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Outline

Trees are mathematical objects that play an important role in several
areas of mathematics and other sciences:

Combinatorics, graph theory (trees are simple examples of
graphs, and can also be used to encode more complicated
graphs)

Probability theory (trees as tools to study Galton-Watson
branching processes and other random processes describing the
evolution of populations)

Mathematical biology (population genetics, connections with
coalescent processes)

Theoretical computer science (trees are important cases of data
structures, giving ways of storing and organizing data in a
computer so that they can be used efficiently)
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Our goal

To understand the properties of “typical” large trees.
A typical tree will be generated randomly :

Combinatorial tree: By choosing this tree uniformly at random in a
certain class of trees (plane trees, Cayley trees, binary trees, etc.)
of a given size.

Galton-Watson tree: By choosing randomly the number of
“children” of the root, then recursively the number of children of
each child of the root, and so on.

There are many other ways of generating random trees, for instance,

Binary search trees (used in computer science)

Preferential attachment models (Barabási-Alberts) used to model
the World Wide Web.
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What results are we aiming at?

Limiting distributions for certain characteristics of the tree, when its
size tends to infinity:

Height, width of the tree

Profile of distances in the tree (how many vertices at each
generation of the tree)

More refined genealogical quantities.

Often information about these asymptotic distributions can be derived
by studying scaling limits:

⇒ Find a continuous model (continuous random tree) such that the
(suitably rescaled) discrete random tree with a large size is close to
this continuous model.

Strong analogy with the classical invariance theorems relating random
walks to Brownian motion.
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Examples of discrete trees - Plane trees
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A plane tree
τ = {∅,1,2,11,12, . . .}

A plane tree (or rooted ordered tree) is a
finite subset τ of

∞
⋃

n=0

N
n

where N = {1,2,3, . . .} and N
0 = {∅},

such that:

∅ ∈ τ .

If u = u1 . . . un ∈ τ\{∅} then
u1 . . . un−1 ∈ τ .

For every u = u1 . . . un ∈ τ , there
exists ku(τ) ≥ 0 such that

u1 . . . unj ∈ τ iff 1 ≤ j ≤ ku(τ).

(ku(τ) = number of children of u in τ )
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Other discrete trees

Unordered rooted trees
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Cayley trees
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A Cayley tree on 6 vertices
(= connected graph on {1,2, . . . ,6} with
no loop)

Binary trees : plane trees with 0 or 2 children for each vertex
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1. Scaling limits of contour functions

µ = offspring distribution (probability distribution on {0,1,2, . . .})
Assume µ is critical :

∑∞
k=0 k µ(k) = 1 and µ(1) < 1.
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1231 A µ-Galton-Watson tree θ is a random plane tree
such that:

Each vertex has k children with probability
µ(k).

The numbers of children of the different
vertices are independent.

Formally, for each fixed τ ∈ T := {plane trees},

P(θ = τ) =
∏

u∈τ

µ(ku(τ)).
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Important special cases

Geometric distribution

µ(k) = 2−k−1

Then, if |τ | = number of edges of τ ,

P(θ = τ) = 2−2|τ |−1.

Consequence: The conditional distribution of θ given |θ| = p is
uniform over {plane trees with p edges}.

Poisson distribution

µ(k) =
e−1

k!

The conditional distribution of θ given |θ| = p is uniform over
{Cayley trees on p + 1 vertices}.
(Needs to view a plane tree as a Cayley tree by “forgetting” the
order and randomly assigning labels 1,2, . . . to vertices)
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Coding trees by contour functions
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and its contour function
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A plane tree can be coded by its contour function (or Dyck path in
combinatorics)
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Aldous’ theorem (finite variance case)

Theorem (Aldous)
Let θp be a µ-Galton-Watson tree conditioned to have p edges. Then

( 1
√

2p
Cθp(2pt)

)

0≤t≤1

(d)−→
p→∞

(

√
2
σ

et

)

0≤t≤1

where σ2 = var(µ) and (et)0≤t≤1 is a normalized Brownian excursion.
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The normalized Brownian excursion

To construct a normalized
Brownian excursion (et)0≤t≤1:

Consider a Brownian motion
(Bt)t≥0 with B0 = ε.

Condition on the event

inf{t ≥ 0 : Bt = 0} = 1

Let ε→ 0. t

Bt

ε

1
More intrinsic approaches via Itô’s excursion theory.
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An application of Aldous’ theorem

Let h(θp) = height of θp (= maximum of contour function). Then

P[h(θp) ≥ x
√

p] −→
p→∞

P

[

max
0≤t≤1

et ≥
σx
2

]

The RHS is known in the form of a series (Chung 1976)

P

[

max
0≤t≤1

et ≥ x
]

= 2
∞

∑

k=1

(4k2x2 − 1) exp(−2k2x2).

Special case µ(k) = 2−k−1 : asymptotic proportion of those trees with
p edges whose height is greater than x

√
p.

cf results from theoretical computer science, Flajolet-Odlyzko (1982)

General idea:

The limit theorem for the contour gives the “asymptotic shape” of the
tree, from which one can derive – or guess – many asymptotics for
specific functionals of the tree.
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2. The CRT and Gromov-Hausdorff convergence

Aldous’ theorem suggests that

There exists a continuous random tree which is the universal limit
of (rescaled) Galton-Watson trees conditioned to have n edges,

and whose “contour function” is the Brownian excursion.

In other words we want to make sense of the convergence

σ

2
√

p
θp

(d)−→
p→∞

Te

For this, we need:

to say what kind of an object the limit is (a random real tree)

to explain how a real tree can be coded by a function (here by e)

to say in which sense the convergence holds (in the
Gromov-Hausdorff sense)

Jean-François Le Gall (Université Paris-Sud) Random trees Göteborg 13 / 40



The Gromov-Hausdorff distance
The Hausdorff distance. K1, K2 compact subsets of a metric space

dHaus(K1,K2) = inf{ε > 0 : K1 ⊂ Uε(K2) and K2 ⊂ Uε(K1)}
(Uε(K1) is the ε-enlargement of K1)

Definition (Gromov-Hausdorff distance)
If (E1,d1) and (E2,d2) are two compact metric spaces,

dGH(E1,E2) = inf{dHaus(ψ1(E1), ψ2(E2))}
the infimum is over all isometric embeddings ψ1 : E1 → E and
ψ2 : E2 → E of E1 and E2 into the same metric space E .

ψ2

E2E1

ψ1
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Gromov-Hausdorff convergence of rescaled trees

Fact
If K = {isometry classes of compact metric spaces}, then

(K,dGH) is a separable complete metric space (Polish space)

Equip θp (the Galton-Watson tree conditioned to have p edges)
with the graph distance dgr : dgr(v , v ′) is the minimal number of edges
on a path from v to v ′.
→ It makes sense to study the convergence of

(θp,
1√
p

dgr)

as random variables with values in K.
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The notion of a real tree

Definition
A real tree is a (compact) metric space T such
that:

any two points a,b ∈ T are joined by a
unique arc

this arc is isometric to a line segment

It is a rooted real tree if there is a distinguished
point ρ, called the root.

a
b

ρ

Remark. A real tree can have

infinitely many branching points

(uncountably) infinitely many leaves

Fact. The coding of plane trees by contour functions can be extended
to real trees.
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The real tree coded by a function g

g : [0,1] −→ [0,∞)
continuous,
g(0) = g(1) = 0

mg(s,t)

g(s)

g(t)

s t ′t 1

mg(s, t) = mg(t , s) = mins≤r≤t g(r)

dg(s, t) = g(s) + g(t) − 2mg(s, t) t ∼ t ′ iff dg(t , t ′) = 0

Proposition (Duquesne-LG)
Tg := [0,1]/∼ equipped with dg is a real tree, called the tree coded by
g. It is rooted at ρ = 0.

Remark. Tg inherits a “lexicographical order” from the coding.
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Aldous’ theorem revisited
Theorem
If θp is a µ-Galton-Watson tree conditioned to have p edges,

(θp,
σ

2
√

p
dgr)

(d)−→
p→∞

(Te,de)

in the Gromov-Hausdorff sense.

The limit (Te,de) is the (random) real tree coded by a Brownian
excursion e. It is called the CRT (Continuum Random Tree).

1
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tree Te
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Application to combinatorial trees

By choosing appropriately the offspring distribution, one obtains that
the CRT is the scaling limit of

plane trees

(ordered) binary trees

Cayley trees

with size p, with the same rescaling 1/
√

p (but different constants).

It is also true that the CRT is the scaling limit of

unordered binary trees

but this is much harder to prove (no connection with Galton-Watson
trees), see Marckert-Miermont 2009.
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The stick-breaking construction of the CRT (Aldous)

Consider a sequence X1,X2, . . . of positive random variables such that,
for every n ≥ 1, the vector (X1,X2, . . . ,Xn) has density

an x1(x1 + x2) · · · (x1 + · · · + xn) exp(−2(x1 + · · · + xn)2)

Then “break” the positive half-line into segments of lengths X1,X2, . . .
and paste them together to form a tree :

X1

The first branch has length X1

The second branch has length X2 and is
attached at a point uniform over the first branch

The third branch has length X3 and is attached
at a point uniform over the union of the first two
branches

And so on
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The stick-breaking construction of the CRT (Aldous)

Consider a sequence X1,X2, . . . of positive random variables such that,
for every n ≥ 1, the vector (X1,X2, . . . ,Xn) has density

an x1(x1 + x2) · · · (x1 + · · · + xn) exp(−2(x1 + · · · + xn)2)

Then “break” the positive half-line into segments of lengths X1,X2, . . .
and paste them together to form a tree :

X1X2

The first branch has length X1

The second branch has length X2 and is
attached at a point uniform over the first branch

The third branch has length X3 and is attached
at a point uniform over the union of the first two
branches

And so on
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The stick-breaking construction of the CRT (Aldous)

Consider a sequence X1,X2, . . . of positive random variables such that,
for every n ≥ 1, the vector (X1,X2, . . . ,Xn) has density

an x1(x1 + x2) · · · (x1 + · · · + xn) exp(−2(x1 + · · · + xn)2)

Then “break” the positive half-line into segments of lengths X1,X2, . . .
and paste them together to form a tree :

X1

X3

X2

The first branch has length X1

The second branch has length X2 and is
attached at a point uniform over the first branch

The third branch has length X3 and is attached
at a point uniform over the union of the first two
branches

And so on
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The stick-breaking construction of the CRT (Aldous)

Consider a sequence X1,X2, . . . of positive random variables such that,
for every n ≥ 1, the vector (X1,X2, . . . ,Xn) has density

an x1(x1 + x2) · · · (x1 + · · · + xn) exp(−2(x1 + · · · + xn)2)

Then “break” the positive half-line into segments of lengths X1,X2, . . .
and paste them together to form a tree :

X1

X3

X2

X4

The first branch has length X1

The second branch has length X2 and is
attached at a point uniform over the first branch

The third branch has length X3 and is attached
at a point uniform over the union of the first two
branches

And so on
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The stick-breaking construction of the CRT (Aldous)
Consider a sequence X1,X2, . . . of positive random variables such that,
for every n ≥ 1, the vector (X1,X2, . . . ,Xn) has density

an x1(x1 + x2) · · · (x1 + · · · + xn) exp(−2(x1 + · · · + xn)2)

Then “break” the positive half-line into segments of lengths X1,X2, . . .
and paste them together to form a tree :

The first branch has length X1

The second branch has length X2 and is
attached at a point uniform over the first branch

The third branch has length X3 and is attached
at a point uniform over the union of the first two
branches

And so on

Finally take the completion to get the CRT
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3. The connection with random walk
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3 |τ |+1

With a plane tree τ associate a discrete path (Sn)0≤n≤|τ |+1 :

Enumerate vertices of τ in lexicographical order:
v0 = ∅, v1 = 1, v2, . . . , v|τ |.

Define S0 = 0 and, for 0 ≤ n ≤ |τ |,
Sn+1 = Sn + kvn(τ) − 1 (kvn(τ) number of children of vn in τ)
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Enumerate vertices of τ in lexicographical order:
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With a plane tree τ associate a discrete path (Sn)0≤n≤|τ |+1 :

Enumerate vertices of τ in lexicographical order:
v0 = ∅, v1 = 1, v2, . . . , v|τ |.

Define S0 = 0 and, for 0 ≤ n ≤ |τ |,
Sn+1 = Sn + kvn(τ) − 1 (kvn(τ) number of children of vn in τ)
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3. The connection with random walk
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With a plane tree τ associate a discrete path (Sn)0≤n≤|τ |+1 :

Enumerate vertices of τ in lexicographical order:
v0 = ∅, v1 = 1, v2, . . . , v|τ |.

Define S0 = 0 and, for 0 ≤ n ≤ |τ |,
Sn+1 = Sn + kvn(τ) − 1 (kvn(τ) number of children of vn in τ)
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3. The connection with random walk

t

t

t

t

t t t t

t

6

6

j q

�

N

�
q

Tree τ

-

6

t

t

t

t t

t

t

t

t

n

Sn

1 2

1

2

3

3 |τ |+1

With a plane tree τ associate a discrete path (Sn)0≤n≤|τ |+1 :

Enumerate vertices of τ in lexicographical order:
v0 = ∅, v1 = 1, v2, . . . , v|τ |.

Define S0 = 0 and, for 0 ≤ n ≤ |τ |,
Sn+1 = Sn + kvn(τ) − 1 (kvn(τ) number of children of vn in τ)

Jean-François Le Gall (Université Paris-Sud) Random trees Göteborg 29 / 40



The random walk associated with a tree
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Recall Sn+1 = Sn + kvn(τ) − 1 (kvn(τ) number of children of vn in τ)

Fact
If τ = θ is a Galton-Watson tree with offspring distribution µ,
(Sn)0≤n≤|τ |+1 is a random walk with jump distribution ν(k) = µ(k + 1),
k = −1,0,1, . . . stopped at its first hitting time of −1.
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Sketch of proof
Recall Sn+1 = Sn + kvn(τ) − 1 (kvn(τ) number of children of vn in τ)

For a µ-Galton-Watson tree, the r.v. kvn(τ) − 1 are i.i.d. with
distribution ν(k) = µ(k + 1).

S|τ |+1 =
∑

0≤n≤|τ |

(kvn(τ) − 1) =
(

∑

0≤n≤|τ |

kvn(τ)
)

− |τ | − 1

= |τ | − |τ | − 1

= −1

For 1 ≤ m ≤ |τ |,

Sm =
∑

0≤n≤m−1

(kvn(τ) − 1) =
∑

0≤n≤m−1

kvn(τ) − m ≥ 0

because among all individuals counted in
∑

0≤n≤m−1 kvn(τ), the
vertices v1, v2, . . . , vm all appear.
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An application to the total progeny

Corollary
The total progeny of a µ-Galton-Watson tree has the same distribution
as the first hitting time of −1 by a random walk with jump distribution
ν(k) = µ(k + 1).

Proof. Just use the identity |τ | + 1 = min{n ≥ 0 : Sn = −1}.

Cf Harris (1952), Dwass (1970), etc.
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Proof of Aldous’ theorem I
Needs the “height function” associated with a plane tree τ .
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Hn

If τ = {v0, v1, . . . , v|τ |} (in lexicogr. order), Hn = |vn| (generation of vn).

Lemma (Key formula)
If S is the random walk associated with τ , then for 0 ≤ n ≤ |τ |,

Hn = #{j ∈ {0,1, . . . ,n − 1} : Sj = min
j≤i≤n

Si}.
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The key formula: Hn = #{j ∈ {0,1, . . . ,n − 1} : Sj = minj≤i≤n Si}.
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Proof of Aldous’ theorem II
From the key formula,

Hn = #{j ∈ {0,1, . . . ,n − 1} : Sj = min
j≤i≤n

Si}

one can deduce that, for a Galton-Watson tree τ conditioned to have
|τ | = p,

Hn ≈ 2
σ2 S(p)

n ,0 ≤ n ≤ p

where S(p) is distributed as S conditioned to hit −1 at time p + 1.
By a conditional version of Donsker’s theorem,

( 1
σ
√

p
S(p)

[pt]

)

0≤t≤1

(d)−→
p→∞

(et)0≤t≤1.

Finally, argue that

Cθp(2pt) ≈ H[pt] ≈
2
σ2 S(p)

[pt].
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4. More general offspring distributions

What happens if we remove the assumption that µ has finite variance ?

−→ Get more general continuous random trees

−→ Coded by “excursions” which are no longer Brownian

Assumption (Aα)
The offspring distribution µ has mean 1 and is such that

µ(k) ∼
k→∞

c k−1−α

for some α ∈ (1,2) and c > 0

In particular, µ is in the domain of attraction of a stable distribution with
index α.
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A “stable” version of Aldous’ theorem

Theorem (Duquesne)

Under Assumption (Aα), let (Cp(n))0≤n≤2p be the contour function of a
µ-Galton-Watson tree conditioned to have p edges. Then,

( 1
p1−1/α

Cp(2pt)
)

0≤t≤1

(d)−→
p→∞

(c eα
t )0≤t≤1,

where eα is defined in terms of the normalized excursion Xα of a
stable process with index α and nonnegative jumps:

eα
t = “measure”{s ∈ [0, t] : Xα

s = inf
s≤r≤t

Xα
r }.

The last formula is to be understood in a “local time” sense:

eα
t = lim

ε→0

1
ε

∫ t

0
ds 1{Xα

s < inf
s≤r≤t

Xα
r + ε}.
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Why the process eα ?
As in the proof of Aldous’ theorem,

Cp
2pt ≈ Hp

[pt]

where (key formula), for 0 ≤ n ≤ p,

Hp
n = #{j ∈ {0,1, . . . ,n − 1} : Sp

j = min
j≤i≤n

Sp
i } (1)

and Sp is distributed as a random walk with jump distribution
ν(k) = µ(k + 1), conditioned to hit −1 at time p + 1.
By the assumption on µ,

(

n−1/α Sp
[pt]

)

0≤t≤1

(d)−→
p→∞

(

c Xα
t

)

0≤t≤1
.

Then pass to the limit in (1): The (suitable rescaled) RHS of (1)
converges to

“measure”{s ∈ [0, t] : Xα
s = inf

s≤r≤t
Xα

r }.
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Convergence of trees
Corollary
Under Assumption (Aα), let θp be a µ-Galton-Watson tree conditioned
to have p edges. Then, if dgr denotes the graph distance on θp,

(θp,
1

p1−1/α
dgr)

(d)−→
p→∞

(Teα , c deα)

in the Gromov-Hausdorff sense.
Here (Teα ,deα) is the tree coded by the “stable excursion” eα.

The random tree (Teα ,deα) is called the stable tree with index α.

Can investigate probabilistic and fractal properties of stable trees in
detail (Duquesne, LG). For instance,

dim Teα =
α

α− 1

and level sets of Teα have dimension 1
α−1 .
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Extensions

For any “ branching mechanism function” ψ of the form

ψ(u) = a u + b u2 +

∫

(0,∞)
π(dr) (e−ru − 1 + ru)

where a,b ≥ 0 and
∫

(0,∞) π(dr) (r ∧ r2) <∞,

one can define a ψ-Lévy tree, which is a continuous random tree:

if ψ(u) = u2, this is Aldous’ CRT

if ψ(u) = uα, this is the stable tree with index α.

Lévy trees are

closely related to the Lévy process with Laplace exponent ψ

the possible scaling limits of (sub)critical Galton-Watson trees

characterized by a branching property analogous to the discrete
case (Weill).
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