component lengths, e.g.
r =s, r =s— 1. Improbable though it may sound, this in fact implies full
alternility. Moreover, in the constraints so obtained, we shall find that the
components of length 1 can be easily eliminated. This shall leave us with a
complete system of constraints, fully internal to the extremal algebra.

The dimorphy constraints in the extremal algebra.

Definition 4.3 (Weak symmetries) .

A bimould A* is said to be weakly alternal if it verifies only the alternality
relations Zwesha(w/7w,/) AY = 0 with w' of length 1 and w" of any length. The
same applies for weakly alternil.

Lemma 1: In a double symmetry, either symmetry may be weakened, but
not both simultaneously

{al/al} < {al"/al} < {al/alVeak} < [a]veak /p]weaky
{al/ﬂ} = {alweak/ﬂ} P { al/ﬂweak} < { alwaak/ﬂweak }

al/il
bico

Lemma 2: A bimould A* of weight s in ARI
al/il
bico.ext 7

1s enterily determined by

its restriction to the extremal algebra ARI that s to say by its values
0,., 0
Al for all ¢ in {0, 1}
Let us now express the dimorphy constraints first within the penextremal,
then the extremal algebra. Any element A®* € ARI Zfﬁco.penm may be expanded
in the form:

0 otherwise

AT =00 A N M) i T=s (373)
At =D e (A A A ) i r=s—1 (374)

uq dO y —
with Ayt = {“1 Veo=a (375)
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We must of course take all the multibrackets lu()\1 1 Ao, ) tO get a basis

for the degree-1 alternals, but only some of the lu(\} o1 \oe.) tO generate

the degree-0 alternals. Let us now express the weak alternality relations for
such a bimould A*. They read:

(swap.WiLswap A)ta o) = 31 4% 13 4™ P(u,,) (376)

Here Wil denotes the linearisation (resp. annihilation) operator for sym-
metril (resp. alternil) bimoulds, relative to the sequence splitting

1ol : / "
w =ww with w = (wy,..,w,),w = (w),w" = (ws, .., w,)
Explicitly:
. w w’ 1% wi*l
(WiLA)® = > AY + > Po—w) — A (377)
w*esha(w’ ,w”) 2<i<r
wzth w].*i — ( U1, Ul UG SUg T, ) wi*l — ( U1, Ul tU; SUg T, )
Vi1, v Vi1 oe Y ce VT, v; SVG41s oee

We now plug (373) into Y.* of (376) and (374) into >.** of (376). Simpli-
fications occur, leading to the disappearance of the wu; variables from both
numerators and denominators. Eventually, for sequences (i, ..., €s) ending
with €, = 0 and ¢, = %, we find respectively

0 =D HE G pam e o o (378)
€ yensl
0 = K;l’ 7669 1bel7 A _’_ZLGhM:Gs 1 51 ey (379)

with coefficients H?, K7, L; in Z. Eliminating the coefficients c* between
(378) and (379), we get the following 257! structure constraints which char-
acterise the subalgebra ARIY™  of ARIZ

bico.ext bico.ext
RE = ), RygTpe (with R} € Z) (380)
€.e{0,}

The 257! relations R -1 are clearly not independent. However:

Conjecture: The first p, relations R%~1 are independent and imply all
others. Here, ‘first' is relative to the order induced by n(e) := Y.€2" and
ps = 1+ds—dE, where ds resp. di denotes the dimension of the component
of weight s in the free Lie algebra L£ley, eq,e3,e4...] resp. Lley, es,es,e7. .. |
(es is assigned weight s ).
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Subalgebras: keeping track of push-invariance.

One can in similar fashion express the symmetry alternality+ pushu-invariance™

first in the penextremal algebra and then, after elimination of the compo-
nents of degree 1, purely in the extremal algebra. This leads to an important
algebra ARI/P"™ Lalfway between ARIZ/E ,and AR Here, how-

bico.ext bico.ex bico.ext"

ever, bimoulds in ARI Zﬁgus}w are not fully determined by their restriction to

ARIPh. 3¢ takes the full dimorphy — alternality (of the bimould itself)

bico.ext
and alternility (of the swappee) — to ensure complete rigidity.

4.8 The degree-length exchanger dre. Co-satellites.

This section’s object is to prepare for one of our main results — the corre-
spondence between the first and second upper satellites. As it happens, the
correspondence in question is best understood following the (d 1,7 ) filtra-
tion, i.e. starting from low degrees d and correspondingly large lengths r.
But r being the number of u;-variables, that filtration is rather unwieldy. So,
to fall back on the more familiar and tractable filtration (d |,r 1), we shall
resort to a suitable d < r exchanging isomorphism.

The Hoffman duality.

The classical Hoffman duality for monocolours
{r1-1} {rn—1} {dn—1} {d1-1)
Zed1+1,1 1 seedn+1,1 _ Ze?"n-i-l,l ,eeT1 41,1191 <VdJ,TJ > 1) (381)

easily follows from the integral representation (216) and does indead exchange
d and r, but it possesses no simple extension to bicolours. So we must come
up with something else.

The d < r exchanger dre.

11 e say that a polynomial-valued

In analogy with the situation in ARI,;,

mould is of weight s if each component of length » < s is a homogeneous
polynomials in wuq, ..., u, of total degree d = s — r, and each component of
length r > s vanishes. Any alternal polynomial-valued mould A°® of weight s
can be uniquely expressed as the O-amplification of an alternal, scalar-valued
mould X* of length s with discrete binary indices n; € {0,1}. If we now
take the 1-amplification of that same X*, we get a new alternal mould B of

weight s. Since the involution A* < B°® so-defined exchanges the degree d

"8 pushu-invariance is the tweaked form of push-invariance induced by the classical iso-
morphism adari(pal®) : ART® — ARIE,
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and length r of mould components, we call it the d < r-exchanger, or dre
for short. The same construction applies without modification to symmetral
moulds. Graphically:

A = amgX* <% B = am; X° (X* binary alternal)
A e MUY, IS B e MUY

S = ampY* <5 T = am Y (Y'* binary symmetral)
S e MUY <% T* e MUS,

4.9 Correspondence of the two upper satellite systems.

We are now in a position to address this chapter’s last remaining challenge,
i.e. finding a direct connection between the first and second upper satellites:

( ;O,A;%) = (sa(’]“.A',sa;A') (S;O,S;%) = (sag‘.S',sa;S')

! )
(A;*O,A;*%) = (sa’g*.A',saz*.A') (S;*O,S;*%) = (sag‘*.S',saZ*.S')

A* c ART/HE Se e GARI%/E

bico bico

Equivalence of the all-whites.

Proposition 4.8 (Coincidence of saj and saj*) .

Provided we adopt for sa§* the correct definitions (315)-(316) that take into
account the perturbations introduced by length-1 components, we find that the
all-whites of both upper satellites exactly coincide:

=A% VA® € ARIZ! (382)
S =82 VS* € GARI®/® (383)

Involutive correspondence between the all-blacks.

The correspondence between the all-blacks is more recondite. To express it,
we require a mould derivation I and an involutive mould automorphism K.
Here are the definitions:

ul L _ _ 1
KM® = arit(Pa®).M* — lu(Pa®, M*)  with {Pa = Plo) =5 g

& = dre. €N dre. pari (385)
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A more explicit formula for K’s action reads:

e Uj—15Uj U [ AR — s Uj—1,Uj [ .
+ gy (MotimttsF M=ty P(u;)

ICM ULy Up
o {— By (Mot At Pluy)

As for the involutive character of R, it results from:

K

dre.e” . dre.pari = dre. e’ .neg.dre = dre.neg.e ™ . dre = pari.dre.e ™™ . dre

Proposition 4.9 (Involutive correspondence between sa’} and sa%*) .
2 2
Provided we adopt for sa*; the correct definitions (315)-(316) that take into

account the perturbations introduced by length-1 components, we find that the
all-blacks of both upper satellites correspond under the involution K:

AL, VA® € ARIY (386)
S, s, VS € GARIE/® (387)
2 2

Remark 1: Given that each upper satellite contains ‘all the information’,
the existence of a more or less explicit correspondence between the two was a
foregone conclusion. The surprise, though, is that the correspondence should
operate, not between the pairs (Ao, Asy) < (Awso, Assy), but separately
between the all-whites and all-blacks: Ao <> Asso, Asy < Ausy.

Remark 2: The identity saj = sag* is easy to spot (less so to prove) in
the algrebra ARI ‘,j{ﬁ;l, because there the presence of a length-1 component

AGR) hardly affects the shape of sa**.A®*. See (315). This is no longer the

case in the group GARI%C/OLS, where the presence of a length-1 component
stip) upsets everything, as obvious from the formula (316). This must be
the reason why so remarkable and so fundamental an identity as saj.zag® =

sag*.zag® had so long escaped notice.

Remark 3: The involutive correspondence 8 : saj e sa’f;k2 was even less
conspicuous and we confess that it took us quite some time to figure it out.
The thing is that the low-length components (- on which one tends to focus-)
hardly bear any resemblance in A, and A,,1/2. It is only when we go to
the low-degree components that a pattern begins to emerge.

4.10 Recapitulation: the circulation of information.
A telling analogy.

To appreciate the minor miracles of bicolour satellisation, which begin —
but do not end — with the recoverability of the whole from small parts, the
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analogy with functions defined on the closed unit disk may not be out of
place. The two, largely self-explanatory pictures below show how the whole
(in blue) and the three systems of boundary data (in black) relate to each other
in both situations. The black arrows depict the circulation of information
under the weaker assumptions (- one single symmetry for bicolours; mere
smoothness for functions -), while the red arrows show what new channels of
communication suddenly open under the stronger assumptions (- dimorphy
i.e. a double symmetry for bicolours; harmonicity for functions-).

{zag® symmetral} Fig. 1 {zig® symmetril}
zag(uo1 s uOT)
- u ur
sa = Zag( P )
e T N\
s {Zag(lﬁl o Z:)} N\
/S ANN
0 ey 0 amp.zag)@1ur)
sa = {Zag(q ,,,,, e»,«) } > Sa** — { ((am;.zaz))<ul ,,,,, ur) }
{F smooth} Fig. 2 {F harmonic}

sa* = {F(nl»w)(o,o);meN}

4 T N\
S {F(zl,zz);xfﬂs%gl} N\
s ASN
sa= {F(xl,u);x%ﬂgzl} ——> sa** = {?n : neZ}

Let us now collect in one place, for easier survey, all the main formulae per-
taining to satellisation and co-satellisation .
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Lower satellisation of bicolours.

AREE >4 3 A GARIEES S =3 &
Acter = AL ) ’ Seteer — gl )

First (upper) satellisation of bicolours.

al/il o sa¥ . as/is o sa¥ °
ARIbico 5 A - A G‘Al%lbico 55 - §

1 seees Up UY yeney Up
617. € — ( 0 ..., 0 ) , §61,...,6T _ ( o 0 )
(""11 ----- ulr ) (“11 ..... Ul'r )

Ael, ,Ep A D ARERE 5 7 §€11, JE€p _ S 5 3

Second (upper) satellisation of bicolours.

ARI 5 A4° 5 A GARIZE® 5 g0 2 g
(1)
é; = —neg.am,; A* +neg.am% Av A\ e
A’l = —neg.am,; A°*
2

),

S, = mu(e" B

S = invmu(amgS®)

.invmu(neg.am, S°*), neg.ami S°, e’

with the mould derivation ©:
(QA)UL...,'M = (ul 4+ .+ ur) Autur

and the amplification operators amg, amy:

«ni— “—np—>

0.,0,.,0,,., 0,0,.,0
ULyeesUp o (20 s 0y e 20 0) 51, n2 Ny
(amg.M) Ti= Doen, MY R 3 K R W
u " (0 0 l 0, ,.., 0, OH.,T.L.T,HO) n1 n
Tyeen — 0, Y2 ,..,12,,.,0, 12 .., 12 r
(amy.M) "= Doen, M v I Tk T S T

First and second co-satellisation of bicolours.

ARE 5 40 %5 9 —dre. A° , GARIZEsg % &* .= de.S
AREZL 5 40 ®0 9ti—dre. A° |, GARIZEs g 5 &° .= dre.S*

with the d < r-exchanger dre introduced in §4.8.
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First and second (upper) satellisation of ari/gari.

(A, B*) 5o (S°,7*) =R
sa* | sa* | sa* sa* | sa* | sa*

(AL AL BB 2 {ee) (ShSIh T Ty > {RILRY)

Cy = lu( A3 By) + arit(B)). Ay — anit(A3) By = ari(45,B;)  (388)
(

Ci = Iu(4}, BY) + arit(B7). Al — arit(A) B} 389)
Ry = mu(garit(75).S5, T) = gari(S5, T5) (390)
R} — mu(garit(T3).S3, T3) (391)

(Ao7 Bo) ﬂ; C* (S.7TO) gir)i R*

(145,43}, (s, B GG (s 8'} {I;,T‘}) TORLRS)

C; = lu(As, BY) + arit(B;). A — arit(A%).B; = ari(A7, B;) (392)

gi ™ (4%, BY) + arit(B;). éi - arlt(é[')) :1 (393)
R§ = mu(garit(77).87, T7) = gari(S5, T5) (394)
R = mu”(garit(7;).85,75) (395)
with
(A%, B*) = lu(Aa*,B)+A°DB -B"DA° (396)
mu*(S*,T°) = mu(exp(-T"D).8*,T°) (397)
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First and second (upper) co-satellisation of ari/gari.

(4%, B°) = ooc (8°,7°) =
saf | sa | saf saf | sa | sa’
. . . . ari® . . . . . . garit . .
({gO’g%}W{Eovz%}) - {gmg%} ({ng%}a{zmz%}) - {gmﬁ%}

&5 = lu(2Ag, By) + arit(By) 2Ap — arit(2A5). By = ari(2Ag, B)  (398)

—lF (25, BY) + A (T, BY) - B lu(Z°, 2A3)
g = +1u (245, .%) + hl ( 1.3) (399)
+arit(Bg) 27 — arit(25).B1
with the composition unit Z* and the tweaked Lie bracket lu® + lu*:
7% =1 VYuy , I =0 Vr#£1 (400)
(A%, B%) = lu(A*,B)-A"DB +B°DA° (401)
(A.,B.) ﬂ C* (SQ’T.) ?il)l R*
saf | saf | sa® saf | saf | saf
. . o ari®® . . . . . garitt . .
(125201 {8,, 87} — {&.&) (S8 g5 — (&8
& = (A, By) + arit(B7) AT — arit(A]).B. = ari(A, B7) (402)
~luf(U3,B%) + 2. 910 lu(Z*,8%) — 2. 8% . 1u(Z°,2)
-2 T2 -2 -2 -2
¢ = +luﬁ(ga,§ )+1u (911,% ) (403)

+arit(B7) 2% — arlt(‘«’:l;)él

Thus, the formulae for ari® and ari® differ only by the presence of a fac-
tor 2 in front of the two corrective terms 2% . 1lu(Z*,B°%) and B? .1u(Z°*,A°).
-2 -2 -2 -2

There exist similar formulae for gari® and gari®.
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Counting our luck and listing our gains.

Satellisation succeeds only thanks to an tmprobable string of good luck:

Fluke 1: The drastic restriction sa to the extremal algebra (d = 0) does not
involve any loss of information, nor does the equally drastic restriction sa*
to the all-whites and all-blacks .

Fluke 2: The amplification, which takes us from sa to sa™*, turns the sub-
tractive e;-flexions into additive u,-flexions.

Fluke 3: All the constraints flowing from the double symmetry ( ‘dimorphy’)
can be expressed internally within each satellite system.

Fluke 4: The ari/gari operations can also be expressed internally within
each satellite system.

Fluke 5: Despite their completely different origin, the two upper satellisa-
tions sa* and sa** are easily convertible into each other: the all-whiles saj
and saj* simply coincide, while the all-blacks sa’g and sag* get exchanged
under a remarkable involution K.

Fluke 6: There is an effective procedure, based on the operators discram
and wviscram, for recovering the whole of ARI%Z%Z or GARI%;J from each
satellite.

Satellisation also brings huge rewards:

Gain 1: It makes possible a dramatic data reduction, by showing how to
recover all the information from the all-whites+all-blacks, or even from the
sole all-blacks, or even from the all-blacks of even degree.

Gain 2: In combination with the d < r exchanger, satellisation, or rather
the dual ‘co-satellisation’, enables one to work entirely within the (s,d)-
filtration, and thus to overcome the ‘curse of retro-action’.

Gain 3: Satellisation extends ‘perinomal’ irreducible analysis (luma®-based)
to the case of bicolours, and it eases ‘arithmetical’irreducible analysis (loma®-
or lama®-based) for both monocolours and bicolours.

5 Multizeta algebra: decomposing the mono-
colours into irreducibles.

In this brief section, we return to the monocolours. Since the independence
theorem for length-1 bicolour bialternals has no exact equivalent for mono-
colours, we are led to explore various alternative settings in search of ‘rigid-
ity’, so as to ensure the uniqueness of decomposition.

We shall compare here four main settings:
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(i) Z/pZ-supported bialternals,
(i) Z-supported bialternals,
(iii) polynomial-valued bialternals.
(iv) perinomal bialternals,

and we shall attempt to show how deeply they differ in regard to ‘rigidity’
by comparing the strikingly different forms which the ari-oddari-conversion
formulae™ assume in each case.

Lastly (— and briefly, because this doesn’t fall within the purview of this
investigation and will be treated at length in a follow-up paper —), we shall
sketch the two main strategies for the decomposition of monocolours into
remarkable (‘canonical’) systems of irreducibles, and examine in great detail
how this works out up to length r = 4.

5.1 Polynomial bialternals.

This subsection is purely for perspective and contains no new information.
(i) It gives, subject (for r > 4) to the Broadhurst-Kreimer conjectures, the
dimensions dim, 4 of the polynomial bialternals (for monocolours).

(ii) It gives, subject to a further classical conjecture saying that all bialternals
are semi-freely® generated by the so-called ekmas, (length-1) and carmag, .
(length-4), the dimensions dimelem, 4 of the ‘elementary* bialternals (gener-
ated by the ekma3,), and the complementary dimensions of the ‘exceptional*
bialternals dimexzcep, 4 := dim, 4 — dimelem, 4.

(iii) For comparison, it also give the dimensions dimfree, 4 of all alternals
freely genrated under the lu-bracket by the ekma3, (1 < d), or again the
dimensions of all bicolour bialternals generated by the length-1 bicolour gen-
erators (leaving out the one of degree 0).

™j.e. the formulae for mutual conversion of the length-2 bialternals generated, in each
setting, by the bracket ari and the pseudo-bracket oddarsi.

80j.e. without other relations between the ekma$ , than the well-known relations in
length 2, and all those generated by them.
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In each case the dimensions are given via the generating series.

dimfree; (t)
dimfrees(t)
dimfrees(t)
dimfreey(t)
dimfrees(t)

dimfreeg(t)

dimy () =
dimy(t) =
dims(t) =
dimy(t) =
dims(t) =

dimg(t) :=

81

(1
(1) (1t
T
B th
(122 (1 —t4)2
3 t17 (1 +t°)
T APt (1)
1+ 12 4+ 2t + 240 + 38 + 2412 + 1)
(1= 2)2 (1 — 92 (1 5) (1 - £12)
t2
(1)
tﬁ

(1—2) (1—19)
(1 + 2 —th)
(1—2) (1 — 4 (1 —15)
(1 + 2" + 10 4+ 8 + 2410 4 14 — ¢16)
(1= ) (1—15) (1 —15) (1 — 172)
HO(1+262 + 3¢ + 310+ 2¢18)
(1—24)2 (1 —10)2 (1 —¢19)
21+ 282 + 3¢ + -+ 283 — 32 + 34

(I1—=22) (1 —t4) (1 —6) (1 —¢8) (1 —¢t12) (1 — t18)

81Thus dim,.(t) = . dim,. 4% etc.
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t2

tﬁ

(1= (1—19)
t5(1—t* +t%)

(1-12)(1
01+ 8%+ 26" 410 + 248 + 110 — ¢19)

— 1) (1 -1%)

(1) (L —19) (1 —t5) (1 t12)
(14202 4t 10— 215 — "2 — M 4 1'9)

(1—#2) (142 (1 - 9)? (1 —¢19)
287 4t P 0 1)

dimelem; (t) = a—o
dimelemy(t) =
dimelems(t) =
dimelemy(t) =
dimelems(t) =
dimelemg(t) =
dimexcep;(t)
dimexcep,(t)
dimexcep; (1)
dimexcepg(t)

(1—12) (1— %) (1 —15) (1 — £5) (1 — £12) (1 — ¢15)

= 0 for i1=1,2,3
t8
(1—1t4) (119
th
(1—=22)(1—t%) (1 —t9)
tH2 (1 — 4 — 210 + 218)
(L= 2P (= (1 92

The exact numerators in dimg(t) and dimelemg(t) are respectively

t12 L (142824314 +4164+6184+6¢104+6¢12 4741444416 415418 14420424224 2424 132 1434)

1 (122 + 4t 4510+ T BT 104711246 11446410 +5 118 4342042422 1424 426428 _430_432)
dimfreey(t) — dimy(t) = ¢* dimexcep,(t) =

To each missing (elementary) bialternal of depth 2 there corresponds a su-
pernumerary (non-elementary) bialternal of depth 4, with an explicit formula
giving the latter in terms of the former.

10
(1 —1t%)(1—1t9)

82

5.2 Discrete-periodical bialternals.

We have a somewhat similar situation on Z/p.Z. There, the length-1 bialter-

nals eda,:

()

eda,! =

1 4f uy==+n modp

0 otherwise

82See ... or ....
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are not free under ari, and do not generate all bialternals. As in the polyno-
mial case, there are ‘missing bialternals’ in depth 2 and ‘exceptional’ bialter-
nals in depth 4. Here, however, there is no known procedure for generating
the exceptional, depth-4 bialternals from the missing, depth-2 bialternals.
Moreover, when counting the dependence relations between the ari-brackets
of the eda; , one should rule out two semi-trivial instances, involving:
(i) elements of type edag or ¥, eda,,, which belong to the centre of ARI
(ii) for non-prime values of p, relations induced by ‘earlier’ relations in Z/q Z,
with ¢|p.
The following generating series reldiscs(t) resp. reldiscy(t) enumerates
the independent relations involving the all the generators eda,, with n in the
interval [1,.., [5]] resp. [1,..,[5] —1].

: 0
reldiscy(t) = DD (406)
reldiscy () = = t2>t2 D) (407)

The first exceptional bialternal of depth 4 appears for p = 5. It is necessarily
exceptional since for p = 5 there exist no depth-2 bialternals.

Remark: There is a distinct notion of discrete periodic bialternals, namely
with indices u;/v; in Z/pZ and with bimoulds also taking their values in Z/pZ.
The bialternals there are strictly more numerous than when the bimoulds
take the values in Q (or, what amounts to the same, R or C.) but they are
all induced by restricting on Z/pZ the polynomial bialternals (see preceding
section).

For p prime, though, there is no difference. Thus, in either case, for
p = 2 or 3, there are no depth-4 bialternals. For p = 5, there is only one (-
exceptional-) depth-4 bialternal. For p = 7, there are three regular and three
exceptional bialternals. Etc.

5.3 General discrete bialternals.
Finitely-supported bialternals.

Here, the picture changes. The suitably redefined elementary eda,,

eda,’ = (408)

0 otherwise

(31 {1 if up==+n

112



are ari-, even preari-independent provided we restrict ourselves to finite com-
binations (409).
n; >0
Sy = 2 c"" preari(eday ..., eda; ) (409)

ni+..+n,.<Const

Let us show that S? = 0 implies ¢™ = 0. Assume the opposite and set
Ny = SUPmyg|m|. Then let m be a particular sequence of length r with
|n| = n,. For any j in [1,r], any factorisation n = (n/,n;,n”), and w of the
form

w = (u) with uw = (n',—n,,n")
v

the identity holds

"

SU= (-1~ > (410)
n”esha(n’,n")
with n” denoting n” in reverse order. For j = 1 this reduces to
SY = (—1) It ith w = (1, N,y .., Ny M) (411)

implying S? #+ 0. Contradiction.

Remark: The above independence statement no longer holds if we replace
the di-atomic eda, by the mono-atomic da; defined as in (408) but with
“u; =n” in place of “u; = +n”. Indeed, take the ari < oddar: conversion
formulae (437) or (438) infra and re-write them in terms of the atoms da,,.
They yield non-trivial finite sums S*® = me Cnymy 0ri(day, , day, ) with some

non-vanishing coefficients ¢,, but an identically vanishing S*®. The same would
apply with preari in place of ari.

Bialternals with unbounded support.

The examples of the preceding section (with w; € Z/p.Z) immediately yield,
for any depth r > 2, sums of type 5* = >, 7 Cny .., ari(day,, ..., dag, )

ni?
with infinitely many non-zero coefficients ¢, n,, p-periodical in each n;,

but with S* = 0.

Bialternals with unbounded support but decreasing at infinity.

If we impose a sufficient rate of decrease on the coefficients ¢,, as n increases®

and corresponding bounds on |S*| as w increases, we recover the unicity of
decomposition of Z"-supported bialternals as multibrackets of elementary
generators eda,, .

83Bounds of type |cn| < Const.|n|~! are more than enough.
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5.4 Perinomal bialternals.
Standard and symbolic expansions for perinomals.

Perinomal bimoulds are meromorphic functions of either w or v, but with a
very peculiar pole structure: their poles lie over Z" and are of eupolar type,
i.e. they admit standard expansions of the form

1<k<k
I wr IRXXRr (“‘l:ml ,,,,, ur':m',lw) (m1 ,,,,, mr) (2 r)!
st = S e g (o ER) (4
m;,n;EL mr’k e ' rl (T’ + 1)' ( )
VAN

Here, B denotes a polar flexion unit, necessarily of the form:
‘B(Zi) = aP(uy) + fP(vy) (usually ‘B(zi) = P(uy) or P(vy)) (413)

and {*B; ;1 < k < k,} denotes the standard basis of the length-r component
Flex,.(B) of the monogenous flexion algebra generated by .

The standard expansions (412), with their infinite sums, are rather un-
wieldy, especially when it comes to performing flexion operation on them. So
we often replace them by the information-equivalent symbolic forms (414),
which carry only a finite number of summands:

1<k<kr

(T s s Uy 5eees ar B 5o ar
S( 17; ..... s ) = Z ;Bil;cl 7777 vr )Q:if]g ,,,,, Ty ) (414)

The change from standard to symbolic (‘encoding’) has the advantage of
commuting with all flexion operations® and of being reversible (‘decoding’):

standard : .S — S$ =ari(S},S5) or preari(S7,Ss)
encoding l, T_decoding B _encozling l, T decoding _ B
symbolic : .5 — 55 = ari(S7,53) or preari(S},Ss)

Symbolic expansions for the perinomal bialternals.

Let us apply the procedure to calculate the length-r perinomal bialternals
Rai’® := L ' ifmyy,...,epaifm: 415
ai’ Z o ari (epaif ) epaifm: ) (415)

generated by the elementary bialternals

vl (v17m1) (v

epaici) := TP - i (416)
n

84Iu/mu, swap, ari/gari, arit/garit, preari etc. It also commutes with the full set of

flexion unit identities. All these, in turn, derive from the basic (characteristic) identity:
wr )

;B('Z} );B('fé) = 413(“5172);13(;;?1) + ;B(“Jf )543( w1z
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Setting

(ml . mr) (51m1 . er'mr)

T = Z =g T (417)

Eie{il}

we find the symbolic, easily decodable expansions Raif = 2B €

(o) (1) Gh G
— 1 — . v1 _ vl
(r=1) Pl =P 5 G =¢
(:jlvu2) (“12) (M) (™1 m2) ™1, my ) (ML,20 ™1
1,72 _ i R . ny , ny — np , n ny o, n1:2
(T’ o 2) 2,1 - m 2 m vzt Q:Z,l = G + Co
- Gt g L Gl _ i (e
2,2 =P o P’ 2,2 =Gy — G

For r = 3, the standard basis of Flexs has got five elements:

- uy , ug , ugy
(vl v, Us) _ ;43(1”15573) (o12
3,1 =
(U1 U2 u3) u123)

o) (i)

v2:1

3,2
(“1 , ug , 11.3) u1 9.3 ug ug
(T = 3) 4 31’31 URCIR SB( v2 )213(”1:2)‘3(”3:2)
(%12, u3) u1,2.3 ug 3 ug
3v41 I ;B( i )(’B(U&l )(’B(v2:3)

(ul > U2 u3) u1,273)

(B = papta gl

and the corresponding coefficients €3, have got six summands each:

(ml > M2, m3) (ml > M2 m3) my ., m2.3, M2 ) (ml,Q > M1 m3)
Q: ny , n2, N3 =c ny , n2 , N3 + c ny ., m3 ,N23 + 15 n2 N2, N3
3,1 - 3 3 3
(M1,25 M35 ™ (ML2,3 M1 > M2 (M1,2,3>M1,25 ™)
n2 o, M3, N2 n3 5, M1:3, "2:3 n3 5 M2:3 5, N1:2
+ c3 + c3 +c5
myp , mg , m3 myp, m2 , m3 my ., Mm23, M2 mi,2, M2 , M3
€( ny , N2, N3 ) — C( ny o, n2, N3 ) + c ny ., m3 n2:3) ( n1 5> N2:1 5 N3 )
3,2 ] 3
(M2, ™3, ma ) (M1,2,3 5 M1 > M2 (M1,2,3 51,25 M2
—c nyp o, M3, N2 +c n3 5, Mn1:3,M2:37 c n3 5 M1:3 5, Nn2:1
3 3 3
myp o, M2, M3 myp o, M2, M3 m1,2, M1 , M3 mi,2 ., M3, M1
Q:(nl»nzv%)_c(nl»n2»"3)+c( ng ’"1:2’"3)4-6( ny vn3»"1:2)
3,3 - 3 3 3
(ml » M3, M3 ) (m1,2,3 > m1 , m3 ) (m1,2,3 > m3 ., mj )
— e m2 ons2) ng  ,ni,n3:27 ny  ,m3:2, n1:2
3 3 3
my ., m2, M3 my ., m2, M3 my ., Mm2.3, M2 m1.2, M2 , M3
Q( nyp ., n2, N3 ) i C( nyp ., M2, N3 ) + C( n1 o n3’ ’ 77,2:3) ( ’7117 > M2:1 5, M3 )
34 =C3 3
(1,25 ™3 M2 ) (M1,2,35 ™3 5 M2 ) (M1,2,3 > M2,3 5 M2 )
_ 03 n1 o, M3, N2l + C3 n1 > N3:1 . M2:1 3 n1 > M3:1 > M2:3
(M1 ™2, M3 (M1 ™2, M3 (M2, M2 . m3) (M2 M3 M2 )
Q: ny , n2, N3 =c ny o, n2, N30 c ny o> M2:1, M3° Is nyp > M3, N2:1
3,5 - 3 3 3
(™1 m2,5 0 M3 (M1,2,35 M3 5 M2 ) (M1,2,3 > M2,3, M3 )
—c ni, m2 ,7N3:2 +c n1 > MN3:1 5 M2:1 +c n1 o, M2:1 5, M3:2
3 3 3
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Perinomal rigidity.

In practice, the important perinomal bialternals depend only on one set of
variables (u or v):

—

Ray := Z A=) ari (epag, - .., epan, ) (418)
miGN*

Ri} = Z Ay {rseemr) ari (epiy ,...,epiy ) (419)
niGN*

They correspond to the one-variable flexion units, and are generated by the
elementary epa;, or epiy:
epam! = Plu; —my)— P(u; + my) (420)

uq

epiit) = P(vy—mi) — Plos +m1) (421)

One obtains their symbolic (and standard) expansions by specialising the
earlier formulae for Rai®. One simply replaces ¢, by ca® or ci*:

ca™>mr = sgn(my)...sgn(m,) Al (m; € Z*)
cipto = sgn(ng)...sgn(n,) o (n; € Z*)

and neglects in €7, the irrelevant sequence of indices (either n or m).

The main fact about the expansions (418) or (419) is their uniqueness:

(Raj =0} = (/™ =0}, (Ril=0}= {3 =0} (422)

T

There even exists an effective algorithm for deducing the 7 from the €;,.
These facts are central to the perinomal decomposition of multizetas into
irreducibles.

5.5 Comparing various flexion settings.
Two operations producing depth-2 bialternality: ari and oddar: .

By suitably modifying the signs in front of the six summands of ari(A®, B*)
for length-1 bimoulds A®, B*, we can define a pseudo-bracket® oddari that

85pseudo because oddari cannot be extended to a genuine Lie bracket for factors A*, B*
of arbitrary lengths.
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turns each pair (A°*, B*) of 0dd®%, length-1 bimoulds into a length-2 bialternal
— exactly as art does with pairs of even bimoulds.

ari : ARI?VGH X ARI?VGI’I N ARI;;I/QI
oddari : ARISY x ARIJM — ARI;*I/a*l

Here are the definitions, with C* := ari(A*, B*) and D*® := oddari(A*, B*):

ey [1AGD +A<“12 BU) At L)
Cloiws) = (1) 4(2) (M (v 2) (423)

—BUDACH — BUE A 4 BURD AL

(v1:u2) —|—A(§q)B v2 —A( B(U12 —|—A 111 )B(“M)
Divrez’ = (1) 4(2) | p("h2) 4(2) _ p(Ua) (424)

—BUDACH 4 BUE AL — pURD AL

Due to the rigidity statements of the preceding sections, there must exist,
in each setting, precise formulae for converting oddari-brackets into sums of
ari-brackets, and vice versa. Even when there is no rigidity and therefore
no uniqueness, as with polynomial-valued bialternals, there exist privileged
formulae. In any case, the conversion formulae bring the specificity of each
setting into sharp relief.

The ari-oddari conversion for polynomial-valued bialternals.

Consider the elementary bialternals

ul)

esa, ' = uf (for dy even = 2) (425)
uy
osag !’ = ul? (for &, even = 1) (426)
eesay 4, ‘= ari(esaj ,esaj,) (dy,dy even) (427)
oosag, 5, = oddari(osas ,o0sa;,) (01,02 odd) (428)

and let yo (resp. Tk, for) be the integers (resp. rationals) defined by:

= o £ (429)

(1—t2

t h t 2
= Nt 2 / = 6 (430)
o<k o<k

86i.e. with A%, B¥! odd functions of w;.

tanh tanh(t/2)
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Proposition 5.1 (First ari-oddari conversion law.)

1 01+02=d1+d2 1
) L .
5 008858 = Z Tiebi—di 77 €688g, 4, (431)
L 1481 <d; v
1 di+da=01+02 1
. L .
77 €S, 1= Z 04, —1-s, 57 00885, 6, (432)
r di<1+6; v

Remarkably, the above identities are valid for all pairs (d1, d2) (resp. (di,ds)),
not just when % < Xo; 40, (TESP. %1 < Xdy+d,)- Simply, in this case the
expansions on the right-hand sides of (431) and (432) are unique.®”

The ari-oddari conversion for discrete bialternals.

Let 0 be the discrete dirac (§(0) := 1,d(n) := 0 if n £ 0) and consider the
elementary bialternals

eda(nvf) = O(u; —ny) +0(ug +mnq) (or sinh(nju;)) (433)
Oda(nvf) = O(u; —ny) —o(ug +mnq) (or cosh(niuy)) (434)
eedal, . := ari(eda, ,ena; ), oodaj ., :=oddari(oda; ,oda; ) (435)

together with the operator §:

0 Zf Ny = N9
(fM>n17”2 = Mnl,ng—nl Zf n2 > nl (436)

Mm—mﬂlz if np>ng
Due to the statements of §5.3, the conversion law here is rigidly determined:

Proposition 5.2 (Second ari-oddari conversion law.)

ooda, . = eeda; . +2 Z (F* eeda)s, ., (437)
1<k

eeda; . = ooda; . +2 Z (=1)*(* ooda)s, ., (438)
1<k

The two sums ), _, are actually finite.

87"When we don‘t have 1+261 < X6, 46, (resp. % < Xdy +ds ), the conversion formula is not

rigidly determined, but the simplest expansions are still given by (431) (resp. (432)).
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The ari-oddar: conversion for perinomal bialternals.

Consider now the polar-perinomal bialternals

)
epan; = P(u;—ny) — P(u;+ny) (439)
opa(nvl1 = P(uy—nq) + P(u;+nq) (440)
eepa, ., := ari(epa, ,epa; ) , oopaj ., :=oddari(opa; ,opa;,)  (441)

together with the operator g.
(gM)nan = Mn17n2+n1 + Mn1+n2,n2 (442)
Here again, the conversion formulae are rigidly determined:

Proposition 5.3 (Third ari-oddari conversion law) .

oopay, . = —eepa, . — 2 Z (g’g eepa);m2 (443)
1<k
1<k

The two sums ), are always infinite.

Remark 1: The conversion formulae for the swappees

(epay,, opay,) == (epiy, opiy,)

retain their form, but with a sign change in the structure constants.

Remark 2: The change from ¢ to exp also involves a sign change in the
structure constants, because it amounts to a Fourier transform, which itself
amounts to a swap transform. This explains why in (433)-(434) eda, may
be replaced by sinh(niu;) and oda,, may be replaced by cosh(niu,), despite
opposite parities.

5.6 ‘Arithmetical‘ or ‘perinomal‘ generators.

According to the scheme of §3.4. any given system of generators {l@maﬁs}

of ARI %ﬂ leads to a systems {p®*r} of multizeta irreducibles. In the case
of monocolours, the best way to overcome the nuisance of ‘retro-action‘ is

to resort to the well-defined system of perinomal generators {lumais}, whose
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characteristic property is that they sum to a bimould luma® = )] lumaﬁs,
each component of which is meromorphic in w, with perinomal multi-poles
over the multi-integers. We can then take full advantage of the strong rigidity
properties of these functions, of which we caught a glimpse in §5.4.

But two parallel systems of generators, {lamaj;} and {lomaj}, also rec-
ommend themselves to attention on account of their arithmetical simplicity:
they possess only small prime factors on their denominators. Of the two,
{loma,} is (slightly) arithmetically less simple, but it carries a fewer number
of distinct coefficients, as a result of sharing the basic symmetry properties®®
of {lumaj,}.

We shall now describe in detail all three systems up to length 4 inclu-
sively®® — not just for their own sake, but also to derive three parallel systems
of exceptional bialternals of lentgth 4 (they are presumed to be the only ones).

The alternative aritmetical/perinomal.
The l¢oma® denerators up to length 4.
Following the general scheme of §3.5 and setting

slang, . := adari(pal®)slank,, ., (445)

we can express the first four components of the generic element loma® of
ARI®V% with the help of just two singulands S¢$ and 591 5. We find:

lgma™ = (slank;.S¢y)™ = Sg;? (446)
lgma“**? = (slank;.Sg;)""2 (447)
_ 1 S@ifl P(UQ) — SQQILI P(U12> — S®11L2 P(Ul)
2 | Se1? P(uiz) — S01*? P(usg) + So*? P(uy)
lgma"*"2" = (slank;.Sg; )"V **"* 4 (slank; 9.5@ o)"1"2" (448)
88
89We already gave a cursory treatment of these question in [...], but it seems to have

been misunderstood in some quarters. In any case, the detailed arithmetical description
of the singulands Saj , and So , and of their coefficients given towards the end of this
section is new.
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Or explicitly:

lpma¥luzus .=

w )3 Plug) Plugs) — 1 P(ug) P(uis) — 15 P(ugs) P(us)
TN L plusy) Plusas) + L Plus) Plusss)

P(ulg) P(Ug) — iP(Ul) P(Ug) + 1—12 P(U,l) P(Ugg)
- P(u12) P(u23) + 55 P(uy) P(u23)

s % P(ug) P(uia) — }l P(ug) P(uqa3) + % P(uy) P(uq23)
+S®1 —% P(Ul) P(Ulg) — 1—12 P(ul) P(UQg)

L P(uy) P(uis) + % P(ug3) P(uz) — i P(uy) P(us3)

+S(Z§u123 3
—% P(UQ) P(u23) — % P(Ug) P(Ulg)

1
+Sgy2 {6

vy ) 3 P(u1) P(ug) — 3 P(ug) P(us)
+S¢ 1 1
+7 P(ug) P(u123) — 7 P(u1) P(ui23)
g i P(w1) P(ug) — § P(uy) P(u)
+3 P(us) P(uyas) — § Plus) P(u1as)
—35 5015 (P(us) + Pugs)) + 3S01%" (P(ugs) + P(unas))
+3 501%™ (P(ur2) + P(uizs)) — 3 S0y (P( ul + P “12))
+ P(uzg)) + & S0t (P(uz) — Plus))
+ P

)

+ S@ul 12 P Ug)
)

1 S®u3 ,U12 P ul) _ P

(P( (
1 SQ)uz U12 (P(U3 (u123)) 1 SQU2 ,U23 (P(ul) + P(u123))
(P( (u2)) + % S@ug 2 (P(ur) + Pluras))

U123,U1

PUQ

3 Sor> (P( ) + 5 S015"% (P(us) — P(uss))
S@u123 U3 (P( 1

) + P(ug2) P(ug)
ug) + P(Ugg)) + = S®u3 1128 (P(u ) — (u23))
+2 8075752 (P(u1) — P(ug)) + 3 So1 5> (P(us) — P(us))
+3 S075" (P(ug) — P(uiz) + P(U23) P(u123))
+1 501%™ (P(u2) + P(u1z) — Plugs) — P(uias))

))

)

P
P

+ S¢u123 - ( 1) + P ulg) + P(Ug) + P(UQg

P(u
u2 123 (P ul) + P Ug) P(U12) — P(UQg

l@maul’w’u?”u‘l - (slankl.SQ)l)“l’W’“3’“4 + (slankm.8@172)“1’“2’“3’“4

We don’t mention the expanded expression for [gma"! """

several hundred terms.

as it involves

For any input Sg¢{* even in u;, the second component lgma"“"*? as defined

by the above formula is automatically polynomial in wq, us.
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easy matter to check that the third component lgma““>"* is polynomial

in uy,up,us if and only if the singuland S¢j , verifies the desingularisation
criterion:

+S@ul’u2 + S®U2:U12 _ S@Uhuu _ S@u12,u2
_ { 1,2 1,2 1,2 1,2 (450)

15 (Plu2) S0 = P(ur) 80" — Pluz) So™ + Pluiz) S0 )

Note that despite the presence of poles P(.), the second line in (450) is
automatically polynomial in wuq,us. Of course, when fulfilled, the desingu-
larisation criterion (450) ensures the polynomialness not just of lgma"t“*"?
but of lgma"*"*"" as well. To make the components of length 5 and 6
polynomial, five higher-order singulands? must be added, each subject to
their own desingularisation criteria. And so on, for each pair (27/,27" + 1).

The first arithmetical generators lamaj,/lami],.

They correspond to ‘lacunary’ singulands Saj ,.

Proposition 5.4 (Best aritmetical singuland Saj,) .
For any odd weight s = 5 there exists a unique singuland of the form®

Saj'h? = Z SAgss o o5 U0 uy P20 (451)

that verifies the desingularisation criterion (450). The largest prime factor
s—1

pa, on the denominators of the coefficients sa is always pa, < *3-.

Proof: 1t relies on the formulae:

N 22m (4k+1)! (6k+1)(2k+1)
SA4k—om2k+2m—1 = lA1m Ckremt)I(2K)(2m+2)]  (4k—2m)(dk—2m—1) pay , (k)
dk—2m+2,2k+2m—1 = 183,m QT 2m1 1)1(2k+ 1)1(2m 1 2)! (dk—2m+ 2) (dk—2m+3) Pa3,m
N 22m (4k+3)! (6k+5)(k+1)
S84k —2m+2,2k+2m+1 = 1a5,m (2k+2m+3)!(2k+1)!(2m+2)! (4k—2m+2) (4k—2m+3) pa57m(k:)

(i) with simple rational coefficients la; ,

(ii) with polynomials pa, ,,(x) in Z[x]"

(iii) of degrees: deg(pa, ,,) = 4m — 1 ,deg(pas,,) = 4m, deg(pas,,) = 4m
(

iv) and determined inductively on m by difference equations.

90 . [ . . . .
to wit: S@7 4, 505 3,907 1,3, 501 2,2, 591 1,1 2-

91the case s = 3 does not arise, since l@maﬁg’“"‘“ = 0.

92

except for the term pa; (k) = ﬁ
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The second arithmetical generators lomaj,/lomi],

They correspond to singulands Soj, even more ‘lacunary’ than the earlier
Saj, but they are marginally less simple, arithmetically speaking. Their
main feature, though, is that of sharing the fundamental symmetry of the
perinomal singulands Suj , (see infra):

So“l’“2 50“2’u1 ur Su“l’"2 Su“"”ul o (452)

Proposition 5.5 (Second best arithmetical singuland Sof,) .
For any odd weight s = 5 there exists a unique singuland of the form

uU1,U2 2 26, 8—5—-26 s 5—20
SO12|| = Up U2 Z 8026,5—2-25 (u1 Us +u2 ) (453)

1<6<[55%]

that verifies the desingularisation criterion (450). The largest prime factor
po, on the denominators of the coefficients so is always po, < 22,

3
Proof: Similar as in the case of Saj, but based on the formulae:
_ 27 (6k+1)!(2k+m)! (k—1)! (2k+1)
802k —2m—2,4k+2m+1 = 101 m Grrzmr - DG em D! @—am—1) POLm(F)
_ 27 (6k+1)!(2k+m)! (k—1)! 1
SO4k—2m2kt2m+1 = l0gm (Ak+2mt DI (dk— 1)1 (k—m+ 1)1(2m+2)l (2k—2m+1) P03, (F)
B 2™ (6k+3)! (2k+m-+ 1) (k)! (6k+5)
809k—2m2k+2m+3 = L05 m (T 91T ) b+ D@ T 2 @2y D) PO 05,m (K)

with deg(po, ,,) = 2m — 1 deg(po5 m) =2m +1, deg(pos,,) = 2m + 1 and

the exceptlonal term po, 4(k) = 2k+1

Remark about the arithmetical singulands.

If we were to look for solutions Saj 5, of the desingularisation criterion
(450) similar to Saj 5, in (451), with ¢ running through a support set DaJ 5
of the same cardinality, for instance with Daj 5, = [1 +n, [551] — [££1] + n]
for n small, we would in nearly all cases get a unique solutlon but without
the bonus of small prime numbers in the denominators.

Likewise, if we were to look for solutions Soj o, of the desingularisation
criterion (450) similar to Sof 5 in (453), with the same symmetry constraint
Soy'y s uz = Soy’%f uy and with 0 running through a support set Doj 5, of
the same cardinality, for instance with Doj 5, = [1+n, [=52] +n] for n small,
we would also in nearly all cases get a unique solution, but again without the
bonus of small prime numbers in the denominators.
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The perinomal generators lumaj,/lumij,.

The characteristic feature of the lumaj‘s is that they, as also the underlying
singulands, add up to meromorphic functions with perinomal poles.

Proposition 5.6 (Perinomal singuland Suj,) .
Both the global meromorphic singuland Suj ,

Sujy == Y miPlur+m)Plug +ng) = Y Suj (454)

n;EL* s odd
N L]
and its homogenous components Suj o

3

1 51+52:Sg
u1,u2 24 202+1
Sujg, = D] Z SU24;,20,41 UT  Up (455)
1<51,52\%
B2sy B2y B2s; B2oy
Ssu = =
with 2012021 B2p1+2 62 Bs—s (456)

—_

.__ Bernoulli(24) 26 . let+
526 = (24)! had ZoggﬁZJt T 2et—1

verify the desingularisation criterion (450). They cannot be beaten for explic-
itness, but the denominators [s_3 in their coefficients sets them apart from
the ‘arithmetical’ singulates.

The associated exceptional bialnernals.

For any system {l(z)maH'S; s = 3,5...}, a combination of type

5;=3
hg® = 2 Csy,5, ari(lomajy , lomay, ) (457)

$1+82=s

has a length-4 component hg) that is bialternal if and only if its length-2
component hgsy (and therefore hgj too) vanish. That condition in turn is
equivalent to:

8123
0 = Z Csy,s,ari(ekmaf, , ekmaj ) (458)
S1+82=s
ekma”! 1= uj !
with ls 1 , (459)
ekma”;’“" =0 if r>1
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Proposition 5.7 (Distinguished pre-cgorma relations) . Let

s+4 s—2 s—4

e 10 Rl B ey e R PTC)

12 I+l 12

oo(s) ==

For any even weight s = 8 there exist o5(s) independent bialternals of weight
2, and for any even weight s = 16 and # 14, there ezist exactly o (s) depen-
dence relations between the bialternals of weight s. Amongst these, we have
an arithmetically privileged system. Indeed, for 1 < k < o*(s), we find

0 +ari(ekmaﬁ1+202(s)+k, ekmaﬁ3_1_2az(s)+k) (461)

k . . °
+ 21@@2(3) C1495,5—1-25 arl(ekma”H%, ekmaHFk%)

with rational coefficients C]f+25,5—1—25 that are arithmetically regular in the
sense that the largest prime factor p on their denominators is always < s—>.

Proof: Tt relies on formulae closely parallel to those mentioned supra for the
coefficients of the singulands Saj 5, So , and their coefficients.

..
s

sponds a system {cgrma, ;;1 < k < 0j(s)} of exceptional bialternals:

The bottom-line is that to any system {lgma’ ;s = 3,5..} there corre-

cormay i = he Lt cormay T =0 if r+4 (462)

+ari (1@maﬁ1+202 (s)+k> lgmaﬁsflfmﬁ (s) +k)

with hej, ;. = (463)

k . . °
+ 21@@2(3) Cl426,5-1-25 arl(lgma”H%, lgmaHs—l—Qé)

In particular, to the three systems {l@maﬁs; ¢ = a,o,u} there correspond
the three systems {cgrmaj,;; ¢ = a,0,u}. The first two (with a or o) are
arithmetically simple (no prime factors larger than s—5 on the denominators)
and the last one is particularly explicit.

Thus, while the elementary length-4 bialternals (i.e. those generated by
the ekmaﬁs‘s) do not appear to possess really privileged bases, the concep-
tually more complex exceptional bialternals, strangely, do. Moreover, as we
shall see in §6.4, at any given weight s, they are, though independent, yet
connected by a mysterious dependence relation modulo ¥, where 3 denotes
the essential part of the Bernoulli numerators, i.e. these numerators pruned
of all their small prime factors (those less than s).
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6 Complements and tables.

6.1 Basic reminders about moulds and bimoulds.

6.2 Basic reminders.

This brief subsection serves no other purpose than recalling some elementary
definitions and fixing the corresponding notations.

6.1.1. Alien derivations and displays.

Alien derivations are noted A, (resp. A,) in the multiplicative (resp. convo-
lutive) models. In the multiplicative model, we also have the d,-commuting
variant A, and the corresponding z-constant pseudovariables Z*:

[0, A,] =0

464
0, Ly, =0 (464)

A, :=e “FA, {

From these are formed the ‘displays‘ dpl($), which automatically extend
relations R involving resurgent functions ¢; and the operations (+, x,0):

dpL(P) = B+ D D Z " A, AL G (465)
1<r w;
{R(&1, 61, ) =0} = {R(dpl(#1), dpl(&1), .. . ) = 0} (466)

6.1.2. Basic symmetry types for moulds and bimoulds.

A* alternal < 0 = Deshaw W) A° VW W"
S* symmetral < SY' S = Dwesha(w w O° VW' W
A® alternel < 0 = Deshe(w wn A V', w”
S* symmetrel < SY'SY" = Y weshe(w w) S Vw' W'
A* alternil < 0 = D weshi(w w4 V', w”
S* symmetril < SYSY = Zweshi(w,7w//) SY  Yw',w”

(i) sha(w',w") is the set of all shufflings of the sequences w',w'.

(ii) sha(w’,w") allows order-compatible contractions w; + w’

(iii) sha(w’,w") allows order-compatible contractions w; @ wj and to each
such contraction (multilinearly) associates a pair:

/7 " /7 "
f 4 u;tu
Ly uptus ey Yy G oeee

: / J ( " ) . 1
<A(‘“’ v "“)—A A >P(v'.—v’-/) with P(t) := n
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6.1.3. Basic mould operations.
C*=mu(A*,B*)=A*xB* < C" = Z A¥ BY
u=ul.us

C* =ko(A*,B*) = A0 B* « C" = Y. AWlh=hwipy’ pu’

1<s

lu(A®, B®) := mu(A°®, B*) —mu(B*, A*)

6.1.4. Basic bimould operations.
Systematic abbreviations: W jp.. = U + Uj + Up... , Viyj 1= V; — V;

Main unary operations:

{B'zpariA‘} — {B(WI ----- wr):(_l)TA(wl ----- wr)} (467)
{B* =neg A} = (B = AW} (468)
{B* = anti A°} — {BWr-wr) = glorw)y (469)
{B* =swap A} = { BOLT) = gl s ) (470)
{B*=push A"} — {Bu; D I Qe s A J;:p} (471)

push = neg.anti.swap.anti.swap

The four basic flexions |,| and |,|.
They are always defined relative to a factorisation of w. Thus, if w = w'.w”

with w’ = ("°"2) and w” = (""" we set:
V1, V2 V3, V4 , Us

’I.U,J _ (ul , U2 ) |'w// _ (u1,2,3au4au5>

V1:3 , V2:3 V3 ,V4,7Us

w’] _ (u1 ,uz,3,4,5> ['w” _ <U3 , Ug u5>

U1, V2 V3.2 , V4:2 , Us:2

The ari/gari structure. The Lie bracket ari, the pre-Lie law preari, and the
mu-derivation arit(A*) are defined by:

w = abe w = abe

N* =arit(B)M* < N* = > Mg — X' peleplt
ari(A*, B®) := arit(B*).A® — arit(A®).B* + 1u(A°®, B*)
preari(A®, B®) := arit(B*).A* + mu(A*, B*)
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The associative law gari and mu-automorphisms garit(A®) are defined by:
w = [[ a’bic?
N°® :garit(B')M' o= N¥ — Z M[bl]..[bs]BaIJ”BasJBlcl”B[c

* *

gari(A®, B*) := mu(garit(B*).A®, B®*) (B; := invmu B®)

S

6.3 The operations lu/mu and ari/gari: so different, yet
so close.

Despite the sharp differences — in shape, complexity, sophistication, proper-
ties — between the homely, uninflected operations lu/mu and their inflected
counterparts ari/gari, there is no lack of pathways and correspondences be-
tween the two domains. Let us mention but four such pathways.

6.2.1. Origin of the flexion structure in mould algebra.

Moulds of the form M¢% = A®*x Id*x A} with A®*x A} =1° are stable under
(mould) composition, and the equivalence holds:

(M = Mo M)« {C* = gari(A®, B*))} (472)

Interpretation: the left identity in (476) involves u-indexed moulds A*, B*,
C™ ; the right identity re-uses those same moulds, but viewed as bimoulds
AG), BG) %) constant in v.

Strictly speaking, (472) derives gari only for u-dependent bimoulds, but
once a flexion operation is defined on the u;’s, it uniquely extends to the v;’s,
and vice versa.

By the way, the quickest way to check the associativity of gari is actually
by using the mould-to-bimould correspondence of formula (472).

The ari-bracket, needless to say, is capable of a similar derivation, from
purely uninflected mould operations.

6.2.2. scram/viscram as bridges between non-inflected and inflected.

As already noted in §1, scram and viscram turn lu/mu into ari/gari when
acting on alternals/symmetrals. In the case of viscram, one must also assume
the neg-invariance % of the arguments A®, B*, R*, S*.

scram.lu(A®, B*) = ari(scram.A®, scram.B*) (473)
scram.mu(R*,S*) = gari(scram.R*, scram.S*) (474)
viscram . lu(A®, B®) = ari(viscram.A*, viscram.B*) (475)
viscram . mu(R*,S*) = gari(viscram.R®, viscram.S®) (476)

93i.e. invariance under the change w — —w.
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6.2.3. Internal flexion substructures where ari ~ lu and gari ~ mu.

A bimould A* is said to be internal if, for all r, it verifies two dual properties:

fut w0 = {a01) Zg (477)
{v; — v, = const; Vi} = {A(zi ) = A(“i """ ”4')} (478)

Internals constitute an ideal AR e of ARI resp. a normal subgroup
GARI;ierm of GARI. The elements of the corresponding quotients are re-
ferred to as externals:

ARLgtern 1= ARI/ARIinem (479)
GARLugern = GARI/GARIerm (480)

The crux, however, at least from this section‘s viewpoint, is this: when
restricted to internals, the ari bracket reduces (up to order) to the lu bracket,
and the gari product reduces (again up to order) to the mu product:

ari(A®, B®) = lu(B*, A®) , VA* B* € ARIintern (481)
gari(A®, B*) = mu(B*, A®) ,  VA* B®* € GARILutern (482)
The identity (482) is particularly striking, as it connects the gari-product,

which is linear in its first argument but highly non-linear in the second, to
the bilinear mu-product.

6.2.4. Another flexion substructure where ari ~ lu and gari ~ mu

Let l@ﬁl be the weight-1 generator of ARI %g
(o) , (M) 0 if e :=
lo)y =0 o r+1 , oy = {1 . (483)

bico* bico
is characterised by any of the three following properties:

The so-called ‘colour-swicth’ ideal ARI®Y/%, = ari(loj,, ARI g/ 1) it generates

(i) sa.A* is invariant under the switch € < 5 — € VA® e AR[%ZJ*

(ZZ) SCL;.A. =0 VA. e AR[&ULZ

bico*

(Z’lZ) 8@2.@%(14'73') = ZU<$02A., SCLEB.) VA', B*c AR[@/ZJ

bico*

The last identity is yet another instance when ar: reduces to lu.
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6.4 The non-vanishing determinants behind the inde-
pendence of the bicolour generators.

Here are the first determinants det; ,(x), det; 4(x), det} 4(z) related to the
expansions (247) and the independence theorem for bicolour generators. To
simplify, we give their expression in terms of ¢ := 22 and after factorisation.
The properties mentioned at the end of §3.8, Remark 3 (regarding the sys-
tematic occurence of Bernoulli numbers when x = 2 i.e. t = 4) are easy to
check on these polynomials.

det g 1—t) (145 t+312)

— o~

detd ¢ 1—t) (1+14t+1412+121¢3)

%
detQ,12

= (1-t)
= (1-t)
det |, = (1—t) (1+28¢+681>—186¢3—242¢* 3355 —38810-132¢7-78%)
= (1—t) (1—t2) (1+44t+113t2—15403—1473 14 —2224 17 —2266 t6—2404 t"— 6825 —816 t7)
= (1-t)

det¥ |, 1—1)3 (1467 t-+406 124949 t3—26348 t* —63628 t> — 172470 t5— 195653 t7— 126185 ¢3

—4659812—10837 104148108 t11 +293092 ¢12 + 338388 ¢13 4272508 t 14 +198298 ¢ 1°

+177792 16458188 t17+21996 t18)

detd o = (1—t)? (1—t%) (1+91¢+675¢>—14627 ¢ —101013 t* —280923 t° — 1435701 t°—2666839 t”
—2584726 182527926 t°—2320040 103326922 t11 — 1668990 12— 411564 13 +1053724 t14
+971728 15 +979812 161721968 t17 41802856 t18 4337212 ¢1° +234072 ¢20)

det} 1o = (1—t)3 (1—t%) (14+121t+1359 t2—32180 t3—399947 t*—1835023 t° — 11185716 ¢° —52269321 ¢”
—137804883 t8 244724288 t°—120412367 t10—385583935 t11 —1034912118 12 —651619915 ¢13
—441792167 t14—569706696 1° —571598493 t16 —140742595 ¢17 — 172000763 '8 +435966682 9
+991769202 t20 4785612744 t21 4620751262 t22+813401872 t23 +877320078 124 +580476302 ¢2°

+48763133226 4111355464 ¢27 +232438932 t28 459619348 2 +24120828 t30)

detf g = (1-1) (1+9t+23%+713)
detf o = (1=8)% 1458+t —15¢3—11¢4) (1427 t+196 1% +194 ¢3+14214)
detd |, = (1—t)3 (14+72¢+1836 12 +19479 13+ 75638 t*+58044 15 +421323 10+2091202 7 —2919364 ¢

—12020401 t9—23718680 10 —29632044 t11 —27041474 t'2—18620272 t13 —6653096 14 —2356984 ¢15)
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detf o = (1—t) (1+13t+59t2+99¢3+314)

detf 5 = (1=1)? (1+5¢+32) (1+41—-212—131) (1+40 ¢ +547 2 +2742 % +2664 t* +1650 t°)

det} , = (1—t)° (14+5¢—t2—2583—131*435¢°+2715) (1+133 147564 12 +240867 t3+4727566 ¢* +-59397187
+481146696 t5+2469970604 ¢ 7 +7500150554 8 +7969894970 t° —44183297627 10 —248885402276 t 11
—796111962965 t12 4021650070796 13 —11629580824379 t14 1023971816277 t1° +49784572223508 ¢ 16
+139955874257862 17 +228311239164350 18 +271152533003464 t19+246093900307300 ¢2°

+165974984510692 t21 +84693433549488 t22 +26943862007448 t23 + 6658284781512 t24)

6.5 Unexpected arithmetical interdependence of the
length-4 bialternals.

Let Bj, be the Bernoulli number, and let 35, be the essential part of its
numerator, that is to say, numer(Bg,) deprived of its small prime factors p
(of all p < 2n — 5 to be precise).

The exceptional bialernals, or cérma® bialternals, have length 4, and three
systems {carma},,}, {cormaj ;}, {curmaj, ;} have been constructed at the
end of §5.7. The first such bialternal occurs at weight s = 12 and in that
particular instance all three constructions coincide:

Carmajyy = COTMajiyy = CUrmajy

This is but natural, since they could only differ by natural bialternals, which
do not yet exist at weight s = 12. But the surprise is that all the (rational)
coefficients of this unique cgrmay,,, have numerators divisible by i, =
691, although nothing in the way they are constructed would lead one to
expect such improbable divisibility.”® This makes one wonder whether the
phenomenon, in some form or other, extends to higher weights. Well, the
empirical data suggest, overwhelmingly, that it does: for all weights s up
to s = 60, we found that, given any basis {e? } of natural, length-4,

$1,892,83,54

94This applies even to curmag,, ;: the lurmajs, lurmajs, lurmaj, and lurmajy that enter
its construction do involve Bernoulli numbers, but smaller ones.
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weight-s bialternals,”® there exist unique relations®® of the form:

. . _ *
Z bag , carma; . + Z Cllsy 5,53,51 Coy.s5.55.80 = 0 mod /3! (484)

kéajf(s) > si=s
. . *
Z bos ; cormay, ;. + Z COsy 5,53,54 Coy.59.55.50 = 0 mod /3 (485)
k<o¥(s) Yisi=s
. . o *
2 bu,  curmal ;. + Z Cls, sg,53,50 Coyap.83,55 = 0 mod [ (486)
k<o (s) Disi=s

Remark 1: The identities (484) and (485) make full sense, since by con-
struction, all the denominators in carmap , Or cormayg , are invertible mod
pZ. But the third identity (486) also makes sense when the denominators
=80 < s — 2 of the lumaj entering the construction of curmaj, ., are co-
prime with g,. That appears to be almost always the case: the large prime
factors of a given Bernoulli number do not seem to recur in the next consec-
utive numbers.
Remark 2: Clearly, the existence (resp. uniqueness) of the relation (484) is
equivalent to the existence (resp. uniqueness) of (485) — and also to that of
(486), modulo the caveat of Remark 1. But we prefer to consider all three
systems to help identify hidden patterns, also for guidance in the search for a
series of ‘remarkable’ and exact (as opposed to reduced mod () bialternals
standind ‘behind‘ these relations. But so far no such pattern and no such
back-stage bialternals have emerged.
Remark 3: All the numerical data show that (with the trivial exception
of s = 12), the identities (484),(485),(486) always involve a non-zero second
sum consisting of natural bialternals. Again based on empirical evidence, this
still holds true if, taking advantage of the latitude allowed in the construc-
tion of the exceptional bialternals,” we replace the first sums (consisting of
o (s) = O(s) terms) by larger sums (consisting of o3*(s) = O(s?) terms) and
correspondingly shrink the second sums (which still retains O(s?) terms).

=
951 . L . . . . . . .

Wlt}.l €3 55,55,54 ‘=01 (€kmaj, , ekmaf,, ekmaHs‘s, ekmausfl).. We must of course pick
the basis elements ef . . ., that themselves verify no trivial dependence relations

mod B¥, but that poses no difficulty.

96unique, of course, up to multiplication by any invertible factor modulo B.

9Indeed, for any given odd weight s, there exist exactly [sgl] degrees of liberty in the
construction of the singuland-based lgma, since the general solution of the desingular-

isation equation (476) for Sg] , depends on exactly that number of parameters. As a
consequence, the latitude in the determination of the corresponding cgz)rmaﬁs . bialternals

isoF*(s) < Z;lsoidgs_:i[%] = O(s?) and definitely of order O(s?). Note that the relevant
sum here is Y [#141], not Y [#1H][2241], since in the construction (476) of cormay, ;. the

length-3 components of l@maisl get bracketed with the length-1 components of l@maisz.
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Some examples.

The first dependence relations with o} (s) = 1 is for s = 16, 5} = 3617.

cormaf;s, + 1805€5 357 + 11155557, =0 mod 3617
carmaf;s, + 2675€5 337 +518e335, =0 mod 3617
curmags, + 11113357 +3436€335; =0 mod 3617

For s = 18, we get the following relations mod f;5 = 43867:

cormags, + 383145339 +413€5 55, +41405€5 35, +11781e5 535 =0
carmaﬁl&1 + 27081 e§73’3’9 + 16590 6575’377 + 2381 eg’37377 + 5152 6575’375 =0
curmag, ¢ + 38314 €335 9 + 413 €35 37 + 16938 €5 337 + 37406 €5 555 =0
For s = 20, we get these relations, mod g3, = 174611 = 283 x 617:
cormaﬁm1 + 21797 e§73’3711 + 6686 65737579 + 80152 65757379
+154426 €3 7 5 7 +55432e5 539 + 170246 €5 5 5, =0 mod 283 x 617
carmayy, ; + 93615€5 55, + 1067453359 + 15071555 59
+123787e3 737 + 12924 €3 539 + 160255 55, =0 mod 283 x 617
curmagy, ; + 50086 €355 1, + 69114 €5 559 + 65057 €55 459
+61841e5 7537 + 15391263 53 + 22526€5 55, =0 mod 283 x 617

The first relations with o (s) = 2 come with s = 28. Neglecting the second
sum (i.e. the natural bialternals), we find:

3148968694 cormayzg 1 + 522158523 cormayzg s + ... =0  mod 9349 x 362903
325201091 carmayzg 1 + 2689482059 carmayzg s + ... =0 mod 9349 x 362903
933645869 curmaygg 1 + 1708525547 curmayzg 2 + ...= 0  mod 9349 x 362903

The reason behind these extraordinary relations (which have no equivalent
modulo any number m; of the form [, p/" but other than ;) is totally
unclear to us. Nor could we find any privileged and uniformly defined series
{bial®} of bialternals which, after reduction modulo ¥, would produce these
relations.

6.6 Spectral analysis of the push operator acting on the
eupolars.

Eigenspaces of push and their dimensions DP, ;.

Let Flex = Flex(€) be the monogenous flexion structure generated by a flex-
ion unit & (all such Flez(€) are isomorphic) and let Flez, be its component of
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length r (i.e. the component containing the bimoulds of length ). The push-
operator, when restricted to Flex,, has order r+1. For any d|r+1, let Flez, 4
be the subspace of Flex, spanned by all push eigenvectors with eigenvalues
that are exactly unit roots of order d. Lastly, let D 4 = dim(Flez,).

Main conjecture.

The dimensions of the push’s eigenspaces are given by:

DP,s =2

@2r! 1 Z (2d)! (I)r+1 r+1 (487)

rl(r+1)! 2r+2 dd! (d7 ) )

Here, the one-argument ®(.) is Euler‘s classical totient function:

od) = [[@r-p) if d=]]p" (488)

n;=1 n;=1

and the two-argument ®(.,.) admits these two equivalent definitions:

®(d,d) = ‘I’(d)Hp;w:pfw:..:O if 5:1_[19;,’1' (489)

1/120

od,0) = [ (w—nl* s =m0 p) (490)

with the sign function [m]* := 1 if m > 0 and [m]* := 0 if m < 0. If the
prime factor p; occurs in the decomposition of d but not in that of 9, we have
to set v; := 0 in formula (490).

Clearly:

®(d,1) = p(d) = Mobius function
®(d,d) = ®(d) = Euler's totient function

a(d.d)= Y u()a, (191)

Oxld,oxl6

Vn Do(d,5)B(n/s) = n if d=1
o — 0 if d+1 and dln  (492)
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Properties of the dimensions DP, ; .

Property 1: The formulae (487) holds true for all pair (r,d) up to r = 10.

Property 2: It yields previously conjectured formulae in the special cases
d =1 (since ®(d,1) = pu(d)) and d = r+1 (since ¢(r+1,r+1) = &(r+1))

while preserving the general expression of DP, 4 as a pondered sum of me-
(2d)!

dian binomial coefficients T

(2r)!

rlrdl)!
Flez,(€) of the monogenous flexion algebra. Indeed, due to the above identity

: r)! r+2)!
(39), the sum > 35, 1) PDys ©(6) reduces to the difference 2 (j r)! -1 (Tﬁ)!tfll)!,
(27r)!

rl ()

Property 3: It also yields the proper dimension for the component

which is equal to the expected dimension

Property 4: Lastly, and even more convincingly, it yields an integer for

each eigenspace of push, despite expressing DP, 5 as a sum of fractional terms

1 (24)! (I)(r+1 ﬂ)

2r+2 d'd! a8

Remark 1: (34) easily implies 6|02 = DP,5, < DP, s,

Remark 2: There is an alternative, simpler expression for DP, 4. Let
Xpush(7, 1) be the characteristic polynomial of the push operator restricted
to Flex,(€). Then (34) amounts to saying that

Xpush (T, t) = H (1 - tél)DP:‘S, (493)
§|r+1
with
DP}y = >, DP.su(6/0) (494)
&|8|r+1

The remarkable thing, though, is that, for any given value of §, the coefficients
DP? s, unlike the earlier DF, 5 assume ony two distinct values. In fact, r is
necessarily of the form né — 1 and we have

with
2n-2) 1 (2d)!
_olenTa S 4
= S tn—1)! 2”%M<n/d) dl d! (497)
1 (2d)!
Bn = ﬁ%u(n/d) adr (498)



Thus

[0, o, ... ] = [1,1,1,2,3,9,19, 58, 160, 499, 1527, 4940 . . . ]
(81, B2,...] = [1,1,3,8,25,75, 245,800, 2700, 9225, 32065, 112632.. . . ]

The factorisation (493) therefore becomes

d<r+1

Xpusn (1, 1) = (L=t [T (1—#0)7% (499)
8|r+1

which implies for the dimensions DP, s the alternative expression:

&<r+1
DP,s =, — Z Bs (in particular DP,,.1 = oy41) (500)

818/ |r+1

To show that 500) with a,, and 3, as in (497)-(498) is truly equivalent to the
earlier expression (34), it is enough to plug the identity (38) into (34).

6.7 The lifted variants of the ar: bracket.

To each flexion unit € there corresponds a flexion algebra Flex a lift operator
le acting on

le A® := arit(A°®) €° (501)

e - Flex — Flex
" | ARI - ARI

The lift le and its powers clearly preserve alternality. More significantly:

Proposition 6.1 Although le" Flex and le".ARI are but small subspaces of
Flex and ARI, these subspaces are stable under the ari-bracket.

- ([e:.Flexm [e:.Fle:z;,.Q) — [e:.Fle:c”Mﬁn (502)
(" ARI, ,le". ARI,,) — " ARl {1 1n
This induces a series of lifted Lie brackets arile,:
Fi 719 Fi T2 - Fl ri+ra4+n
arile, : (Flez, Flexr,) Eorutrat (503)
(AR[T‘U AR[TQ) - AR[T1+T2+7L
characterised by
ari(le" A%, [e"B*) = [e"arile,(A°®, B®) (504)
and acting according to the formula
—arit(le" A*) B® it(le" B®) A*
arilen (A%, B*) — | Ul AT BT 4 arit(le” B (505)
+ 2=, Tu(le™ A®, 1e™ B*)
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For n = 0, ariley = ari and we recover the usual definition of the ari bracket:
ari(A®, B*) = —arit(A®) B* + arit(B*) A® + lu(A°®, B*) (506)

For the polar flexion units * = Pa® resp. Pi® with Pa" = P(u;) = 1/ug
and Pi¥" = P(vy;) = 1/vy, the pair (le,arile,) is denoted (la,arila,) resp.
(li,ariliy). Only this second pair of operations is of practical importance,

because it alone preserves entireness, and that too only when the bimoulds

depend on the sole lower indices v;’s: arili, : ARI% ™" — ARI% ™",

6.8 Tables: the satellites sa, sa*, sa™ up to weight 9.

We tabulate here, for the first 11 linear generators of ARI a/d up to weight 7:

bico

M. :ICLTi (MH.sl’ MH.827 .. 7M||.Sk)

[51,52;-,5k

all three satellites sa, sa*, sa** with the following abbreviations:

sagM*® = A* | sa’iM'zzb” , sa M*® =:

sa.M*® =:C* . . B
sag*M*® = A* | sal*M'z B, sa M*® =:

II& It:B

(i)For the lower satellite saM*, we give the list of values {C% ¢ € {0, 1}}
in lexicographic order.

(ii) We tabulate the all-white upper satellites saiM*® = sa§*M* only for M
MH'3, MHS, MH7 since in all other cases they are = 0.

(iii) For a given weight s, the all-black upper satellites sa’;M * and sa*%‘*.]\/[ *

I

differ more and more as the degree d increases.
(iv) Dually, for a given weight s, the co-satellites sa’ .M* and sa® . M* differ
2 2

more and more as the length » = s — d increases.

(v) The lowest-degree non-vanishing satellites sa’.M* and sa}*.M* coincide
2 2
up to sign and so do the lowest-length non-vanishing co-satellites sah . M*

3
and sa " M*. In fact:
sat M® = (—1)? sal M* for lowest degree d

saf M* = (—1)" sa1 M*® for lowest length r
2

(vi) The lowest-degree non-vanishing satellites sa}.M* and sa’*.M* are marked

2 2
in red when they coincide; in blue when they have opposite signs.
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(vii) The lowest-length non-vanishing co-satellites sa’ .M* and sa® M* are
2 2
marked in red when they coincide; in blue when they carry opposite signs.

(viii) For easier comparison, we resisted factorising the degree-1 components;
nor did we factor out the prime 7 common to all components of all satellites

* * %) *
of Mty 1, Mifs 1 15 Mgy 50 Mifs 1111

Cig={0,-L, 1,1 -2 14,10}

T 81478 )8
U _ AUl _ 2 uu2 _ ful,u2
Ap) = Ay = +ui Ay = A U1+ U
wi _ 3.9 uuy 1, 1,
5[31] = _gu; 5[3] = _§U/1 + §LL2
u U1,
By = +5ui Bi™ = —gu1 + 5w
§7L1 _ +l71,% §U17u2 — +§'U/]_ —_ QuQ
%’[Mgl] _ +iu2 %l[i]’w = —%u + %u
=[] 871 =3 8l T "2

_ 7 21 21 7 7 21 21 7
C[3,1] - {0)_ -%,0,%,0,0,—g __70707§70a_§a§70}

Bys =0

ur . 7,3
é[g’l] +87%3
1 — L
2[3’1] - +8u1
up _Zu?)
=[3,1] 81
u,u2 7,2 7,2
5[3,1] = —qui Uy
u1,U2
=(s,1]
uu2 7,2 7,2
2[3,1] = —gui t 3up
ur,dy
By =0
ul,u2,u3 7 _ T 7
5[3,1] = +gup — JUs + gus
uruguy 7 Toro T
S5 = —gU1 + juz — gus
Uy, u2,u3 __
By =0

upuz,u3 7 _ T 7
§[371] - +8u1 4“2 + 8u3

=0
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Cls) = {o,
0,0,0 0,23 20 63
7327 23 29 81 2
) ﬂ 3277564, 64) —3200, 7 4=1§=367457 S
PN 369 . 1 3 375 61" o0 a2
- 6 64> %3264 646 520 —4,1,0}
Aul ) ‘ )T 320 ) 0
+u
1
U1 _Q 4
ELS] 161
1
S
1 _ 4
%[5] +uy
ur __ 4
2 T +uq
AU17U2 _ Uul,u
A, _A,2:_2u3_12 1
o, T T e i e
B — 429,34 23,9 23 ’
2903 + Buduy — 2302 — 29,3
Bu17u2 1 3 2 b 32"
B = —Lud - 29 2u2 4+ 29 312 g
R U2 o 64U1UQ+ 2
B — 33,3 _ 125,92 ”
‘" 333 — 125, u+125uu 33,3
PR 1Uy + 55Us
~u, 35 U7 64U1U2 + ulu% + gg’ug
,U2,U3 Uu,uU2,u
A ) ;U3
BE]M N A5] = +ou? — —u1u2 —qud + 3uqus — 2
B~ B2 By~ 83— By + By 4 P
Bu1,u2,u3 — +53 2 123 16,2 3ZUIU3 + U2U3 i 33 2
u ) u? — 64U1U2*63 2+123u 123 ‘o
§51, 2,U3 __ 29 2 17 e o o 2 + 63U2
5 —iU gt + g ” s
s _ 3$ 2 cUs + TgUUs — 1 ous — 222
:[5] 3_2 1+ i Uuo — 2 27 32 3 u3
64 1U2 1 u2 S5 U1U 27
R A = —U1 + 3Us — 2U3U4
D5 = —U1 + 3U2 — 3U3U4

UL ,y...,Usg
2
1yeeesUd 15
B _ 15, _ 45
1[?] +igU gl + Doy — 13y
2[51]””#4 _ 16 16 4

= —Up; + 3Ugy — 3U3U4
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B3y
Biin” =
By
Bisaij

Bu LyeenyUd

571,1]

B'u 1,

‘311]

UL,y..., U4
By
UL yeeey U

=[3,1,1]

4

:_|_Z
= +1 U1_

- __u]. + _U/Q -

- “qul
Sud — 4 7 SU1

ZU1U2

+ UU2—4

7.3
gU2

7..2
1“3

7
——ul + uluQ—i- u2

4

7,2

“UrUs + §u2u3 — gU3

=0
7,2
= +t3u

_7I
18
21

8 U + *Ug —
- *11/2 —|'

Urug — Tud + Tuuz — Tugus + Luj

7

8
z 11/4

Uy

ud —

=0

21
——u1 + —u2 — gus+ u4
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31 279 31 465 93 93 93 31 155 93 93

Cisay = {0,0,0, 55,0, =57 500,051 — 60 00 5> ~ 16 ~ 5200 ~ 3 0 150 61
0,9 219 31 93 465 93 155 (. o 155 93 465 _ 93  _ 31 279 93
180640 64200 80 64716° 32 17320167 640 8° 64 64 8
93 _ 93 155 _ _ 31 _ 93 93 93 465 31 279 31
0,65 160 " 3200 T30 T8 1600 00 61 6400050 51> 61005 370,050}
Bisy =By = Bisa = B,y =0
U1,u2 _ 31 4 31 4
By ~ it .
u1,u2 _ 1 4 3 4
B[ = +3 6.4u uy + 3 u1u2 S5 Uy
oz _ 31 4 31,3, 31 31 u
§[571] = 3%ul + g%ulltg g%umz + 3 Usy
U, U2 : 4 p 1 4
20 T —53U; + 64u1u2 o u1u2 + 35Uy
w1, ug,u3 9303 4 Ly 2y — 3Ly 2 93 3 31 w2 2, 93,3
=[5,1] +93 ™ 167;?1“2 16192”2 16“2 uduz + Bugud + Bul
U,U2,U3 2 2
B = 16u1u2 + UiuUs — 16U2U3 + 2 u1u3
uiuzuz _ | 93 wd + B2y, — AT 93 w3 155 2, 217 155
%[5 1] = +93 + 161;;162 3291;1% 93 5+ S uTus — 55 2l usus +
Pt — By u3 uiug + Touiuz — o u3
=5,1] 2 2 3
:[g’l‘j""‘i = -2l + @u]ug + %uQ 13525u1u U3+ P Ugly — Uty + U
Urytis Q/ 2, 155 92/ 2 155, 5, 2 % 155, 31/ 2
BT T U + g U1l + 35Uy — S5 UIU3 — 53U + 55 Uty — - UsUg + 55Uy
ul,...ua 31,2 , 31 93 2 _ 31 93,2 | 31 31 31 2
2[5’1] = —{UT + Furup + Jguy — Spuiug — 5U3 + Uty — §U3U4 + T6Ua
. 31 w2 — 155 _ 93 U2 155 93 g — 18 ~ 31,2
2[5’1] = +3 SrU1U 5+ Spuiuz + 35 Duguy + 2 u3u4 Ul
Bul, Bul’ U4 EBUL UL %ul,..., E—

_[57 1] ] :[5,1]
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21
R
_ 21

4

B

©
ol ®

(V)

[

o

w

[y

(V)

[y
®|~ 00

0, —

NN

|
[\
[y
|8

0,

(251 _
=[3,1,1,1]
Ul _ +7 5
=[3,1,1,1] 8

u1l _ 7,5
D311 — T3

= —*tu
=[3,1,1,1] 81

Bu:zl,ﬁil] =0
B = ~Jud - T+ Junad + 1
%E’luil] = Zu‘f — %U1U2 + u1u2 + 1 Tug
%“;’iil] = +£u‘f + gui’m - gulug — %ug
Bis iy
%311“?11%3 = +Zuuj — Fufus + Fujus — Fugud
%U17u2,u3 _
2[3,1,1,1]

ur,uzuz _ 21 21,2, _ 21 21
%[371,1’1] =—3 u1u2 + Fujus — 3 u2u3 + 2 u1u3

21,2 21,27,2

7 Up — U3 Uy
21 21,2 , 21 21,2 21 7,2
— g UIU2 — TU + FUUz + FUz — T UU + 2 u3u4 — Zug

=0

UL yeeny Ul T
Bz, = ¥
UL yeeesUd 7

+au

=N =N

=[3,1,1,1]

Bis i) =
B T+ B = s = o~ G+
Bugl,’l’l,l] = +§U1 - %Ug + Jus — ‘U4 + U5

:7[‘31117;] = —Zuy + Zuy — 21u3 + Tuy — §U5

Bisiia) =0

%“;”Llﬁ] = +5uy — Jug + 2ug — Jug + fus
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C7 _ 30663 _ 91989 _ 29123 459945 184363 _ 9687 _ 153315 187217 1427 221 17947

> 512 7 256 512 7 512 7 » T 1980 ) 128 ) 764 0 160 128 7
_ 103217 106385 459945 118283 103401 64 03 53841 97855 _248477 17947 119 105779

12 7 512 12 6 7 128 ) 64 2 512 7 512 777 128 7 5127 2
68607 _ 70559 3431? _1714% _ 30659 1989 19585 4467 30829 103401 _ 36681 %%443

512 5 512 0 . 256 0 _ 512 ) 256 0 5120 5120 12 256 0 512 °
Olfosor 12577 22080 119%%Rozsto e _34281 %1477 Boods 9687 1281 T56ua80 7
512 0 64 0 512 0 640 512 0 2560 256 0 512 7 512 2 128 _ 8 512 ) 5127
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231,111 S U1l — FUgUy + “FUSUL — S UG + UIUs — T ULUs
91 21 212
+ugus — Tuaus + FU
wieus T 35,4 85, 35, 35, T,
5[371,171,1] - +§U1 38 Ug + 7 U3 7 U4 + 3 Us §u@
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é[:3,1,1,1,1] = +gUi — gUg + TU3— TUL+ FUs — gUg
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UL yeeny ue _ _Z @ o % @ . @ Z
2[3,1,171,1] = —gU1 + gUg — U3 + Uy — FUs + glUs

6.9 Tables: ordinary and generalised scramble.

For a double sequence w as in (112), we set m(w) := (#uv,,...,#v,) as
usual. The following table gives, for low signatures m(w), the number p =
pt + p~ of terms on the right-hand side of (128), with u* denoting the
number of summands preceded by the sign =+.

moop=pttpT om o=t m po=p"+p

(1,1) 3=2+1 (1,1,1) 15= 8+7 (1,1,1,1) 105 = 53452
(1,2) 5= 3+2 (1,1,2) 35=18+17 (1,1,1,2) 315 = 158+157
(2,1) 6= 442 (1,2,1) 42=22+20 (1,1,2,1) 378 = 190+188
(1,3) 7= 443 (2,1,1) 45=24+21 (1,2,1,1) 405 = 2044201
(2,2) 15= 9+46 (1,1,3) 63=32+31 (2,1,1,1) 420 = 2124208
(3,1) 9= 6+3 (1,3,1) 81 =42+39 (1,1,1,3) 693 = 347+346
(1,4) 9= 5+4 (3,1,1) 90 =48+42 (1,1,3,1) 891 = 447+444
(2,3) 28 =16+12 (1,2,2) 135 =69+66 (1,3,1,1) 990 = 4984492
(3,2) 30 =18+12 (2,1,2) 140 = 72+68 (3,1,1,1) 1050 = 530+520
(4,1) 12= 8+4 (2,2,1) 168 = 88+80
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The following tables give, for elementary signatures m(w) := (1,1, ...), the
scramble SM* of M*.

sut) VAR

ShrCer v) = MG ) G ) G

SMCor v es) = M s es) o MGt s Leas) — e s va)
—{—M(uvlz2:v1112,:jg) (111’112:1;;21,1;3)
LM ) 208 o)
LM e ) — MU va vas) - MU vs e )
U ) (322 ) v L w12
LR s ey (55> s oes) + MU0 ) o o1
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