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1. The barest basics about resurgence.

e The three models: formal, convolutive, geometric.

Resurgent functions live in three models:

(i) In the formal model, as formal power series or transseries ¢(z) of z~1.
(i) In the convolution model or Borel plane, as analytic germs ¢(¢) at 0,
endlessly continuable (laterally along any finitely broken line).

(iii) In the geometric models, as sectorial germs @y(z) at oo in z.

(i) @(z)=>anz™" multiplicative
J Borel
m Dl — n L / : (@1*@2)(4) =
A oo {fo P1(¢1) P2(C—C1)dG
J Laplace

(i) ,(2) = [,gcmg € 2 B(C)dC multiplicative

The singularities of $(¢) carry the Stokes constants and are responsible
for the divergence of @(z). So they deserve close attention.
The tools for measuring them are the so-called alien derivations A,,.



1. The barest basics about resurgence.

e Standard alien derivations.
The one oustanding fact about resurgent functions is the existence on them of a huge array of exotic derivations —

the so-called alien derivations A, (w € Cq = C — {0}). They are bound by no a priori constraints.

B, 3(C) = Zé"“(“ BB D¢ rw) — :,::;:n((+w)>

)

o 1 ol gl Gled et w

AwW(C)Z? > (gt | (2 ’

ef+.-) Fain (¢4 w)

~ A, =e YA,
A, (convol.model) < A, (mult.models) ¢

[0,,A,]=0

The A, (with double-struck A) are the invariant alien derivations.



1. The barest basics about resurgence.

e Active alien algebras.
Let A be an algebra of resurgent functions.
Let A be its closure under (ordinary and alien) differentiation.
Let I 4 be the bilateral ideal of A that annihilates A.
The quotient A 4 := A /I 4 is known as A's active alien algebra.
e Displays. The display of a resurgent ¢ is defined by:
USTEEEICED DI DN /sy W W
with symmetral, z-constant symbols Z:

1 2
0.2 =0 . 29 29 = X pr ot 2

Main property: R($1, ..., $s) = 0 = R(dplgy, ...,dplps) =0



2. Equational vs coequational resurgence.

Equational resurgence

e Relative to a critical variable.

eActive alien algebras ~ One-piece

algebras of ordinary diff. operators.

eOne Bridge Equation.

e Complex valued Stokes constants.

e Governed by ordinary convolution.

e Diff. operators : unconstrained.

eSums ramified at oo.

eStraightforward proofs & statements.

Coequational resurgence

e Relative to a critical parameter.

eActive alien algebras ~ Two-piece
algebras of ordinary diff. operators.

e Two Bridge Equations.

e Discrete tessellation coefficients.

e Governed by weighted convolution.
e Diff. oper. constrained by isography.
e Autark sums unramified at co.

eMuch higher levels of complexity .



3. Equational resurgence: a brief review.

o Critical variables (or critical ‘times’).

Start from an equation E(¢) = 0 (differential, difference, functional etc).

Form its full (parameter saturated) solution ¢(z, t) with t = (ty, ..., ts).

Rule of thumb: there are as many critical times z, = z“ as there are

exponential blocks e~“?" copresent with negative powers of z in $(z, t).

Resurgence equations: {E(y) =0} = {E, (¢, Ayp) = 0}.

Formally solvable, up to the integration constants (Stokes constants).

o Bridge equation.

) w € Q (res. support)

A,p(z, t) = A,p(z,t) with } ) )
A, ordinary diff . operators in (z, t).

The operators A, carry the Stokes contants as coefficients. Otherwise,

they are subject to no other constraints than ‘making sense’, i.e. sensibly

pairing off the exponentials on both sides of the Bridge equation.

B.E. keeps the part of Analysis down to a minimum. B.E. also covers a
huge ground, succeeding in situations where all competing methods fail.



3. Equational resurgence: a brief review.

e Display. Despite looking like a magnified version of the full solution
¢(z,t), the display dplp =@ + > 71 D0 cow Z0 A, . Ay, o
carries far more information: it has far more components and also
encodes the Stokes constants. In fact, it amounts to more than even
the full solution plus the Stokes contants, due to transport property
R(¢1, ..., ps) = 0= R(dpl.¢1, ..., dpl.os) = 0 with the independence
relations and transcendence properties that flow therefrom.

e Resurgence and self-coherence: the part implies the whole.
The resurgent solutions of a singular equation cohere in a way that
convergent solutions do not and cannot: the full solution (nay, the
original equation) can be recovered from a particular solution, and that
too fully constructively (through alien differentiation).

Analogy with irreducible polynomials (recoverable from a single root).



4. Model problem: singular & singularly perturbed system.
Consider this model instance of a doubly singular differential system:

t ~ 0 (variable)

O0=et?Ory + Ny +b(t,e,y',....y") (1<i<v)
€ ~ 0 (parameter)

It is advisable, both technically and theoretically, to change to the
problem’s ‘critical variables’ z and ‘critical parameter’ x, i.e. to set
z:=1/t~o0 , x:=1/e~0

so as to prepare for working in the conjugate Borel planes ¢ and £. This
leads to the system:

14+n;>0
oY = v ()\,-x+ 3 B;',(z)v"> (1<i<v)
nj>0if ji

with coefficients B (z) € C{z~1} analytic at infinity and x-free.



4. Model problem: loose duality equational/coequational.

We assume that the multipliers \; are neither resonant and nor quasi-resonant (meaning that the combinations
—Xi +22,.>0Nj\j) are all # 0 and do not approximate 0 abnormally fast). The general solution, with its full set
1>

{71,...,7u} of integration parameters, may be formally expanded in powers of either z 7l orx—1:
Y =Y(z,x,7) € C[[z Y or x Y] @ C{zPr &M, ... 2/ 7, e}

The "residues” p; € C are the coefficient of z~ ! in Ba(z) = B"W..O(z). To get rid of the ramifications z”i
(which complicate the formal expansions without adding anything of substance to the Analysis) we shall set not
only pj = 0 but also By(z) = 0.

There is bound to be a certain kinship between the z- and x-resurgence, since in the special case when

B,",(z) = ,8:'1/2 with [3,’1 scalar, the variable z and the perturbation parameter x coalesce:

J#i
Y’.(Z7X,’T) = Yi(ZX) + Z Z Y,;(Z X) TIT" e()\,'+<n,)\>)zx (1)

anO n;Z—l

with ¥/(zx) and \7,’,(zx) € C[[(zx) " 1]]. A loose kinship, or lax ‘duality’, survives even in the general case, and
justifies the label equational for the z-resurgence (z being the variable with respect to which we differentiate in our

model system) and co-equational for the x-resurgence.



4. Model problem: normalisers and resurgence monomials.

We replace the general solution Y by the information-equivalent but
more flexible normalising operators © and ©~1. These are (mutually
inverse) formal automorphisms of C[[7]] := C[[r1,...,7.]]:

O (1) 72(r)) = (6F3u(m)) (6F¢a(m)) (i € CIIr)

They exchange the general solution Y of our model system and the
elementary solution Yj,o, of the corresponding (linear) normal system:

Y =Y (Nix+ Z Bi(z) Y") i Y(z,x,7) € C[[z ]| ® C{u;7; e¥**}

iy, i . i . Aixz
82Ynor - )‘/XYnor ' Ynor(z’XVT) =T € '

nor(z’ X7 T)
O 1Y (z,x,7) = Y/(z,x,T)

nor

{ @ Yi(z,x,T) =VYi



4. Model problem: normalisers and resurgence monomials.

The normalisers ©*! result from the contraction of ordinary differential
operators Dy and biresurgent monomials W*(z, x). The latter absorb all
the z- and x-divergence, hence all our problem’s difficulties.

u
10 e (e ) _ ,.
_ ulxz 75 e By i 1
€] = 1+ e w "m " (z,x) D .. DR
igsny
uy ur
1<r P i
ol — 1 - 1y elul 1/\\/(5'/'11 e B:zr,) D1 Dir
= 1+ Y (e (z,x) Dy ... Dy
ieng
— ik g i
with U =<, A >, Dp =T k TkBT’.k
1<ig<v , TZT;kE‘rN

and with ‘monomials' W® inductively defined by

((")Z+|u|x)17\5 Bi}l ..... Bl (Z,X):—W ny
Or to lighten notations:

,,,,,,,



4. Model problem: symmetral/alternal moulds.

{S5* symmetral} +— { Z S@ = §w'gw” V', w”}

weshuffle(w’ ,w’)

{A* alternal} <+ { Z A® =0 V', w”}
wEshuffle(w’ ,w')
Let the D,,,'s be (ordinary) formal derivations. Then:
1+ Zlgr Zwl,...,w, Swlw.}w,D‘Ur ce le

is a formal automorphism

{S* symmetral} <

2 2o

is a formal derivation

Wly.eny,W
_____ w, A9 Dy, Dy,

{A' altema/} <— {



4. Model problem: equational resurgence.

..... Ul e, Up1
@+ ul) Wi Bz = WGz g6 @
Under the z-Borel tranform By : z7 " (C':;;! R b(z) — E(C) , W.(z,x) N W\.(C,x)

the induction rule (2) becomes

_ Sy s S
(—=CHlulx)Win (€ x) = w (G, x) b ((=C1)dzi (3)

0

.......... Uigl se.es U

AUXW(Z} Z:)(z,x) _ Z w i z::>(X)W(b,-+1 ..... ”')(z,x) (4)

th monomials W*(z,x) symmetral & resurgent in z
wi
monics ~ W*(x)  alternal & entire function of x



4. Model problem: co-equational resurgence.

—n gn—l

= oy

We(z,x) — BW*(z,€)

X
Under the x-Borel tranform By :

things are incomparably more complex than under 5B,. The induction rule
now assumes the form of a partial differential equation in z and &:

0 + w190 BVE 8z e = Bz b(2) (5)

with for r > 2 the limit condition : Bow(H Zi)(z,O): (5 bis)

For r =1, solving (5) in decreasing powers of x and then applying the
Borel transform x — &, we find:

uy 1 _ n 1
B (z,6) = _Zufl%a;bl(z) - —u—lbl(z—u%)
n>0 ’

But for r > 2 we must resort to a suitably defined weighted convolution.



4. Model problem: four requirements.

Our approach is unabashedly analytical, in that it strives to identify and
resolve the difficulties at the most basic level, i.e. at the level of the

. Uy ey Ur i
monomials W(bl vvvvv br>(z,x). But even at that level, co-equational
resurgence is a hard nut to crack. To completely master it, we shall
require four things:

(i) a symmetral weighted convolution product weco®.
(ii) an alternal weighted convolution product welo®.
(iii) the (closed) rules for alien-differentiating weco® and welo®.

(iv) the discrete-valued tessellation coefficients, which in this new context
shall take the place of the continuous-valued Stokes constants.



5. Weighted products: symmetral weighted convolution.

For u; € C and inputs ¢;(¢) € C{x}, the following integrals

(2 g)(f) _ fo ) Er(fr) dgr fzr Er—l(fr—l) dfr—l s
ot B(8) dés [ &%) dba(é)d

né+-Fué=¢
with 0 = (6 — (& + - +u &)+ +u-1)?
O =&+ +u)?

unambiguously define germs weco'a g)(f) € C{¢&} provided

U1+ ...+ u; # 0. The mould weco® is symmetral relative to the (ordinary)
convolution product. If the inputs ¢;(§) extend to ramified functions
defined on the whole Borel plane &, so does the total output weco®(§).

N.B. At depth 1, the formula reduces to Weco(g)(f) = uil a(s)

u



5. Weighted products: symmetral weighted multiplication.

Just as ordinary convolution is the Borel image of ordinary multiplication,
the weighted convolution weco is the Borel image of a well-defined
weighted multiplication wemu corresponding to a simple integral kernel:

a(x),....a(x) 2 a@©),....a(6)

wernu& 119 () B wecod ) (g)

For u; > 0 and Rx positive and large, weighted multiplication is defined by the integrals:

(a0 (x) = 1 Fioo alxy)...c(x) dx...dx
© 2wy ,,-OOHE{ (w4 . +u)x—(a+...+x))

(6)

wemu

Integration is along vertical axes Sx; = o < uj§Rx but with o large enough for cj(xj) to be holomorphic on
aj < Rx;. The definition is then extended to the case of general weights u; by continuous contour deformation,

which is always feasible provided the partial sums vy + - - - + u; remain # 0.



5.Weighted products: alternal variants.

o Alternal marking. It is a mould operation M* — M*:

ro8 " 1 #
w W ,Ww e r w wr ATl
M* =i = (71) E m M ] (% summands

w’” esha(w’,&")
that turns any mould M*® into a #-marked mould M*® of alternal type.

e Alternal convolution welo® : welo® derives from the symmetral weco®
under alternal marking and is given by similar integrals.

o Alternal multiplication welu®: The symmetral and alternal variants
wemu® and welu® have rather similar kernels

wemula e Z:)(X) — ﬁ fs(:} SUE D (0 T e(xi)do
welu'a et @) = gl [ G 60 T i) o
() i -1
Sha v (x) = 0] ((ul +.4+u)x—0a+..+ x,-))
(e (s v
u s T s —1) IS i1 (x) S
S(Xi o 1__)XV)(X _ ( ) (X) +1 (X)><

B ((u1+..+u,)xf(X1+..+X,))71



5. Relevance of the weighted convolutions.

o Relevance of weco. The x-Borel transforms W* — B, W?* of the
biresurgent monomials can be expressed in terms of weco products.

BW b ) (2, €) = weeo'a " E)(€) with G(€) == —bi(z — €)

with z chosen close enough to oo for ¢;(§) to be regular at £ = 0. Since
Gi(€) == —bi(z — &), the singularities of the b;(z) are going to dominate
co-equational resurgence. We note here the characteristic interference of
the multiplicative z-plane and the convolutive &-plane.

e Relevance of welo. The alien derivatives of B,JV*® can be expressed as
welo products of the inputs ¢;(£) and their own alien derivatives A, ¢;(&)
with a third crucial ingredient: the universal tessellation coefficients.



6 The detour through combinatorics.

e The radical impracticability of integration multipaths.

Even for ordinary convolution we get impossibly contorted paths. The
position is still worse with the weighted multipaths. Hence the need for a
combinatorial approach.




6. The detour through combinatorics.

e Hyperlogarithms: stability and density.

We are facing here a highly unusual but inescapable interference of two structures:
(i) the multiplicative structure, which leaves the singularities in place,

(i) the convolutive structure, which adds singularities, in the sense that:
(singularity over wj )*(singularity over wp)=> (singularities over wy + wy).

Then, messing up things still further, we must contend with the weighted convolution weco, which also adds
singularities, but via weighted rather than straightforward sums. This forces us to juggle two systems of notation:

@ incremental, with sequences (w1, . . ., w,) (wj = aj —aj_1)
@ positional, with sequences [aq, . . . , /] (o = w1+ ... +wj)
The ideal tool for understanding this hybrid structure is the hyperlogarithms with
@ their two encodings (positional and incremental)
@ their stability under two products : pointwise multiplication and convolution, simple and weighted.
@ their stability under alien differentiation

@ their density property: any given resurgent function in the Borel plane is the limit, uniformly on any
compact set of its Riemann surface, of a suitable series of hyperlogarithms.



6.The detour through combinatorics.

e Hyperlogarithmic monomials: dimorphy.

(positional) v [al,A.A,a,](T) — /T dr, o /73 dr /Tz dry
0 Tr— Qr 0 T2 — a2 JO T — Q1
(incremental) Y eLeeen)y =y [al""’a’](-r) with o = wi+...+w; (Vi)

To express the multiplication-convolution dimorphy we require the upper convolution  , which has the same unit

1 as pointwise multiplication. Its definition is: (©1 * @) =y Y 1(m1) Pi(r—m1)dm
P2 P2 .
X -symmetrality : (v YT = > v o (7) ™
acsha(a’

— ~w! ~ =~ —
* -symmetrality : (vY % v¥ ) = Z Vv “(1) (8)
wesha(w’,w’’)

(7) says that v [o] is symmetral relative to pointwise multiplication.

(8) says that 1 ® is symmetral relative to the convolution .



6. The detour through combinatorics.

e Hyperlogarithmic monomials and monics.

The hyperlogarithmic monomials ve (symmetral) relevant to the present context are defined by:

P@Lwr(c) 1 /< d¢r_1 o /<2 d¢
o= (it tw) o G — (Wit wemn) 0 G—w
~ o ~ o ~ .
and verify VA“’ Ez) . \:’“’/, (z) = ZwEsha(w/,w”) \ju(z) (convolutive model)
Ve «v¥ (1) = Y esha’ w0 Y “(¢)  (formel model)

The corresponding hyperlogarithmic monics V® (alternal) are inductively defined (for wg = w1 + .. + w,) by:

Awovwl,...,w,(z) — Z le,...,w,- Vw,ur,‘,“.,w,(z) (9)

wi+...Fwi=wo

my V¥ =0.

The alternility relations read Zu&sha(ul,w )

They monics V® univalued, piecewise analytic functions of their indices w;.



6. The detour through combinatorics.
e Index differentiation for the hyperlogarithmic monomials:

Wi(By +2)VIIIE(z) = Sp R (g

wj(c’}w.Jrz)le""‘w'(z) _ +vwl,m,wj_1+w-,,.,,w,(z)7Vwl,.,.,wj-wj“,,.,,w,(z)
J

Wr(aw, +Z)VW1,...,w,(z) _ +vw1,...,w,,1+w,(z) 7vw1‘...,w,71(z)

Z(@z+|w|)vw1""’w'(z) — 7VW1""’W’*1(z)

e Index differentiation for the hyperlogarithmic monics:

w10 Y@L w@r — _ywitwo, .. wr

1 =

wjaw.vwl‘“‘““” = pyCleswjortwiienwr Wl Wit 1, wr
J

Wy, VLW = LYWL @ tter

e Jump rules for the hyperlogarithmic monics:

The monics V® are univalued, piecewise analytic functions with cuts along the hypersurfaces
Wit tw;

T Y] (Wi @Wr ¢ RY and determination discontinuities given by the jump formula:
Wit Fwr

Wiptetwr

D wpgpuw; VO 0@r = 20 VWL @i YWigle o @r
Dy F(x) := lime_o(F(x +i€) — F(x — i€)) (t,e € RT)



7 Weighted convolution: polar inputs.

(U1 e u,) (9\1 ..... Ef)
Setting S V1 - Vr (&) == weco 1 cro(€) with (&) == g%vi, we get
oh uv
S "17(x) VAL (x)
Ly FVHLL 922 (x)

S'viov2’(x) = _plugtup) vy su2 (V21 (x)
+ylurtua) va s up (vi—v2)(x)
ypuLvisu2 v, U3 Va(x)
4y u1ves (uptuz) v, up(va—v3) ()
_y e, (uptug) vy, ug V3*V2)(X)
4y (tu) va s ug (vi—va), u3 v3 (4
_yp (urtup) vy, up (VZ*VI ) U3 V3 (x)
+y (urtuz) va g vy, ug (vi—va)(x

(10 uzy —y (rtua) vy s ug vz, up (va—vi) (x)
S V1v2: V3’ (x) _ +V(u1+u2+U3) v1, (up+uz) (vo—vy) ), u3 (v3—vp) (X)

_yp (utuptuz) vy,

v (up4up+uz) vy,
4y (urtuptuz) vz,

4y (uituptuz) vy, u3
_y (urtuptuz) v, ug
_y (u1tuptuz)va , u3
4y (uptuptuz) vy, ug

(u2+u3) (v3=v1), u2 (v2—v3) (&)
(V37V1)vU2(V2*V1 (X)
(vi—v2),u3 V3*V2 (X)
(v3=va), u1 (v1—v2)(x)
(V1*V3)1U2(V2*V3)(X)
(up+u) (vi=v3), u2 (v2—v1) (x)
(u1+u2) (v2=v3) > u1 (v =v2) (x)

5:)(E) has r!l := 1.3.5...(2r—1) hyperlogarithmic summands.



7 Weighted convolution: hyperlogarithmic inputs.

e The inputs c;(£) are now general hyperlogs of depth s;, but taken
in positional notation: (&) = Vl(¢) = Vlvivvizviz-I(¢)

e Accordindingly, the lower indices v; become sequences
v; = (vi1,Vi2,Vi3...) of arbitrary length s;.

----------

e The outputs S !:)(f) = wecoa o E:)(f), as before, get

expanded into sums of hyperlogarithms V1“5 (¢) taken in
incremental notation. They all have depth s := s + ... + s,.

e As before, the w;'s in the output are bilinear in the u;'s and v;'s.

e As before, there are two recursion rules (forward/backward)
behind the expansion formula, only twice more complex.



7. Weighted convolution: hyperlogarithmic inputs.

The weighted convolution of r hyperlogs of depths dj, ..., d; is a sum of p(dy, ..., d,) distinct hyperlogs, each of

dy+e - dp—1)!
depth 3 d;. That number u(dy, ..., dy) = % Mhei<, (2+ ﬁ) tends to be huge. Thus:

r times
——
p(l, ..., 1) = 135...(2r—1) = ri polar inputs
u(5,5,5) = 20135106 ~ 29 10°  hyperlog. inputs
(4, 4,4,4) = 10050665625 ~ 10 10°
w(1,3,5,7) = 349008750 ~ 0.4 10°
w(7,5,3,1) = 530188650 ~ 0.5 10°
0(3,3,3,3,3) = 60575515000 ~ 60 10°
u(1,2,3,4,5) = 6067061000 ~ 6 10°
ws,4,3,2,1) = 0641071440 ~ 10 10°

Thus, for a linear system as simple as (*),we have just 4 singularities in the ¢-plane, but ~ 100 in the &-plane.
(1<i<4,Yy=1)

02 + i \/l ) = )/l'* ’ bi
() ( wi x) Yi(2,x) 1(z, %) bi(2) b; hyperlog. of depth 4



7. Weighted convolution: exit Stokes, enter Tes.
By VE1 90 (x) = S oy VWL s @i r

Applying the rules 0 =3 _1+ +ei 0 . w )
V¥l =1, V¥D“2 = gyjtable determination of log w—f

up s ) +VHVL s 12 V2(x)
to the weighted convolution product: S V12" (x) := _ylugtu)vy s up (VZ*Vl)(X)
Syt v m (=) ()

we find that the continuous-valued Stokes constants disappear. Indeed:

2 (2)
Dy S 10 V27(x) = V22(x) = 8" (x)
uyp, up ( u )
Alutug) S 12 (x) = _pu2 (vz—V1)(X) = -85V (x)
up Uz ) (")
Ay 1u2) v, S 1772 (x) = vii—w(x) = sv—v(x)
up )
. _ (U1 upvy up(va—vq) u1(v1—v)
Bup v+ S 12 0(x) = tes(7\2) = log 5y —log (4w, T 108 (ugw),
with a locally constant tessellation coefficient tes( ‘V/i ‘V'g ) € {0, £27i}.

The phenomenon is general and holds for all values of r.

Caveat: The disappearance of Stokes constants is incomplete in the case of vj-repetitions.



8. Tessellation coefficients: hyperlogarithmic expansions.

At depths r > 3, local constancy still holds: differentiate the following tes® in any u; or any v;, and you get ... 0.

Taking the expansion §¥(x) = Eﬂ:V“’ changing V*(x) to V¢,
(2

we get Ay vyt votus v, = LS 1020 %) with

_|_\/U1V1,U2V27U3V3

4w, (uatus) vs, ua (va—vs)
_yu vi, (u2tus) v, uz (v3—v2)
+V(U1+U2)V2.U1(V1—V2) u3 v3
-V (u1tu2) vi, w2 (va—v1), us v
+V(U1+LI2)V2,U3 vz, uy (vi—v2)
_ v (st+w2) vi,usvs, up (va—va)
tes(ﬂi,ﬁﬁ,ﬁi) = +V(U1+U2+U3)V17(U2+U3)( 2—v1), u3 (v3—v2)
_\/(U1+U2+U3)V17(U2+U3)(V3—V1) uz (va—v3)
_|_\/(U1+U2+U3)V17U3(V3*V1)7U2(V2*V1)

— v (ntuatus) va, uy (vi—va), us (va—v2)

—_ \/ (u1tuztus) va, uz (v3—va), ur (vi—va)

v (uituatus) vs, uy (vi—vs), uz (va—vs)
_ \/ (ur4uatuz) v3, (u14u2) (vi—v3), ua (va—v1)
4/ (ntuatus) vs, (nituz) (va=vs), 1 (vi—va)



8. Tessellation coefficients: elementary induction.

Local constancy is an invitation to search for a more elementary expression of tes®.

Limiting hypersurfaces ’H;rj ={wec”; H; j(w) € R} (there are r> —1 of them):

Hijw) = Q7 ;(w)/Q]}(w) (i—J#0i,j € Zry1)
Qrjw) = > ded-vh
cire(i<q<j)
Qi) = 3 W) = <uv>—Qiw)
cire(j<q<j)

The jump rule for tes": It is only when w crosses a hypersurface ’Hfj that tes” can change its value.
Let w be any point on Hfj and let w, w™ be two points close by, with j:‘\\rH,-’j(wi) > 0. Then

+ — * ok ok
tes"” — tes" = tes" tes"

(circ(i < p <j) € Zpy1)

with L . -
(circ(j < q < i) € Zy1)




8. The tessellation coefficients: elementary expression.

We fix some ¢ € C* and set Rc : z € C — R(cz) € R. Then we define:
w’ ror —1 w’ / ’ -1
£ = <u, v ><u,v> , &y = <u,Rgv'><u,Rgv> (10)

w
From these scalars we construct the crucial sign factor sig which takes its values in {—1,0,1}. Here, the
abbreviation si(.) stands for sign($3(.)).
’ " ’ 1
(si(fy —fu ) — si(gm —&w ))X
. Cw !’ 1 ow! ) ow! ow! w!
sig = sig, = s (1+si(fy /ew ) si(fy —ew ))x (11)

" " " "
(1 +si(Ry Jew ) silfy —ew )

Next, from the pair (w/, w”) we derive a pair (w™*, w*™*) by setting:
* ) *® ! -1 w’ R ’ R -1 (\fw/ 12
ut =ud v =V <u,v> gy — Rev' <u, Rev> 1, (12)
1" 1
vt o=d” ) v =V <, v>"1 Sgh  — Rev” <u, ?)‘%Cv>71 Sty (13)
or more symmetrically:
v/ Rev’ v/ Rev!!
v = det <u,'v>/ <u./ﬂcv>/ , v o= det <u,,lv>” <u/,,9%cv>,/
g<u v > g<u Rev! > gu v > g <u SRev™ >
<u,v> <u,Rev> <u,v> <u,Rcv>
Lastly, from all these ingredients, we construct an auxilliary bimould urtes:lor by setting:
w _ Loww! L w* wrF r o . wk 14
urtes . = Z sig tes, o, tes) o, (w' ,w’) # (w™,w™™) (14)

w/w!! =w

Then the tessellation bimould can be inductively calculated from:

tesp,, = Z push” urtesd (Ve e C™) (15)
0<n<r(e)



8. Tessellation coefficients: main properties.
Au uy .., up
(a4 (1) s

Hovy
P;: tes® is invariant under the involution swap and the iden-potent push:

Py: Double homogeneity: tes = tes

(”1 yeeey Up ( vr yeeey V3—Vg  , Vp—V3, \/1—\/2)
swap.A V1 oo Vr/ o= ANULTetur e uptuptug s uptuy 0y (Swap2 = iden)
(”1 e ur (7u1...7ur up o, Uy e, Up 1
push.A V1 s Vr/ = A v VITVE o V2TVE e Vi1 Vr (push'Jrl = iden)

P,: the bimould tes® is bialternal, i.e. alternal and of alternal swappee.

P3: tesh,, assumes all its sole values in Z and [tes"1"* "7 | < (r — 1)!(r + 1)! (far from sharp)

P4: As r increases, the set where tes® # 0 has surprisingly small Lebesgue measure.

tes"l =1
tes"1>"2 € {0, £1} P(tes"1>"2 = +1) ~ 0.21
tes"1>"2>"3 ¢ {0, £1} P(tes"1>"2>"3 = +1) ~ 0.026

tes"l oW € {0, 41, 42} P(tes" ™ = +1) ~ 0.0037  P(tes"l "4 = £2) ~ 0.0000037

Ps: in presence of vanishing uj-sums, we no longer have local constancy in the v;'s.
Pg: conversely, in presence of v;-repetitions, we no longer have local constancy in the u;'s.

P7: in the semi-real case, i.e. when either all u;'s or all v;'s are aligned with the origin, the tessellation coefficients
altogether exit the picture, since in that case tes"1>**""r = 0 as soon as 2 < r.



9. Weighted convolution under alien differentiation.

up s ury
20 €r 7(x) correspond either to simple (s = 1) or

The only alien derivatives AWO acting effectively on wemu €1
composite (s > 1) indices wq of the form

e T et =
W0:|u1|v-1 +»~~+|us|v-s with K ”lk uk
i is Byck #0and () e ()
i C’.k
k K uk
with each factor sequence (Zk ) re-indexed for convenience as ( i ’ Lk ). The corresponding alien derivative is
cf ¢
1 T
k
given by:
X
k
a.la (o ( K L)
Aygwemu Lo r (x) = ok Av’_k ok ey Vrk ok
[Ti<k<s welu k (%) x
* *
("1 s Uy )
cf ey X
wemu 1 rx (x)



9. Weighted convolution under alien differentiation.

(”1 (uj )T ey ur)
The only alien derivatives AWO acting effectively on welu CLomn G e

(x) correspond either to simple
(s = 1) or composite (s > 1) indices wq of three possible types — initial, final, global. Respectively:

. *
ol e = (gj)Te(z*)
ini 1, 1 S| .5 . k
wy = |u v + -+ |u”| v with u” k (16)
0 1 ’5 Ajck #0and (k) e (k)
vi 'k ck c
K i
*u ol v =u; (Y) E(*")
. P *e
fin 1, 1 S| .5 . k
wy = |uT| vy + -+ |u”| v with us k (17)
0 1 s Ak #0and (k) e (%)
vi Ik C[( c
k i
ul =
glo _ 1) 1 S| .5 . k k
= h - > th u 18
wor = lulviy o Tl with 3 ek 0 and () € (%) (18)
ik Sk
. ko . o e N
with each factor sequence ( _« ) re-indexed for convenience as ( ; ***" kk ). The corresponding alien derivatives
e
are given by:



9. Weighted convolution under alien differentiation.




10. First, second, third Bridge equations.
e Equational resurgence (In all cases)
First Bridge equation: [A,, 07 =A, 01

with A, == e “?A,, (z-resurgence) and

_ (2
Ao =Dt tueme W Dy, - Dy,

e Coequational resurgence: First in the case of meromorphic inputs and
all-real weights or all-real singularities (which ensures trivial tessellation).

Second Bridge equation: [A,, 07! =Qu, 07!
&

with A, = e"“*A,, (x-resurgence), w = ug (z — ag) and:

Third Bridge equation: A,Qw; = >0 )= [Qu, Q=]
g a ag

upt+ur=ug



10. BE2 and BE3 in the general case.

New layer of complexity: We now require new operators P,, formed
from the earlier operators Q,, and the tessellation coefficients.

P, = ZZ ui(z—a)=w tes( e = )Q[ a1 Q[clirr]

Q[ “0] — euoaox ZZU?UO Wehl( ag.cq ="-=(Aaoci) ..... r‘xo.c, )D”u1 L ]D)Hur

¢ Second Bridge equation: [A,, 071 =P, 07!
T it Lo 1] Q2]
e Third Bridge equation: Aw(@[;%]: —ZL,NLUFUU Q[gz] Pw,[‘nﬁo]
+ oo

with u1(ag—a1) = w.



10.

Coequational resurgence: four levels of complexity.

have thus a clear, four-level stratification:
The atomic level, inhabited by objects such as simple poles or hyperlogarithms.
The molecular level, consisting of huge clusters of atoms, with unsuspected emergent properties.

The microscopic level, consisting of derivation operators Q,, usually infinite chains of molecules
contracted by elementary derivation operators.

The macroscopic level, consisting of new derivation operators P, assembled from the earlier Q.

The passage from the atomic to the molecular level is mediated on the Analysis side by weighted
convolution and on the combinatorial side by the scrambling transform.

The passage from the molecular to the microsopic level is rather mechanical — mere growth by
accumulation.

The passage from the microscopic to the macroscopic level, arguably the most interesting of the three, is
mediated by the tessellation coefficients. While much is known about them, it would seem that just as
much remains to be discovered.

When we have both z- and x-resurgence, there can be no hesitation.
But often (esp. in physics), the x-resurgence is all we have.



11 Mid-talk review: equational vs co-equational.

@ To produce equational resurgence, the coefficients b;(z) need only
be analytic germs at oo (and verify a uniformity condition).

@ To produce co-equational resurgence, the b;(z) must be endlessly
continuable over the Riemann sphere (with a uniformity condition).

@ BE1 : The index reservoir £ is rigidly determined by the multipliers
Ai. The Stokes constants are entire functions of x.

@ BE2 : The index reservoir €, depends linearly on z and the singular
points of the coefficients b;(z). The Stokes constants disappear
(caveat!) and make way for discrete-valued tessellation coefficients.

@ BE3 : The index reservoir 23 and the tessellation coefficients cease
to depend on z. BE2 involves wemu® and welu®, BE3 only welu®

That leaves only two aspects to review:

@ lIsography and autarchy of the BE3 resurgence.



12. Isography and rotator idempotence.

e With equational and coequational alike, the active alien algebras
are isomorphic to algebras D of ordinary differential operators.

e But whereas in the equational case the elements of D are a priori
constraint-free, in the coequational case they are constrained by
isography: each D in the core part of D (the part attached to
BE3) annihilates a (case-specific) differential two-form @, the
so-called isographic form.

e |sographic invariance tends to make the one-turn rotator

Rigo12n[ = Ro,.. Ry, (05 1) with Ry, :=exp(2mi ) _, 5 g, Bu)
either idempotent, or the identity itself, in the active alien algebra.
As a consequence, all Laplace sums, as germs at co, are going to
be either finitely ramifed, or not ramified at all.



13. Autarchy vs anarchy.

e Autark functions: roughly, they are entire functions whose
asymptotic behaviour in the various sectors is fully described by
resurgent asymptotic expansions, which in turn generate, under
alien differentiation, closed finite systems (“autarchy relations”).
Despite being ‘transcendental’, autark functions have a strong
algebraic flavour. They are quite common, too: for instance, most
Stokes constants are autark relative to their various parameters.

( )X H( ) with {g(x) resurgent

=27iZ

e Prototypal autarchy: ﬁ =

27rx
e Prototypal anarchy: =(x) := —(% + X;) _Z—Er( )C( +>§')

e Autarchy and isography: The two are intimately connected.
Isography leads to idempotent rotators, which lead to entireness.



14. Isography and autarchy: first example.

Z-resurgence X-resurgence
uy ,m,ur) Uy .oy Ur

P = ight.
W(al,.,.,a, (z,x) = S(Vlv---er) (x)  with u weights

Vi = Z — Qf

(ul,u2,U3) (“17”27“3)

BE; 21353 (Z)AU1,2,3XW 123 (Z,X) =W, """ (X)

The monics W2 (x) neatly split into two parts:

(*) the universal hyperlog. monics V* (x- and a- independent).
(**) the monics C*(x), entire in x and « and recursively defined
by simple integrals.

The relation reads W?(x) = V*® o C*(x). For instance:

uptuptuz (M1 U2, U3
(ul‘u21u3) v C:Xl’:xz’a?’ (Xu) u u; u:
s ) +up, 1,12 3 Jup+ 1 2, U3
W, 1020930y = 8y T oy ek ) () clad) g v T o) () cloz o) ()
yures (1) ((‘:33)()()

C (x)C(g‘QZ)(x)C



14. Isography and autarchy: first example.

o) (u203)

BE2 Z]'S/S:‘; (X)Aul’273 VJS( Vi, Vv, ( ) — 7; vi,vp,v3 (X)

The one-turn rotator annihilates 7.°(x) via pairwise cancellations:

U2,3 $ 5

(emmaanx s (1)
_emasvix g(2 vf3)(x) (2)
temm2svx slaiiai)(x) (3)
TACREREUM I Si”iz,”%;(x) )
—emasnx SUH N () (4)
4123 V3X Sl ’vgza)(x) (2)
—emuaznx sl )(x) (3)
| +emmasnx s(aiinl) () (4)

(At depth r = 10, nearly a trillion such pairwise cancellations.)



15. Isography and autarchy: second example.

The time-independent Schrodinger equation with polynomial potential.

"2,
a 8q\U(q, h)

v—

W(q)W(q, h) with W(q) = q” + Z a,q with (}{ v/ (W(qo)dgo = 0)

z=z( jo VW(qo dq0:>q—q(z) (—)"+22V+2 L, oz= @
1 1 1
V(q, h) = ¥(z,x) = C+(X)€2 d(2)2¢, (2,) + C_(x)e” 2%d' (2)2¢_(2,%)

BE, Airin vy (z2) =P () eq (20 Py €C TN = [/ Wia)dao
g

The PJ i( ) are rational in Eq(x), ..., E, (x) with Ey(x)Ex(x) ... Ey(x) = 1 and:

2mi Dpy, ; Ex(x) (k#ij 5 Xij=Xi—=Xj)
BE; i 1 n * Eitv1Eivo---Ei1
2miBpy; Ei) = + 3 Ei() (=Fi ()" neZ", Fiyj= gp g

Eir1Ey2--Ei1
tit1tipo...tji—1
The mapping An/\ — Dn ’z.l = 1(%)” (t'ati - tat) induces an

isomorphism of the active algebra of {Ej, .., E,, } into the algebra D generated by the ordinary differential

operators D, ;, and all operators in D annihilate the isographic form (independent of k):

; dt; dt;
@ = (—1)k Z A t—J Vk  mod (ty...t, — 1)

(k<i<j)gre ! J



15. Isography and autarchy: second example.

E...— EniEioEi
Iy Eji1Ej.. . Eiy

Rjij := exp(27i 3 4rg o—arg Mg A,)
we get the axis crossing identities:
R,‘;J'Ek:Ek if k;ﬁi,j
R,‘-J'E,' =E (]. + e_A’:J'F,';J')_l
Rj;jEj = Ej (1 + e i Fyy)
For W(q) cIose to g¥ — 1, the \; form a near-regular star. The
one-turn rotator R is then given by:

Setting as above {

R? Rjtkjt1+v—k
R R** 1RV » R**R*RS*RO Wlth ** H1<k<1/, J+ J+ +v— ‘
Ry H2§k§u’ ko j4+2+v—k

and verifies the idempotence relation R>*” = jd. (In fact it always
does, even when we move far from the symmetric configuration).



15. Isography and autarchy: second example.

e _ o (@R (20
o GV (@) = W@V, R) with {wm, B) o T ()4 (2,0 4 T ()0 (2,%)

BE Onpo, (2,0 =A)e_(2,x) ,  (i=24,...,v+2)
! @A _o_(2,%) = Ai(x) o, (2,%) (i=1,3...,v+1)
o A a0 =P (e _(2x), Py €Cx]
2 Wa_. e (zx) =P (e (@0, = [, (Wa)dao
2mi Apx,; Ei(x) (k#1i,j , >‘i:j =i —/\)
BE3 . 1 Eiv1Eiyo---Ej_1
27rlA,,>\(.:j Ei(x) = +5 E;(x)(fF;.j(x))" neZzZ*, Fij = 75/+IEJ+2 —

Up to simple algebraic changes, the X7 -entire funct. Ai(x) and the

resurgent funct. P, (x) ~ Ej(x) are the same. This makes them autark.



16. Isography and autarchy: third example.

Consider this special case of our model problem:

9,Y(z) =xY(2)+B_(2) + B.(2) Y*(2) (22)

with B1(z) = > ic 7 % meromorphic in z and analytic at co.
For this Riccati equation, the third Bridge equation involves
resurgent functions E;(x) and alien derivations Ay, (with
Ai;ji=Aj—A;j) The corresponding active alien algebra is isomorphic
to an algebra D generated by the ordinary derivations D;.; (infra)
which in turn annihilate an isographic form @' (infra):

" o 1 % koK
A)\U . Di:j — ti tj 817 _ tj t; at/** + Eti tj (5’9 — 81‘,—) (23)
. 1 X - 2 % pkok
oo — ZE dtf A dt} mod t7 — t;'t;" = Const; (24)
J



17. Further types/souces of resurgence.

e Object synthesis. Spherical vs standard synthesis. In standard
synthesis, the form of the active alien algebra remains unchanged,
but the resurgence equations assume a most unusual form.

e Syntactic resurgence. Taylor coefficients with a special syntax,
e.g. sum-product coefficients.

e Hyperasymptotics. In each of the successive models, the active
alien algebra remains unchanged, but the resurgence equations get
ever more intricate and weird.

e Physics. Huge swaths of largely uncharted territory, but many
pointers to a dominance of coequational resurgence (e.g. simplicity
of the resurgence coefficients).



18. A spin-off from coeq. res.: the flexion (sic) structure.

e Through the rules for forming weighted convolutions; calculating
their alien derivatives; handling the tessellation coefficients etc etc,
coequational resurgence relies on two-tier indices w=(wy, ..., w;)
=(1, 7). with u;'s that get added clusterwise, v;'s that get
subtracted pairwise, under preservation of < u,v > etc...

e These operations give rise to the flexion structure, which can be
thought of as the constellation of all interesting structures formed

from four basic “flexions™: w — |w, [w, w], w]

e Said flexion structure contains as its centre-piece the Lie algebra
ARI and the group GARI which, owing to their preservation of
double symmetries like (alt? /alt?') or (sym? /sym?') | prove
extremely helpful for investigating arithmetical dimorphy in the
Q-rings of multizetas, hyperlogarithms etc. Since these, in turn,
are the key transcendental ingredients of the Stokes constants of
equational resurgence, we have come full circle...



19.
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