Singular and singularly perturbed systems
and multiple resurgence.

Jean Ecalle, Orsay Univ. & CNRS.

November 2018 Moscow Conference
on PDE’s and Applications
in Memory of Professor Boris Yu. STERNIN



Contents.

1. Types of resurgence.

2. Resurgent functions.

3. Alien derivations. 3*. Using alien derivations.

4. The Bridge equation.

5. Singular & and singularly perturbed system. 5*. Loose duality equational/coequational.

6. Symmetral/alternal moulds.

7. Normalisers and resurgence monomials. 7*. Normalisers and resurgence monomials.

8. Equational resurgence.

9. Co-equational resurgence: four requirements.

10. Co-equational resurgence at the monomial level.

11. Symmetral weighted convolution. 11* Relevance of the weighted convolution product.

12 The weighted multiplication behind weighted convolution.

13. Alternal weighted convolution.

14. Unsuitability of multipaths.

15. Hyperlogarithmic monomials: stability and density. 15%. Hyperlogarithmic monomials: dimorphy.
15**. Hyperlogarithmic monomials and monics. 15***. Hyperlogarithmic monomials and monics.
16. Weighted convolution with polar inputs.

17. Weighted convolution with hyperlogarithmic inputs.

18. Disappearance of the Stokes constants.

19. The tessellation coefficients: hyperlogarithmic expansions.

20. The tessellation coefficients: elementary induction. 20*. The tessellation coefficients: elementary expression.
21. The tessellation coefficients: main properties.

22. Weighted convolution under alien derivations.

22* Weighted convolution under alien derivations. 22**. Weighted convolution under alien derivations.
23. Second and Third Bridge equations.

24. BE2 and BE3 in the semi-real case.

25. Equational vs co-equational resurgence. 25*. Equational vs co-equational resurgence.

26. Emergent properties: the flection structure.

27. Example: the time-independent Schroedinger equation.

27*. Example: The time-independent Schroedinger equation.



1. Types of resurgence.

Among the many types of resurgence, two stand out:

(i) Equational resurgence, so-called because it arises in ‘singular’
equations (differential; partial diff.; functional etc). It is by now well
understood. Prof. B. Yu. Sternin, for one, devoted a number of papers
to the subject, esp. about PDE’ s.

(i) Co-equational resurgence. It is quite prevalent in theoretical physics
and occurs typically in (power series) expansions in a ‘singular’ small
parameter. Many interesting parameters or constants in physics fall into
this category!. It is far more complex than equational resurgence, yet
loosely dual to it.

(iii) To highlight these differences-cum-similarities, we shall focus on a
model problem (non-linear singular and singularly perturbed differential
systems) where both types of resurgence coexist side-by-side.

But before getting into the thick of things, a few ultra-quick reminders
are in order.

Cf the Michael Berry ‘principle’: the divergence of expansions in a small parameter such as h reflects the
non-trivial nature of the transition from a classical theory to its non-classical extension.



2. Resurgent functions.

Resurgent functions live in three models:

(i) In the formal model, as formal power series p(z) of z1

(i) In the convolution model or Borel plane, as analytic germs @(¢) at 0,
endlessly continuable (laterally along any finitely broken line).

(iii) In the geometric models, as sectorial germs @g(z) at co in the

z-variable.
(i) @(z)=>a,z7" multiplication
1 Borel
i 5 o , <P1*<P2)(C) =
(i) @(¢) =>"an % convolution
oy I 21(G) B¢~ G1)dG
J Laplace

(i) ¢,(2) = [ g € *B(C)dC multiplication

The singularities of $(¢) carry the Stokes constants and are responsible
for the divergence of @(z). So they deserve close attention.

The tools for measuring them are the so-called alien derivations A,,.



3. Alien derivations.

The one oustanding fact about resurgent functions is the existence on them of a huge array of exotic derivations —

the so-called alien derivations A, (w € Cq = C — {0}). They are bound by no a priori constraints.

0o T W, @, rOEEd —=

Bo @) = 30 67 (1B D¢ +w) — G .’;:U((Jﬁw))
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3*. Using alien derivations.
Do(Br#@2) = (Do) * B2+ 51 x (BuB)
AL (P1-72) = (Aud1).-P2+ ¢1.(Aud2)
A, =e“*A, = [A,,I]=0

The system {A,, ... A, @} encodes all the information about the Borel
transform @(¢), its behaviour on all its Riemann sheets, and its Stokes

constants.
E(p)=0 gen. diff. or functional equ. or system
4 formally
E(¢,A,p) =0 linear homogeneous in A,
4 formally
ALG = ALB, {//é\\w = Stok.es constant
0w (C) = singular germ at, or " over” ,w



4. The Bridge equation.

(1) E(Y)=0 gen. diff. or functional equ. or system
1 formally
2) Y(z7) complete (parameter-saturated) formal solution
4 formally Y(z;7) typ. in C[[z71; U, Tiz% ew 2]
(3) @ Q={weC,; A,Y #0}
J formally
(4) ALY(z;T)=AY(z;7T) Bridge Equation

A, ord. diff. operator. (exp.-compatible)
J formally

Iy .
Ay "B e (A0, + Y0 AlLmidy)
5) A, ...A,Y(zT)=A ... A, Y(zT)

@ Covers a huge range of applications: singular ODEs; difference equations; resonant vector fields; resonant
or identitity tangent diffeos of C" .

@ Often deals with situations that are beyond the reach of geometric methods.

@ Keeps the Analysis part down to a minimum.



5. Singular & and singularly perturbed system.
Consider this model instance of a doubly singular differential system:

t ~ 0 (variable)

O0=et?Ory + Ny +b(t,e,y',....y") (1<i<v)
€ ~ 0 (parameter)

It is advisable, both technically and theoretically, to change to the
problem’s ‘critical variables’ z and ‘critical parameter’ x, i.e. to set
z:=1/t~o0 , x:=1/e~0

so as to prepare for working in the conjugate Borel planes ¢ and £. This
leads to the system:

1+n;>0
o,y = v ()\,-x+ 3 B,",(z)y") (1<i<v)
>0 if j#i

with coefficients B (z) € C{z~1} analytic at infinity and x-free.



5*. Loose duality equational/coequational.

We assume that the multipliers \; are neither resonant and nor quasi-resonant (meaning that the combinations
—Xi +22,.>0Nj\j) are all # 0 and do not approximate 0 abnormally fast). The general solution, with its full set
1>

{71,...,7u} of integration parameters, may be formally expanded in powers of either z 7l orx—1:

Y = Y(z,x,7) € C[[z Y or x Y] @ C{z"* e, ..., 2P 7, M)

The "residues” p; € C are the coefficient of z~ ! in Ba(z) = Bi,...,
(which complicate the formal expansions without adding anything of substance to the Analysis) we shall set not

0(2). To get rid of the ramifications zi

only p; = 0 but also B'S(z) =0.
There is bound to be a certain kinship between the z- and x-resurgence, since in the special case when

B,",(z) = ,8:'1/2 with [3,’1 scalar, the variable z and the perturbation parameter x coalesce:

J#i
Y’.(Z7X,’T) = Yi(ZX) + Z Z Y,;(Z X) TIT" e()\,'+<n,)\>)zx (1)

anO n;Z—l

with ¥/(zx) and \7,’,(zx) € C[[(zx) " 1]]. A loose kinship, or lax ‘duality’, survives even in the general case, and
justifies the label equational for the z-resurgence (z being the variable with respect to which we differentiate in our

model system) and co-equational for the x-resurgence.



6. Symmetral/alternal moulds.

{S5* symmetral} +— { Z S@ = §w'gw” V', w”}

weshuffle(w’ ,w’)

{A* alternal} <+ { Z A® =0 V', w”}
wEshuffle(w’ ,w')
Let the D,,,'s be (ordinary) formal derivations. Then:
1+ Zlgr Zwl,...,w, Swlw.}w,D‘Ur ce le

is a formal automorphism

{S* symmetral} <

2 2o

is a formal derivation

Wly.eny,W
_____ w, A9 Dy, Dy,

{A' altema/} <— {



7. Normalisers and resurgence monomials.

Replace the general solution % by the information-equivalent but more flexible normalising operators [E2
) ur
1< (Y
e = 1+3Y elulxyy By " (z,x) D ...D}
ikonk
1<r *
= i .
— — B,
o7l = 14+ Y (-l B D
ikonk
— (/D)
with U =<, A >, an = 7"k -rkarr.k
1<i<v Ty, €

and with ‘monomials’ W*® inductively defined by

Or to lighten notations:

@, + up 8 20 = W ) 0 bz)



7*. Normalisers and resurgence monomials.

Since W* is symmetral, the operators © and ©~! are (mutually inverse)
formal automorphisms of C[[7]] := C[[r,...,7]]:

0 (Zu(r).22(r)) = (6F3u(m)) (67 %a(m)) (& € CIIr)

Moreover, they exchange the general solution Y of our model system and
the elementary general solution Y;., of the corresponding (linear) normal
system:

Y =Y (/\,-x + Z Bl(z) Y™ Yi(z,x,7) € C[[z7}]] ® C{U;7; e}*?}
O Yior = Nix Yoo+ Yi(z,x,7) =1 M%7

nor nor ' nor

© Yi(z,x,7) =VYi (z,x,T)
O tYi (z,x,7) = Y(z,x,T)

nor



8. Equational resurgence.

ﬂﬂﬂﬂﬂ r Uy .., Up1
(07 + |u| x) W(b1 ,,,,, br)(z,x) — W(b1 ..... b’*l)(Z x) by(2) 2)
Under the z-Borel tranform By : z7 " (C':;;! . bz = BO) , Wz, x) W'(C, X

the induction rule (2) becomes

,,,,,,

AUXW(‘U’I ,,,,, Z:)(z,x) — Z W(Z} . b)(X)W(Zﬁﬁ o br)(z,x) (4)

th monomials W*(z,x) symmetral & resurgent in z
wi
monics ~ W*(x)  alternal & entire function of x



9. Co-equational resurgence: four requirements.

Our approach is unabashedly analytical, in that it strives to identify and
resolve the difficulties first at the most basic level, i.e. at the level of

. u > ur .
the monomials W(bl v br )(z,x). But even at that level, co-equational
resurgence is a hard nut to crack. To completely master it, we shall
require four things:

(i) a symmetral weighted convolution product weco®.
(ii) an alternal weighted convolution product welo®.
(iii) the (closed) rules for alien-differentiating weco® and welo®.

(iv) the discrete-valued tessellation coefficients, which in this new context
shall take the place of the continuous-valued Stokes constants.



10. Co-equational resurgence at the monomial level.

n—1
e (§—1)1

We(z,x) = BW*(z,§)

X
Under the x-Borel tranform By :

things are incomparably more complex than under B,. The induction rule
now assumes the form of a partial differential equation in z and &:

0. +1ulo) BV Dz = — BBz b))

,,,,,

with for r > 2 thelimit condition BXW(E By )(Z, 0)=0

For r =1, solving (5) in decreasing powers of x and then applying the
Borel transform x — &, we find:

up 1 (— n 1
wa(bl)(z7£) = _21#8; bl(Z) = —?1 bl(Z—uél)
n>0 ’

But for r > 2 we shall need a suitably defined weighted convolution.



11. Symmetral weighted convolution.

For u; € C and ¢;(&) € C{x}, the following integrals

uy
weeo' @(6) = ()
uy uy
e g Jo® Elender [ g a(e1)dg -
weco L rI(g) = 04 "oy - . 1
o Je, (&) des [ (&) deala) g

v+ tu =€
with 0= (& — (i &+ +ur&))ug + - +u_g)7t
Ou =€+ Fu)

] (U1 e Ury
unambiguously define germs weco €1 '+ r "(£) € C{&} provided that uj + ... + u; # 0. The mould weco® is
symmetral relative to the (ordinary) convolution product.

A more symmetric definition reads

(U1 oo Ury
weeo @ e = f Q). &) der ... e,
WYL uy
with integration on a contorted multi-path:
0<& <& < <&L<&

PO = Qo+ ) &+ (i€ o ug) <€ (<0 <)
up€1 4. ur§r =§



11*. Relevance of the weighted convolution product.

The Borel transforms x — £ of the biresurgent monomials WW* can be
expressed in terms of weighted convolution products

Bl 1 Z:)(z, €)= weco'a - g;)(f) with (&) := —bi(z =€)
with z chosen close enough to co for ¢;(£) to be regular at £ = 0.
@ Since (&) := —b;j(z — &), the singularities of the b;(z) are going to
dominate co-equational resurgence.

@ We note here the characteristic interference of the multiplicative
z-plane and the convolutive ¢-plane.



12. The weighted multiplication behind weighted convolution.

Just as ordinary convolution is the Borel image of ordinary multiplication, weighted convolution weco is the Borel

image of a weighted multiplication wemu:

ax),....c(x) 2 a),....5(0)

(ul,...,u,)(X) PLrC)l (ul,...,u,

Wernu' e - e weco a &/ (&)

For u; > 0 and Rx positive and large, weighted multiplication is defined by the integrals:

1 /+i°° ' ca(x1)...c(x) dxy...dx,
(2mi)" ) i T2, ((ur+. .. +u)x—(a+...+x))

(u1 yeos Ur

cl,,.,c,)(x)::

wemu

Integration is along vertical axes Sx; = a; < u;Jx but with «; large enough for ¢;(x;) to be holomorphic on
o < Rx;. The definition is then extended for general weights u; by continuous contour deformation, which is

always feasible provided the partial sums uy + - - - + u; remain # 0.



13. Alternal weighted convolution.

The ‘alternal marking' altmark is a mould operation:

altmark(M)“’l’“ff""” = (—1)’” Z M’ w!

w’” esha(w’,&")
that turns any mould M® into a marked mould M*® of alternal type.

To get closure under alien differentiation, we must supplement the
symmetral convolution weco® by an alternate convolution

welo® = altmark(weco®). The corresponding multiplications wemu® and
welu® have rather similar kernels

wemu'a g 1w (x) = (2;’_), I SUL T D (0 T] i) dx

weln{ e () = o [ SU 000 TT i)

U] ey U yees Up i=r -
S () = [T (4t ) x— G ot )
(M ey (U e i1
ot —1)rIsta i (x) §4 ) (x)
st - D () ()

(i + - +u)x—(a+..+ xr))f1



14 Impracticability of the integration multipaths.

.80 by

Even for ordinary convolution we get impossibly contorted paths. The
position is still worse with the weighted multipaths. Hence the need for a
combinatorial approach.




15. Hyperlogarithmic monomials: stability and density.

We are facing here a highly unusual but inescapable interference of two structures:
(i) the multiplicative structure, which leaves the singularities in place,

(ii) the convolutive structure, which adds singularities, in the sense that:
(singularity over wy )x*(singularity over wy)=> (singularities over wy + wy).

Then, messing up things still further, we must contend with the weighted convolution weco, which also adds
singularities, but via weighted rather than straightforward sums. This forces us to juggle two systems of notation:

@ incremental, with sequences (w1, . . . , w/) (wj = aj — aj_1)
@ positional, with sequences [, . . ., a/] (o = w1 + ... +wj)

The ideal tool for understanding this hybrid structure is the hyperlogarithms, with their two encodings (positional
and incremental) their stability under two products (ordinary pointwise multiplication and convolution) and two
sets of exotic derivations and, not least, their density property: any given resurgent function in the Borel plane is
the limit, uniformly on any compact set of its Riemann surface, of a suitable series of hyperlogarithms. Here are the
main definitions and properties:



15*. Hyperlogarithmic monomials: dimorphy.

[y mrar] T dr, 3 dn T dn
v @ = [ - /

JOo T — JO T2 — 2 JO T — 1
pereoerey = plereeed e e = et (Vi)

To express the multiplication-convolution dimorphy we require the upper convolution  , which has the same unit

1 as pointwise multiplication. Its definition is: (’L;l ¥ 2;2)(7') =Jy 2;1 (71) 2;1 (r—m1)dm1

’ 4 &
X -symmetrality : ( ;}\ [e’] . {;\ (=™ )(r) = Z v [ ](T) (6)
acsha(a’,a’’)
— LU, —~ UI, —~w
% -symmetrality : (v Y )r) = Z v () (7)

wesha(w’,w!’)

el . N S
(6) says that v is symmetral relative to pointwise multiplication.

—~ .
(7) says that V'  is symmetral relative to the convolution " .



15*%*. Hyperlogarithmic monomials and monics.

The hyperlogarithmic monomials V*® most useful in the present context are defined by:

PULwr() = 1 /C d¢r—1 N /42 d¢y
C—(wt - Fw)Jo 1= (Wt +we-1) 0 G —w1
~w! ~ _
v v = v
and verify N EZ) v "(Z) Zuesha(u’,w”) v (z)
P V)0 =T canage’ w) VO

The corresponding hyperlogarithmic monics V® are defined inductively by:

Doy, VO (2) = /90 4 Z /Wi YWisiseesr (7)) (8)
wit1+...4+w,=0

and verify the alternility relation Zwe&ha(w’ W’ “ = 0. They are univalued, piecewise analytic functions of

their indices w;.



15*%**_ Hyperlogarithmic monomials and monics.

Index differentiation for the hyperlogarithmic monomials:

W8y +2) VLT (z) = —PPLITOZ@r(g)

wi(Buw; +2) VI (z) = B € I et A Rt & SR A )
Wr(Bw, +Z) VLY (z) = YL =1t () @l (z)

2(8; + W) VLU (z) = Y EL¥rol(g)

Index differentiation for the hyperlogarithmic monics:

wla‘dlvwl,...,w, — 7Vw1+w2,...,w,
wjawjv‘”l"“’“’ _ +Vw1,.,.,wj,1+w4,,.,.w, _ le,...,wj+wj+1,...,w,
wr B, YOI Wr W@t ter

Jump rules for the hyperlogarithmic monics:
The monics V® are univalued, piecewise analytic functions with cuts along the hypersurfaces
wit e tw; WY W + . . . Lo . . .
it v € R™ and determination discontinuities given by the jump formula:
D woyeeaps; VEL @ = 20 V9L i V@it wr
i
Wit Twr

Dy F(x) := lime_o(F(x +i€) — F(x —i€)) (t,e € RT)



16 Weighted convolution with polar inputs.

B G IS (2o L 1
Setting S V1 »-o» Vr (€)== weco €1 v r7(€) with (&) == =R get
()
SV1'(x) = VUYL (x)
(v 2 FVULVL > 12 V2 (x)
Sviv2l(x) = _plurtug) vy s up (Vz—V1)(X)
+plurtu)va s ug (vi—v2)(x)

FV ULV U2 V25 U3 V3 (x)
yyurvis (wptuz) vy, “2(V2—V3)(X)

_yurvis (uptus) vz, LI3(\/3—\/2)(X)

4y (ptup) va, ug (vi—v2) , ug 3(x)
,V(U1+U2)V1~U2 (V2*V1)~U3 V3(x)

4y (uptup) vp uz vy, ug (vi—va) (%)

(u1suu3 _y (utug) vy, ug V3’“2(V2*V1)( x)
S'V1:v2:V37(x) = 4y (ptuptuz) vy, (uptu3) (va—vi) s uz (va—va)
_y (utuptuz) vy, (upFug) (va—vi) , U2 (VQ*V3)(X)
4y (urtuptuz) vy uz (v3—vy), U2 (Vz*V1 (X)
_y (ur+uptuz) vo , ug (vi—va), uz (v3—v2) (X)
—p (utugtuz) vy, uz (v3—va), ug (vi—va)(x
4y (urtuptuz) vy, ug (vi—v3), up (V2*V3 (%)
—p (rtugtuz) vz, (uptu) (vi—vs), up (va—=v1) (i)
+y (urtuztug) vy, (u1+uz) (va—v3) 5 ug (vi—v2) (x)

(U1 s ur )

S V1o vr (g) has r!l ;= 1.3.5...(2r — 1) hyperlogarithmic summands.



17. Weighted convolution with hyperlogarithmic inputs.

The weighted convolution of r hyperlogs of depths dj, ..., d; is a sum of p(dy, . .., d;) hyperlogs each of depth
>~ d;. The number ji(®) tends to be huge. Thus:

r times
—_——
w(l, ..., 1) = 135...(2r—1) = rll polar inputs
©(5,5,5) = 29135106 ~ 20 10°  hyperlog. inputs
n(4,5,6) = 22855 560 ~ 23 10°
(6,5, 4) = 23963 940 ~ 24 10°
(4, 4,4,4) = 10050 665625  ~ 10 10°
w(1,3,5,7) = 349098750 ~ 0.4  10°
u(7,5,3,1) = 539188650 ~ 0.5 10°
u(3,3,3,3,3) = 60575515000 ~ 60 10°
n(1,2,3,4,5) = 6067 061 000 ~ 6 10°
©(5,4,3,2,1) = 9641071440 ~ 10 10°

Thus, for a linear system as simple as (*):
(1<i<4,Yy=1)

0, +wix) Yi(z,x) = Yi_1(z,x) b;
() wix) Yi(z,x) 1(2,%) bi(2) b; hyperlog. of depth 4

we have only 4 singularities in the ¢-plane, but close to 1010 in the &-plane.



18. Disappearance of the Stokes constants.

Applying the rules
V¥l =1, V¥D“2 = gyjtable determination of log Z—f

up s ) +VHVL s 12 V2(x)
to the weighted convolution product: S V12" (x) := _ylugtu)vy s up (VZ*Vl)(X)
Syt v m (=) ()

we find that the continuous-valued Stokes constants disappear. Indeed:

up s Uy

u2

By SRl = vme = s

uyp, up (Y2
Bl S 12 () = —v22 ) = -8 271 (x)

up Uz ) (1)
Ay 1u2) v, S 1772 (x) = vii—w(x) = sv—v(x)

uy iy B B
Buyvyrip S 102 (x) = tes(U172) = log 22 — log ‘(’fjifmvvll) + log YLl —12)

(u+2)vy
with a locally constant tessellation coefficient tes( ‘V/i ' ‘V'g ) € {0, £27i}.
The phenomenon is general and holds for all values of r.

Caveat: The disappearance of Stokes constants is incomplete in the case of vj-repetitions.



19. The tessellation coefficients: hyperlog. expansions.

At depths r > 3, local constancy still holds: differentiate the following tes® in any u; or any v;, and you get ... 0.
+VU1 Vi, U2V, U3 V3

4LV uive, (uatus)vs, uz (va—vs)

—_yuvi, (u2+u3) va, uz (v3—va)

4V (itu) v, un (vi—va), uzvs

-V (u1tu2) vi,uz (va—v1),us v

+V (urtu2) va, uz vy, ur (vi—va)

V

urtuz) v, uz vy, uz (va—vi)
(vou2susy

teg'viiva.va) = urtustuz) vy, (ua+tus) (va—vi), uz (va—va)

V urtuztuz) vi, (uz2+us) (va—vi), uz (v2—v3)

ur+tustuz) vy, uz (va—vy), us (va—vi)

(
v (
(
v (
(u1tuztus) va, ur (vi—va), uz (v3—va)
(
(
(
(

V

% urtustuz) va, uz (va—va), ug (vi—v2)

v (utuztus) vs, uy (vi—vs), vz (v2—vs)

V4 urtuztus) vs, (urtur) (vi—vs), uz (va—v1)
VvV urtuatuz) vs, (uitu) (va—vs), ur (vi—v2)

_|_
_|_



20. The tessellation coefficients: elementary induction.

Local constancy is an invitation to search for a more elementary expression of tes®.

Limiting hypersurfaces ’H;rj ={wec”; H; j(w) € R} (there are r> —1 of them):

Hijw) = Q7 ;(w)/Q]}(w) (i—J#0i,j € Zry1)
Qyw) = 3 WD
cire(i<q<j)
QF(w) = S dE v = <uv> —Qfw)
cire(j<q<j)

The jump rule for tes”: It is only when w crosses a hypersurface ’Hfj that tes” can change its value.

Let w be any point on Hfj and let w, w™ be two points close by, with j:‘\\rH,-’j(wi) > 0. Then

(circ(i < p < Jj) € Zpy1)

with .
(circ(j <qg<i) e Z,+1)




20*. The tessellation coefficients: elementary expression.

We fix some ¢ € C* and set Rc : z € C — R(cz) € R. Then we define:
7 ’
o= < Vs<uv>Th L g = <l Rgv!> <u, Rgv> T (9)

w

From these scalars we construct the crucial sign factor sig which takes its values in {—1,0,1}. Here, the
abbreviation si(.) stands for sign($3(.)).

/ " ’ 17
(si(fy —fu ) —si(ey —aw ))x
i i w! w!’ 4:1 ow! oW cow!w! (10)
sig sige =3 (1 +si(fy /gw ) si(fy 8w )) X
’

" " " ’
(1 +si(Ry Jew ) silfy —ew )

Next, from the pair (w/, w”) we derive a pair (w™*, w*™*) by setting:
* ) *® ! -1 w’ R ’ R -1 (\fw/ 11
ut =ud v =V <u,v> gy — Rev' <u, Rev> 1, (11)
1" 1
vt o=d” ) v =V <, v>"1 Sgh  — Rev” <u, ?)‘%Cv>71 Sty (12)
or more symmetrically:
v/ Rev’ v/ Rev!!
v o= det <u,'v>/ <u./ﬂcv>/ , v = det <u,,lv>” <u/,,9%cv>,/
g<u v > g<u Rev! > gu v > g <u SRev™ >
<u,v <u,Rev> <u,v> <u,Rev>
Lastly, from all these ingredients, we construct an auxilliary bimould urtes:lor by setting:
w _ Loww! L w* wrF r o . wk 13
urtes . = Z sig tes, o, tes) o, (w' ,w’) # (w™,w™™) (13)

w/w!! =w

Then the tessellation bimould can be inductively calculated from:

tesp,, = Z push” urtesd (Ve e C™) (14)
0<n<r(e)



21. The tessellation coefficients. Main properties.

Py: tes® is invariant under the involution swap and the iden-potent push:

(ul ey ur) ( vr sy V3—vgq o, vp—v3 , Vl—vz) )
swapAA Vs Vel = A upt...tup ..., uptuptuz , uptup uy (swap — iden)
(ul yeeey Up (*“1-~-*“r up, w2 e, Up
push.A*V1 oo vl = A0 VT VIR V2T e Ve T Yr (push™™ = iden)

P,: the bimould tes® is bialternal, i.e. alternal and of alternal swappee.

P3: tesp., assumes all its sole values in Z and [tes"1’"" "7 | < (r — 1)!(r + 1)! (far from sharp)

Py: As r increases, the set where tes® # 0 has surprisingly small Lebesgue measure.

tes"l =1
tes"1'"2 € {0, £1} P(tes"1'"2 = +1) ~ 0.21
tes"1'"2>"3 ¢ {0, £1} P(tes"1>"2>"3 = +1) ~ 0.026

tesWl oW € {0, +1, 42} P(tes"l' " = £1) ~ 0.0037  P(tesVl> "4 = £2) ~ 0.0000037

Ps: in presence of vanishing uj-sums, we no longer have local constancy in the vj's.
Pg: conversely, in presence of v;-repetitions, we no longer have local constancy in the uj's.

P7: in the semi-real case, i.e. when either all u;'s or all v;'s are aligned with the origin, the tessellation coefficients

altogether exit the picture, since in that case tes"1’'*>"r = 0 as soon as 2 < r.



22. Weighted convolution under alien derivations.

up sy
20 €r 7(x) correspond either to simple (s = 1) or

The only alien derivatives AWO acting effectively on wemu €1
composite (s > 1) indices wq of the form

e T et =
W0:|u1|v-1 +»~~+|us|v-s with K ”lk uk
i s Bck #0and () € (%)
i C’.k
k ok uk
with each factor sequence (Zk ) re-indexed for convenience as ( i ’ Lk ). The corresponding alien derivative is
cf ¢
1 T
k
given by:
X
k
a.la (o ( K L)
Aygwemu Lo r (x) = ok Av’_k ok ey Vrk ok
[Ti<k<s welu k (%) x
* *
("1 s Uy )
cf ey X
wemu 1 rx (x)



22*, Weighted convolution under alien derivations.

(”1 (uj )T R ur)

The only alien derivatives AWO acting effectively on welu CLomn G e (x) correspond either to simple

s = 1) or composite (s > 1) indices wq of three possible types — initial, final, global. Respectively:
0

. *
ul e = (gj)Te(z*)
ini 1, 1 S| .5 . k
wy = |u v + -+ |u”| v with u” k (15)
0 1 ’5 Ajck #0and (k) e (k)
vi 'k ck c
K i
*u ul u=u ; (”j)Te(*“)
. =ui (d *e
fin 1, 1 S| .5 . k
wy = |uT| v 4+ -+ U] v with uf k (16)
0 1 s Ak #0and (k) e (%)
vi Ik C[( c
k i
ul =
glo _ 1) 1 S| .5 . k k
= h - > th u 17
wor = lulviy o Tl with 3 ek 0 and () € (%) (17)
ik Sk
. ko . o e N
with each factor sequence ( _« ) re-indexed for convenience as ( ; ***" kk ). The corresponding alien derivatives
e
are given by:



22**_ Weighted convolution under alien derivations.




23. First, Second, Third Bridge equations.

First Bridge equation: A, @_1] =A, 071
. _ ) ()
with A, := e~ “?A,, (z-resurgence) and A,, = Z(ulerer)X:w W bt oeee br (><)]DJ“L,1 c Dy,
Second Bridge equation: A, @_1] =P, 01!
with A, 1= e~ “XA,, (x-resurgence) and:
up up
Py = ZZU;(Z—@;):w tes £7 1 ZTor @[ up ) ...@[ ur
o ar
(- ,-»-,(A“i )Tv"'v _ur
. EQCL ey ¢ ..., ag-q
Qo 3= 00Ty welu ot "Dy - Dy,

+ Xy tug=ug P11 Q2

Third Bridge equation: AyQpug = 0 0
(%) ()

g

- —up Qpui P,
ZU1+U2—U0 [("10] w

> ur
with P (Y] = » 0T
s (!O

)
Qay Qg

(18)

(19)



24. BE2 and BE3 in the semi-real and other cases.

The semi-real case: In the important instances when the tessellation coefficients tes"1:**"" turn trivial (i.e. = 1
for r =1 and = 0 for r # 1), the Third Bridge equation simplifies:

up (g —ag)=w
(BE3) AwQ[ u | [Q[ up | Q[ uy ]} (20)
ag aj ag

up+up=ug

and one can checks the equality of the exponential factors on both sides:

(i) A, carries a factor e~ X = e~ u1(ap—e1)x

(ii) Q[ up | carries a factor €090 X = e(u1tua)ag x
@0

(iii) Q[ u | carries a factor e“141 %
@1

(iv) Q[ up ) carries a factor €240 %
@0

The most general case: In the opposite direction, the results extend to the case of hyperlogarithmic (instead of

meromorpic) or even absolutely general inputs b;(z) (and thus ¢;(§)), except that we must switch to a multiple
indexation «; — ¢&; and that the BE3 inherits a third term, corresponding to the case Agowe/u'. We get:

X u=ug P | :{B] Q l‘;g]

(BE3)  ALQu; = =g Y iy o2 (21)
&g Lo 0 0
w,[ S0
(9]



25,

Equational vs co-equational resurgence.

To produce equational resurgence, the coefficients b;(z) need only
be analytic germs at oo (and verify a uniformity condition).

To produce co-equational resurgence, the b;(z) must be endlessly
continuable over the Riemann sphere (with a uniformity condition).

BE1 : The index reservoir ; is rigidly determined by the multipliers
Ai. The Stokes constants are entire functions of x.

BE2 : The index reservoir €2, depends linearly on z and the singular
points of the coefficients b;(z). The Stokes constants disappear
(qualification here) and get replaced by discrete-valued tessellation
coefficients. BE2 involves wemu® and welu®.

BE3 : The index reservoir Q3 and the tessellation coefficients cease
to depend on z. BE3 involves only welu®



25*. Complexity of co-equational resurgence.

At the end of this tour of coequational resurgence, we find a clear four level stratification:
@ The atomic level, populated by objects such as simple poles or hyperlogarithms.
@ The molecular level, consisting of huge clusters of atoms, with unsuspected emergent properties.

@ The microscopic level, consisting of derivation operators Q,, usually infinite chains of molecules
contracted by elementary derivation operators.

@ The macroscopic level, consisting of new derivation operators PP, assembled from the earlier Q.

@ The passage from the atomic to the molecular level is mediated on the Analysis side by weighted
convolution and on the combinatorial side by the scrambling transform.

@ The passage from the molecular to the microsopic level is rather mechanical — mere growth by
accumulation.

@ The passage from the microscopic to the macroscopic level, arguably the most interesting of the three, is
mediated by the tessellation coefficients. While much is known about them, it would seem that just as
much remains to be discovered.

When we have both z- and x-resurgence, there can be no hesitation.
But in theoretical physics, the x-resurgence is often all we have.

Cf the July 2015 CERN conference on resurgence (Geneva) or the June 2019 IHES conference (Paris).



26. Emergent properties: the flection structure.

When looking at the weighted convolution products of poles or
hyperlogarithms, we just caught a glimpse of the strange ways in which
the u;- and v;-indices interact, as well as of the numerous symmetries and
invariance properties of the related tessellation coefficients.

By following this lead, | stumbled on a whole new algebraic structure —
the so-called flection structure — with the Lie algebra ARI and the group
GARI as its center piece. This flection structure in turn proved quite
helpful in the investigation of arithmetical dimorphy, i.e. in the study of
those Q-rings of transcendental numbers (such as the multizetas) that
possess two natural (and independent) ‘multiplication tables’.

So we have here this minor miracle of a beautiful algebraic structure
spontaneously emerging from an a priori ‘amorphous’ Analysis problem.



27. Example: the time-independent Schrédinger equation.

2

92y = %W(q) with {

W(q) =¢" +a1q" 1+ +a,

a, = —E (energy) , x=2/h

q 2 24+v
z = z(q) :/0 \ W(q/)dq/ ~ 2+di 2

oy = { @@ oien)
+C_(x)eT/2 (¢ (2)2 p_(2,%)

8% ot £ x0; ot = (HX(2) — H'(2)) o+

14" (z 1 v
with H(z) := —q/( ) = —- 271
2 q'(2) 224v




27*. Example: the time-independent Schrodinger equation.

(Ay, = 2%)

BE, Dy o = Sk(x) o % 1= x exp( LK)

Sk(x) € C{xﬂ% }

BE; Diztw; o+ = Pir(x) oz (Bizte, = A(fziwj)

The P; (x) are rational functions (whose form depend on the z-area) of Vi(x), ..., Vi (x) with
Vi(x)Va(x)... Vu(x) = 1.

Doy V=0 (k£ 1)) (B =850
Vig1Vigo..-V;

SRS VO & o el S bt S T

BE3 { Anw;;Vi=+7( Vj+1Vj+2"'Vi71) (i #J)

Vig1Vigo- Vi o

A V. ,l(,“r”rif)n (i #J)

nwij¥i = Th Vit1Viza---Vic1

wjj = wj — w; with w,-:/ ‘/W(q’)dql
i

i

The main results on the time-independent Schrodinder are due to Y. Sibuya (Stokes constants), A. Voros
(resurgence in the &-plane), and J.E. (convergence in the £-plane).



Thank you!
Cnacubo 3a BHumanue!

N ewe orpomuoe cnacnbo opraHusaropam...

Some references:
@ J. E. Weighted products and parametric resurgence, in Méthodes
résurgentes, Travaux en Cours, 47, Ed. L. Boutet de Monvel, 1994,
pp 7-49.
@ J. E. The scrambling operators applied to multizeta algebra and singular
perturbation analysis, (to appear), Oct. 2018, 156 pp. Preview available
on my homepage: < https ://www.math.u-psud.fr/~ ecalle/ >



