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Abstract. Two new, fast-developing, but at first sight completely di-
connected subjects have turned out to be governed by a common underlying
structure. These two subjects are: the specific singularities, Stokes phenom-
ena and resurgence patterns exhibited by singularly perturbed systems; and
the phenomenon of dimorphy (existence of a double product) displayed not
only by the so-called multizeta values but by a host of other basic transcen-
dental constants. As for the unifying structure, it is the novel Lie algebra ARI
which, together with its group GARI and a number of related constructions,
is a fascinating object in its own right.

Contents

1 Introduction. 3
1.1 Multizetas and dimorphy. . . . . . . ... ... 3
1.2 Singular and singularly perturbed systems. . . . . . . .. . .. 3
1.3 The common underlying structure: ARI/GARI . .. ... .. 4
1.4 Owverall scheme. . . . . . .. ... ... L. 5
1.5 Some conventions. Reminders about moulds. . . . . . . . . .. 6

2 Singular systems and equational resurgence. 7
2.1 Resummation - monocritical or polycritical . . . . . . . . . .. 7
2.2 Invariant Analysis. The First Bridge Equation. . . . . . . . .. 9
2.3 Invariant Synthesis. Plain and twisted monomials. . . . . . . 10
2.4 ‘Display’ and ‘restriction’. Independence theorems. . . . . . . 12



3 Singularly perturbed systems and co-equational resurgence. 14
3.1 Some heuristics: similarities/differences between SS and SPS.. 14

3.2 The Second and Third Bridge Equations. . . . . . . .. .. .. 15
3.3 Thesets U/Vand &1/Lo/Ls .. o o oo ool i oL 16
3.4 The u/v combinatorics. . . . . . . . ... ... ... 17
4 Dimorphic monomials and monics. 18
4.1 The general setting. . . . . . . . .. ... oL 18
4.2 The biresurgence algebra . Exotic derivations. . . . . . . . .. 20
4.3 The subalgebra of hyperlogarithmic monomials. . . . . . . .. 22
4.4 The subalgebra of hyperzetaic monomials. . . . . .. .. ... 23
4.5 From monomials to monics. . . . . . ... ..o 24
4.6 The Q-rings of hyperlogarithmic monics. . . . . . . . .. . .. 25
4.7 The Q-rings of hyperzetaic monics. . . . . . ... .. .. ... 25
4.8 Is dimorphy exhaustive? Is trimorphy illusory? . . . . . . .. 26
5 The overarching structure: ARI/GARI. 28
5.1 Bimoulds. Swap/Push. Contractions. . . . . . . ... .. ... 28
5.2 The Lie algebra ARL. . . . . . ... ... ... ... ...... 29
5.3 The Lie group GARI. . . . . . . ... ... ... ... 29
5.4  Some properties of ARI/GARI. Allied structures. . . . . . .. 30
5.5 Some remarkable elements of ARI. . . . . ... ... ... ... 31
5.6 Further remarkable elements of ARL. . . . ... .. ... ... 32
5.7 Some remarkable elements of GARI. . . ... ... ... ... 33
5.8 Further remarkable elements of GARL. . . . . . ... ... .. 34
5.9 Basic complexity of ARI/GARL . . . . ... ... ... .... 35
6 The arithmetics of multizetas. 35
6.1 Formal multizetas za®/ze®. . . . . . . .. ... ... ... ... 35
6.2 Generating functions zag®/zig®. . . . . ... ... ... ... 37
6.3 Immediate bipartion and arduous tripartition. . . . . . . . .. 38
6.4 The free generation theorem. . . . . . . . ... ... ... ... 39
6.5 Generators and dimensions. . . . . .. ... 40
6.6 Canonicity and kwa-orthogonality. . . . . . . . ... ... .. 44
6.7 Canonical m%-dependence . . . . . . . ... ... ... ... .. 45
6.8 Canonical decomposition into irreducibles. . . . . . . . .. .. 47
6.9 Canonical elimination of all ‘1’. Redistributivity. . . . . . . .. 48
6.10 From symbols to numbers. Other relations. The canonical
rational associator. . . . . . ... ... 49



7 Conclusion and further vistas. 49

7.1 The rich nexus around ARI/GARI . . . . . ... ... ... .. 49
7.2 Just how new is ARI/GARL? . . ... ... ... ... .... 51
7.3 SUARI, superalgebra companion to ARIL. . . . . ... ... .. 52
7.4 The ring Na of naturals and the huge scope of dimorphy. . . . 55
7.5 Are there exotic derivations acting on numbers 7. . . . . . . . 58

1 Introduction.

1.1 Multizetas and dimorphy.

For positive integer-valued arguments s; , the sums

o —81, —82 —Sp
C(s1y.enysy) = an>n2>m>nr>0 nyng . n (1)

define important, presumably transcendental constants, the so-called multiple
zeta values (MZV) or multizetas for short. They first appeared in Euler’s
Collected Works [Eu]. They are also of frequent occurence in the theory of
difference equations ! — which may be taken as an excuse for discussing them
at this venue 2. They are in fact truly ubiquitous and have a way of cropping
up in the most improbable contexts, like:

1) holomorhic dynamics and holomorphic invariants — since 1975 ([E1,E2])
2) knot theory - of all places! — since 1987 ([BL,Ar])

3) number theory — since 1985 ([Z])

4) integration in Feynman diagrams — since 1985 ([Bro] )

5) the Grothendieck-Teichmiiller group — since 1989 ([D])

Their chief claim to attention, however, is the phenomenon of dimorphy,
namely the existence of two natural encodings and two multiplication rules.
Dimorphy actually seems to extend to nearly all ‘natural’ transcendental
constants, but it finds its simplest and most starling expression in the Q-ring
of multizetas, and that is where it should be studied first.

1.2 Singular and singularly perturbed systems.
Singular Systems (SS for short) are systems of local differential equations:

St fy..., f) =0 witht~0 ( z=t"torh(t); z~ o) (2)

lthey enter as principal ingredient into the definition of the Stokes and resurgence
constants associated with the solutions of difference equations.

2This survey is based on a talk given at Groningen University, a famous centre for
difference equations.



with local analytic data, but with a formal solution (expressed in terms of
power series or more general expansions like transseries) that is generically
divergent. This divergence, however, being of natural origin, is usually re-
summable ® and resurgent in one or several critical times z = h(t). Tt is also
acted upon by exotic derivations, the so-called alien derivations A,. Lastly,
it possesses non-trivial holomorphic invariants A, of infinite depth, i.e. not
calculable from jets of finite order. All these aspects are subsumed in one
single equation, the so-called First Bridge Equation.

Singularly Perturbed Systems (SPS for short) are differential systems with
an infinitesimal perturbation parameter e, whose solution(s), when expanded
in power series of €, generically diverge(s). As a typical example, we may
take differential equations of the form

S(t,fw--,f(rfl))—i—ef(r):0 with e ~0 (2 =¢"or h(e); v ~ o0) (3)

with the parameter € sitting in front of the highest order derivative *. The
system undergoes a qualitative change when e vanishes, since the number
of free parameters in the general solution drops by at least one unit °. We
should therefore expect neither regularity nor convergence from e expansions
of its solution, but at most resummability and resurgence with respect to
some critical x = h(e).

This is indeed often the case: parametric divergence//resurgence (in €//x)
is roughly dual to equational divergence//resurgence (in t//z), but definitely
more complex. Instead of one Bridge Equation (per critical time), we now
have two, the Second and Third Bridge Equations. And, what is even more
important for our present concerns, the singularities w in the Borel plane(s)
which are associated with parametric divergence//resurgence, are made up of
two ingredients - two distinct sets of constants, the u; and v;, which interact
in a quite specific way and provide the announced link-up with dimorphy.

1.3 The common underlying structure: ARI/GARI

In their raw form, as scalar numbers, the multizetas and the more general
dimorphic constants are not tractable enough. They have to be replaced by
suitable generating functions — one for each of the two different encodings.
“Suitable” here means three things: the two multiplication rules on
scalars should translate into simple operations on the generating functions;

3barring the occurrence of small denominators, but even then there exists a notion of
compensated solution ([E7]), which restores resummability.

4in the case of a DE, or in a corresponding position in the case of PDE.

Sagain, in the case of a DE



and the change from one scalar encoding to the other should translate into
a simple correspondence between generating functions.

Then, ideally, the irreducibles, i.e. the ultimate building blocks into which
one hopes to break down the dimorphic scalars, should correspond to re-
markable, elementary special functions (say: polynomials), out of which the
generating functions can then be ‘assembled’. Moreover, these polynomials
may reasonably be expected to carry far more structure (and yield more eas-
ily to enumeration and classification) than the scalar irreducibles, which are
‘dumb’, inert numbers.

That programme turns out to be feasible:
(i) with the algebra ARI and its group GARI as general framework,
(ii) with the basic involution swap connecting the two encodings,
(iii) with the bialternals (remarkable polynomials constrained by a ‘double
symmetry’) in one-to-one correspondence with the irreducibles,
(iv) with the ARI machinery for the canonical generation of all bialternals.

ARI was already there, ready for service. It had been discovered, ten years
earlier, in the course of investigations into Singularly Perturbed Systems and
their strange singularity patterns. As pointed out, these singularities result
from the interplay of two totally distinct sets of constants, the u; and v;,
which mix according to the ARI operations.

1.4 Overall scheme.

We shall roughly follow the chronological order. We shall first (§2) review
Singular Systems with their single Bridge Equation and their ‘pure’ singu-
larities; and then move on (§3) to Singularly Perturbed Systems with their
two Bridge Equations and their ‘mixed’ singularities, obtained from the wu;
and v;. Then (§4) we shall try to set the general framework of dimorphy,
which involves both dimorphic functions (functions stable under two distinct
products) and dimorphic constants (constants whose one and only product
can be calculated in two completely distinct ways, leading to unexpected re-
lations). At this point it will be opportune (§5) to introduce the ARI/GARI
operations and to catalogue some basic facts. Armed with the ARI/GARI
apparatus, we shall then (§6) return to dimorphy in the prototypal case of
multizetas, and derive the main facts about these: free generation; existence
of canonical irreducibles of two types, even-lengthed and odd-lengthed; the
mechanism behind canonicity; the explicit decomposition of multizetas into
irreducibles; the special status of ((2) = w2, Lastly (§7), to show the versa-
tility of the new ARI/GARI structure, we shall mention some of its natural



extensions (the superalgebra SUARI etc) and sketch further applications,
notably to ‘universal’ dimorphy and its natural framework, the field Na of
natural real numbers. Pictorially :

Singular Systems General Dimorphy
! /! !
Sing™ Perturbed Systems / Multizeta Arithmetics
NN S e
ARI/GARI
/ ! N\

1.5 Some conventions. Reminders about moulds.

Abbreviations:
Throughout, we shall write P(t) := 1/t ; Q.(t) := ¢/tan(ct) and use the
following shorthand for sums and differences:

U1g = Uy + U, Uiz = Uy + Ug + U3, ..., Vg :=U; — Uy, e€tc (4)
Moulds:
Moulds are functions of a wvariable number of variables: they depend on
sequences w = (wi,...,w,) of arbitrary length r. The sequences are sys-

tematically written in boldface , with upper indexation when such is called
for, and with the product denoting concatenation: e.g. w = w!.w?. The
elements w; which make up these sequences are written in normal print, with
lower indexation. The sequences themselves are affixed to the moulds as
upper indices A®* = {A“}, since moulds are meant to be contracted

A*, B, < A*, B, >:= Y A“B,

with dual objects (often differential operators or elements of an associative
algebra), the so-called co-moulds B, = {B,,}, which carry their own indices
in lower position.

Basic mould operations :

Moulds may be added, multiplied, composed.

Mould addition is what you expect: components of equal length get added.
Mould multiplication (mu or X) is associative, but non-commutative :

C*=mu(A*,B*) =A*x B*«=C"= Y AV'B™ (5)

w=wl w2



( This includes the trivial decompositions w = w.() and w = (l.w ).
The third basic operation, mould composition, won’t be required here.

Main symmetry types:
Most useful moulds fall into a few basic symmetry types.
A mould A*® is said to be symmetral (resp. alternal) iff :

Y A =AAY (resp.0) Vel #£0 Vw?£0 (6)
wesha(w!,w?)
A mould A* is said to be symmetrel (resp. alternel) iff :
Y A =AYAY (resp.0) Vel #£0 Vw?£0 (7)
weshe(w!,w?)

Here sha(w!,w?) (resp. she(w!,w? )) denotes the set of all sequences w
obtained from w! and w? under ordinary (resp. contracting) shuffling. In a
contracting shuffle, two adjacent indices w; and w; stemming from w' and
w? respectively may coalesce into w;; := w;+w.

The definition of symmetril/ alternil is like that of symmetrel/alternel except
that the contractions w; + w; get replaced by w; ® w; with:

Arsi®uie iz il Ao el Arovi with wig = w—w; (8)

2 Singular systems and equational resurgence.

2.1 Resummation - monocritical or polycritical

Consider a fairly representative case of polycritical Singular System :

)

with unknown f = (fi, ..., f,), variable t ~ 0, f; := df;/dt and local-analytic
data b;. Assume further that S.S can be brought to the normal form:

1 .
SSner —t"Pif e Nif; =0 with  1<i<v (10)
bi

under a formal (entire) change of variable and unknown :

fi = hi(t7 anT) < C[[t7 fnor]] ) fz‘nOT = ki(ta f) S C[[tv fH (11)



This is not always the case (there may be unremovable mixed terms left on
the right-hand side of SS™") but the general case is no different as far as
analytic difficulties are concerned.

Our normal system SS™" is immediately integrable and by plugging its so-
lution f7°" := w; exp(A\t~P) back into h;(t,.) we get the general, formal
solution of §S. That solution is generically divergent, but resummable via a
complex process, known as accelero-summation, which involves :

e identifying the so-called “critical times”, which in the present instance
are the zp,) := ¢t for all r distinct values of the p;, and ordering them
z1 =< -+ <z, from slower to faster

e changing from the original variable ¢ to the slowest critical time z;
and subjecting the formal solution of S\S to the formal Borel transform

21 Cl'

e successively performing the r—1 acceleration transforms z; — z; ;1 (like
the Laplace transform, they entail an integration from 0 to oo, but with
a kernel of faster-than-exponential decrease at infinity)

e performing the Laplace transform (. — z, with respect to the fastest
critical time (which makes sense, because in the (,-plane we get, for the
first time, exponential growth at infinity) and reverting to the original
variable ¢

See [Braa,E3,E5,E8]. Pictorially :

(formal) (geometric)
(multiplic.) z — « t . t — 2z
Borel l T Laplace
(convolut.) ¢ — (o o Crot — ¢
accel. accel.

Only in the monocritical case (r=1) can we dispense with acceleration.
However, whether mono- or polycritical, the resummation process is always
polarising, because it involves integrating from 0 to co in the various (;-planes
and dodging the singularities which are generically present there: remember
that the (-singularities reflect the fact of z-divergence! So ultimately the
solution f produced by resummation depends on the angles 64, ..., 6, of the
r rays chosen for integration.

If however SS is real and if we insist, legitimately enough, on getting a
real solution, we must each time integrate on the positive real half-axis (i.e.



take #; = --- = 6, = 0) and then there can be no question of dodging the
singularities on R*, because that would saddle us with imaginary parts. Nor
can we ‘ride rough-shod’ over these real-axis singularities: what we must
do is take finely honed averages (so-called well-behaved averages © like the
organic or Brownian or Catalan etc...average) of the integrand’s various
determinations over R (see [Me,EM]).

2.2 Invariant Analysis. The First Bridge Equation.

The singular points w in each given Borel (,-plane are generated 7 by the
corresponding multipliers \;

Q={w; w= Z nj Aj} (12)

pj=q,nj=—1

and the (usually ramified) singularities located there matter on two accounts:
they are responsible for the divergence in the first place; and they carry im-
portant, chart-invariant information about the system SS. So it is essential
to analyse them. This is accomplished by the First Bridge Equation :

BE; : Ay, f=AL f (13)
with @ = (%) and w € Q; and
Ao = u"®) {3 AL (u) uy i+ZAJ‘ (w) 23 (14)
“ @ J ale @ &uj
Pj=q P <q

The operators A, on the left-hand side of (13) are known as alien derivations.
They measure the singularities over w in the (,-plane and the Bridge Equation
tells us that their effect on f is the same as that of ordinary differential
operators — namely the A, which stand on the right-hand side (13) and which
are of the form (14), with scalar coefficients A7 (u) € C|[[u]] that depend only
on the ‘earlier’ parameters u;, i.e. parameters associated with the slower
critical times.

These ordinary differential operators are entirely determined by, and cal-
culable from, the Bridge Equation, and they have the outstanding property

5They must verify two easy algebraic conditions (respecting realness and convolution)
and a difficult analytic condition (ensuring convergence).

Ttheir distribution (on the corresponding Riemann surface) is of course discrete, but
their projection {1, on C may not be.



of being both analytic and holomorphic invariants 8. Their set {A_}, for all
values of ¢ and all w € (), even constitutes a complete and free system of
holomorphic invariants °

2.3 Invariant Synthesis. Plain and twisted monomials .

The preceding section dealt with invariant analysis, i.e. the change from
SS to {Ag}. But what about the reverse change, or invariant synthesis:
constructing a singular analytic system with prescribed analytic-holomorphic
invariants {A, } ? For simplicity, let us first discuss the case of a monocritical
system SS with all p; equal to 1. So there is only one critical time z := 1/t
only one set {2 := (y, and the indices @ := () of alien derivations simplify
to w.
One goes from f to f*" and back:

frrtu) = O filtw) 5 filtu) = 7N () (15)

by applying a formal automorphism (a substitution operator) ©*! which
admits two quite distinct types of expansions . The first pair reads:

0 = 1+) (1) Zv‘:;;: r(z) B ... B (16)

r>1
O = 1+Y ZW@:; r(z) BZ...BY (17)
r>l wj

and involves

(i) differential operators B? similar in form to the A, but non-invariant and,
unlike the A, elementarily '° linked to the Taylor coefficients of S :

(ii) elementary resurgence monomials W2 (2) that are O-friendly, mean-
ing that they behave simply under ordinary differentiation :

8 th ,wr( ) le, LW 1(2’) ewr? z—l—m» (18)

----- O1,-0r—1

and less simply under alien differentiation.

8Here, the near-homonyms carry totally distinct meanings: analytic invariants are
invariant under analytic changes of coordinates-and-unknown, whereas holomorphic in-
variants are invariants that depend holomorphically on the system S5, i.e. on its Taylor
coefficients.

9though they do not always provide a complete system of analytic invariants.

Wwithout the intervention of transcendental constants.

10



But we may also consider another, for the time being purely formal, pair
of expansions, which reads:

O = 1+ (1)) U (z) Ay, .. A, (19)

r>1 wj
O = 14D D UN(:) Au A (20)
r2l  wj

and involves
(i) the differential operators A, themselves

(ii) elementary resurgence monomials “*»“"(z) that are A-friendly, mean-
ing that they behave simply under alien differentiation :

A, U (2) = U (2) if wog=wq (resp. 0 if wo#w1) (21)
and less so under ordinary differentiation.

Now, it is easy to check that if we start from a set of invariants A, ,
then construct ©~! according to formula (20), then calculate f from f"°"
according to formula (15), we end up with an f that formally verifies the
Bridge Equation (13) with respect to the prescribed invariants A, .

Thus, our problem — invariant synthesis — is solved, provided the power
series f really verifies a differential system of type (9), with analytic data
b;(f,t) on the right-hand side. Calculating the b;(f,t) as formal power series
is easy enough (by applying 0, to ©*!) and it can be shown — this of course
is the tricky part — that these series are automatically local-analytic if and
only if two conditions are fulfilled:

(i) the operators A, must of course be true holomorphic invariants (of some
system S.S), which imposes conditions on their w-dependance ( it bounds the
w-growth of closely related operators AZ )

(ii) the resurgent monomials &“*“"(z) involved in the construction of f,
on top of verifying the simple resurgence equations (21), must also be ‘well-
behaved’ , i.e. satisfy another, far more technical condition !, which con-
strains their growth as functions of the sequence wy, ..., w,.

Now, the simplest and most commonly used A-friendly monomials U*(z) ,

Hgimilar to that imposed on the well-behaved averages mentioned at the end of §2.1

11



shorn of their exponential factor 2 |, may be defined by the integrals '3

gy © ep(-Ywy)
Uu (2) : S.P.A./O O —1) (5o — 91) (0 = z)dyl cdyy (22)

But they are not, alas, well-behaved. However, the closely related family
of monomials obtained by introducing a positive constant ¢ — the so-called
‘twist’” — which ensures the rapid decrease of the integrand ' near the origin :

Wt () > exp(= 3 o(ws Y + 2 w5 /y;))
et e) = S [ ST S sy (29

are indeed well-behaved, while still obeying the resurgence rules (21).

The long and the short of it is that, starting from any genuine set {A,}
of holomorphic invariants and following the above procedure, but with the
plain monomials Y *(z) replaced by their twisted ' equivalents U 2(z), we can
produce an analytic system SS with the prescribed invariants. This solves
invariant synthesis, elegantly and canonically (upto the choice of ¢), at least
fot mono-critical systems.

But the A-friendly resurgence monomials, plain or twisted, have their
counterparts in the polycritical case also, and are still given by integrals
quite analogous to (22) and (23). This takes care of polycritical harmonic
synthesis for systems like S'S and even more general ones.

Since, furthermore, the A-friendly resurgence monomials are easily and
explicitely differentiable with respect to their indices w;, and that too under
closed rules, which never lead outside the family, the objects synthesised
according to the above procedure lend themselves extremely well to the study
of iso-monodromic, iso-resurgent, iso-Galois, etc. ..deformations.

2.4 ‘Display’ and ‘restriction’. Independence theorems.

Consider a resurgent function f, mono- or polycritical, like, say, the formal
solution of the above system S.S with all parameters u; taken to be 0. Two

12the difference between A/A | W/V U/U etc is simply the presence/absence of an ex-
ponential factor. Thus: A, = exp(—wp z) A, and dually :
U7 (2) = explwr, 2) U9 (2) 3 Wgdn(z) = explwiy 2) Voiigr(2)
13with integration along the rays arg(w; y;) = 0 and with S.P.A. standing for Stan-
dard Path Averaging, which means that we must assign suitable weights to the various
integration paths, arising from the choice of side (right/left) when z; overtakes z; 14
Mwith integration along the rays arg(w; y;) = arg(w; /y;) = 0 and the same S.P.A.
rules
5for any large enough twist ¢, with a lower bound ¢y depending only on {A,}

12



important objects, the display and the restriction, can be attached to f:

display(f) = f + > Y > Z=T Ny L A f (24)

r>1 ¢g>21 w;j

restrict(f) := display(f) |,_, (25)

The ‘pseudovariables’ Z =~®r are symbols dual to the A_. Then span
a commutative algebra PSEUDO dual to the associative bialgebra ALIEN
of alien derivations . They multiply according to the shuffle product but
remain inert under (ordinary) differentiation and postcomposition.

In other words, we form the display by adding the pseudovariables, and
then we get the restriction by erasing the ‘true’variable. The importance of
the display and restriction comes from two facts:

(i) both carry in compact form all the analytic-holomorphic invariants of
f and by way of consequence all the information about the ramifications,
singularities etc of its various Borel transforms, relative to all critical times.

(ii) both are algebra morphisms, and indeed more than that: they commute
with the full structure +, x, 0,9, A. Therefore, any relation R, expressible
in terms of these operations and involving one or several, simply or multiply
resurgent functions f,g.h, etc..., is automatically verified by their displays
and their restrictions:

R (¢t f,g,h,...) =0 (26)
I
R (t; display(f),display(g),display(h),...) = 0 (27)
4
R (0; restrict(f), restrict(g), restrict(h),...) = 0 (28)

This is extremely useful for the description and handling of obstruc-
tions to analyticity, and for establishing independence or transcendence re-
sults. Typically, if one wishes to show that a number of resurgent functions
fyg,h,... verify no relation R(f,g,h,...) = 0 other than the ones which
define f, g, h, ... (say, systems like S.S) or those finitely deducible therefrom,
one may replace f,g,h, in R by their displays or, what is often enough, by

16the co-commutative co-product of ALIEN induces by duality the commutative product
of PSEUDO, and the associative, non-commutative product of ALIEN induces a natural
action of ALTEN on PSEUDO

13



their restrictions, and then project identity (27) or (28) onto each of the pseu-
dovariables actually present there. This immediately yields a huge number
of often patently incompatible constraints, and so proves the impossibility of
R(f,g,h,...)=0.

Indeed, although such independence and transcendence results are usu-
ally regarded as falling under the jurisdiction of Galois theory, the deeper
obstructions 7 really stem from the holomorphic invariants A,, and are best
handled with the help of the display/restriction machinery.

Summing up the whole section, we may say that the situation for Sin-
gular Systems is...singularly satisfactory, since we can rely on a strong,
unitary framework (‘equational resurgence’, acceleration, well-behaved av-
eraging, alien calculus, Bridge Equation, display /restriction, etc) capable of
dealing with all the main aspects: resummation, invariant analysis/synthesis,
independence/transcendence.

We shall see in a moment that Singularly Perturbed Systems also lend
themselves to a unitary treatment, but display a whole series of new features,
and a quite distinctive type of resurgence : ‘co-equational resurgence’.

3 Singularly perturbed systems and co-equational
resurgence.

3.1 Some heuristics: similarities/differences between

SS and SPS.

To help us compare Singular and Singularly Perturbed Systems, let us con-
sider two simple instances of the latter category :

f=Xaf+ ) anz' " (4, €C; D an " eC{f}) (29)

n+1>0

f= Xz [+a(z) (ao(2) € C{z7"}) (30)
with f = 9,f

z =1/t = unknown ~ oo
x = 1/e = singular pertubation parameter ~ oo

17 deeper in the double sense of being more potent obstructions, and also of being hidden
deep below the the surface: recall that the invariants A, are not visible on finite jets; they
always depend on the infinite tail-end of power series.

14



Clearly, due to an obvious homogeneity, the general solution of (29) is
of the form f(z,z) € C[[1/zz,uexp(xz)]] , and so the dependence in z is
exactly like the one in z, namely divergent and resurgent ®.

But equation (30) presents us with a totally different situation: if we
expand its solution into formal power series, first of 1/z, then of 1/z, and
subject both series to the corresponding formal Borel transform, we get quite
distinct results:

S a(¢)
Borelz Lz = m 3 f(Z,l') = _>\;U——|—< (31)
n—1 1
Borel, : 7" — h o flz2) - Y a(z + %) (32)

Here a(¢), being the Borel transform of a(z) € C{1/z}, is an entire function
and as such singularity-free. Thus the z-Borel transform of f has only one
singular point {, := —Ax , which is ‘fixed’ and ‘universal’ , whereas the
x-Borel transform may have any number of singularities &, := A (v;—2) — as
many as a(z) has singularities v; — and these are ‘accidental’; of ‘no particular
type’ and, due to the presence of z, ‘mobile’.

3.2 The Second and Third Bridge Equations.

These two extreme examples (29) and (30) suggest that there must be far-
going similarities as well as sharp differences between the divergence/resurgence
behaviour of Singular and Singurlarly Perturbed Systems. To clarify the
matter, let us consider a Singularly Perturbed System SP.S that covers both
cases (29) and (30), and yet remains relatively elementary — in particular,
monocritical :

SPS: f = Xaf+ > an(z) " (33)
1+n>0
= wariable; z = 1/t ~o0; f= f(z;2,u); f=0.f
x = perturbation parameter ; x = 1/ ~ o0
ug = wntegration parameter ; uy ~ 0

with coefficients a,(z) regular-analytic at infinity but singular at points
vy, Vg, ... away from infinity, and with a right-hand side local-analytic in
fand 1/z:

an(z) €C{1/z} 5 Y an(z) [ e C{1/z f}

1+n>0

Bgince for a fixed x equation (29) reduces to a special, monocritical case of singular

system S'S
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If we fix x, the above SPS becomes a mere SS, and its formal solution, as
a function of z, satisfies the first First Bridge Equation, with holomorphic
variants A, that are entire functions of z :

BE; A, f=Af (34)
with A, = A (z)ugtto,, and w=n\r €=Uz

If however we fix z and expand the solution f in decreasing powers of x, we
find that f verifies the so-called Second Bridge Equation:

BE2 Aw f - ]P)wf (35)
with P, = P, (z)ugt'0,, and  w=nA(v;—z) € Qy:=U.(V—2)

which resembles the first, but for two important differences: the active alien
derivations have now more complicated indices w ; and whereas the operators
A, in (34) were entire functions of the perturbation parameter x, the new
operators P, are formal power series of 1/x, with a divergence/resurgence of
their own, which is described by a Third Bridge Equation :

BE; A,Py = > [Py, Py (36)

wtwi=wa+ws

with P, as above and  w=n\v;—v;) € Q3 :=U.(V-YV)

3.3 The sets U/V and &£, /<£2/<5 .

Let us pause awhile and reflect on the nature of the three sets %1, €2, €3
of indices attached to the three Bridge Equations. They are themselves
constructed from two sets U and V, which play a symmetric role but could
not be more different as to their shape and origin.

The set U is simple and carries an additive structure, since it is spanned
by the ‘multipliers’ )\; of the system, with integers n; > —1 as coefficients.
For our special SPS, there is only one multiplier, namely A, and U is made
up of all u = n.\ withn=-1,1,2,3... 1*

The set V, on the other hand, is made up of the singularities v; of the co-
efficients a, (z) of the Singularly Perturbed System. These can be ‘anything’
and carry no a priori structure. Moreover, whereas the u; depend only on a
finite jet of the Singularly System (via the multipliers \;), the v; depend on
the full, untruncated system.

Ythe integration parameter, also noted ug to conform to usage, has of course nothing
to do with the elements of U.
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In a nutshell :

U : Universal, Rigid, Structured | | @ = Ux
U:{Ul,UQ,’LL:),,...} | |

V:{’Ul,’l}z,’(}g,.‘.} ‘ ’

V : Variable, Random, Amorphous | | Q3 = U(V-YV)
z=1/t= wariable ~ 0o (involved in equational resurgence)
x=1/e=  perturbation parameter ~ oo (inv.in coeq. resurg.)

3.4 The u/v combinatorics.

To get a more precise idea of the way in which the two sets U and V combine
to produce the singularities w which govern parametric resurgence, let us
break down the solution f of our typical SPS into parts that are r-linear
in the coefficients a,, , successively for r = 1,2,3... To do this, we require
elementary resurgence monomials V* that are defined like the W* in (18) but
without exponential factors exp(w, z) and with all lower indices o; = 0.

The linear part involves only terms of the form :

S (z) =V (2)  with  w'= (w) = (uv) (37)

The bilinear part involves only terms of the form:
SUL2 () = V& () + V< (2) — V< (2) (38)
with

1 . 2 _ . 3 _
w = (Wor,ugve) 5w’ = (Unla, uivra) 5w = (Ugvr, Usvaa)
The trilinear part involves only terms of the form:

guimts(p) = N e V'(x) (39)

1<i<15

17



with

1
+1 W = (ulvly UQ'UQ, 'LL3'U3)
2
€ =+1 w” = (u1v1, UV, UgV2:3)
3
€3 = —1 w (Ulvl, U23V2, U3V3: 2)
4
€1 = +1 w (uuvz, U112, U3U3)
5
€5 = —1 w (U12U1, U2V2:1, U3U3)
6
€ = +1 w” = (U12v2, UsV3, U1V1:2)
7
€7 =—1 W = (u12vla Usvs, U2U2:1)
8
g = +1 W = (U123U1, U23V2:1, U303:2)
9
€g = —1 W = (U123U1, U23V2:1, U2U2;3)
— 11 10
€10 = + W = (12301, U3V3.1, UpU2:3)
11
€11 = —1 w = (U123U27 U11:2, U3“3:2)
12
€12 = -1 w - (U/123U27 U3V3:2, U1U1;3)
— 11 13 _
€13 = + w" = (U123U3, UV1:3, U2U2:3)
14
€1y = —1 w " = (u12303, U12V1:3, UgV2:1)
— 11 15 _
€15 = + W = (U123V3, U12V2:3, UIV1:2)

And so on and so forth. The complexity rapidly increases, since the r-linear
parts involve expressions :

St () = Z e V' (z) with r*=r1=135...(2r—1) (40)

1<i<r*

with more and more terms in them, more and more contorted indices w; , and
properties — like the symmetrality 2° of the mould S® — which are anything
but obvious. So there is a crying need for a machinery that contrives the
proper combinations and predicts/explains the main properties of the objects
produced. This machinery is the new Lie algebra ARI.

4 Dimorphic monomials and monics.

4.1 The general setting.

This section purports to show, on some of the simplest examples, how di-
morphy — functional and numerical — works. The discussion shall be very

205ee §1.5
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sketchy. A thorough treatment 2! would require heaps of formulas, obscure
the main articulations, and get us mired in depressing details.

In all such constructions, one first produces special functions, with as
much structure on them as possible, and then one derives special numbers,
in as natural a manner as possible. In the present case, the special ‘functions’
appear in no less than six distinct representations or ‘models’:

(1,,1¢) They are primarily radial-analytic function germs :
the ¢(2) are defined at co, along the real axis, in the z-plane
the ¢(() are defined at 0, along the real axis, in the (-plane

(2.,2¢) They are also formal objects :

Our germs are ‘analysable’, i.e. they can be completely formalised, without
loss of information, as formal series (or transseries in more general contexts)
denoted by the same symbols but topped by a tilda, which describe their
asymptotic (or more generally transasymptotic) behaviour.

(3.,3¢) Lastly, they are global functions :

In the present instance, our germs possess global anlytic continuations over
the whole z-sphere (where they tend to be slightly ramified, at 0 and oo) and
over the whole (-sphere (where they tend to be heavily ramified, at various
locations wy).

z — model z — model transf. ¢(—model ¢—model
Variable z o~ Borel 0~ ¢ Variable

Elements ¢(z) germs at oo — germsat0 () FElements
Product I multiplicat. — convol. at 0 *  Product I

X
Product I  #  convol. at oo Laplace multiplicat. X  Product IT

The correspondence between the z- and (-representations is via the familiar,
mutually inverse Borel/Laplace transforms, but here it is essential to adopt
the following, slightly unusual normalisations:

Borel : o(z) = ¢(C) = / T exp(:0)p(:) T (not p(z)dz 1) (41)

100

Laplace < 9(0) = ol = [ T exp(—20)dp(C)  (not G(O)CY) (42)

Zlywhich can be had in [E10]
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Dimorphy for our functions manifests as closure under two distinct products :

(i) a primary product (Product I) which is pointwise multiplication in the
z-plane and the finite convolution * in the {-plane.

(ii) a secondary product (Product II) which is pointwise multiplication in the
(-plane and the infinite convolution & in the z-plane.

But due to our slightly non-standard definition of Borel/Laplace, we must
adopt slightly non-standard definitions for the two convolutions:

p3=piopr = p3(2) = 55 [T 0(2) P(2) (5 +5)dn (21420 = 2)
Gs=¢1x s = 93(0) = [ ¢(G) dp(G) (G +¢=C)

4.2 The biresurgence algebra . Exotic derivations.

The biresurgence algebra BIRES is defined by demanding that (), as a
global function, should have only logarithmic singularities 22, meaning that
near each singular point wy on its Riemann surface, p(wg + (o) should de-
compose as a polynomial in log({y) with regular-analytic coefficients:

¢ € BIRES <= @(w + (o) € Cllog (o] ® C{¢o} at all singular wy

Such elements are closed under Product I and Product II, giving BIRES a
double algebra structure 2.

Now here comes the interesting part: attached to our two products we
have two systems {A,, , wy € Co} and {V,,, , wo € C,} of exotic derivations.
They are linear operators of BIRES into itself. They carry indices wy that
range through the Riemann surface C, of log(¢). And they measure the
singularities of ¢ in such a way as to be derivations (meaning that they
verify the Leibniz rule) with respect to Product I and II respectively.

The operators A,,, , which act as derivations with respect to Product I,
are the now well-established alien derivations.

The operators V,,, , which act as derivations with respect to Product II,
are the less familiar foreign derivations.

2Zplus the usual condition of integrability at 0 and (at most) exponential growth in the
(-plane, to ensure the existence of the Laplace-transform

23Here the term bigebra springs to mind, but in this context it would be rather confusing,
because it usually refers to the simultaneous existence of an (associative) product and a
(co-commutative) co-product. What we have here, however, is two (commutative) products.
For distinction, one might perhaps venture the name digebra or simply: double algebra.
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These are huge derivation spaces: the A, (resp. V) are bound by no
a priort relations. Both races of derivations generate a free Lie algebra —
despite their acting on functions of one variable !

Generally speaking, Product II is very much ‘second’ in importance to
Product I, and its derivations V,,, are also very much ‘second’ to the A, .
The V,,, are not only less commonly used, but also less versatile: their defi-
nition is heavily dependent on the logarithmic structure of the singularities
(in the (-plane), whereas the A, can handle any singularities whatsoever.
But for the purpose of studying dimorphy and in the restrictive framework of
BIRES, Product I with its alien derivations and Product II with its foreign
derivations, should be viewed as ‘symmetric’ and ‘equal’.

Actually, we shall have to do, not with BIRES as such, but with the
subalgebra (for both products) BIRES, of functions which (in the (-plane)
have a finite ramification degree:

{@ has ramif. degree <d} <= {A
— {V

ALAL =0, Yw € Cl}
Vi,V p =0, Yw; € Co}

Wd+1

Wd+1

BIRES, itself has interesting subalgebras, two of which — the hyperlogarith-
mic and hyperzetaic algebras — shall retain our attention.

One last point calls for clarification: how does functional dimorphy (sta-
bility under two distinct products) translate into numerical dimorphy (two
different ways of calculating the one and only product on C)?

If we define the monics by point evaluation (especially antipodal evalua-
tion, see §4.5,84.6) of our monomials on the z- or (-spheres, then stability
under Product I or Product I immediately carries over to the monics, and
the only thing left to do is to establish the existence of a simple conversion
rule between the two sets of monics.

If on the other hand we derive the monics by exotic differentiation of our
monomials, the situation is not so different, only tidier: the two multiplica-
tion rules for Product I and II still induce definite symmetries in the monics,
and the universal conversion laws between the system {A,} and the system
{V.} automatically induces a conversion rule between the monics.

But the second method offers subtle advantages. Not only is the con-
version law implicit in the procedure, but its nature also becomes more un-
derstandable. Indeed, recall that both races of exotic derivations ‘measure’,
each in its own way, the singularities in the (-plane. But one race is geared
to Product I, which is a convolution in the (-plane and as such adds the
singular points of the two factors (i.e (wy,ws) — w; + we), whereas the other
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race is geared to Product II, which is pointwise multiplication in the (-plane,
and as such leaves the singular points in place.

So, for the two systems of monics produced in this way, and indexed
by sequences uq,us,.. and v, vo,.. inherited from the singularities of the
monomials, we should expect the conversion law to reduce to an addition of
the u; or a substraction of the v;. Such will indeed be the case in the simple
examples that follow (one must of course go to more complex situations to
really appreciate the efficiency of the present machinery).

4.3 The subalgebra of hyperlogarithmic monomials.

The v-encoding :
In the v-encoding, our hyperlogarithmic monomials are defined by :

Ligg" " (2) = (=1)" (0, +v,) 'zt .. (0, +vo) t2 10, +vy) T (43)
/ dg Cg dGy o dg

Cr Uy 0 C2—U2 0 Cl—U1

—— Ul,...,Ur

Ligg (€) = (44)

Formula (43) is relative to the z-plane. Each factor (8 + ;)" ! in it may be
interpreted either as the integration operator exp(—v;z)( [ dz) exp(v;z) acting
on everything to its right, in which case the formula yields sectorial func-
tion germs at oo, or again it may be interpreted as the formal operator
> so(=1)"v; 170" acting on everything to its right, in which case the for-
mula yields the (common) asymptotic expansion of these germs.

Formula (44) is merely the transposition of (43) in the (-plane. It yields
germs at ( = 0 with ramified extensions over the whole (-plane.

The u-encoding:
It is derived from the v-encoding under the simple conversion rules:
ntiall
LagguLuQ, o (Z) esse:;a Y Liggulyul%n-yulzur (Z) (45)

essentially

Liggvlﬂ)%---fur (Z) = Laggvlavlly---ﬂ}r:rfl (Z) (46)
The caveat ‘essentially’ means that some simple corrective terms have to be
added when several singularities lie on the same half-ray.

Biresurgence and dimorphy :

All monomials Lagg" and Ligg" are in the biresurgence algebra BIRES. More-
over, subjecting two monomials Lagg" (resp. Ligg") to Product I (resp.II)
amounts to shuffling their u- or v-sequences. In other words, both moulds
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Lagg® and Ligg® are equally symmetral, but relative to Product I and II
respectively. Thus, in the z-plane we get :

Product I : Lagg" . Lagg® = Z Lagg" (47)
u€sha(u’,u’”)
Product II : Ligg"' & Ligg"" = Z Ligg" (48)

vesha(v/,v")

4.4 The subalgebra of hyperzetaic monomials.

The natural but inconvenient encoding :
The hyperlogarithmic monomials, as produced by difference equations or
systems, are naturally given in the form:

Zegg®tr(z) = Z (z4+mn1)"* o (24 n.)" " (49)

ni>->n,>0

and they are indeed closed under Product I and II. But this ‘natural” s-
encoding leads to rather clumsy multiplication rules and must make way for
the usual u- and v-encodings.

The approximate u- and v-encodings :
In the z-plane, Zagg" and Zigg" are meromorphic functions given by the
expansions :

Zagg"t Z P(my—uy— 2)P(mia—uia—2)..P(my_,—uy ,—2)

mi,..,my>0

Zigg" v (z) = Z P(ny—vi— 2)P(ng—vo—2)..P(n,—v,.—2) (50)

ny>-->n->0
with the obvious conversion rules:

Zagg“l’ U (Z) es; Ziggulz.myu12mr—17~--7'Uf1 (Z) (51)
Zlggvl7---7 r (Z) :S ZaggUT'yvr—ltra---7vl:2 (Z) (52)

and the usual abbreviations: P(t) := 1/t, ujg := uy + ug, v1.9 1= v1— V.
In both definitions (50), ess (essentially) means that the lower order mul-
tipoles, which render the expansions convergent while respecting the symme-

tries, have been omitted (see [E10]). In (51),(52) ess also points to omitted,
very elementary corrective terms (see [E10]).

The exact u- and v-encodings:
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Lest the reader should feel uneasy with ess, here are the exact definitions of
the monomials Zagg(z)®/Zigg(z)® in terms of the monics Zag®/Zig® which
are themselves defined directly in §6.2 infra.
UL yeeeyUp e:p‘aitly z4+u1,...,.24+ur
Zagg"tr(z) =" ZagfrTiveo (53)

exactly

Ziggvl,...,vr (Z) = Zigz—l—m,...,z—l—w (54)

Biresurgence and dimorphy :

All monomials Zagg" and Zigg" are in the biresurgence algebra BIRES. More-
over the mould Zagg® (resp. Zigg®) is symmetral (resp. symmetril) relative
to Product IT (resp. Product I ). Thus in the z-plane we get :

Product II - Zagg“l{} Zagg“// = Z Zagg" (55)
uesha(u’,u’)

Product I : Zigg” Zigg” = > Zigg (56)
veshi(v/,v')

4.5 From monomials to monics.

To produce monics (i.e. basic numbers) from our monomials (basic func-
tions) we have the choice between :

(i) the straightforward but crude method ?* of evaluation at special points,
which preseves the symmetry types: symmetral/el/il etc remains symme-
tral/el/il etc.

(ii) the subtler method of exotic differentiation, which changes the symmetry
types (symmetral/el/il etc becomes alternal/el/il etc) but possesses several
decisive advantages :

(a) in settings more general than BIRES, the monomials, which we recall
are basically germs at z = oo and ( = 0, may fail to possess an analytic
continuation (even a multivalued, ramified one) to the whole z- or (-plane,
and then exotic differentiation spares us the embarrasssement of having to
evaluate functions at locations where they are not defined ;

(b) exotic differentiation dispenses us from choosing arbitrary points zy or (g
where to do the evaluation ;

24there is also the even cruder and messier method of integration over special domains.
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(c) in the not infrequent case when the intervals [oo, zo] or [0, (y] carry sin-
gularities, exotic differentiation also dispenses us from choosing this or that
determination at zy or (p.

(d) exotic differentiation may seem to involve some arbitrariness of its own,
via the choice of the index wy € C, in A, or V,, , but the objection doesn’t
stand : for any given monomial, there are usually only finitely many wq that
yield a non-zero exotic derivative (these are linear combinations of ‘simpler’
monomials with monics as coefficients) and only one priviledged wy that
yields a constant derivative, consisting of a single monic. Thus, “choosing
the derivation” is not an issue, and wy need not even be mentioned in the
definition of the monic.

4.6 The Q-rings of hyperlogarithmic monics.

In the case of hyperlogarithmic monomials, point evaluation is not totally
arbitrary, because there are privileged points where to do the evaluation,
namely the antipode 0 of oo on the z-sphere and the antipode oo of 0 on the
(-sphere. What we find at the antipodes, however, is logarithmic singular-
ities: polynomials in log(z) or log(¢), with regular coefficients. Therefore,
evaluation at the antipodes in this context means killing the logarithms and
then evaluating the regular germ that is left.

By so doing, we get two symmetral monics Lag® and Lig®. The method
of exotic differentiation, on the other hand, yields two alternal monics Lan®
and Lin®. There are simple conversion laws within each pair (dimorphy!)
and from pair to pair (equivalence!) and indeed all four systems generate
(linearly, i.e. span) the same Q-ring of dimorphic monics: that ring depends
solely on the lattice (usually Z or the lattice "Z generated by all unit roots
of order r ) where the indices u; and v; live ([E10]).

4.7 The Q-rings of hyperzetaic monics.

The hyperzetaic monomials also may be subjected to antipodal evaluation
and exotic differentiation. Indeed, if we define Zagg®(z) and Zigg®(z) directly,
as we did in (50) but with all the corrective, lower-order poles which for
brevity we omitted there #*, and then read formulas (53)(54) backwards, this
in effect amounts to deriving the monics Zag®/Zig® from the monomials by

Z5these missing terms are spelt out in [E10], along with various direct characterisations
of Zagg*(2)/Zigg" (2)
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antipodal evaluation. 8

Then there is ezotic differentiation . It produces the monics Zan® (alter-
nal) and Zin® (alternil). There is no room for them in this survey, but they
are very closely related to the monics Za® (symmetral) and Ze® (symmetrel),
which shall occupy centre-stage in the sequel and which incidentally may also
be interpreted as the Taylor coefficients of Zag®/Zig® at u =0 or v = 0. See
6.2 infra.

In actual fact, what we are going to do is proceed in reverse order —
i.e. start from Za®/Ze®, then (78)(79) derive Zag®/Zig® as their generating
‘functions’ ( which are still to be regarded as ‘monics’), then (53)(55) move
on to the monomials Zagg®/Zigg®— but that is only for expediency’s sake.
From the point of view of theory, the scheme outlined in this section — from
monomials to monics — is more logical and above all more universal.

4.8 Is dimorphy exhaustive ? Is trimorphy illusory ?

Let us pigeon-hole into one comprehensive table the main creatures encoun-
tered in this section :

dimorphic + biresurgent
monomials

dimorphic + transcendent
monics

Lagg®(z) / Lage*(Q)
[-symmetral

Lag® / Lan®

|
|
hyperlogarithmic | hyperlogarithmic
|
| symmetral |alternal

Lige*(z) / Ligg*() Lig* / Lin®

|
[I-symmetral | symmetral | alternal
hyperzetaic | hyperzetaic
Zagg'(2) | Zagg*(C) | Zag® | Za®
|

[I-symmetral symmetral | symmetral

Zigg®(2) /| Zigg*(¢) | Zig" | Zet
I-symmetril | symmetril | symmetrel

26bhut each time on the z-sphere, whereas for hyperlogarithms we used alternately the
z- and (-sphere: no matter how sweeping the overall balance, harmony, symmetries etc
which hold sway in this realm of dimorphy, they have their limits too.
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This table looks tidy enough, but it leaves out one sensitive aspect :
namely the extensive overlapping between the hyperlogarithmic and hyper-
zetaic systems, not of monomials, but of monics! The phenomenon deserves
attention, because it seems to take us beyond dimorphy into trimorphy. Let
us try to explain what is at stake on two simple examples — two particular
domains of monics.

Domain 1 regroups all hyperlogarithmic monics with indices v; in {0, 1}
(and therefore with indices u; in {0,1,—1} ). The corresponding hyperloga-
rithmic monomials are often referred to as polylogarithms, but the associated
monics are readily seen to be equivalent to the multizetas Za® and tend to
be assigned to the ‘zetaic race’.

Domain 2 regroups all hyperlogarithmic monics with indices u; and v; in
Z. But they too may be viewed as zetaic monics — namely hyperzetas (more
general that the multizetas).

Then we have many variants. Thus, alongside Domain 1 we have the
slightly larger Domains 1.r, which regroup the hyperlogarithmic monics with
indices v; either 0 or unit roots of order r. These monics coincide with the
‘modulated’ multizetas.

Similarly, behind Domain 2 there loom the slightly larger Domains 2.r,
which comprise all hyperlogarithmic monics with indices u; and v; in the
lattice "Z. These monics too dovetail with a class of hyperzetas.

Now, each of these Domains being the intersection of already dimorphic
rings, we should expect them to be subject to an even richer pattern of
constraints. Such indeed is the case. For Domain 2 and its variants, we get,
not two, but three sets of seemingly independent relations . For Domain 1
and its variants, we get two full sets of contraints, plus a faint trace of the
third set - namely invariance under the ‘Hoffman involution’ 7.

The question is: are these three systems of relations independent ?

For Domain 1 and its variants, it can be shown ([E10]) that the third,
‘atrophied’ set of relations is actually an (algebraic) consequence of the other
two. But what about Domain 2 and its variants? The subject is still in
its infancy, but there seem to be quite a few reasons for assuming that, of
the three sets of constraints, only two are independent — in other words,
that dimorphy alone s effective, as well as exhaustive, and that trimorphy

2Tsee §6.10
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is an illusion. In any case, one would be very hard put to imagine a fully
effective trimorphy with all its consequences, and in particular to visualize
the corresponding irreducibles.

But the question remains, and much is at stake, because trimorphy — or
should we say its appearance — extends to the immense Domain 3, which is
delineated in §7.4 and encompasses the bulk of all transcendental constants
ever encountered in the course of natural operations. Let us stress, how-
ever, that this uncertainty does not affect Domain 1 (the multizetas): here
trimorphy is known to resolve itself into dimorphy.

5 The overarching structure: ARI/GARI.

5.1 Bimoulds. Swap/Push. Contractions.

A few basic facts about the mould formalism have been recalled in §1.5.
Bimoulds are moulds that depend on double sequences :

. (ul,...,ur)
A® = AV = Avowr = AL 1T

and, more crucially, that are subjected to operations which mix up intimately

the two sequences 28.

One such operation is the basic involution swap:

(Zl L ’:T) Vr 5 Up_T1ip 5 -ee s V2:3 5 V122
A; = SWap(A.) P A* 1o Or? — A(ul...r s ULlp—1 5 -r s W12, UL ) (57)
Another operation is the push:
R . (B eory (THLoro UL Uz, Upol )
A* —= puSh(A ) P A* Lo ¥r? A —Ur 5 Vlip V2ip 5 o Yp—Tlip (58)

(We make constant use of the shorthand w5 := uj+us, v1.0 := v1—vy ete).

It is often convenient to represent bimoulds in the so-called ‘augmented
notation’, which consists in adding to any given sequence w a redundant
initial term wy = (’). The u-variables are then constrained by the condition
ug + u1 + ..u, = 0 and, dually, the v-variables are defined upto addition of a
common constant. Thus:

U oo ,ur) (uo,ul,... ,ur)

AL = augA vo vrrtwith wg = —uq 5 v = 0. (59)

28otherwise they ought to be regarded as moulds whose indices w; = () simply happen
to be in C2 rather than in C.
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With the augmented notations, for instance, the push reduces to a unit shift
on the sequence w.

More operations on bimoulds shall be defined in the sequel, but nearly all
of them involve four specific types of sequence contractions, denoted by the
symbols |, [, |, | . These are always relative to some given factorisation
w = w'w?...w* of the total sequence. The contraction rules are immedi-
ately apparent from the following example. Relative to the factorisation :

w=_...ab...=.. . (" v us)ve 7, us,u)
v3 , V4 , V5 v6 » V7 , V8 , Vg

the symbols |, [, |, | signal the following changes:

al =g b= e (60)
aJ;:(us»w,%) Lb;:(ub‘»wvugvug) (61)

V3:6 » V4:6 » V5:6 V6:5 » V7:5 » V8:5 » V9:5

with the usual abbreviations for sums and differences.

Thus we see that the contractor | adds to the upper-right element of a all
upper elements of neighbouring b, whereas the contractor | substracts from
all lower elements of a the lower-left element of neighbouring b. And wvice
versa for | and |. Indeed, the u-variables are meant to be added together,
and the v-variables to be substracted from one another.

5.2 The Lie algebra ARI.

Consider the bilinear product ari:

C*=ari(A,B*) <= (%= ) (A°B°—B"A°)
w=b.c

+ > (AlepPld— BlegPld) 4 N (42fepPl — pale b)) (62)

w=Db.c.d w=a.b.c

with b # 0, ¢ # () in all three sums (but a and d may be empty) .

The ari-bracket is anti-commutative, verifies the Jacobi identity, and turns
the space of all bimoulds such that A® = 0 into a Lie algebra, known as ARIL

5.3 The Lie group GARI.
Consider the binary law gari:
C* = gari(A®, B®) = cv =
> AlPT-pflgat] - padigatiiplet gl (63)

w=al.bl.cl. . as.bs.cs.astl
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with summation over all s > 1 and with factor sequences subject only to
b! # ) and c'.ai*! # @ (but consecutive factors ¢! and al*! may be empty
separately and the extreme factors al,c®,a’™ and even the product c.a5™1
may also be empty, separetly or simultaneously ). Here B? denotes the inverse
invmu(B®) of B® relative to the ordinary (associative, non-commutative)
product (mu or x) on moulds:

C*=mu(A*,B*) =A*x B* = C"= Y AV'B™ (64)

w=wl w2

This gariproduct is clearly affine in A® but severely non-linear in B°®.

It is also associative, and turns the set of all bimoulds such that A" =1
into a Lie group, known as GARI, whose Lie algebra is ARI.

5.4 Some properties of ARI/GARI. Allied structures.

Like ordinary moulds, most interesting bimoulds fall into a few basic symme-
try types. The definition for symmetral/alternal and symmetrel/alternel is
exactly the same as for ordinary moulds, but in the case symmetril/alternil
the contraction w; ® w; should be interpreted as:

A Py, Y A P ) AT with P(t) =1/t (65)

Thus, for a symmetral bimould A® and factor sequences of length 1 and 2 we
get :

(“2’1‘3) Ul U2 “3 u2 Ul “3 u2 ug, ul

A(:})A v9,v3 = A(Ul v9, v3 +A vg, v, v3 +A v9, V3, 111)

but if A® is symmetrel (resp. symmetril) we get additional, ‘contracted’ terms
U12, “‘3 '”‘2 7J‘13)

on the right-hand side, namely Abazio) 4 AL resp.
u12, U3 ) U2, u13 ) u2, 13 )

P(’Ul;2> A( v1, v3 —|—P<U2 1)14( V2 vs) —+ P(Ul;g) A(vQ, v1 /4 P(Ug;l) A(Vzv v3

The set of all alternal bimoulds is a subalgebra of ARI .That of all sym-
metral bimoulds is a subgroup of GARI.

These are closure properties for moulds with a simple symmetry. But
ARI/GARI is specially well-suited for the study of bimoulds with a double
symmetry :

The set ARl a1 of bialternal even bimoulds (i.e. bimoulds that are alter-

nal and whose swappee is also alternal) constitute an important subalgebra
of ARI, and similarly the set GARI,g/as of bisymmetral even bimoulds is an
important subgroup of GARI.
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Here, “even” means that, for any given length r, the component A%t-"r
is an even functions of w. Actually, ‘evenness’ is almost a consequence of
the double symmetry: thus, it may be shown that a bialternal bimould
automatically has even components for all lengths r, except at most for r = 1.
But to ensure stability under the ARI-bracket, length-one components also
have to be even. This subsidiary parity condition is signalled by underlining :
e.g. al/al and as/as.

Even more important for our purpose is the subalgebra ARL, ;1 of alternal
bimoulds with an alternil swappee, and the subgroup GARL /s of symmetral
bimoulds with an symmetril swappee. Here also, the parity condition implies
the evenness of length-one components, but is slightly more technical for
r > 2.

The double symmetry has other consequences : it implies invariance under
some form or other of idem-potent transformation, like
(i) the push for ARIja ;
(ii) the spush for GARI,g/as ;
(iii) variants of these for ARI, i and GARI, s (see[E10]).

It also ensures the existence of an involutive (or group) automorphism :
thus, the involution swap, which is no algebra automorphism on ARI as a
whole, becomes one when restricted to ARI,j a1

5.5 Some remarkable elements of ARI.

Bimoulds with a double symmetry do matter— and in more ways than one.
But they are rather thin on the ground, and not so easy to construct. So it
comes as a relief to know that most of them, and in some important cases all
of them, can be derived from a small set of rather elementary bimoulds, the
so-called bielementals belam? /belim?. These depend only on the component
length r and on a two-variable function xaxi(w,) := xa(u;) xi(vy) %, or rather
the even part of xaxi. All components of belam? /belim? are = 0, except the

component of length r, which reduces to a simple superposition :
( 1:1 ,,,,, ’;er )
belam " = belam ‘17" =

T, Xaxi T, Xaxi

Z bell ™™ xa(u; + Uisy + -+ uj_1) Xi(Vyy — vy) =

iajam1n€ZT+1
e<i<m<j<n<...

> 1 beliJim:n (Xa<ui...j—1>Xi(Um:N) +Xa(uj...i—1)Xi(Un:m)> (66)

i,j,m,nGZrJrl
c<i<m<j<n<...

yith variables ug, v in two (possibly different) abelian groups.

31



with a swappee

°
r,Xaxi

belim := swap(belam’ _ .) = belam? (67)

T, Xaxi r, Xixa

and with integer coefficients

(—1)lm=idetn=le 1],
!

belo7i™™ = pel/H ™™ =
©r r m—al,! [n— 1! j—m—1], [i—n—1],!

This calls for a few comments:

The above formulas use the cyclic augmented notation: we index the
variable w;, v; of the r-th component of a bimould on Z, ., := Z/(r+1)Z
after adding the two ‘redundant’ variables uy := —u;_, et vo := 0 . The
inequalities under the ) sign are of course relative to the cyclic order on Z,
and, for any k € Z,.1, [k], denotes the representative of k in {0,1,...7}.

Formula (67) shows that the involution swap leaves bielementals un-
changed, apart from swapping xa and xi. But the main facts are these:

i) all bimoulds belam are bialternal

( T, Xaxi
(ii) they vanish for odd or (iff r>2) semi-constant functions zaxi

(iii) they are non-zero for even functions xaxi constant in neither variable
(

iv) they generate most other bialternals under the ari-bracket 3.

5.6 Further remarkable elements of ARI.
As usual, we set: P(t) := 1/t and Q.(t) := ¢/ tan(ct) for some c € C.
The identities

pai’ := P(u) ; pa/* " = Plugy ) (pa,2y "™ = payr) - (69)

pivtr = (v1 + vg + ... v.) P(vy) P(vig) P(va3) ... P(vp_1.) P(v.) (70)

define (the former by induction, the latter directly) two series of rather pe-
culiar bimoulds, the pay and pi’, which depend each on one set of variables
— the u; or v;, and have only one non-zero component, that of length r. The
par and pi; are alternal, and although not bialternal, they still possess a dou-
ble symmetry of sorts, since they are exchanged, not under the involution

30for the precise statements, see §6.5 and also§7.3
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swap, but under another important, if less general involution : the slap 3'.
Moreover they self-reproduce under the ARI-bracket:

ari(pay,,pay,) = (r1—72) pa, ., (71)
ari(piy ,piy,) = (r1—72) Pi,, iy, (72)
which means that the subalgebras ARI,, and ARI,; of ARI generated by the

bimoulds pa? or pi’ are each isomorphic to the algebra Diff, spanned by the
differential operators t"19,.

5.7 Some remarkable elements of GARI.

By Lie exponentiation, the algebra isomorphisms just mentioned induce
group isomorphisms between each of the subgroups:

(i) GARI,, := expari(ARI,,)

(ii) GARI; := expari(ARI;)

and the group:

(iii) Diffeo; := exp(Diff;)

of formal, identity-tangent diffeomorphisms ¢ — ¢ + O(t?) of C unto itself.

Of special interest are the images par®* € GARI,, and pil®* € GARI,
of the diffeomorphism f € Diffeo, defined by f(t) := 1 — exp(—t). Like
all bimoulds in GARI,, and GARI,;, par® and pil* are symmetral, but the
remarkable and unexpected thing is that their swappees pir® := swap(par®)
and pal® := swap(pil®) are symmetral too.

The bisymmetral pairs pal® /pil® and par® /pir® thus defined are central to
the theory. They do not fulfill the parity condition and so do not belong to
GARl,s/as - Indeed, upto rescaling and under suitable additional conditions

(“eupolarity”), they are the only bisymmetral (bi)moulds 3? that depend on
one set of variables only (u or v ) and whose r-th component is homogeneous
of degree -r.

Of the two pairs, pal®/pil® is the more important by far. It has a ‘eu-
trigonometric’ counterpart tal®/til®, obtained by replacing P by Q. and
adding suitable corrective terms that involve only even powers of ¢ — see
[E10].

These bisymmetral bimoulds enjoy an incredible number of properties
and sit at the hub of a galaxy of some sixty ‘special bimoulds’, which are
investigated in [E10] and whose applications far outstrip multizeta theory.

3lwich acts as an automorphism, but only on the subalgebra ARleypol C ARI consisting
of so-called eupolar bimoulds, which are particular rational functions of u or v

32heing constant in one series of variables, bimoulds like pal®/pil®, par®/pir® etc are
often referred to as “moulds”.
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5.8 Further remarkable elements of GARI.

The scramble is a general bimould transform defined by :

A®* — B*®* = scramble(A®) with B*® := Z e(w, w*) AV (73)

w* € scram(w)

where scram(w) is the set of all sequences w* = (“I ") which have the

*
v ey VX

same length r as w = (zi ") and are characterised by the property that

for each j € {1,...,r}:

vj = Z ( Z Up)Vg;, (74)

1<i<) pj,i—1<p<pj:

* 0%k * % *
UV + Uy + ... Uy

for some pair {p;x},{g;r} of intertwined sequences:

0=pj0<g1<pjn <@2<pj2<--<¢;<pj;<T

There are exactly r!! := 1.3...(2r — 1) such sequences w*. Each v} is a
sum of one or several consecutive u; and each v} is either of the form v;,, in
which case we set e(w, w*, j) := 1, or of the form v;, —vj,,, in which case we
set e(w, w*, j) := sign(ju — Jix). (Mark the inversion). Multiplied together,
these signs define the global sign factor e(w, w*) := ;Z e(w,w*, ) in the
definition of the scramble transform.

In the above definition (73), A®* was assumed to be a bimould, but it
could just as well be a mere mould, in which case A% should be interpreted
as A"vi--uvr - Thus, the scramble turns moulds and bimoulds alike into
bimoulds.

One of the reasons for the importance of the scramble is that it preserves
the two basic symmetry types: if the mould or bimould A® is alternal (resp.
symmetral), so is the bimould B® = scramble(A®) .

Remarkable (bi)moulds tend to have remarkable ‘scramblees’. Thus the
symmetral mould V*(z), which is central to equational resurgence and Singu-
lar Systems, yields the bimould S*®(x) := scramble(V*(x)), which is central to
co-equational resurgence and Singularly Perturbed Systems: see §3.4 supra.

Closely linked to the symmetral resurgence monomials V*(z) are the al-
ternal hyperlogarithmic monics V* = V3 featuring ** in the resurgence equa-
tions:

Ay Vi(2) =V x V*(2) (75)

33The lower index is actually redundant and may be dropped, since Vigir@r = 0 unless
w1+ ...wWp =wp
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When scrambled, that mould yields the so-called tesselation mould ([E6])
tes® := scramble(V*), which dominates the geometry of co-equational resur-
gence in the Borel planes, and possesses many arresting features, like being
locally constant in its two series of variables, the w; as well as the v; (al-
though tes® is a superposition of several highly complex functions). Thus for
r = 2, the tesselation coefficient :

tesw17w2 = VUI'ULUQ'UQ + Vu12v27u1'111:2 _ Vu127117u2712:1

is, contrary to appearances, locally constant on C* and assumes only three
distinct values there, namely 0 and +1 .

5.9 Basic complexity of ARI/GARI.

The basic complexity of ARI/GARI (as reflected in its main operations, as-
sociated structures, fundamental bimoulds, etc) is quite high. Thus, for a
given component length 7, the inversion invgari in GARI or the Lie exponen-
tial expari of ARI into GARI resolves into a sum of a fast increasing number
(marked # in the table below) of terms, each of which fills upto half a line,
or more, of small print :

length » 1 2 3 4 ) 6 7 8
#(invgari) 1 4 20 112 672 4224 27459 183040
#(expari) 1 4 21 126 818 5594 39693 289 510

For r = 8, we already get six figure numbers, and spelling out the corre-
sponding formulas in full would take about one hundred pages. This means
that one must often rely heavily on automatic computation when ezplor-
ing the fringes and by-paths of ARI/GARI. Fortunately, however, the whole
field is so strongly structured, and so harmonious too, offering so many hints
and props to intuition, that facts and formulas are easy to guess and, once
guessed, quickly yield to rigorous proving. Writing down all these proofs is of
course another matter, due to the sheer mass of the facts already unearthed
or yet to emerge!

6 The arithmetics of multizetas.

6.1 Formal multizetas za®/ze°®.
In the first encoding , the generalised or modulated multizetas are defined by :

(g er) —s1 —sr n1 ny
Ze s = E nyt.o.on et e (76)

T T
ni>..n->0
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with s; € N* | ¢, € Q/Z , e; := exp(2mie;)
The second encoding may be directly defined, via the polylogarithms, but it
is more expeditious to derive it from the first encoding:

er o(sr—1) essentially (ET » Ep—TLir seees E1:2)
) iy

e STy Sr—1 o s1 (77)
Setting €; = 0,¢e; = 1, we get the usual or plain multizetas.

On its obvious domain of convergence R(sy) > 1,R(s12) > 2,..., the
series (76) defines a holomorphic function with a meromorphic extension to
the whole of C" which in turn possesses (see [E10]):

(i) a remarkable singular locus,

(i) remarkably simple multipoles described by the Bernoully mould,

(iii) a ‘parity property’ reminiscent of the reflexion property of the Riemann
zeta function 34.

From the arithmetical point of view, however, the Q-ring generated by the
values of the multizeta function on Z" (at regular points or even at singular
ones, after canonical removal of the multipole ) is no larger than the Q-ring
generated (in fact: spanned) by its values on N". So we may restrict our
attention to the latter.

The multizetas, whether plain or modulated, are eminently ‘dimorphic’
creatures: they are doubly closed under multiplication, since to the two
encodings there correspond two distinct ways of calculating their products.
These are the two classical systems of quadratic relations, which can be de-
rived in any number of ways. In pithy mould language, with the conventions
of §1.5, they can be enuntiated as follows:

l35

(i) The mould Ze®, where defined, is symmetrel °°, and there is a unique ex-

tension to the divergent case 3¢ that keeps it symmetrel and gives Zel!) = 0.

(ii) The mould Za®, where defined, is symmetral and there is a unique exten-
sion to the divergent case that keeps it symmetral and gives Za® = Za' = 0.

But these two extensions do not exactly coincide. There is a slight discrep-
ancy, which calls for some simple corrective terms ([E10]) in the conversion
formula (77). Hence the mention “essentially” in the middle of (77).

34
35

somewhat confusingly known as ‘functional equation’

since the mould Ze® has two-storeyed indices w; = (Zf ), the contractions w; +w; must
€ite; )
Si+s;

36this is the only case (¢; = 0,e; = 1,s; = 1) when the series (67) diverges.

of course be interpreted as (
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All the indications, numerical and theoretical, are that the two sets of
‘quadratic relations’ do express the totality of algebraic constraints on mul-
tizetas. So we may confidently replace the true multizetas Ze®,Za®, which
at the moment are still largely beyond the reach of arithmetics 37, by their
formal or symbolic counterparts ze®,za®, written in lower-case letters and
subject only to
(i) the symmetrelity of ze®
(ii) the symmetrality of za®
(iii) the conversion rules (77)
and address the problem of unravelling all the algebraic consequences.

6.2 Generating functions zag®/zig®.

In scalar form, the multizetas are rather unwieldy, and it is more convenient
to replace them by generating series, so tailored as to preserve the simplicity
of the two symmetries and the transparency of the conversion rule. The
proper definitions are:

. €1 seees €r €1 eens €r 1 _
Z]g(U1 ----- Ur) = g Ze(sl ,,,,, sr) 'Ufl o ,Uir 1 (78)
ISSj
(e 70 o) .= e1,0017 D Lep,00r = | s1—1 s9—1 sp—1
zagler wien) = za (VSR Vot S V5 (79)
1<s;

In the formal case the components of the two new moulds zag®/zig® are
mere power series, but in the genuine case, i.e. of for the moulds Zag®/Zig®
built from the numerical multizetas, these power series sum up to meromor-
phic functions with interesting properties, such as verifying simple difference
equations ([E10]).

Moreover, we have the implications:

ze® symmetrel <= zig® symmetril

za® symmetral <= zag® symmetral
and the conversion rule (77) translates into:
swap(zig®) cractty mu(zag®, mono®) (80)

Here, mono® is an elementary, constant-valued mould : up to rational factors,
its values are ‘monozetas’ ((s), hence its name. So for the generating func-
tions, the conversion rule essentially reduces to the involution swap. Remark

37despite the trail-blazing work of Apéry and, more recently, T.Rivoal ([A],[C],[R])
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that formula (80) uses the primary mould product mu (see §1.5). But due
to the elementary nature of mono®, the right-hand side of (80) may also be
written as an (exceptionnally commutative) product in GARI. Indeed :

mu(zag®, mono®) = gari(zag®, mono®) = gari(mono®, zag®)

Thus, studying the formal multizetas boils down to finding and describ-
ing all the symmetral/symmetril pairs of (essential) swappees zag®/zig® with
values in the ring of formal power series.

6.3 Immediate bipartion and arduous tripartition.

As a natural element of GARI, the mould zag® splits into two and even three
factors:

zag® = gari(zagl.+11’zagl.ll) (Zagl.ll GGARI;);&> (81)
zag” = gari(zag] zag) zagh)  (sag) € GARI)  (82)

The factors zag?, zag®, zagy,  are of type “e.l.”, meaning that their com-
ponents of even/odd length are even/odd functions of w. The factor zag®
on the other hand is of type “0.1.”, meaning that its components of even/odd
length are odd/even functions of w. Under the algebra isomorphisms (87)
(see §6.4 below), bimoulds of type “e.l.” (resp. “o0.l.”) correspond to bi-
moulds that are (in both cases) even functions of w but whose only non-zero
components have even (resp. odd) lengths 3¥. Hence the abbreviations e.l.
(even-lengthed) and o.l. (odd-lengthed).

But there is a major difference between (81) and (82). The first factori-
sation is elementary, immediate, and indisputably canonical, with the zag®

factor given by:

(]
11’

zag® ) = gari(imne(invgari(zag®)), zag®) (83)

gari(zag -

where imne denotes the elementary ARI/GARI automorphism:
imne := impar o neg : AL o) (—=1)" Al T (84)

Since all elements of GARI have exactly one square root, (83) determines
zagy, and then (81) determines zag? = by division.

The difficulty with the second, more precise factorisation (82), which
consists in disentangling the factors zag? and zag? , is not its existence, which

3this applies only to the factors zag® and zag?® . See [E10]
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again is quite straightforward, but its canonicity: there are infinitely many
ways of detaching the ‘polar-trigonometric’ factor zag®, which carries the
m2-dependence, from zagy, ., and the ‘right” choice hinges on the notion of
kwa-orthogonality: see §6.6,86.7 below.

These factorisations hold not only in the formal, but also in the genuine
case, and thus lead to two canonical splittings of the Q-ring of multizetas,
one immediate, the other more recondite :

Zeta = Zeta, , @ Zeta,, (85)

1411

Zeta = Zeta, ® Zeta, @ Zeta,, with Zeta, = Q[r?] (86)

The ring Zeta,,, (resp. Zeta,,, ) is generated by all irreducibles of odd length
(resp. by those of even length, plus the odd man out ((2) = 72/6).

6.4 The free generation theorem.

The Q-ring Zeta of formal multizetas, as well as the three factor-rings 1,11, 111,
are polynomaial rings, that is to say, they are freely generated on Q by a
countable system of ‘irreducibles’. This holds equally for the plain and the
more general modulated multizetas.

Although it has been open for the better part of the nineties, this free
generation theorem is a very simple affair. The only difficulty is to establish
the closure under the ari-bracket of the space ARI,; of all alternal /alternil
bimoulds (with the subsidiary ‘parity’ condition : see §5.4). The neatest
proof consists in observing that the space ARI,j . of bialternal bimoulds

is (trivially) a subalgebra of ARI, and in using either of the two explicit
isomorphisms:

adari(pal®) or adari(par®) : ARLija = ARLia (87)

where adari(pal®) (resp. adari(par®)) denotes the adjoint action in ARI of
the bisymmetral mould pal® (resp. par® ) constructed in §5.7

Observe that, while these isomophisms make it certain that ARI:‘;}H is

a subalgebra, they do not exchange the subalgebras ARIZ?;al and ARIZ?;H

of ‘entire-valued” bimoulds (i.e. bimoulds with values in the ring of formal
power series). In fact, these two subalgebras are not isomorphic.

The general entire-valued, symmetral /symmetril pair of swappees zag® /zig®
is then obtained by postcomposition in GARI of a particular zag® ( e.g. the
‘genuine’, ‘numerical’ Zag® or its first factor Zagf) by the general element
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of GARIZ?;{S# = expari(ARIZ?/ti/l#). Here, ent means entire-valued as usual,
and # denotes an additional condition which depends on the ring of multize-
tas that is being considered : thus for the plain multizetas, # simply means

constant in the v-variables. For the modulated multizetas, see §6.5 below.

The problem has thus been completely linearised, and the free genera-
tors of Zeta, or irreducibles (other than 7?), are seen to be in one-to-one

correspondence with the generators of ARI;%# as a vector space.

But as a Lie algebra, ARIZ?;{I# has far more structure on it than the Q-ring

Zeta of formal multizetas, and its linear generators may be further analysed
— down to Lie generators. This is where the exciting work on multizetas
actually begins !

6.5 Generators and dimensions.

The Broadhurst-Kreimer conjectures.
Let us consider jointly the plain multizetas (without unit roots) and the
FEulerian multizetas (modulated by the unit roots +1) — the former because
of their obvious importance; the latter because, contrary to appearences,
they are actually simpler. Let P, (resp. Es,) be the smallest number of
irreducibles of length r and weight s (:= s1+. . 4s,.) needed to produce, jointly,
a complete system of irreducibles for the plain (resp. Eulerian) multizetas.
Relying on extensive numerical computations and some inspired guess-
work, Broadhurst and Kreimer have conjectured that the dimensions P,
and E,, for the ‘genuine’, as opposed to ‘formal’, multizetas could be read
off the generating functions:

3 12,201 _ y2)

1 —asy)Pr 21 2V 2y 08

s>13_r[>1( ) 122 " (1 —a*)(1 —x9) (88)

I 0-ev™ 21t (39)
s>3,r>1 (1 —x )(1 — gjy)

The two series of relevant algebras.

For any p > 1 let Z, be the subgroup {0,1/p,...,(p —1)/p} of Q/Z and
let ARI®Z> denote the subalgebra of ARI (it is one !) which regroups all
bimoulds A*® :

(i) with u-variables ranging through C
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(ii) with v-variables ranging through 7Z,
(iii) with values in the ring of formal power series in u
(iv) with the self-correlation constraints :

WY yeens ur (T o v*)
A(qvl ,,,,, qu) = Z A vy oo Ur (Vq | p) (90)

A(o ,,,,, 0/ = Z A vl e vk (91)

The subalgebras directly relevant to the study of the multizetas modu-

1/i1Z “ and ARI:;I{ZP For p = 1 their

elements are simply v-constant bimoulds.

lated by unit roots of order p are ARI;—

ent/Zg
al/al *

Eulerian multizetas and generators of ARI

For r =1 and d even we set:

belay’; = =ud (resp. (277 =D ul)) if vi=0(resp. v, =1/2) (92

and for » > 1 and d even we set :

bela; , :=belam? ;. with xa(t) :=t"; xi(0):=0; xi(1/2) :=1 (93)

(i) All bimoulds bela; ; (forr =1,2,3... and d = 2,4,6...) are non-zero,
bialternal,and self-correlated.

(ii) They freely generate the algebra ARIent/Z2

al/al -~

ent/Zo

al/il

(i) Each bialternal bela; ; has a canonical counterpart or ‘extension’ bemay 4,
of alternal/alternil type, self-correlated, and with a first non-zero component

(i.e. the one of length r) equal to the single non-zero component of bela;

(ii) These bemay; ; freely generate the algebra ARIZ?;{IZZ)

Eulerian multizetas and generators of ARI

(iii) The Eulerian irreducibles correspond one-to-one to the bialternals span-
nt/Z
ning ARIZVZI 2. More precisely, the number E, of independent irreducibles

of weight s and length r coincides with the dimension of the cell of ARIeT/t/lZ2

consisting of bimoulds of length r and total degree d = s — 7.
(iv) This establishes the Broadhurst-Kreimer conjecture (89) for the formal
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Eulerian multizetas 3°

Plain multizetas and generators of ARIeT/t/lZl

(i) For each even d there is a canonical pair of alternal/alternil swappees
ma$/mi$ with initial components ma® := uf, ma* := v¢ and with a total
of d non-zero components.

nt /7
(ii) It is conjectured that the ma$ freely generate ARI:];I/I :

This conjecture (formulated in a different, less flexible framework) has
been around for quite a while now, but it is rather crude and can be consid-
erably sharpened, by reasoning on bialternals. Indeed :

Plain multizetas and generators of ARIZTZIZ -

We require three integer sequences «, 3,7 (with a(d) = 5(d) + v(d — 2)):
> a(d) a )~
3 8(d) at = 2 (1 %) 1< )
S 7)ot = (1= ) (1 af)

and three series of bialternals:

I
&
[=2]
—~
—_
|
&
\_‘f
‘&3
S

ekmay /ekmi} d even > 2
domag, /domiy, d even > 10, 1 <b < ((d)
carmag ./carmij deven > 8, 1 <c¢<~(d)

of total degree d and with a single non-zero component of length respectively
1,2,4 . The definition of the first two pairs is straightforward:

ekma¥' == uf ; ekmiy" := v{ (97)
domail”})’w2 = fa(uy, us) (ga(ug,ug))’™" (ha(ul,u2))d/2_3b (98)
doml%’w2 = fi(vy,vs) (gi(vy,v2))"7" (hi(vl,vg))d/Q_Sb (99)
with
fa(ur, ug) = wyug(up — ug)(uy + ug)(2uy + ug)(2us + uy)
ga(ur,up) = (up +ug)*ufu; ; ha(ug,ug) :=ui + uyug + uj
fi(vy,v2) = vive(vy —ve) (v + v2) (21 — v9)(2vy — vy)
gi(vr,v2) = (vy —w)*?v3 ;  hi(v,v) = v} — vy + V3

39Instead of Eulerian multizetas, Broadhurst and Kreimer speak of ‘Euler sums’.
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The definition of the last pair, carma®/carmi®, is more roundabout. Ob-
serve first that the ekmay, are not free in ARI, but bound (for each degree d)
by exactly v(d) independent relations of the form:

Z R¥*% [ekmaj ,ekmaj | = 0° (1 <c<~(d), R™** € Q) (100)

d1+do=d+2

which result from the expansions:

[ekmay ,ekmayj | = Z K} 4, domad ., (K} 4, €Q) (101
1<b<B(d1+d2)

Next, consider the moulds:

vimag , 1= Z R™™ [ma% ,may ] # 0° (102)
di1+do=d+2

with R4 as in (100). By construction :

(a) vimag . is of alternal/alternil type

(b) its components of length 1,2,3 vanish

(c) its (non-vanishing) component of length 4 defines a bialternal mould,
which is precisely the sought-after mould carmaj

Now, the crude conjecture at the end of the last para can be replaced by
the much sharper, but also more tractable statements :

(i) The moulds ekmay; are free under the ari-bracket upto the contraints (100).
More precisely, the number Py, of linearly independent bialternals of length
r , degree d (and weight s :== d + r) generated by the ekmay is given by the
BK-like formula:

2122

x 7Y
1 — ST PSJ” = 1 —_ 103
AL A e I

(ii) The moulds carmaj, are free under the ari-bracket. As a consequence,
the number P77} of linearly independent bialternals of length v, degree d (and
weight s == d+r) generated by the carmay, is given by the BK-like formula :

L Pk (104)
e (1 —a*)(1— %)

(iii) In combination, the ekmag and carmaj, generate the bialternal algebra
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ent/Z

ARIal Jal 7

number P;, of linearly independent bialternals of length r, degree d (and
weight s :== d + r ) is given by the BK formula (88).

freely upto the sole constraints (100). As a consequence, the total

Unlike in the Eulerian case, the three above statements have been estab-
lished only upto length r = 7 (Vd) and remain conjectural beyond that. But
the supporting evidence is overwhelming ([E10]) and and in any case they
have the merit of completely removing the weirdness of the artificial-looking
corrective term z'2y%(1 — 4?)/((1 — 2*)(1 — 29)) in the BK-formula: the ex-
planation is simply that to each ‘missing’ bialternal of length 2 (- there just
aren’t ‘enough’ doma®/domi® around —) there answers, under the transparent
mechanism (100)4(101)+(102), a ‘stop-gap’ bialternal of length 4 (— namely
the ‘unexpected’ carma®/carmi®-).

6.6 Canonicity and kwa-orthogonality.

As soon as a major problem is shown to admit infinitely many solutions,
the next question to ask is: is there, among the lot, a clearly distinguished,
canonical choice? Despite the notion’s inherent vagueness, ‘canonicity’ makes
a world of difference, and can never be taken for granted.

A case in point is the transezponential growth scale. Viewed as a self-
mapping of .., +o0], the exponential map admits infinitely many smooth
conjugations to the unit-shift, and as many systems of fractional iterates,
none of which enjoys any precedence over the others: all can be shown to
be, in some precise sense, ‘undistinguishable’ at infinity. This indeterminacy
tells us something essential about the fractal nature of the transexponential
growth scale, and leads to a rather curious construction: the Grand Cantor
(B3] [H)).

So anyone of inquisitive disposition, upon encountering the multizetas for
the first time, hearing of their dimorphy, and learning about their decomposi-
bility into irreducibles, is likely to ask himself, not without some trepidation :
are there canonical irreducibles and is there, going with them, a canonical
decomposition ? The answer this time is: yes — there are, and there is.

The key here is orthogonality with respect to some well-chosen quadradic
forms.

For any pair of monomials PV := ;ufivfr, QY =11} ulv® | we set :
m!...p! q!...q!
ot o (@t )

= 0 otherwise

kwai(B}, Q)

if pi=q, v =q (Vi)
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By linearity, this extends (assuming the sums to be finite) to a bilinear form
on the space of w-polynomial bimoulds:

kwai(A®, B*) := Y _kwai(A}, BY) (105)

r>0
with the nice property of swap- and push-invariance :
kwai(A®, B*) = kwai(swap(A®), swap(B*)) (106)
kwai(A®, B*) = kwai(push(A®), push(B*)) (107)

For any pair of u-polynomial and v-constant (resp. u-constant and v-
polynomial) bimoulds we set :

kwa(A®, B*) := kwai(A® swap(B*)) (108)
resp. kwi(A®, B*) = kwai(swap(A4°®), B*) (109)

As quadratic forms, kwa/kwi are not definite-positive, not even when re-
stricted to the subalgebra ARIZ{I},&I of bialternal polynomials. On that sub-

algebra, however, they are non-degenerate. In other words, if a bialternal
Pa®/Pi® is co-bialternal, that is to say kwa-orthogonal to all other bialter-

nals Qa®/Qi*:
kwa(Pa®, Qa®) =0; VQa® (<= kwi(Pi*, Qi*) =0; VQi*) (110)

then it is automatically 0.

But each indeterminacy encountered in the search for a canonical de-
composition of multizetas into irreducibles is ultimately traceable to a degree
of freedom within ARI;{%I. Therefore, imposing co-bialternality removes all

theses indeterminacies at one stroke.

This of course does not end the matter: one must also convince onseself
that this is the most judicious choice. But a careful comparison with other
possible criteria, in particular with other definitions of orthogonality, leaves
little room for hesitation: co-bialternality relative to kwa is indeed the right
criterion. 40

6.7 Canonical m>-dependence .

The sensitive first factor zag® in §6.3, which carries all the m2-dependence of
multizetas and nothing but the m2-dependence, can itself be split into three
factors:

zag® = gari(tal®, midfactor®, invgari(pal®)) (111)

40A string of arguments in support of this claim are set forth in [E10]
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All three factors are described in detail in [E10], but let us point out some
of their most salient features.

The right factor invgari(pal®) is the gari-inverse of the bisymmetral mould
pal® (see §5.7). But pal® does not verify the parity condition and its inverse
is of symmetral /symmetril (rather than bisymmetral) type.

The left factor is the eutrigonometric mould tal®. Roughly, it is derived
from the simpler eupolar mould pal® by ‘periodisation’. It is indisputably
the dominant factor, the one that makes the largest contribution to zag?,
but since it is not entire-valued (it has multiple poles at the origin u = 0), it
has to be corrected by the two other factors.

The middle factor is even-degreed; all others moulds are alternate-degreed,
i.e. their components of even/odd length are polynomials of even/odd degree.

Of course, all these moulds have a double symmetry: pal®, tal® and
the mid-factor are bisymmetral, while zag® and invgari(pal®) are symme-
tral /symmetril.

To sum up:
zag] € GARIZ‘;}iS
invgari(pal®) € GARILyis
pal® and tal® € GARI,gas
midfactor® € GARI% = eXPafi(ARIM)

Proving the existence of a factorisation (111) is the easy bit. The diffi-
culty is to make it ‘canonical’. There is indeed a huge indeterminacy in the
definition of the mid-factor, which a priori can be postcomposed (in GARI)
by any bimould belonging to the group:

ent

gari(invgari(pal®), expari(ARI; ), pal®) (112)
and carrying only rational coefficients (upto m2-rescaling). However, impos-
ing co-bialternality on zag® freezes the situation, unambiguously defines the
canonical mid-factor, and even leads to tolerably explicit ' formulas for its
expansion.

4Ifor the meaning of “explicit” in this context, see next para.
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6.8 Canonical decomposition into irreducibles.

The task of analysing the alternal/alternil, entire-valued, respectively even-
and alternate-degreed factors:
lozag? := logari(zag’ ) ; lozag’ := logari(zag’ )

essentially reduces to constructing, for each even d, the alterna/alternil,
polynomial-valued, alternate-degreed pair ma$/mi$ mentioned two paras ear-
lier. Here again, ezistence is a direct consequence of the existence of the
genuine multizetas (just take the ‘genuine’ Lozag® and regroup there all
terms with the same weight:= degreet length) and uniqueness+canonicity is
ensured by co-bialternality, i.e. by the requirement that ma$/mi} be kwa-
orthogonal to all bialternals.

The interesting part is the explicit construction, for all lengths r from
1 to d, of all the non-vanishing components *> of ma$/mi}. There are two
(equivalent) inductive schemes for accomplishing this. One would suffice, but
both deserve mention, if only to underscore the all-pervading u/v symmetry.
Here they are:

Scheme I {alternal |/ alternil}  upto length 21" —1
{alternal i alternil} — upto length 271
{alternal } push-inv'} wupto length 27" +1
{alternal ﬁ alternil} — upto length 2r' +1

Scheme 11 {alternal alternil} wupto length 21" —1

{push-inv*

/
!
{alternal /| alternil} wupto length 271’
l
/ alternil} wupto length 21 +1
l

{alternal /| alternil} wupto length 27" +1

In either scheme, the first and second steps (first and second downward ar-
rows) are given by rather complex, but totally explicit formulas. The third
step (third downward arrow) involves the addition of a corrective term to
restore the missing ‘second symmetry’. The corrective term is a priori de-
fined upto an arbitrary bialternal, but in fact unambiguously fixed by the

42ma8 /mi§ being of alternal/alternil type, its component of length r has degree d—r+1

47



condition of co-bialternality imposed on maj/mi§. This third step is defi-
nitely more complex, but still ‘explicit’ in the precise sense that it does not
involve the solving of larger and larger linear systems *3: one relies instead

on Plancherel-like formulas attached to kwa-orthogonality.

For details, complements, and formulas ad nauseam , see [E10].

6.9 Canonical elimination of all ‘1’. Redistributivity.

As mentioned earlier, bialternal polynomials Pay ;/Pi, ; (length r, degree d )
automatically possess two additional properties:

(i) parity: they are even functions of w.

(ii) push-invariance: they are left unchanged by the push — which, we recall,
acts on each mould component as a unit-shift on sequences {wg, wy,...,w,}
(with the ‘augmented notation’, see §5.1)

But they also possess a third important property :
(ili) redistributivity.

Redistributivity is best expressed in terms of the swappee Pi.; and using
the ‘augmented notation’. It says that whenever a given value v;, occurs
several times in the string {vg,vq,..., 0.}, Pi.%; can be rewritten as a finite
sum Y. c(vi,, W, W*)Pi,}i‘&* , with universal, whole coefficients c(v;,, w, w*)
and with new sequences w* involving strings {uv§, v],..., v } with the same
length and same elements as in the old string {vg, vy, ..., v,}, but in different
order and with v;, occurring only once. In other words, the multiplicity of
v;, can be redistributed among the v; other than v;,.

Like push-invariance, redistributivity is strictly weaker than bialternal-
ity, but it deserves to be investigated for its own sake. In fact, a whole
string of subalgebras of ARI can be defined by imposing various conditions
of push-invariance and/or redistributivity, and they play a critical part in
the canonical decomposition of multizetas (see [E10]), mainly because (un-
like the bialternal subalgebras) they are characterised by a finite “group of
constraints”, which makes them amenable to Hilbert’s theory of invariants
and renders the calculation of their dimensions, for each cell (r,d), if not
always easy, at least completely algorithmic.

43This seems a sensible definition of ‘explicit’ in the present context, as it maintains a
meaningful distinction with ‘constructive’.
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Lastly, the phenomenon of redistributivity is intimately bound up with
the theorem on the eliminability of all ‘1°, which says, in the case of plain
multizetas, that each Ze®*" (s; > 1) can be expressed, uniquely upto the
symmetrelity of Ze® | as a finite combination over Q of ‘I-free’ multizetas
Zei5 of equal weight but possibly smaller length (i.e. s* # 1,3 sF =

dosi, r*<r).

6.10 From symbols to numbers. Other relations. The
canonical rational associator.

Apart from the two sets of quadratic relations, which underlie our construc-
tion of symbolic or formal multizetas, the genuine, numerical multizetas verify
a host of other relations, chief amongst which are:

(i) the two-term digonal relation ** | also known as Hoffman involution
(ii) the five-term pentagonal relation, due to Drinfel’d
(iii) the six-term hexagonal relation, also due to Drinfel’d

All the indications are that:
{quadratic relations} <= {gonal relations} (113)

The implication = in particular is most probably valid. The digonal rela-
tion, at any rate, is already known ([E10]) to be derivable from the quadratic
relations. For the hexagonal relation, the proof has not been seriously at-
tempted, but ought to be feasible. For the pentagonal relation, it might
perhaps be more elusive.

Be that as it may : if the implication = holds in (113), then the canon-
ical factor zag, defined in §6.7 immediately yields (after re-scaling 7% to 1) a
canonical, rational Drinfel’d associator .

7 Conclusion and further vistas.

7.1 The rich nexus around ARI/GARI .

ARI/GARI does not stand isolated in the mathematical landscape. It is
part of a whole nexus of over-, side- and sub-structures. It is also an area

44 digonal, not diagonal. This is non-standard nomenclature, but it has has the merit
of rhyming with the other m-gonal relations, which is only proper, given that all three
relations really belong together.

45the notion of associator goes back to [D], which also establishes the existence of rational
associators, but leaves the question of canonicity open.
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of great natural ‘biodiversity’, with a large number of operations acting on
ARI/GARI and an even larger population of special moulds living there.

Over-structures.

ARI/GARI is part of the larger algebra/group AXI/GAXI of all ‘symplec-
tic’ derivations/automorphisms of BIMO (this is the associative algebra of
bimoulds, but under the ordinary mould product). ‘Symplectic’ here means
that all operations performed on w-sequences preserve both > w;v; and
> du; A dv;, while involving only u-sums and v-differences.

Side-structures.

Within AXIT/GAXI, ARI/GARI stands cheek by jowl with two other, rather
different structures, ANI/GANI and AMI/GAMI, which, however, must be
taken into consideration in order to get a completely closed system of oper-
ations and especially to control the effect of the swap on the gari-product.
The algebra ARI also possesses a useful superalgebra analogue: SUARI (see
§7.3 infra).

Sub-structures.

In practice one seldom works in the global ARI/GARI, but in a host of re-
markable subalgebras/subgroups, which range from the totally free to the
strongly bound, and are defined by various

(1) invariance conditions

(2) properties like redistributivity (see §6.9) etc

(3) restrictions on the nature of the w-dependence : polynomial; flat (i.e.
piece-wise constant); polar; trigonometric; well-articulated; etc.

(4) simple or double symmetries like al/al, al/il, al/ul (the ‘mirror image’
of al/il), al/iil or al/uul (the ‘trigonometric’ counterparts), or of course the
‘multiplicative’ analogues as/as, as/is, as/us, as/iis, as/uus, etc.

Wealth of operations.

Alongside its many natural non-linear operations, ARI/GARI also possesses
a number of non-trivial and quite distinct linear involutions (which after all
is only fitting for an apparatus geared to the investigation of dimorphy!) that
act as automorphisms on suitable subalgebras/subgroups, like:

(1) the swap (see §5.1): on the space of push-invariant (bi)moulds

(2) the slap (see §5.6,[E10]) : on the space of eupolar (bi)moulds

(3) the clap (see [E10]): on the space of polynomial-valued (bi)moulds
(4) the flap (see [E10]): on the spaces of flat/polar-valued (bi)moulds

The ARI/GARI structure is also essentially invariant under the (quadripo-
tent!) Fourier transform, applied to all u- and v-variables.
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Bounty of special moulds.

Multizeta theory makes use of all manner of ‘special (bi)moulds’ - up to one
hundred at the moment. This being a survey, only a handful of them could
be mentioned here. The rest are described and tabulated in [E10].

But numerous other moulds, which originate in different theories (local
dynamics, differential/functional equations, KAM theory, etc) and have been
around for quite some time, also seem to fit effortlessly into the ARI/GARI
framework. What is more, this ‘re-housing’ often leads to a simpler derivation
of their properties. It sheds light in particular on the puzzling parallelism
between ‘sum-like’ and ‘difference-like’” moulds. Facts such as these bolster

one’s faith in the future of ARI/GARL

7.2 Just how new is ARI/GARI ?

I hope I may be forgiven for recalling a few facts about the genesis of
ARI/GARI — and for (ab)using the vertical pronoun:

(i) I handled multizetas quite extensively in the mid-seventies, but in the
context of holomorphic dynamics and holomorphic invariants, where dimor-
phy is of little or no relevance

(ii) I chanced upon the ARI/GARI structure via the scramble transform
(§3.4,85.8) in the late eighties, while investigating Singularly Perturbed Sys-
tems ([E6]).

(iii) I returned to the multizetas in August 1999, but this time with the
ARI/GARI apparatus in hand and with dimorphy at the centre of attention.
Free generation quickly followed, but canonical decomposition proved more
elusive: there seemed at first to be a choice between several, equally appeal-
ing decompositions, and it took some close comparing and weighing before
one of them emerged as ‘clearly canonical’.

So ARI/GARI is a new structure. Insidious rumours are afloat, which tend
to assimilate ARI to competing constructions, like the Ihara algebra or the
so-called renormalisation algebra, but they have no substance to them what-
soever. ARI is anterior to both in point of time, vaster than both, and it
radically differs from both in that it operates with a double series of variables,
which makes it pre-adapted to the investigation of dimorphy.

Of these two reductionist pleas, the attempt to equate ARI with the Thara
algebra is particularly preposterous and disingenuous, given that :
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(i) ARI almost immediately yielded the free generation theorem for multize-
tas, which had resisted repeated attempts based on the Ihara algebra.

(ii) the Thara algebra cannot accommodate any — not a single one !!! - of the
sixty-odd ‘special bimoulds’ like pal®/pil®, tal®/til®, etc, which are required
to describe the m2-dependence of multizetas.

(iii) the Thara algebra cannot handle the modulated multizetas; in particular
it has no room for bimoulds like bela® /beli® which are needed to enumerate
the irreducibles attached to the Eulerian multizetas.

(iv) the approach based on the Thara algebra did not and could not yield
the canonical irreducibles nor the canonical rational associator. In fact, the
followers and upholders of that approach seemed blissfully unaware of the
existence of any such things.

7.3 SUARI, superalgebra companion to ARI.

Let SUARI := %SUARI ¢ !SUARI denote the Lie super-algebra defined in
this way :

(i) °SUARI (resp.'SUARI) consists of all bimoulds whose non-vanishing com-
ponents have even (resp. odd) lengths r

(ii) the super-bracket is the bilinear form suari:

C* =suari(A*,B*) <= ("= > (A°B°—(-1)®rpPa)

w=Db.c
+ Z ((_1)r(c)r(b.d)ALcBb]d . (_1>r(c)r(d)BLcAb]d>
w=Db.c.d
+ Z ((_1)r(a.c)r(b)Aa(cBbJ . (_1)r(a)r(b)Ba|'cAbJ> (114)
w=a.b.c

which is patterned %® on the bracket ari of ARI but verifies the super-
commutator and super-Jacobi identities:

0 =suari(4) , A (—1)"" suari(A;,, A7)

1) 797
_,suari(A;

) T

0 = (—1)""8 suari(A® v Ar))

+ (—1)™" suari(A?,, suari(A? , Ay )
i(A

737
+ (—1)™" suari Tg,suarl(Azl,A;2))

467-(w) denotes the length of the sequence w
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The swap and push are defined exactly as in ARI, but the relevant simple
(resp. double) symmetry is now super-alternal (resp. super-bialternal, mean-
ing super-alternal with an super-alternal swappee). A bimould A* is said to
be super-alternal iff:

Do (=AY =0 YWl A0, Ywr £ (115)

w=sha(wl,w?2)

with the integer n(w; w!, w?) denoting the number of order reversals in the
shuffle w of w! and w?2.

Moulds with this simple/double symmetry are stable under suari, leading
to the following string of super-algebras (with self-explanatory notations) :

SUARLyajsa C SUARI,m C SUARI (116)

Like their bialternal models, the super-bialternals automatically possess
three series of additional properties, albeit sleightly different ones:

(i) they display alternate parity, i.e. their components of even/odd length
are even/odd functions of w — except for the length-1 component, which is
not necessarily odd. But it has to be if we want closure under suari. This
subsidiary condition is signalled by underlining sual/sual in (116)

(ii) they are super-push-invariant, i.e. push(A?) = (—1)"Ap
(iii) they are redistributive (see §6.9)

The bielementals belam; /belim? of ARI (see §5.5,86.5) have their exact
analogue : the super-bielementals subelam? /subelim? . The definition is much
the same except that the integer [k], is now replaced everywhere by the
integer part [k], of [k]./2. The exact transposition goes like this:

wi,...,Wr
T, Xaxi

Z subel™ ™" xa(u; + wipq 4 - + wj—1) Xi(Uy, — vp) =

i,j,m,nEZ,ﬁLl
e<i<m<j<n<...

1 C
Z 5 subel;7™" (Xa(ui_,_j_l) Xi(Umen) + (—1)" xa(u; 1) xi(vn:m))

i,j,m,nEZr+1
e<i<m<g<n<...

subelam = subelam

T, Xaxi

with a swappee:

.
T, Xaxi

.
T, Xaxi

) = subelam (117)

T, Xixa

subelim := swap (subelam
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and with integer coefficients :
subel?™" = (—1)"subelZ"™™ =
(=1)7 6= (—1)lm=ilrtlr=ile [ —1],!
m—i],! [n—7]! [j—m—1],! [i—n—1],!

[, j;m, n],
[
that carry a ‘coherence factor’ [i, j;m,n], alternately equal to 1 or 0:

[i, j;m,n], == 1+ [m—1], + [n—j] + [j—m—1], + [i-n—1], — [r—1],

WD

which was absent from the parallel definition of bel;; since

[ivj;man]r =1+ [m_i]r + [n_j]r + [j_m_l]r + [i_n_l]r - [T_l]r =1

If the length r is even/odd, the super-bielemental subelam? . depends
only on the even/odd part of xaxi. But the important thing is that in either
case subelam? 18 super-bialternal.

T, Xaxi

So far, the modifications have been fairly straightforward, but this is
about to change. Indeed, as Yu. Manin points out ([Ma]), switching from
ordinary to super is not simply a matter of sprinkling the usual formulas
with a few minus signs here and there. It often entails highly non-trivial
changes and may reward us with unexpected insights. In the present in-
stance, the change from ARI to SUARI and more particularly from ARI,i/a
to SUARILa1/sual brings a most welcome simplification, which is this: o

Whereas in ARI the bielementals generate most bialternals, in SUARI the
super-bielementals generate all super-bialternals.

Let us examine the situation in two special cases:

Recall (§6.5) that the algebra of u-polynomial, v-constant bialternals (of
special importance, because they correspond to the plain-multizetaic irre-
ducibles) was (non-freely) generated by two sets of bialternals: the utterly
simple ekma®/ekmi® (of length 1) and the bafflingly complex carma®/carmi®
(of length 4). In complete contrast, the super-algebra of u-polynomial, v-
constant super-bialternals is now (again, non-freely) generated by the simple
system suekma® /suekmi® (with length 1 and odd degrees), there being no
need for super-analogues ** of carma®/carmi®.

As for the case of the self-correlated , u-polynomial bialternals with their
v-variables in Z, (which correspond to the Eulero-multizetaic irreducibles),

4Tsuch analogues, in fact, do not exist.
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the situation was already simple in ARI and it remains so in SUARI: we
had free generation by the system { bela; ;/beli} ; ; r>1,d even} obtained
by particularising the bielementals belam®/belim® ; and now we have free
generation by the system { subela; ;/subeli} ; ; r>1,7+d even} obtained by
particularising the super-bielementals subelam®/subelim® .

Much else, but not everything, carries over to SUARI. The various Broadhurst-
Kreimer formulas have, predictably enough, their (often simpler) anologues.
But at the moment it is unclear whether the sixty-odd special moulds like
pal®/pil®, which are such an outstanding feature of ARI/GARI, possess in-
teresting super-analogues, or for that matter any analogues at all.

7.4 The ring Na of naturals and the huge scope of di-
morphy.

Strange to say, but the notion of dimorphy is itself ‘dimorphous’:

(i) For a space D of functions, dimorphy means closure under two distinct
products: usually point-wise multiplication and some form or other of con-
volution.

(i) For a space D of numbers, dimorphy means being a countable Q-ring and
possessing two distinct, natural bases {a,,} and {3, }, each with its countable
indexation m and n *®, with finite conversion laws :

O =Y HY By 5 Ba= Kl (118)

and with two distinct ways of calculating the one and only product on D,
which is ordinary number multiplication :

am an = ZA;%W ar 7 ﬁm ﬁn = Z B:rqz,n ﬂ?“ (119)

All four sums have to be finite, and the constant H, K, A, B are rational.

Clearly, since one may always concoct artificial bases {a,, },{3,} to meet
the above conditions, the whole emphasis in this notion of numerical dimor-
phy must lie on the naturalness of the two bases. This may seem a rather
shaky foundation for a mathematical definition, but we venture to suggest

48m an n usually do not range through N , but through more complex sets, like the

monoid generated by N.
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that in fact it is not: in all known instances of dimorphy, there is no scope
for hesitation ; the two bases {, },{8m} are clearly there for all to see, un-
mistakably nature-given, whereas it often takes a considerable amount of toil
to extract the hidden core of D, which usually is an algebraically free system
{7} of irreducibles. This third set {~,}, typically, lies buried deep below the
surface and, at least when taken in canonical form, tends to be found exactly
mid-way between the two ‘emerging’ sets {a,, },{3.}. So, even though it may
be argued that numerical dimorphy is, ultimately, pure maya, it is the sort
of maya that you must work hard to dispel. ..

In any case, functional and numerical dimorphy go hand in hand, and
the proper framework for their joint investigation would seem to be, not
the so-called ‘theory of periods’ 4°, but the twin systems Na, Na, whose
construction, very roughly, goes like this:

(i) We produce the function germs f (of z, at 00) in Na ‘out of nothing’,
i.e. from f(z) = 1, by taking larger and larger closures under the (direct and
reverse) operations +, X, d,,0, with Q or A as scalar field. Very early on in
this enlargement process, chronic divergence appears in the formal series or
transseries f which ‘expand’ at co the germs f in Na .

(ii) We carefully refrain from introducing artificial derivations on Na, for fear
of compromising the natural character of the construction. Rather, we ask:
are there — already, without our doing — exotic derivations (i.e. derivations
not generated by 9,) that act on Na and respect its natural topology ? And
we find that there is indeed a teeming profusion of them — two systems in
fact, the alien derivations A, and the foreign derivations V_ . The reason
for this plethora of exotic derivations is the omnipresence of divergence in
Na : to analyse this divergence, qualitatively and quantitatively, suitable
operators are called for, which are precisely the exotic derivations.

(iii) To produce Na from Na (i.e. numbers from function germs, monics from
monomials) we do not evaluate our germs at given points °°. Rather, we let
the exotic derivations act on these germs, and it turns out that the exotic
derivatives of our monomials are expressible as sums of ‘simpler’ or ‘earlier’
monomials, with well-defined, generically transcendental scalar coefficients.

(iv) We harvest all these coefficients, declare them to be ‘monics’, and call
Na the ring generated by them.

despite all the hullabaloo about ‘periods’, the constants there are given pell-mell, with
no natural indexation, and all the symmetries central to dimorphy are broken, beginning
with the sum/integral symmetry.

50say, rational or algebraic points
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The advantage of exotic derivation over pointwise evaluation lies not at
all in the nature of the constants being produced (they are much the same
with both methods) but rather in the orderliness of the procedure, which
turns out monics directly in mould form, automatically gives them the right
type of indexation, and tells us to which fundamental symmetry type they
belong (as moulds).

There are at least four major ‘domains of dimorphy’, of increasing size,
in Na. They comprise, respectively :

(i) the multizetas
(ii) the general hyperlogarithmic monics (see §4)

(iii) the monics associated with monomials that verify affine differential equa-
tions, with coefficients in Q[z] or A[z]

(iv) the monics associated with monomials that verify ‘bipolynomial’ °* dif-
ferential equations, again with coefficients in Q[z] or A[z]

The third and (especially) fourth domain of dimorphy are incredibly large
and would seem to encompass more or less all constants encountered in ‘real
life’. In fact, dimorphy appears to extend as far as he sight reaches: the whole
of R’s explorable-constructive part seems to be ‘dimorphic’ to the core.

Needless to say, these constructions certainly admit many variations, and
their exhaustive investigation (for ex. extending to Domains 2,3,4 the whole
algebraic apparatus developped for Domain 1) would require huge efforts
- and might not repay them. Yet, strangely, the central fact about Na,
namely numerical dimorphy, is easy enough to establish, at least for these four
domains. It directly mirrors the fact of functional dimorphy, which follows
from the stability of Na under the generalised ‘Borel-Laplace’ transform,
which itself is but an adaptation of the Fourier transform. So the least we
can say is that dimorphy is ‘well-connected’ ! It is nothing of an accident or
localised oddity.

P.S. This section owes much to discussions I had with Joris van der Hoeven.

51bipolynomial’ means that the differential equation may involve not only ordinary
products of f, f/,f"”, etc, but also convolution products of type 4 .
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7.5 Are there exotic derivations acting on numbers ?

Dimorphy is by no means the end of the story. After identifying the phe-
nomenon and acknowledging its scope, we must raise another question: does
dimorphy really exhaust the arithmetico-algebraic structure of Na, the ‘ex-
plorable part’ of R ? For instance, narrowing the focus to Domain 1: do the
‘quadratic relations’ exhaust the set of algebraic constraints on multizetas ?
One would assume the answer to be yes, but at the moment the tool-kit of
transcendence theory seems woefully inadequate to tackle such questions®?.
That might change, however, if we had at our disposal, for numbers, the
sort of high-powered machinery that we have for functions, namely: exotic
derivations. We might then go about disproving the existence of ‘undesirable
relations” R(«, 3,...) = 0 for numbers by following the very same scheme
which we outlined in §2.4 and which works wonders in the case of functions.

To be of any use, numerical exotic derivations ought to meet three con-
ditions:
(i) acting on some countable extension D of Q or A
(ii) annihilating Q or A
(ili) acting ‘universally’, in the sense that their action on any z in D ought
to be deducible from some universal representation of z, according to some
universal procedure, without assuming any foreknowledge of the ‘origin’ or
‘personal history’ of z (i.e. the relations which define x, or which define the
numbers of which it is made) — wnlike in Galois theory, but like in alien
calculus, where the action of an alien derivation A, on a resurgent function
f is defined ‘universally’, without any reference to the ‘history’ of f 5.

Now, do such numerical derivations exist? They probably do, in fact
some are already known to exist, but the examples constructed so far are not
very useful, since they act on rings or fields D obtained by adding to Q or
A numbers characterised by certain ‘unnatural’ lacunarity conditions, which
typically tend to ezclude the interesting numbers, i.e. the naturals of Na .
But the search for numerical derivations has not yet begun in earnest and
nothing warrants pessimism.
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