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Introduction

The main goal of this work is to investigate the genealogical structure of continuous-
state branching processes in connection with limit theorems for discrete Galton-
Watson trees. Applications are also given to the construction and various properties
of spatial branching processes including a general class of superprocesses.

Our starting point is the recent work of Le Gall and Le Jan [32] who proposed
a coding of the genealogy of general continuous-state branching processes via a real-
valued random process called the height process. Recall that continuous-state branch-
ing processes are the continuous analogues of discrete Galton-Watson branching pro-
cesses, and that the law of any such process is characterized by a real function ψ
called the branching mechanism. Roughly speaking, the height process is a contin-
uous analogue of the contour process of a discrete branching tree, which is easy to
visualize (see Section 0.1, and note that the previous informal interpretation of the
height process is made mathematically precise by the results of Chapter 2). In the im-
portant special case of the Feller branching diffusion (ψ(u) = u2), the height process
is reflected linear Brownian motion: This unexpected connection between branching
processes and Brownian motion, or random walk in a discrete setting has been known
for long and exploited by a number of authors (see e.g. [3], [11], [18], [39], [42]). The
key contribution of [32] was to observe that for a general subcritical continuous-state
branching process, there is an explicit formula expressing the height process as a func-
tional of a spectrally positive Lévy process whose Laplace exponent ψ is precisely the
branching mechanism. This suggests that many problems concerning the genealogy of
continuous-state branching processes can be restated and solved in terms of spectrally
positive Lévy processes, for which a lot of information is available (see e.g. Bertoin’s
recent monograph [5]). It is the principal aim of the present work to develop such
applications.

In the first two sections below, we briefly describe the objects of interest in a
discrete setting. In the next sections, we outline the main contributions of the present
work.

0.1 Discrete trees

Let

U =
∞⋃
n=0

Nn

where N = {1, 2, . . .} and by convention N0 = {∅}. If u = (u1, . . . , un) ∈ Nn, we set
|u| = n, so that |u| represents the “generation” of u. If u = (u1, . . . um) and v =
(v1, . . . , vn) belong to U , we write uv = (u1, . . . um, v1, . . . , vn) for the concatenation
of u and v. In particular u∅ = ∅u = u.
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A (finite) rooted ordered tree T is a finite subset of U such that:

(i) ∅ ∈ T .

(ii) If v ∈ T and v = uj for some u ∈ U and j ∈ N, then u ∈ T .

(iii) For every u ∈ T , there exists a number ku(T ) ≥ 0 such that uj ∈ T if and only
if 1 ≤ j ≤ ku(T ).

We denote by T the set of all rooted ordered trees. In what follows, we see each
vertex of the tree T as an individual of a population whose T is the family tree. The
cardinality #(T ) of T is the total progeny.

If T is a tree and u ∈ T , we define the shift of T at u by θuT = {v ∈ U : uv ∈ T }.
Note that θuτ ∈ T.

We now introduce the (discrete) height function associated with a tree T . Let
us denote by u(0) = ∅, u(1), u(2), . . . , u(#(T ) − 1) the elements of T listed in lexi-
cographical order. The height function H(T ) = (Hn(T ); 0 ≤ n < #(T )) is defined
by

Hn(T ) = |u(n)|, 0 ≤ n < #(T ).

The height function is thus the sequence of the generations of the individuals of
T , when these individuals are visited in the lexicographical order (see Fig.1 for an
example). It is easy to check that H(T ) characterizes the tree T .

A
A
A
AA

�
�
�
��

A
A
A
AA

�
�
�
��

A
A
A
AA

�
�
�
��

∅

1 2

11 12 13

121 122

tree T

�
�
�
��
�
�
�
��D
D
D
DD�
�
�
��
�
�
�
��D
D
D
DD�
�
�
��D
D
D
DD
D
D
D
DD�
�
�
��D
D
D
DD
D
D
D
DD�
�
�
��D
D
D
DD

contour function height function

�
�
�
��
•�
�
�
��
• •�
�
�
��
• •
C
C
C
CC•
C
C
C
CC•

1 2 3 ζ(T ) 1 2 3 #(T )−1

1

2

1

2

Figure 1

The contour function gives another way of characterizing the tree, which is
easier to visualize on a picture (see Fig.1). Suppose that the tree is embedded in
the half-plane in such a way that edges have length one. Informally, we imagine the
motion of a particle that starts at time t = 0 from the root of the tree and then
explores the tree from the left to the right, moving continuously along the edges at
unit speed, until it comes back to its starting point. Since it is clear that each edge
will be crossed twice in this evolution, the total time needed to explore the tree is
ζ(T ) := 2(#(T )−1). The value Ct of the contour function at time t is the distance (on
the tree) between the position of the particle at time t and the root. By convention
Ct = 0 if t ≥ ζ(T ). Fig.1 explains the definition of the contour function better than
a formal definition.
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0.2 Galton-Watson trees

Let µ be a critical or subcritical offspring distribution. This means that µ is a prob-
ability measure on Z+ such that

∞∑
k=0

kµ(k) ≤ 1.

We exclude the trivial case where µ(1) = 1.
There is a unique probability distribution Qµ on T such that

(i) Qµ(k∅ = j) = µ(j), j ∈ Z+.

(ii) For every j ≥ 1 with µ(j) > 0, the shifted trees θ1T , . . . , θjT are independent un-
der the conditional probability Qµ(· | k∅ = j) and their conditional distribution
is Qµ.

A random tree with distribution Qµ is called a Galton-Watson tree with offspring
distribution µ, or in short a µ-Galton-Watson tree.

Let T1, T2, . . . be a sequence of independent µ-Galton-Watson trees. We can as-
sociate with this sequence a height process obtained by concatenating the height
functions of each of the trees T1, T2, . . .. More precisely, for every k ≥ 1, we set

Hn = Hn−(#(T1)+···+#(Tk−1))(Tk) if #(T1)+ · · ·+#(Tk−1) ≤ n < #(T1)+ · · ·+#(Tk).

The process (Hn, n ≥ 0) codes the sequence of trees.
Similarly, we define a contour process (Ct, t ≥ 0) coding the sequence of trees by

concatenating the contour functions (Ct(T1), t ∈ [0, ζ(T1)+2]), (Ct(T2), t ∈ [0, ζ(T2)+
2]), etc. Note that Ct(Tn) = 0 for t ∈ [ζ(Tn), ζ(Tn) + 2], and that we are concate-
nating the functions (Ct(Tn), t ∈ [0, ζ(Tn) + 2]) rather than the functions (Ct(Tn), t ∈
[0, ζ(Tn)]). This is a technical trick that will be useful in Chapter 2 below. We may
also observe that the process obtained by concatenating the functions (Ct(Tn), t ∈
[0, ζ(Tn)]) would not determine the sequence of trees.

There is a simple relation between the height process and the contour process: See
Section 2.4 in Chapter 2 for more details.

Although the height process is not a Markov process, except in very particular
cases, it turns out to be a simple functional of a Markov chain, which is even a
random walk. The next lemma is taken from [32], but was obtained independently
by other authors: See [7] and [4].

Lemma Let T1, T2, . . . be a sequence of independent µ-Galton-Watson trees, and let
(Hn, n ≥ 0) be the associated height process. There exists a random walk V on Z with
initial value V0 = 0 and jump distribution ν(k) = µ(k + 1), for k = −1, 0, 1, 2, . . .,
such that for every n ≥ 0,

Hn = Card {k ∈ {0, 1, . . . , n− 1} : Vk = inf
k≤j≤n

Vj}. (1)

A detailed proof of this lemma would be cumbersome, and we only explain the
idea. By definition, Hn is the generation of the individual visited at time n, for a
particle that visits the different vertices of the sequence of trees one tree after another
and in lexicographical order for each tree. Write Rn for the quantity equal to the
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number of younger brothers (younger means greater in the lexicographical order) of
the individual visited at time n plus the number of younger brothers of his father,
plus the number of younger brothers of his grandfather etc. Then the random walk
that appears in the lemma may be defined by

Vn = Rn − (j − 1) if #(T1) + · · ·+ #(Tj−1) ≤ n < #(T1) + · · ·+ #(Tj).

To verify that V is a random walk with jump distribution ν, note that because of
the lexicographical order of visits, we have at time n no information on the fact that
the individual visited at that time has children or not. If he has say k ≥ 1 children,
which occurs with probability µ(k), then the individual visited at time n + 1 will
be the first of these children, and our definitions give Rn+1 = Rn + (k − 1) and
Vn+1 = Vn + (k − 1). On the other hand if he has no child, which occurs with
probability µ(0), then the individual visited at time n+ 1 is the first of the brothers
counted in the definition of Rn (or the ancestor of the next tree if Rn = 0) and we
easily see that Vn+1 = Vn − 1. We thus get exactly the transition mechanism of the
random walk with jump distribution ν.

Let us finally explain formula (1). From our definition ofRn and Vn, it is easy to see
that the condition n < inf{j > k : Vj < Vk} holds iff the individual visited at time n is
a descendant of the individual visited at time k (more precisely, inf{j > k : Vj < Vk} is
the time of the first visit after k of an individual that is not a descendant of individual
k). Put in a different way, the condition Vk = infk≤j≤n Vj holds iff the individual
visited at time k is an ascendant of the individual visited at time n. It is now clear
that the right-hand side of (1) just counts the number of ascendants of the individual
visited at time n, that is the generation of this individual.

0.3 The continuous height process

To define the height process in a continuous setting, we use an analogue of the discrete
formula (1). The role of the random walk V in this formula is played by a Lévy process
X = (Xt, t ≥ 0) without negative jumps. We assume that X does not drift to +∞
(this corresponds to the subcriticality of µ in the discrete setting), and that the paths
of X are of infinite variation a.s.: The latter assumption implies in particular that the
process X started at the origin will immediately hit both (0,∞) and (−∞, 0). The
law of X can be characterized by its Laplace functional ψ, which is the nonnegative
function on R+ defined by

E[exp(−λXt)] = exp(tψ(λ)).

By the Lévy-Khintchine formula and our special assumptions on X, the function ψ
has to be of the form

ψ(λ) = αλ+ βλ2 +
∫
π(dr) (e−λr − 1 + λr),

where α, β ≥ 0 and π is a σ-finite measure on (0,∞) such that
∫
π(dr)(r ∧ r2) <∞.

We write
St = sup

s≤t
Xs , It = inf

s≤t
Xs .

By analogy with the discrete case, we would like to define Ht as the “measure” of
the set

{s ≤ t : Xs = inf
s≤r≤t

Xr}. (2)
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However, under our assumptions on X, the Lebesgue measure of this set is always
zero, and so we need to use some sort of local time. The key idea is to introduce for
every fixed t > 0 the time-reversed process

X̂(t)
s = Xt −X(t−s)− , 0 ≤ s ≤ t ,

and its associated supremum
Ŝ(t)
s = sup

r≤s
X̂(t)
r .

We observe that via time-reversal s → t − s, the set (2) corresponds to {s ≤ t :
Ŝ

(t)
s = X̂

(t)
s }. This leads to the rigorous definition of H: Ht is defined as the local time

at level 0, at time t of the process Ŝ(t) − X̂(t). This definition makes sense because
Ŝ(t) − X̂(t) has the same law over [0, t] as the so-called reflected process S − X for
which 0 is a regular point under our assumptions. Note that the normalization of
local time has to be specified in some way: See Section 1.1. The process (Ht, t ≥ 0)
is called the ψ-height process, or simply the height process.

Why is the ψ-height process H an interesting object of study ? In the same way as
the discrete height process codes the genealogy of a sequence of independent Galton-
Watson trees, we claim that the continuous height process represents the genealogical
structure of continuous-state branching processes, which are the continuous analogues
of Galton-Watson processes. This informal claim is at the heart of the developments
of the present work. Perhaps the best justification for it can be found in the limit
theorems of Chapter 2 that relate the discrete and continuous height processes (see
Section 0.4 below). Another justification is the Ray-Knight theorem for the height
process that will be discussed below.

The goal of Chapter 1 is to present a self-contained construction and to derive
several new properties of the ψ-height process. Although there is some overlap with
[32], our approach is different and involves new approximations. It is important to
realize that Ht is defined as the local time at time t of a process which itself depends on
t. For this reason, it is not clear whether the paths of H have any regularity properties.
Also H is not Markov, except in the very special case where X has no jumps. To
circumvent these difficulties, we rely on the important tool of the exploration process:
For every t ≥ 0, we define a random measure ρt on R+ by setting

〈ρt, f〉 =
∫

[0,t]

dsI
s
t f(Hs) (3)

where
Ist = inf

s≤r≤t
Xr

and the notation dsIst refers to integration with respect to the nondecreasing function
s → Ist . The exploration process (ρt, t ≥ 0) is a Markov process with values in
the space Mf (R+) of finite measures on R+. It was introduced and studied in [32],
where its definition was motivated by a model of a LIFO queue (see [35] for some
applications to queueing theory).

The exploration process has several interesting properties. In particular it is càdlàg
(right-continuous with left limits) and it has an explicit invariant measure in terms
of the subordinator with Laplace exponent ψ(λ)/λ (see Proposition 1.2.5). Despite
its apparently complicated definition, the exploration process is the crucial tool that
makes it possible to answer most questions concerning the height process. A first
illustration of this is the choice of a “good” lower-semicontinuous modification of Ht,
which is obtained by considering for every t ≥ 0 the supremum of the support of the

9



measure ρt (beforehand, to make sense of the definition of ρt, one needs to use a first
version of H that can be defined by suitable approximations of local times).

An important feature of both the height process and the exploration process is
the fact that both Ht and ρt depend only on the values of X, or of X − I, on the
excursion interval of X−I away from 0 that straddles t. For this reason, it is possible
to define and to study both the height process and the exploration process under the
excursion measure of X−I away from 0. This excursion measure, which is denoted by
N , plays a major role throughout this work, and many results are more conveniently
stated under N . Informally, the height process under N codes exactly one continuous
tree, in the same way as each excursion away from 0 of the discrete height process
corresponds to one Galton-Watson tree in the sequence (cf Section 0.2).

As a typical application of the exploration process, we introduce and study the
local times of the height process, which had not been considered in earlier work. These
local times play an important role in the sequel, in particular in the applications to
spatial branching processes. The local time of H at level a ≥ 0 and at time t is
denoted by Lat and these local times can be defined through the approximation

lim
ε→0

E
[

sup
s≤t

∣∣∣ε−1

∫ s

0

1{a<Hr<a+ε}dr − Las
∣∣∣] = 0

(Proposition 1.3.3). The proof of this approximation depends in a crucial way on
properties of the exploration process derived in Section 1.3: Since H is in general not
Markovian nor a semimartingale, one cannot use the standard methods of construction
of local time.

The Ray-Knight theorem for the height process states that if Tr = inf{t ≥ 0 :
Xt = −r}, for r > 0, the process (LaTr , a ≥ 0) is a continuous-state branching process
with branching mechanism ψ (in short a ψ-CSBP) started at r. Recall that the ψ-
CSBP is the Markov process (Ya, a ≥ 0) with values in R+ whose transition kernels
are characterized by their Laplace transform: For λ > 0 and b > a,

E[exp−λYb | Ya] = exp(−Ya ub−a(λ)),

where ut(λ), t ≥ 0 is the unique nonnegative solution of the differential equation

∂ut(λ)
∂t

= −ψ(ut(λ)) , u0(λ) = λ.

By analogy with the discrete setting, we can think of LaTr as “counting” the number
of individuals at generation a in a Poisson collection of continuous trees (those trees
coded by the excursions of X − I away from 0 before time Tr). The Ray-Knight
theorem corresponds to the intuitive fact that the population at generation a is a
branching process.

The previous Ray-Knight theorem had already been derived in [32] although in
a less precise form (local times of the height process had not been constructed). An
important consequence of the Ray-Knight theorem, also derived in [32], is a criterion
for the path continuity of H: H has continuous sample paths iff∫ ∞

1

dλ

ψ(λ)
<∞. (4)

This condition is in fact necessary and sufficient for the a.s. extinction of the ψ-CSBP.
If it does not hold, the paths of H have a very wild behavior: The values of H over
any nontrivial interval [s, t] contain a half-line [a,∞). On the other hand, (4) holds
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if β > 0, and in the stable case ψ(λ) = cλγ , 1 < γ ≤ 2 (the values γ ∈ (0, 1] are
excluded by our assumptions).

In view of applications in Chapter 4, we derive precise information about the
Hölder continuity of H. We show that if

γ = sup{r ≥ 0 : lim
λ→∞

λ−rψ(λ) = +∞},

then the height process H is a.s. Hölder continuous with exponent r for any r ∈
(0, 1− γ−1), and a.s. not Hölder continuous with exponent r if r > 1− γ−1.

0.4 From discrete to continuous trees

Chapter 2 discusses limit theorems for rescaled Galton-Watson trees. These results
demonstrate that the ψ-height process is the correct continuous analogue of the dis-
crete height process coding Galton-Watson trees.

It is well known [27] that continuous-state branching processes are the only possible
scaling limits of discrete-time Galton-Watson branching processes. One may then ask
for finer limit theorems involving the genealogy. Precisely, starting from a sequence of
rescaled Galton-Watson processes that converge in distribution towards a continuous-
state branching process, can one say that the corresponding discrete Galton-Watson
trees also converge, in some sense, towards a continuous genealogical structure ? The
results of Chapter 2 show that the answer is yes.

To be specific, consider a sequence (µp) of (sub)critical offspring distributions.
For every p ≥ 1, let Y p be a (discrete-time) Galton-Watson process with offspring
distribution µp started at Y p0 = p. Suppose that the processes Y p converge after
rescaling towards a ψ-CSBP, where ψ satisfies the conditions introduced in Section
0.3. Precisely, we assume that there is a sequence γp ↑ ∞ such that

(p−1Y p[γpt], t ≥ 0)
(d)−→
p→∞

(Yt, t ≥ 0), (5)

where Y is a ψ-CSBP, and the symbol (d) indicates convergence in distribution in
the Skorokhod space. Let Hp be the discrete height process associated with µp in the
sense of Section 0.2. Then Theorem 2.2.1 shows that

(γ−1
p Hp

[pγpt]
, t ≥ 0)

(fd)−→
p→∞

(Ht, t ≥ 0), (6)

where H is the ψ-height process and (fd) indicates convergence of finite-dimensional
marginals. A key ingredient of the proof is the observation due to Grimvall [21] that
the convergence (5) implies the convergence in distribution (after suitable rescaling)
of the random walks V p with jump distribution νp(k) = µp(k + 1), k = −1, 0, 1, . . .,
towards the Lévy process with Laplace exponent ψ. The idea is then to pass to the
limit in the formula for Hp in terms of V p, recalling that the ψ-height process is given
by an analogous formula in terms of the Lévy process X. In the special case β = 0
and under more restrictive assumptions, the convergence (6) had already appeared in
[32].

In view of applications, the limiting result (6) is not satisfactory because the
convergence of finite-dimensional marginals is too weak. In order to reinforce (6) to
a functional convergence, it is necessary to assume some regularity of the paths of H.
We assume that condition (4) ensuring the path continuity of H holds (recall that if
this condition does not hold, the paths of H have a very wild behavior). Then, we can
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prove (Theorem 2.3.1) that the convergence (6) holds in the sense of weak convergence
on the Skorokhod space, provided that the following condition is satisfied: For every
δ > 0,

lim inf
p→∞

P [Y p[δγp] = 0] > 0. (7)

Roughly speaking this means that the rescaled Galton-Watson process (p−1Y p[γpt])t≥0

may die out at a time of order 1, as its weak limit Y does (recall that we are assuming
(4)). The technical condition (7) is both necessary and sufficient for the reinforcement
of (6) to a functional convergence. Simple examples show that this condition cannot
be omitted in general.

However, in the important special case where µp = µ for every p, we are able to
show (Theorem 2.3.2) that the technical condition (7) is always satisfied . In that
case, ψ must be of the form ψ(u) = c uγ with 1 < γ ≤ 2, so that obviously (4) also
holds. Thus when µp = µ for every p, no extra condition is needed to get a functional
convergence.

In Section 2.4, we show that the functional convergence derived for rescaled dis-
crete height processes can be stated as well in terms of the contour processes (cf
Section 0.1). Let Cp = (Cpt , t ≥ 0) be the contour process for a sequence of inde-
pendent µp-Galton-Watson trees. Under the assumptions that warrant the functional
convergence in (6), Theorem 2.4.1 shows that we have also

(p−1Cppγpt, t ≥ 0)
(d)−→
p→∞

(Ht/2, t ≥ 0).

Thus scaling limits are the same for the discrete height process and for the contour
process.

In the remaining part of Chapter 2, we give applications of (6) assuming that the
functional convergence holds. In particular, rather than considering a sequence of
µp-Galton-Watson trees, we discuss the height process associated with a single tree
conditioned to be large. Precisely, let H̃p be the height process for one µp-Galton-
Watson tree conditioned to non-extinction at generation [γpT ], for some fixed T > 0.
Then, Proposition 2.5.2 gives

(γ−1
p H̃p

[pγpt]
, t ≥ 0)

(d)−→
p→∞

(H̃t, t ≥ 0),

where the limiting process is an excursion of the ψ-height process conditioned to hit
level T . This is of course reminiscent of a result of Aldous [3] who proved that in
the case of a critical offspring distribution µ with finite variance, the contour process
of a µ-Galton-Watson tree conditioned to have exactly p vertices converges after a
suitable rescaling towards a normalized Brownian excursion (see also [19] and [36] for
related results including the convergence of the height process in Aldous’ setting).
Note that in Aldous’ result, the conditioning becomes degenerate in the limit, since
the “probability” that a Brownian excursion has length exactly one is zero. This
makes it more difficult to derive this result from our approach, although it seems very
related to our limit theorems. See however Duquesne [10] for an extension of Aldous’
theorem to the stable case using the tools of the present work (a related result in the
stable case was obtained by Kersting [26]).

The end of Chapter 2 is devoted to reduced trees. We consider again a single
Galton-Watson tree conditioned to non-extinction at generation [γpT ]. For every
k < [γpT ], we denote by Z

(p),[γpT ]
k the number of vertices at generation k that have
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descendants at generation [γpT ]. Under the assumptions and as a consequence of
Proposition 2.5.2, we can prove that

(Z(p),[γpT ]

[γpt]
, 0 ≤ t < T )

(fd)−→
p→∞

(ZTt , 0 ≤ t < T )

where the limit ZT has a simple definition in terms of H̃: ZTt is the number of
excursions of H̃ above level t that hit level T . Thanks to the properties of the
height process and the exploration process that have been derived in Chapter 1, it
is possible to calculate the distribution of the time-inhomogeneous branching process
(ZTt , t ≥ 0). This distribution is derived in Theorem 2.7.1. Of course in the stable
case, corresponding to µp = µ for every p, the distribution of ZT had been computed
previously. See in particular Zubkov [50] and Fleischmann and Siegmund-Schultze
[17].

0.5 Duality properties of the exploration process

In the applications developed in Chapters 3 and 4, a key role is played by the duality
properties of the exploration process ρ. We first observe that formula (3) defining the
exploration process can be rewritten in the following equivalent way

ρt(dr) = β1[0,Ht](r) dr +
∑

s≤t,Xs−<Ist

(Ist −Xs−)δHs(dr)

where δHs is the Dirac measure at Hs, and we recall that Ist = infs≤r≤tXr. We then
define another measure ηt by setting

ηt(dr) = β1[0,Ht](r) dr +
∑

s≤t,Xs−<Ist

(Xs − Ist )δHs(dr).

To motivate this definition, we may come back to the discrete setting of Galton-
Watson trees. In that setting, the value at time n of the discrete height process
Hn is the generation of the n-th visited vertex by a “particle” that visits vertices in
lexicographical order one tree after another, and the analogue of ρt gives for every
k ≤ Hn the number of younger (i.e. coming later in the lexicographical order) brothers
of the ancestor at generation k of the n-th visited vertex. Then the analogue of ηt
gives for every k ≤ Hn the number of older brothers of the ancestor at generation k
of the n-th visited vertex.

It does not seem easy to study directly the Markovian properties or the regularity
of paths of the process (ηt, t ≥ 0). The right point of view is to consider the pair
(ρt, ηt), which is easily seen to be a Markov process in Mf (R+)2. The process (ρt, ηt)
has an invariant measure M determined in Proposition 3.1.3. The key result (Theorem
3.1.4) then states that the Markov processes (ρ, η) and (η, ρ) are in duality under M.
A consequence of this is the fact that (ηt, t ≥ 0) also has a càdlàg modification. More
importantly, we obtain a crucial time-reversal property: Under the excursion measure
N of X − I, the processes (ρs, ηs; 0 ≤ s ≤ σ) and (η(σ−s)−, ρ(σ−s)−; 0 ≤ s ≤ σ) have
the same distribution (here σ stands for the duration of the excursion under N).
This time-reversal property plays a major role in many subsequent calculations. It
implies in particular that the law of H under N is invariant under time-reversal. This
property is natural in the discrete setting, if we think of the contour process of a
Galton-Watson tree, but not obvious in the continuous case.
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0.6 Marginals of trees coded by the height process

Let us explain more precisely how an excursion of the ψ-height process codes a con-
tinuous branching structure. We consider first a deterministic continuous function
e : R+ −→ R+ such that e(t) > 0 iff 0 < t < σ, for some σ = σ(e) > 0. For any
s, s′ ≥ 0, set

me(s, s′) = inf
s∧s′≤t≤s∨s′

e(t).

Then e codes a continuous genealogical structure via the following simple prescrip-
tions:

(i) To each s ∈ [0, σ] corresponds a vertex at generation e(s).

(ii) Vertex s is an ancestor of vertex s′ if e(s) = me(s, s′). In general, me(s, s′) is
the generation of the last common ancestor to s and s′.

(iii) We put d(s, s′) = e(s) + e(s′) − 2me(s, s′) and identify s and s′ (s ∼ s′) if
d(s, s′) = 0.

Formally, the tree coded by e can be defined as the quotient set [0, σ]/ ∼, equipped
with the distance d and the genealogical relation specified in (ii).

With these definitions, the line of ancestors of a vertex s is isometric to the segment
[0, e(s)]. If we pick two vertices s and s′, their lines of ancestors share a common
part isometric to [0,me(s, s′)], and then become distinct. In general, if we consider
p instants t1, . . . , tp with 0 ≤ t1 ≤ · · · ≤ tp ≤ σ, we can associate with these p
instants a genealogical tree θ(e, t1, . . . , tp), which consists of a discrete rooted ordered
tree with p leaves, denoted by T (e, t1, . . . , tp) and marks hv(e, t1, . . . , tp) ≥ 0 for
v ∈ T (e, t1, . . . , tp), that correspond to the lifetimes of vertices in T (e, t1, . . . , tp). See
subsection 3.2.1 for a precise definition.

In the second part of Chapter 3, we use the duality results proved in the first part
to calculate the distribution of the tree θ(H, τ1, . . . , τp) under certain excursion laws
of H and random choices of the instants τ1, . . . , τp. We assume that the continuity
condition (4) holds. We first consider Poissonnian marks with intensity λ, and the
height process H under the excursion measure N of X − I. Let τ1, . . . , τM be the
marks that fall into the duration interval [0, σ] of the excursion. Theorem 3.2.1
shows that under the probability measure N(· | M ≥ 1), the tree θ(H, τ1, . . . , τM ) is
distributed as the family tree of a continuous-time Galton-Watson process starting
with one individual at time 0 and where

• lifetimes have an exponential distribution with parameter ψ′(ψ−1(λ));

• the offspring distribution is the law of the variable ξ with generating function

E[rξ] = r +
ψ((1− r)ψ−1(λ))
ψ−1(λ)ψ′(ψ−1(λ))

.

In the quadratic case, we get a critical binary branching E[rξ] = 1
2 (1 + r2). The

result in that case had been obtained by Hobson [22].
We finally specialize to the stable case ψ(λ) = λγ , γ ∈ (1, 2]. By scaling arguments,

we can then make sense of the law N(1) = N(· | σ = 1) of the normalized excursion
of H. Using the case of Poissonnian marks, we compute explicitly the law of the tree
θ(H, t1, . . . , tp) under N(1), when (t1, . . . , tp) are chosen independently and uniformly
over [0, 1]p. In the quadratic case ψ(u) = u2, H is under N(1) a normalized Brownian
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excursion, and the corresponding tree is called the continuum random tree (see Aldous
[1],[2],[3]). By analogy, in our more general case ψ(u) = uγ , we may call the tree coded
by H under N(1) the stable continuum random tree. Our calculations give what
Aldous calls the finite-dimensional marginals of the tree. In the case γ = 2, these
marginals were computed by Aldous (see also Le Gall [31] for a different approach
closer to the present work). In that case, the discrete skeleton T (H, t1, . . . , tp) is
uniformly distributed over all binary rooted ordered trees with k leaves. When γ < 2,
things become different as we can get nonbinary trees (the reason why we get only
binary trees in the Brownian case is the fact that local minima of Brownian motion
are distinct). Theorem 3.3.3 shows in particular that if T is a tree with p leaves
such that ku(T ) 6= 1 for every u ∈ T (this condition must be satisfied by our trees
T (e, t1, . . . , tp)) then the probability that T (H, t1, . . . , tp) = T is

p!
(γ − 1)(2γ − 1) · · · ((p− 1)γ − 1)

∏
v∈NT

|(γ − 1)(γ − 2) · · · (γ − kv + 1)|
kv!

where NT = {v ∈ T : kv > 0} is the set of nodes of T . It would be interesting to
know whether this distribution on discrete trees has occurred in other settings.

0.7 The Lévy snake

Chapters 1 – 3 explore the continuous genealogical structure coded by the ψ-height
process H. In Chapter 4, we examine the probabilistic objects obtained by combining
this branching structure with a spatial motion given by a càdlàg Markov process ξ
with state space E. Informally, “individuals” do not only reproduce themselves,
but they also move in space independently according to the law of ξ. The (ξ, ψ)-
superprocess is then a Markov process taking values in the space of finite measures
on E, whose value at time t is a random measure putting mass on the set of positions
of “individuals” alive at time t. Note that the previous description is very informal
since in the continuous branching setting there are no individual particles but rather a
continuum of infinitesimal particles. Recent accounts of the theory of superprocesses
can be found in Dynkin [13], Etheridge [15] and Perkins [40].

Our coding of the genealogy by the height process leads to introducing a Markov
process whose values will give the historical paths followed by the “individuals” in the
population. This a generalization of the Brownian snake introduced in [28] and studied
in particular in [31]. To give a precise definition, fix a starting point x ∈ E, consider
the ψ-height process (Hs, s ≥ 0) and recall the notation mH(s, s′) = inf [s,s′]Hr for
s ≤ s′. We assume that the continuity condition (4) holds. Then conditionally on
(Hs, s ≥ 0) we consider a time-inhomogeneous Markov process (Ws, s ≥ 0) whose
distribution is described as follows:

• For every s ≥ 0, Ws = (Ws(t), 0 ≤ t < Hs) is a path of ξ started at x and with
finite lifetime Hs.

• If we consider two instants s and s′, the corresponding paths Ws and Ws′ are the
same up to time mH(s, s′) and then behave independently.

The latter property is consistent with the fact that in our coding of the genealogy,
vertices attached to s and s′ have the same ancestors up to generation mH(s, s′). See
Section 4.1 for a more precise definition.

The pair (ρs,Ws) is then a Markov process with values in the product space
Mf (R+)×W, whereW stands for the set of all finite càdlàg paths in E. This process
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is called the Lévy snake (with initial point x). It was introduced and studied in
[33], where a form of its connection with superprocesses was established. Chapter 4
gives much more detailed information about its properties. In particular, we prove
the strong Markov property of the Lévy snake (Theorem 4.1.2), which plays a crucial
role in several applications.

We also use the local times of the height process to give a nicer form of the
connection with superprocesses. Write Ŵs for the left limit of Ws at its lifetime Hs

(which exists a.s. for each fixed s), and recall the notation Tr = inf{t ≥ 0 : Xt = −r}.
For every t ≥ 0, we can define a random measure Zt on E by setting

〈Zt, f〉 =
∫ Tr

0

dsL
t
s f(Ŵs) .

Then (Zt, t ≥ 0) is a (ξ, ψ)-superprocess with initial value rδx. This statement is
in fact a special case of Theorem 4.2.1 which constructs a (ξ, ψ)-superprocess with
an arbitrary initial value. For this more general statement, it is necessary to use
excursion measures of the Lévy snake: Under the excursion measure Nx, the process
(ρs, s ≥ 0) is distributed according to its excursion measure N , and (Ws, s ≥ 0) is
constructed by the procedure explained above, taking x for initial point.

As a second application, we use local time techniques to construct exit measures
from an open set and to establish the integral equation satisfied by the Laplace func-
tional of exit measures (Theorem 4.3.3). Recall that exit measures of superprocesses
play a fundamental role in the connections with partial differential equations studied
recently by Dynkin and Kuznetsov (a detailed account of these connections can be
found in the book [13]).

We then study the continuity of the path-valued process Ws with respect to the
uniform topology on paths. This question is closely related to the compact support
property for superprocesses. In the case when ξ is Brownian motion in Rd, Theorem
4.5.2 shows that the condition∫ ∞

1

(∫ t

0

ψ(u) du
)−1/2

dt <∞

is necessary and sufficient forWt to be continuous with respect to the uniform topology
on paths. The proof relies on connections of the exit measure with partial differential
equations and earlier work of Sheu [45], who was interested in the compact support
property for superprocesses. In the case of a general spatial motion, assuming only
that ξ has Hölder continuous paths, we use the continuity properties of H derived
in Chapter 1 to give simple sufficient conditions ensuring that the same conclusion
holds.

Although we do not develop such applications in the present work, we expect that
the Lévy snake will be a powerful tool to study connections with partial differential
equations, in the spirit of [30], as well as path properties of superprocesses (see [34]
for a typical application of the Brownian snake to super-Brownian motion).

In the last two sections of Chapter 4, we compute certain explicit distributions
related to the Lévy snake and the (ξ, ψ)-superprocess, under the excursion measures
Nx. We assume that the path-valued process Ws is continuous with respect to the
uniform topology on paths, and then the value Ws(Hs) can be defined as a left limit
at the lifetime, simultaneously for all s ≥ 0. If D is an open set in E such that x ∈ D,
we consider the first exit time

TD = inf{s ≥ 0 : τ(Ws) <∞}
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where τ(Ws) = inf{t ∈ [0, Hs] : Ws(t) /∈ D}. Write u(y) = Ny(TD < ∞) < ∞ for
every y ∈ D. Then the distribution of WTD under Nx(· ∩ {TD <∞}) is characterized
by the function u and the distribution Πx of ξ started at x via the formula: For every
a ≥ 0,

Nx
(

1{TD<∞}1{a<HTD}F (WTD (t), 0 ≤ t ≤ a)
)

= Πx

[
1{a<τ}u(ξa)F (ξr, 0 ≤ r ≤ a) exp

(
−
∫ a

0

ψ̃(u(ξr))dr
)]
,

where τ stands for the first exit time of ξ from D, and ψ̃(r) = ψ(r)/r. Theorem 4.6.2
gives more generally the law of the pair (WTD , ρTD ) under Nx(· ∩ {TD <∞}). In the
special case when ξ is Brownian motion in Rd, the function u can be identified as the
maximal nonnegative solution of 1

2∆u = ψ(u) in D, and the law of WTD is that of
a Brownian motion with drift ∇u/u up to its exit time from D. This considerably
extends a result of [29] proved in the quadratic branching case by a very different
method.

The last section of Chapter 4 investigates reduced spatial trees, again under the
assumption that the path-valued process Ws is continuous with respect to the uniform
topology on paths. We consider a spatial open set D with x ∈ D, and the Lévy snake
under its excursion measure Nx (in the superprocess setting this means that we are
looking at all historical paths corresponding to one given ancestor at time 0). We
condition on the event that {TD < ∞}, that is one at least of the paths Ws exits
D, and we want to describe the spatial structure of all the paths that exit D, up to
their respective exit times. This is an analogue (and in fact a generalization) of the
reduced tree problem studied in Chapter 2. In the spatial situation, all paths Ws that
exit D will be the same up to a certain time mD at which there is a branching point
with finitely many branches, each corresponding to an excursion of the height process
H above level mD during which the Lévy snake exits D. In each such excursion the
paths Ws that exit D will be the same up to a level strictly greater than mD, at which
there is another branching point, and so on.

To get a full description of the reduced spatial tree, one only needs to compute
the joint distribution of the path WD

0 = WTD (.∧mD), that is the common part to all
paths that do exit D, and the number ND of branches at the first branching point.
Indeed, conditionally on the pair (WD

0 , ND), the “subtrees of paths” that originate
from the first branching point will be independent and distributed according to the
full reduced tree with initial point ŴD

0 = WD
0 (mD) (see Theorem 4.7.2 for more

precise statements). Theorem 4.7.2 gives explicit formulas for the joint distribution
of (WD

0 , ND), again in terms of the function u(y) = Ny(TD < ∞) < ∞. Precisely,
the law of the “first branch” WD

0 is given by

Nx(1{TD<∞}F (WD
0 ))

=
∫ ∞

0

dbΠx

[
1{b<τ}u(ξb) θ(u(ξb)) exp

(
−
∫ b

0

ψ′(u(ξr))dr
)
F (ξr, 0 ≤ r ≤ b)

]
,

where θ(r) = ψ′(r)− ψ̃(r). Furthermore the conditional distribution of ND given WD
0

depends only on the branching point ŴD
0 and is given by

Nx[rND | TD <∞,WD
0 ] = r

ψ′(U)− γψ(U, (1− r)U)
ψ′(U)− γψ(U, 0)

, 0 ≤ r ≤ 1,

where U = u(ŴD
0 ) and γψ(a, b) = ψ(a)−ψ(b)

a−b . In the stable case ψ(u) = uγ , the
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variable ND is independent of WD
0 and its generating function is (γ−1)−1((1− r)γ −

1 + γr).
In the special case ψ(u) = u2, the previous result was used by Mselati [38] to

investigate absolute continuity properties of the law of the exit measure of super-
Brownian motion, in view of applications to the semilinear partial differential equation
∆u = u2. Again in the quadratic branching case, our description of the reduced spatial
tree is reminiscent of the recent work of Salisbury and Verzani [43],[44] who study exit
measures of super-Brownian motion conditioned to hit a number of specified points
on the boundary. This conditioning leads to a spatial tree described by a branching
particle backbone process with immigration of mass along the paths of the particles.

Acknowledgment. We would like to thank Yves Le Jan for allowing us to use several
ideas that originated in his work in collaboration with one of us. We also thank the
referee for several useful remarks.
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Chapter 1

The height process

1.1 Preliminaries on Lévy processes

1.1.1 Basic assumptions

In this section, we introduce the class of Lévy processes that will be relevant to our
study and we record some of their basic properties. For almost all facts about Lévy
processes that we need, we refer to the recent book of Bertoin [5] (especially Chapter
VII).

We consider a Lévy process X on the real line. It will be convenient to assume
that X is the canonical process on the Skorokhod space D(R+,R) of càdlàg (right-
continuous with left limits) real-valued paths. Unless otherwise noted, the underlying
probability measure P is the law of the process started at 0. We denote by (Gt, t ∈
[0,∞]) the canonical filtration, completed as usual by the class of all P -negligible sets
of G∞.

We assume that the following three properties hold a.s.:

(H1) X has no negative jumps.

(H2) X does not drift to +∞.

(H3) The paths of X are of infinite variation.

Thanks to (H1), the “Laplace transform” E[exp−λXt] is well defined for every
λ ≥ 0 and t ≥ 0, and can be written as

E[exp−λXt] = exp(tψ(λ)),

with a function ψ of the form

ψ(λ) = α0λ+ βλ2 +
∫

(0,∞)

π(dr) (e−λr − 1 + 1{r<1}λr),

where α0 ∈ R, β ≥ 0 and the Lévy measure π is a Radon measure on (0,∞) such
that

∫
(0,∞)

(1 ∧ r2)π(dr) <∞.
Assumption (H2) then holds iff X has first moments and E[X1] ≤ 0. The first

moment assumption is equivalent to saying that π satisfies the stronger integrability
condition ∫

(0,∞)

(r ∧ r2)π(dr) <∞.
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Then ψ can be written in the form

ψ(λ) = αλ+ βλ2 +
∫

(0,∞)

π(dr) (e−λr − 1 + λr), (1.1)

Note that ψ is then convex and that we have E[Xt] = −t ψ′(0) = −tα. The condition
E[X1] ≤ 0 thus holds iff α ≥ 0. The process X is recurrent or drifts to −∞ according
as α = 0 or α > 0.

Finally, according to [5] (Corollary VII.5), assumption (H3) holds iff at least one
of the following two conditions is satisfied: β > 0, or∫

(0,1)

r π(dr) =∞.

Summarizing, we assume that X is a Lévy process with no negative jumps, whose
Laplace exponent ψ has the form (1.1), where α ≥ 0, β ≥ 0 and π is a σ-finite measure
on (0,∞) such that

∫
(r ∧ r2)π(dr) < ∞, and we exclude the case where both β = 0

and
∫

(0,1)
r π(dr) <∞.

Remark. Only assumption (H1) is crucial to the connections with branching pro-
cesses that are presented in this work. Assumption (H2) means that we restrict our
attention to the critical or subcritical case. We impose assumption (H3) in order to
concentrate on the most interesting cases: A simpler parallel theory can be developed
in the finite variation case, see Section 3 of [32].

We will use the notation Ty = inf{t ≥ 0 : Xt = −y} for y ∈ R. By convention
inf ∅ = +∞.

Under our assumptions, the point 0 is regular for (0,∞) and for (−∞, 0), meaning
that inf{t > 0 : Xt > 0} = 0 and inf{t > 0 : Xt < 0} = 0 a.s. (see [5], Theorem
VII.1 and Corollary VII.5). We sometimes use this property in connection with the
so-called duality property: For every t > 0, define a process X̂(t) = (X̂(t)

s , 0 ≤ s ≤ t)
by setting

X̂(t)
s = Xt −X(t−s)− , if 0 ≤ s < t,

and X̂
(t)
t = Xt. Then (X̂(t)

s , 0 ≤ s ≤ t) has the same law as (Xs, 0 ≤ s ≤ t).
Let S and I be respectively the supremum and the infimum process of X, defined

by
St = sup

s≤t
Xs , It = inf

s≤t
Xs.

If we combine the duality property with the regularity of 0 for both (0,∞) and
(−∞, 0), we easily get that the set

{s > 0 : Xs− = Is or Xs− = Ss−}

almost surely does not intersect {s ≥ 0 : ∆Xs 6= 0}. This property will be used
implicitly in what follows.

1.1.2 Local times at the maximum and the minimum

Both processes X−S and X−I are strong Markov processes, and the results recalled
at the end of the previous subsection imply that the point 0 is regular for itself with
respect to each of these two Markov processes. We can thus define the corresponding
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Markovian local times and excursion measures, which both play a fundamental role
in this work.

Consider first X − S. We denote by L = (Lt, t ≥ 0) a local time at 0 for X − S.
Observe that L is only defined up to a positive multiplicative constant, that will
be specified later. Let N∗ be the associated excursion measure, which is a σ-finite
measure on D(R+,R). It will be important for our purposes to keep track of the final
jump under N∗. This can be achieved by the following construction. Let (aj , bj), j ∈
J be the excursion intervals of X−S away from 0. In the transient case (α > 0), there
is exactly one value j ∈ J such that bj = +∞. For every j ∈ J let ωj ∈ D(R+,R) be
defined by

ωj(s) = X(aj+s)∧bj −Xaj , s ≥ 0.

Then the point measure ∑
j∈J

δ(Laj ,ωj)

is distributed as 1{l≤η}N (dldω), where N denotes a Poisson point measure with
intensity dl N∗(dω), and η = inf{l : N ([0, l]× {σ = +∞}) ≥ 1}, if

σ(ω) = inf{t > 0 : ω(r) = ω(t) for every r ≥ t}

stands for the duration of the excursion ω. This statement characterizes the excursion
measure N∗, up to the multiplicative constant already mentioned. Note that X0 = 0
and Xt = Xσ ≥ 0 for t ≥ σ, N∗ a.e.

Consider then X − I. It is easy to verify that the continuous increasing process
−I is a local time at 0 for the Markov process X − I. We will denote by N the
associated excursion measure, which can be characterized in a way similar to N∗

(with the difference that we have always −I∞ = +∞ a.s., in contrast to the property
L∞ < ∞ a.s. in the transient case). We already noticed that excursions of X − I
cannot start with a jump. Hence, X0 = 0, N a.e. It is also clear from our assumptions
on X that σ <∞, Xt > 0 for every t ∈ (0, σ) and Xσ− = 0, N a.e.

We will now specify the normalization of N∗, or equivalently of L. Let m denote
Lebesgue measure on R.

Lemma 1.1.1 We can fix the normalization of L, or equivalently of N∗, so that, for
every Borel subset B of (−∞, 0),

N∗
(∫ σ

0

ds 1B(Xs)
)

= m(B). (1.2)

Proof. For every x ∈ R, write Px for the law of the Lévy process started at x. Also
set τ = inf{s ≥ 0 : Xs ≥ 0} and recall that (Xt, t > 0) is Markovian under N∗ with
the transition kernels of the underlying Lévy process stopped when hitting [0,∞).
Thanks to this observation, it is enough to prove that, for every ε > 0, there exists a
constant c(ε) such that for every Borel subset B of (−∞,−ε),

E−ε

[ ∫ τ

0

ds 1B(Xs)
]

= c(ε)m(B).

Consider first the transient case. By applying the strong Markov property at
hitting times of negative values, it is easy to verify that the measure on (−∞,−ε)
defined by

B −→ E−ε

[ ∫ ∞
0

ds 1B(Xs)
]
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must be a multiple of Lebesgue measure. However, writing T ε0 = 0, T ε1 , . . . , T
ε
n, etc.

for the successive visits of −ε via [0,∞), we have

E−ε

[ ∫ ∞
0

ds 1B(Xs)
]

=
∞∑
i=0

E−ε

[
1{T εi <∞}

∫ T εi+1

T εi

ds 1B(Xs)
]

=
E−ε

[ ∫ τ
0
ds 1B(Xs)

]
P−ε[τ =∞]

.

The desired result follows.
In the recurrent case, the ergodic theorem gives

1
n

∫ T εn

0

ds 1B(Xs)
a.s.−→
n→∞

E−ε

[ ∫ τ

0

ds 1B(Xs)
]
,

whereas the Chacon-Ornstein ergodic theorem implies∫ T εn
0

ds 1B(Xs)∫ T εn
0

ds 1(−2ε,−ε)(Xs)
a.s.−→
n→∞

m(B)
ε

.

The conclusion easily follows. �

In what follows we always assume that the normalization of L or of N∗ is fixed as
in Lemma 1.1.1.

Let L−1(t) = inf{s, Ls > t}. By convention, XL−1(t) = +∞ if t ≥ L∞. The
process (XL−1(t), t ≥ 0) is a subordinator (the so-called ladder height process) killed
at an independent exponential time in the transient case.

Lemma 1.1.2 For every λ > 0,

E[exp−λXL−1(t)] = exp(−tψ̃(λ)),

where

ψ̃(λ) =
ψ(λ)
λ

= α+ βλ+
∫ ∞

0

(1− e−λr)π([r,∞)) dr.

Proof. By a classical result of fluctuation theory (see e.g. [6] Corollary p.724), we
have

E[exp−λXL−1(t)] = exp(−ctψ̃(λ)),

where c is a positive constant. We have to verify that c = 1 under our normalization.
Suppose first that π 6= 0. Then notice that the Lévy measure cπ([r,∞))dr of

XL−1(t) is the “law” of Xσ under N∗(· ∩ {Xσ > 0}). However, for any nonnegative
measurable function f on [0,∞)2, we get by a predictable projection

N∗
(
f(∆Xσ, Xσ) 1{Xσ>0}

)
= N∗

( ∑
0<s≤σ

f(∆Xs, Xs) 1{Xs>0}

)
= N∗

(∫ σ

0

ds

∫
π(dx) f(x,Xs− + x) 1{Xs−+x>0}

)
=

∫ 0

−∞
dy

∫
π(dx) f(x, y + x) 1{y+x>0},

using Lemma 1.1.1 in the last equality. It follows that

N∗
(
f(∆Xσ, Xσ) 1{Xσ>0}

)
=
∫
π(dx)

∫ x

0

dz f(x, z), (1.3)
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and we get c = 1 by comparing with the Lévy measure of XL−1(t).
In the case π = 0, X is a scaled linear Brownian motion with drift, and the same

conclusion follows from direct computations. �

Note that we have in particular P [L−1(t) <∞] = e−αt, which shows that L∞ has
an exponential distribution with parameter α in the transient case.

When β > 0, we can get a simple expression for Lt. From well-known results on
subordinators, we have a.s. for every u ≥ 0,

m({XL−1(t); t ≤ u, L−1(t) <∞}) = β(u ∧ L∞).

Since the sets {XL−1(t); t ≤ u, L−1(t) < ∞} and {Sr; r ≤ L−1(u)} coincide except
possibly for a countable set, we have also

m({Sr; r ≤ t}) = β Lt (1.4)

for every t ≥ 0 a.s.
The next lemma provides a useful approximation of the local time Lt.

Lemma 1.1.3 For every x > 0,

lim
ε↓0

1
ε

∫ L−1(x)

0

1{Ss−Xs<ε}ds = x ∧ L∞

in the L2-norm. Consequently, for every t ≥ 0,

lim
ε↓0

1
ε

∫ t

0

1{Ss−Xs<ε}ds = Lt

in probability.

Proof. It is enough to prove the first assertion. LetN be as previously a Poisson point
measure on R+ × D(R+,R) with intensity dl N∗(dω), and η = inf{l : N ([0, l]× {σ =
+∞}) ≥ 1}. For every x > 0 set

Jε(x) =
1
ε

∫
N (dldω) 1{l≤x}

∫ σ(ω)

0

1(−ε,0](ω(s)) ds.

Then,

E[Jε(x)] =
x

ε
N∗
(∫ σ

0

1(−ε,0](Xs)ds
)

= x

by (1.2). Furthermore,

E[Jε(x)2] = (E[Jε(x)])2 + xε−2N∗
((∫ σ

0

1(−ε,0](Xs)ds
)2)

,

and

N∗
((∫ σ

0

1(−ε,0](Xs)ds
)2)

= 2N∗
(∫

0≤s≤t≤σ
1(−ε,0](Xs)1(−ε,0](Xt)dsdt

)
= 2N∗

(∫ σ

0

ds 1(−ε,0](Xs)EXs
[ ∫ τ

0

dt 1(−ε,0](Xt)
])

≤ 2ε sup
0≥y>−ε

Ey

[ ∫ τ

0

dt 1(−ε,0](Xt)
]
,
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using the same notation τ = inf{t ≥ 0 : Xt ≥ 0} as previously. We then claim that

sup
0≥y>−ε

Ey

[ ∫ τ

0

dt 1(−ε,0](Xt)
]

= o(ε) (1.5)

as ε→ 0. Indeed, by applying the strong Markov property at Ty, we have for y > 0,

N∗(Ty <∞)E−y
[ ∫ τ

0

dt 1(−ε,0](Xt)
]
≤ N∗

(∫ σ

0

dt 1(−ε,0](Xt)
)

= ε,

and the claim follows since N∗[Ty <∞] ↑ +∞ as y ↓ 0. From (1.5) and the preceding
calculations, we get

lim
ε→0

E[(Jε(x)− x)2] = 0.

By Doob’s inequality (or a monotonicity argument), we have also

lim
ε→0

E[ sup
0≤z≤x

(Jε(z)− z)2] = 0.

The lemma now follows, since the pair

(1
ε

∫ L−1(x)

0

1{Ss−Xs<ε}ds, L∞
)

has the same distribution as (Jε(x ∧ η), η). �

As a consequence of Lemma 1.1.3, we may choose a sequence (εk, k = 1, 2, . . .) of
positive real numbers decreasing to 0, such that

Lt = lim
k→∞

1
εk

∫ t

0

1{Ss−Xs<εk}ds , P a.s. (1.6)

Using monotonicity arguments and a diagonal subsequence, we may and will assume
that the previous convergence holds simultaneously for every t ≥ 0 outside a single
set of zero probability. In particular, if we set for ω ∈ D([0, t],R),

Φt(ω) = lim inf
k→∞

1
εk

∫ t

0

1{sup[0,s] ω(r)−ω(s)<εk}ds,

we have Lt = Φt(Xs, 0 ≤ s ≤ t), for every t ≥ 0, P a.s.
Recall the notation X̂(t) for the process X time-reversed at time t.

Proposition 1.1.4 For any nonnegative measurable functional F on the Skorokhod
space D(R+,R),

N
(∫ σ

0

dt F (X̂(t)
s∧t, s ≥ 0)

)
= E

[ ∫ L∞

0

dxF (Xs∧L−1(x), s ≥ 0)
]
.

Proof. We may assume that F is bounded and continuous. Fix t > 0 and if ω ∈
D([0, t],R), set Tmax(ω) = inf{s ∈ [0, t] : sup[0,s] ω(r) = sup[0,t] ω(r)} and let θω ∈
D(R+,R) be defined by θω(t) = ω(t ∧ Tmax(ω)). Let z > 0. Excursion theory for
X − I shows that, for every ε > 0,

N
(∫ σ

0

dt 1{Φt(X̂(t))≤z} F (X̂(t)
s∧t, s ≥ 0)

)
=

1
ε
E
[ ∫ Tε

0

dt 1{Φt(X̂(t))≤z} F ◦ θ(X̂
(t))
]
.
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In deriving this equality, we also apply to the time-reversed process X̂(t) the fact that
the local time Ls does not increase after the (first) time of the maximum over [0, t].
Then,

1
ε
E
[ ∫ Tε

0

dt 1{Φt(X̂(t))≤z} F ◦ θ(X̂
(t))
]

=
1
ε
E
[ ∫ ∞

0

dt 1{It>−ε} 1{Φt(X̂(t))≤z} F ◦ θ(X̂
(t))
]

=
1
ε

∫ ∞
0

dtE[1{St−Xt<ε} 1{Lt≤z} F ◦ θ(Xs, s ≤ t)]

= E
[1
ε

∫ L−1(z)

0

dt 1{St−Xt<ε}F ◦ θ(Xs, s ≤ t)
]
.

We then take ε = εk and pass to the limit k →∞, using the L2 bounds provided by
Lemma 1.1.3. Note that the measures

1
εk

1[0,L−1(z)](t) 1{St−Xt<εk}dt

converge weakly to the finite measure 1[0,L−1(z)](t)dLt. Furthermore, θ(Xs, s ≤ t) =
(Xs∧t, s ≥ 0), dLt a.e., a.s., and it is easy to verify that the mapping t −→ F◦θ(Xs, s ≤
t) is continuous on a set of full dLt-measure. We conclude that

N
(∫ σ

0

dt 1{Φt(X̂(t))≤z} F (X̂(t)
s∧t, s ≥ 0)

)
= E

[ ∫ L−1(z)

0

F (Xs∧t, s ≥ 0) dLt
]

= E
[ ∫ z∧L∞

0

F (Xs∧L−1(x), s ≥ 0) dx
]
,

and the desired result follows by letting z →∞. �

1.2 The height process and the exploration process

We write Ŝ(t)
s = sup[0,s] X̂

(t)
r (0 ≤ s ≤ t) for the supremum process of X̂(t).

Definition 1.2.1 The height process is the real-valued process (Ht, t ≥ 0) defined as
follows. First H0 = 0 and for every t > 0, Ht is the local time at level 0 at time t of
the process X̂(t) − Ŝ(t).

The normalization of local time is of course that prescribed by Lemma 1.1.1.
Note that the existence of a modification of the process (Ht, t ≥ 0) with good

continuity properties is not clear from the previous definition. When β > 0 however,
we can use (1.4) to see that

Ht =
1
β
m({Ist ; s ≤ t}) , (1.7)

where for 0 ≤ s ≤ t,
Ist = inf

s≤r≤t
Xr.

Clearly the right-hand side of (1.7) gives a continuous modification of (Ht, t ≥ 0).
When β = 0, this argument does not apply and we will see later that there may exist
no continuous (or even càdlàg) modification of (Ht, t ≥ 0).
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At the present stage, we will use the measurable modification of (Ht, t ≥ 0) with
values in [0,∞] obtained by taking

Ho
t = Φt(X̂(t)

s , 0 ≤ s ≤ t) = lim inf
k→∞

1
εk

∫ t

0

1{Xs<Ist+εk} ds, (1.8)

where the εk’s are as in (1.6). The liminf in (1.8) is a limit (and is finite) a.s. for
every fixed t ≥ 0. The following lemma shows that more is true.

Lemma 1.2.1 Almost surely for every t ≥ 0, we have

Ho
s = lim

k→∞

1
εk

∫ s

0

1{Xr<Irs+εk} dr <∞,

for every s < t such that Xs− ≤ Ist , and for s = t if ∆Xt > 0.

Proof. Let s and t be as in the statement. Then there must exist a rational u ∈ (s,∞)
such that Xs− ≤ Isu. We can then apply to the time-reversed process X̂(u) the
approximation result (1.6) at times u and u − s respectively. The desired result
follows. �

We denote by Mf (R+) the space of all finite measures on R+, which is equipped
with the topology of weak convergence.

Definition 1.2.2 The exploration process is the process (ρt, t ≥ 0) with values in
Mf (R+) defined as follows. For every nonnegative measurable function f ,

〈ρt, f〉 =
∫

[0,t]

dsI
s
t f(Ho

s ) (1.9)

where the notation dsIst refers to integration with respect to the nondecreasing function
s→ Ist .

Since we did not exclude the value +∞ for Ho
t (as defined by (1.8)), it may not be

obvious that the measure ρt is supported on [0,∞). However, this readily follows from
the previous lemma since the measure dsIst is supported on the set {s < t : Xs− ≤ Ist }
(to which we need to add the point t if ∆Xt > 0).

Notice that if u and v belong to the set {s ≤ t : Xs− ≤ Ist }, and if u ≤ v, then for
every r ∈ [0, u) the condition Xr < Iru + εk implies Xr < Irv + εk, and by construction
it follows that Ho

u ≤ Ho
v . Using the previous remark on the support of the measure

dsI
s
t , we see that the measure ρt is supported on [0, Ho

t ], for every t ≥ 0, a.s.

The total mass of ρt is

〈ρt, 1〉 = Itt − I0
t = Xt − It.

In particular ρt = 0 iff Xt = It.

It will be useful to rewrite the definition of ρt in terms of the time-reversed process
X̂(t). Denote by L̂(t) = (L̂(t)

s , 0 ≤ s ≤ t) the local time at 0 of X̂(t)−Ŝ(t) (in particular
Ho
t = L̂

(t)
t ). Note that for t ≥ 0 fixed, we have Ho

s = L̂
(t)
t − L̂

(t)
s for every s ∈ [0, t]

such that Xs− ≤ Ist , a.s. (compare (1.6) and (1.8)). Hence, for every t ≥ 0,

〈ρt, f〉 =
∫

[0,t]

dŜ(t)
s f(L̂(t)

t − L̂(t)
s ), a.s.. (1.10)

If µ is a nonzero measure in Mf (R+), we write suppµ for the topological support
of µ and set H(µ) = sup(suppµ). By convention H(0) = 0. By a preceding remark,
H(ρt) ≤ Ho

t for every t ≥ 0, a.s.
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Lemma 1.2.2 For every t ≥ 0, P [H(ρt) = Ho
t ] = 1. Furthermore, almost surely for

every t > 0, we have

(i) ρt({0}) = 0 ;

(ii) supp ρt = [0, H(ρt)] if ρt 6= 0 ;

(iii) H(ρs) = Ho
s for every s ∈ [0, t) such that Xs− ≤ Ist and for s = t if ∆Xt > 0.

Proof. It is well known, and easy to prove from the strong Markov property, that the
two random measures dSs and dLs have the same support a.s. Then (1.10) implies
that supp ρt = [0, Ho

t ] a.s. for every fixed t > 0. In particular, P [Ho
t = H(ρt)] = 1.

Similarly (1.10) implies that P [ρt({0}) > 0] = 0 for every fixed t > 0. However, if
we have ρt({0}) > 0 for some t ≥ 0, our definitions and the right-continuity of paths
show that the same property must hold for some rational r > t. Property (i) follows.

Let us now prove (ii), which is a little more delicate. We already noticed that (ii)
holds for every fixed t, a.s., hence for every rational outside a set of zero probability.
Let t > 0 with Xt > It, and set

γt = sup{s < t : Ist < Xt}.

We consider two different cases.
(a) Suppose first that Xγt− < Xt, which holds in particular if ∆Xt > 0. Then

note that
〈ρt, f〉 =

∫
[0,γt)

dsI
s
t f(Ho

s ) + (Xt −Xγt−)f(Ho
t ).

Thus we can find a rational r > t sufficienty close to t, so that ρr and ρt have the
same restriction to [0, Ho

t ). The fact that property (ii) holds for r implies that it holds
for t, and we see also that Ho

t = H(ρt) in that case.
(b) Suppose that Xγt− = Xt. Then we set for every ε > 0,

〈ρεt , f〉 =
∫

[0,t]

dsI
s
t 1{Ist<Xt−ε} f(Ho

s ).

From the remarks following the definition of ρt, it is clear that there exists some a ≥ 0
such that ρεt is bounded below by the restriction of ρt to [0, a), and bounded above
by the restriction of ρt to [0, a]. Also note that ρt = lim ↑ ρεt as ε ↓ 0. Now, for every
ε > 0, we can pick a rational r > t so that Itr > Xt − ε, and we have by construction

ρεt = ρε+Xr−Xtr .

From the rational case, the support of ρε+Xr−Xtr must be an interval [0, a], and thus
the same is true for ρεt . By letting ε ↓ 0, we get (ii) for t.

We already obtained (iii) for s = t when ∆Xs > 0 (see (a) above). If s ∈ (0, t)
is such that Xs− ≤ Ist , we will have also Xs− ≤ Isr for any rational r ∈ (s, t). Then
Ho
s ≤ Ho

r = H(ρr), and on the other hand, it is clear that the measures ρs and ρr
have the same restriction to [0, Ho

s ). Thus (ii) implies that the support of ρs contains
[0, Ho

s ), and so H(ρs) ≥ Ho
s . This gives the desired result since the reverse inequality

always holds. �

Proposition 1.2.3 The process (ρt, t ≥ 0) is a càdlàg strong Markov process in
Mf (R+). Furthermore, (ρt, t ≥ 0) is càdlàg with respect to the variation distance on
finite measures.
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Proof. We first explain how to define the process ρ started at an arbitrary initial
value µ ∈ Mf (R+). To this end, we introduce some notation. Let µ ∈ Mf (R+) and
a ≥ 0. If a ≤ 〈µ, 1〉, we let kaµ be the unique finite measure on R+ such that, for
every r ≥ 0,

kaµ([0, r]) = µ([0, r]) ∧ (〈µ, 1〉 − a).

In particular, 〈kaµ, 1〉 = 〈µ, 1〉 − a. If a ≥ 〈µ, 1〉, we take kaµ = 0.
If µ ∈Mf (R+) has compact support and ν ∈Mf (R+), we define the concatenation

[µ, ν] ∈Mf (R+) by the formula∫
[µ, ν](dr) f(r) =

∫
µ(dr) f(r) +

∫
ν(dr) f(H(µ) + r).

With this notation, the law of the process ρ started at µ ∈ Mf (R+) is the distri-
bution of the process ρµ defined by

ρµt = [k−Itµ, ρt] , t > 0. (1.11)

Note that this definition makes sense because k−Itµ has compact support, for every
t > 0 a.s.

We then verify that the process ρ has the stated properties. For simplicity, we
consider only the case when the initial value is 0, that is when ρ is defined as in
Definition 1.2.2. The right-continuity of paths is straightforward from the definition
since the measures 1[0,t′](s)dsIst′ converge to 1[0,t](s)dsIst in the variation norm as
t′ ↓ t. Similarly, we get the existence of left-limits from the fact that the measures
1[0,t′](s)dsIst′ converge to 1[0,t)(s)dsIst in the variation norm as t′ ↑ t, t′ < t. We see
in particular that ρ and X have the same discontinuity times and that

ρt = ρt− + ∆Xt δHot . (1.12)

We now turn to the strong Markov property. Let T be a stopping time of the
canonical filtration. We will express ρT+t in terms of ρT and the shifted process
X

(T )
t = XT+t −XT . We claim that a.s. for every t > 0

ρT+t = [k−I(T )
t
ρT , ρ

(T )
t ] (1.13)

where ρ(T )
t and I

(T )
t obviously denote the analogues of ρt and It when X is replaced

by X(T ). When we have proved (1.13), the strong Markov property of the process ρ
follows by standard arguments, using also our definition of the process started at a
general initial value.

For the proof of (1.13), write

〈ρT+t, f〉 =
∫

[0,T ]

dsI
s
T+tf(Ho

s ) +
∫

(T,T+t]

dsI
s
T+tf(Ho

s ).

We consider separately each term in the right-hand side. Introduce u = sup{r ∈
(0, T ] : Xr− < ITT+t}, with the usual convention sup ∅ = 0. We have IsT+t = IsT for
s ∈ [0, u) and IsT+t = ITT+t for s ∈ [u, T ]. Since XT − ITT+t = −I(T )

t , it then follows
from our definitions that∫

[0,T ]

dsI
s
T+t f(Ho

s ) =
∫

[0,u)

dsI
s
T f(Ho

s ) + 1{u>0}(ITT+t −Xu−)f(Ho
u) = 〈k−I(T )

t
ρT , f〉.

(1.14)
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Also notice that the measures ρu and k−I(T )
t
ρT coincide, except possibly at the point

Ho
u. In any case, H(ρu) = H(k−I(T )

t
ρT ), and we have also Ho

u = H(ρu) by Lemma
1.2.2 (iii).

Now observe that for dsIsT+t almost every s ∈ (T, T+t], we have Ho
s = Ho

u+Ho,(T )
s−T ,

with an obvious notation. To see this, pick a rational r > T + t such that IT+t
r > Xs−

and argue on the time-reversed process X̂(r) as in the proof of Lemma 1.2.1. Hence,∫
(T,T+t]

dsI
s
T+t f(Ho

s ) =
∫

(T,T+t]

dsI
s
T+t f(Ho

u +H
o,(T )
s−T ) =

∫
ρ

(T )
t (dx) f(Ho

u + x).

(1.15)
Formula (1.13) follows by combining (1.14) and (1.15). �

We now come back to the problem of finding a modification of the height process
with good continuity properties. By the first assertion of Lemma 1.2.2, (H(ρt), t ≥ 0)
is a modification of (Ho

t , t ≥ 0). From now on, we will systematically use
this modification and write Ht = H(ρt). From Lemma 1.2.2 (iii), we see that
formula (1.9) defining (ρt, t ≥ 0) remains true if Ho

s is replaced by Hs. The same
applies to formula (1.12) giving the jumps of ρ. Furthermore, the continuity properties
of the process ρt (and especially the form of its jumps) imply that the mapping
t −→ H(ρt) = Ht is lower semicontinuous a.s.

Let us make an important remark at this point. Write

gt = sup{s ≤ t : Xs = Is}

for the beginning of the excursion of X − I that straddles t. Then a simple time-
reversal argument shows that a.s. for every t such that Xt − It > 0, we have

lim
k→∞

1
εk

∫ gt

0

1{Xs<Ist+εk} ds = 0

and thus we can replace (1.8) by

Ho
t = lim inf

k→∞

1
εk

∫ t

gt

1{Xs<Ist+εk} ds.

Recalling (1.9), we see that, a.s. for every t ≥ 0 such that Xt − It > 0, we can
write ρt and Ht as measurable functions of the excursion of X − I that straddles t
(and of course ρt = 0 and Ht = 0 if Xt = It). We can thus define both the height
process and the exploration process under the excursion measure N . Furthermore,
if (αj , βj), j ∈ J , denote the excursion intervals of X − I, and if ωj , j ∈ J , denote
the corresponding excursions, we have Ht = Ht−αj (ωj) and ρt = ρt−αj (ωj) for every
t ∈ (αj , βj) and j ∈ J , a.s.

Since 0 is a regular point for X − I, we also see that the measure 0 is a regular
point for the exploration process ρ. It is immediate from the previous remark that
the excursion measure of ρ away from 0 is the “law” of ρ under N . Similarly, the
process −I, which is the local time at 0 for X − I, is also the local time at 0 for ρ.

We now state and prove a useful technical lemma about the process H.

Lemma 1.2.4 (Intermediate values property) Almost surely for every t < t′, the
process H takes all values between Ht and Ht′ on the time interval [t, t′].
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Proof. First consider the case when Ht > Ht′ . By using the lower semi-continuity
of H, we may assume that t is rational. From (1.13), we have ρt+s = [k−I(t)s ρt, ρ

(t)
s ]

for every s > 0, a.s. Hence, if

γr = inf{s > 0 : I(t)
s = −r},

we have ρt+γr = krρt, and so Ht+γr = H(krρt) for every r ≥ 0, a.s. However, Lemma
1.2.2 (ii) implies that the mapping r → H(krρt) is continuous. Now note that for
r = 0, Ht+γr = Ht, whereas for r = Xt − Itt′ = −I(t)

t′−t we have t + γr ≤ t′ and our
definitions easily imply ρt+γr ≤ ρt′ and Ht+γr ≤ Ht′ .

Consider then the case when Ht < Ht′ . By lower semi-continuity again, we may
assume that t′ is rational. In terms of the process time-reversed at time t′, we have
Ht′ = L̂

(t′)
t′ . Set

σr = inf{s ≥ 0 : Ŝ(t′)
s ≥ r},

which is well defined for 0 ≤ r ≤ Xt′ − It′ . Since the subordinator SL−1(t) is strictly

increasing, we see that the mapping r → L̂
(t′)
σr is continuous for r ∈ [0, Xt′ − It′ ], a.s.

Now note that
Ht′−σr = L̂

(t′)
t′ − L̂

(t′)
σr

for every r ∈ [0, Xt′ − It′ ], a.s. For r = Xt′ − Itt′ = Ŝ
(t′)
t′−t, we have t′ − σr ≥ t and

Ht′−σr ≤ Ht by construction. The desired result follows. �

The next proposition is a corollary of Proposition 1.1.4. We denote by U a sub-
ordinator defined on an auxiliary probability space (Ω0, P 0), with Laplace exponent

E0[exp−λUt] = exp
(
− t
(
βλ+

∫ ∞
0

(1− e−λr)π([r,∞)) dr
))

= exp(−t(ψ̃(λ)− α)).

For every a ≥ 0, we let Ja be the random element of Mf (R+) defined by Ja(dr) =
1[0,a](r) dUr.

Proposition 1.2.5 For every nonnegative measurable function Φ on Mf (R+),

N
(∫ σ

0

dtΦ(ρt)
)

=
∫ ∞

0

da e−αaE0[Φ(Ja)].

Let b ≥ 0. Then ρs({b}) = 0 for every s ≥ 0, N a.e. or P a.s.

Proof. We have ρt = Σ(X̂(t)
s∧t, s ≥ 0), with a functional Σ that is made explicit in

(1.10). We then apply Proposition 1.1.4 to obtain

N
(∫ σ

0

dtΦ(ρt)
)

= E
[ ∫ L∞

0

daΦ ◦ Σ(Xs∧L−1(a), s ≥ 0)
]
.

However, for a < L∞,

〈Σ(Xs∧L−1(a), s ≥ 0), f〉 =
∫ L−1(a)

0

dSs f(a− Ls).

The first assertion is now a consequence of Lemma 1.1.2, which shows that P [a <
L∞] = e−αa and that, conditionally on {L−1(a) <∞}, SL−1(r) = XL−1(r), 0 ≤ r ≤ a
has the same distribution as U (we also use the fact that (Ua − Ua−r, 0 ≤ r ≤ a) has
the same distribution as (Ur, 0 ≤ r ≤ a)).
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Consider now the second assertion. Note that the case b = 0 is a consequence of
Lemma 1.2.2 (i). So we may assume that b > 0 and it is enough to prove the result
under the excursion measure N . However, since b is a.s. not a jump time of U , the
right side of the formula of the proposition vanishes for Φ(µ) = µ({b}). The desired
result follows, using also the fact that ρ is càdlàg in the variation norm. �

We denote by M the measure on Mf (R+) defined by:

〈M,Φ〉 =
∫ ∞

0

da e−αaE0[Φ(Ja)].

Proposition 1.2.5 implies that the measure M is invariant for ρ.
The last proposition of this section describes the potential kernel of the exploration

process killed when it hits 0. We fix µ ∈ Mf (R+) and let ρµ be as in (1.11) the
exploration process started at µ. We use the notation introduced in the proof of
Proposition 1.2.3.

Proposition 1.2.6 Let τ0 = inf{s ≥ 0, ρµs = 0}. Then,

E
[ ∫ τ0

0

dsΦ(ρµs )
]

=
∫ <µ,1>

0

dr

∫
M(dθ) Φ([krµ, θ]).

Proof. First note that τ0 = T<µ,1> by an immediate application of the definition of
ρµ. Then, denote by (αj , βj), j ∈ J the excursion intervals of X − I away from 0
before time T<µ,1>, and by ωj , j ∈ J the corresponding excursions. As we observed
before Proposition 1.2.5, we have ρt = ρt−αj (ωj) for every t ∈ (αj , βj), j ∈ J , a.s.
Since {s ≥ 0 : Xs = Is} has zero Lebesgue measure a.s., it follows that

E
[ ∫ τ0

0

dsΦ(ρµs )
]

= E
[∑
j∈J

∫ βj−αj

0

drΦ([k−Iαjµ, ρr(ωj)])
]
.

By excursion theory, the point measure∑
j∈J

δIαj ,ωj (dude)

is a Poisson point measure with intensity 1[−<µ,1>,0](u)duN(dω). Hence,

E
[ ∫ τ0

0

dsΦ(ρµs )
]

=
∫ <µ,1>

0

duN
(∫ σ

0

drΦ([kuµ, ρr])
)
,

and the desired result follows from Proposition 1.2.5. �

1.3 Local times of the height process

1.3.1 The construction of local times

Our goal is to construct a local time process for H at each level a ≥ 0. Since H is in
general not Markovian (and not a semimartingale) we cannot apply a general theory,
but still we will use certain ideas which are familiar in the Brownian motion setting.
In the case a = 0, we can already observe that Ht = 0 iff ρt = 0 or equivalently
Xt − It = 0. Therefore the process −I is the natural candidate for the local time of
H at level 0.
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Let us fix a ≥ 0. Since t → ρt is càdlàg in the variation norm, it follows that
the mapping t → ρt((a,∞)) is càdlàg. Furthermore, it follows from (1.12) that the
discontinuity times of this mapping are exactly those times t such that ∆Xt > 0 and
Ht > a, and the corresponding jump is ∆Xt.

Set

τat = inf{s ≥ 0 :
∫ s

0

1{Hr>a} dr > t} = inf{s ≥ 0 :
∫ s

0

1{ρr((a,∞))>0} dr > t}.

From Proposition 1.2.5, we get that
∫∞

0
1{Hr>a} dr = ∞ a.s., so that the random

times τat are a.s. finite.
When a > 0, we also set

τ̃at = inf{s ≥ 0 :
∫ s

0

1{Hr≤a} dr > t}

and we let Ha be the σ-field generated by the càdlàg process (Xτ̃at
, ρτ̃at ; t ≥ 0) and

the class of P -negligible sets of G∞. We also define H0 as the σ-field generated by
the class of P -negligible sets of G∞.

Proposition 1.3.1 For every t ≥ 0, let ρat be the random measure on R+ defined by

〈ρat , f〉 =
∫

(a,∞)

ρτat (dr) f(r − a).

The process (ρat , t ≥ 0) has the same distribution as (ρt, t ≥ 0) and is independent of
Ha.

Proof. First step. We first verify that the process (〈ρat , 1〉, t ≥ 0) has the same
distribution as (〈ρt, 1〉, t ≥ 0).

Let ε > 0. We introduce two sequences of stopping times Skε , T kε , k ≥ 1, defined
inductively as follows:

S1
ε = inf{s ≥ 0 : ρs((a,∞)) ≥ ε},
T kε = inf{s ≥ Skε : ρs((a,∞)) = 0},
Sk+1
ε = inf{s ≥ T kε : ρs((a,∞)) ≥ ε}.

It is easy to see that these stopping times are a.s. finite, and Skε ↑ ∞, T kε ↑ ∞ as
k ↑ ∞.

From (1.13) applied with T = Skε , we obtain that, for every k ≥ 1,

T kε = inf{s > Skε : Xs = XSkε
− ρSkε ((a,∞))}. (1.16)

Formula (1.13) also implies that, for every s ∈ [0, T kε − Skε ],

ρSkε+s((a,∞)) = (ρSkε ((a,∞)) + I
(Skε )
s ) + (X(Skε )

s − I(Skε )
s ) (1.17)

= XSkε+s − (XSkε
− ρSkε ((a,∞))).

We set
Y k,εs = ρ(Skε+s)∧Tkε ((a,∞)).

As a straightforward consequence of (1.16) and (1.17), conditionally on GSkε , the
process Y k,ε is distributed as the underlying Lévy process started at ρSkε ((a,∞)) and
stopped at its first hitting time of 0.
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We then claim that, for every t ≥ 0,

lim
ε→0

sup
{k≥1,Skε≤t}

ρSkε ((a,∞)) = 0, a.s. (1.18)

Indeed, by previous observations about the continuity properties of the mapping s −→
ρs((a,∞)), we have

sup
{k≥1,Skε≤t}

ρSkε ((a,∞)) ≤ ε+ sup{∆Xs; s ≤ t,Hs > a, ρs((a,∞)) ≤ ε}.

However, the sets {s ≤ t; ∆Xs > 0, Hs > a, ρs((a,∞)) ≤ ε} decrease to ∅ as ε ↓ 0,
and so

lim
ε→0

(
sup{∆Xs; s ≤ t,Hs > a, ρs((a,∞)) ≤ ε}

)
= 0,

a.s., which yields the desired claim.
Set

Zk,εs = Y k,εs − inf
0≤r≤s

Y k,εr ≤ Y k,εs .

Then, conditionally on GSkε , Zk,ε is distributed as an independent copy of the reflected
process X − I, stopped when its local time at 0 hits ρSkε ((a,∞)).

Denote by Uε = (Uεs , s ≥ 0) the process obtained by pasting together the paths
(Zk,εs , 0 ≤ s ≤ T kε − Skε ). By the previous remarks, Uε is distributed as the reflected
Lévy process X − I.

We then set

τa,εs = inf{t ≥ 0 :
∫ t

0

∞∑
k=1

1[Skε ,T
k
ε ](r) dr > s}.

Observe that the time-changed process (ρτa,εs ((a,∞)), s ≥ 0) is obtained by patching
together the paths (Y k,εs , 0 ≤ s ≤ T kε − Skε ). Moreover, we have for every k ≥ 1,

sup
0≤s≤Tkε −Skε

(Y k,εs − Zk,εs ) = ρSkε ((a,∞)) = Y k,ε0 .

From (1.18), we conclude that for every t ≥ 0,

lim
ε→0

(
sup
s≤t
|Uεs − ρτa,εs ((a,∞))|

)
= 0. (1.19)

Notice that τa,εs ↓ τas as ε ↓ 0 and recall that for every ε > 0, Uε is distributed as
the reflected Lévy process X − I. We then get from (1.19) that the process 〈ρas , 1〉 =
ρτas ((a,∞)) is distributed as the reflected proces X−I, which completes the first step.

Second step. We will now verify that ρa can be obtained as a functional of the
total mass process 〈ρa, 1〉 in the same way as ρ is obtained from 〈ρ, 1〉. It will be
enough to argue on one excursion of 〈ρa, 1〉 away from 0. Thus, let (u, v) be the
interval corresponding to one such excursion. We can associate with (u, v) a unique
connected component (p, q) of the open set {s,Hs > a}, such that τau+r = p + r for
every r ∈ [0, v− u), and q = τav−. By the intermediate values property, we must have
Hp = Hq = a.

We also claim that Xr > Xp for every r ∈ (p, q). If this were not the case, we
could find r ∈ (p, q) such that Xr = inf{Xs, p ≤ s ≤ r}, which forces Hr ≤ Hp = a
and gives a contradiction.

The previous observations and the definition of the process ρ imply that, for every
r ∈ (p, q), the restriction of ρr to [0, a] is exactly ρp = ρq. Define

ω(r) = X(p+r)∧q −Xp = 〈ρ(p+r)∧q, 1〉 − 〈ρp, 1〉 = 〈ρa(u+r)∧v, 1〉,
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so that ω is the excursion of 〈ρa, 1〉 corresponding to (u, v). The construction of the
process ρ implies that, for 0 < r < q − p = v − u,

ρp+r = [ρp, ρr(ω)],

and so, for the same values of r,

ρau+r = ρr(ω).

This completes the second step of the proof.

Third step. It remains to prove that ρa is independent of the σ-field Ha. For
ε > 0, denote by Hεa the σ-field generated by the processes

(X(Tkε +s)∧Sk+1
ε

, s ≥ 0)

for k = 0, 1, . . . (by convention T 0
ε = 0), and the negligible sets of G∞. From our

construction (in particular the fact that Xs > XTkε
for s ∈ [Skε , T

k
ε )), it is easy to

verify that the processes (ρ(Tkε +s)∧Sk+1
ε

, s ≥ 0) are measurable with respect to Hεa,
and since Ht > a for t ∈ (Skε , T

k
ε ), it follows that Ha ⊂ Hεa.

By the arguments of the first step, the processes Zk,ε are independent conditionally
on Hεa, and the conditional law of Zk,ε is the law of an independent copy of the
reflected process X − I, stopped when its local time at 0 hits ρSkε ((a,∞)). It follows
that the process Uε of the first step is independent ofHεa, hence also ofHa. By passing
to the limit ε → 0, we obtain that the total mass process 〈ρa, 1〉 is independent of
Ha. As we know that ρa can be reconstructed as a measurable functional of its total
mass process, this completes the proof. �

We let la = (la(s), s ≥ 0) be the local time at 0 of 〈ρa, 1〉, or equivalently of ρa.

Definition 1.3.1 The local time at level a and at time s of the height process H is
defined by

Las = la
(∫ s

0

1{Hr>a} dr
)
.

This definition will be justified below: See in particular Proposition 1.3.3.

1.3.2 Some properties of local times

The next lemma can be seen as dual to Lemma 1.1.3.

Lemma 1.3.2 For every t ≥ 0,

lim
ε→0

1
ε

∫ t

0

1{Hs≤ε} ds = −It,

in the L1-norm.

Proof. We use arguments similar to the proof of Lemma 1.1.3. Recall that Tx =
inf{t ≥ 0 : Xt = −x}. We first establish that for every x > 0,

lim
ε→0

1
ε

∫ Tx

0

1{Hs≤ε} ds = x, (1.20)
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in probability. Note that Proposition 1.2.5 gives for any nonnegative measurable
function g

N
(∫ σ

0

ds g(Hs)
)

=
∫ ∞

0

da e−αa g(a).

Let ωj , j ∈ J denote the excursions of X − I away from 0 and let (αj , βj) be the
corresponding time intervals. We already noticed that Hs = Hs−αj (ω

j) for s ∈
(αj , βj). Hence, using also the previous displayed formula, we have

E
[1
ε

∫ Tx

0

1{Hs≤ε} ds
]

=
x

ε
N
(∫ σ

0

1{Hs≤ε} ds
)

=
x

ε

(1− e−αε

α

)
≤ x, (1.21)

and in particular,

lim
ε→0

E
[1
ε

∫ Tx

0

1{Hs≤ε} ds
]

= x. (1.22)

We then want to get a second moment estimate. To this end, it is necessary to
introduce a suitable truncation. Fix K > 0. A slight modification of the proof of
(1.22) gives

lim
ε→0

E
[1
ε

∫ Tx

0

1{Hs≤ε} 1{Xs−Is≤K} ds
]

= x. (1.23)

If H(s) denotes the height process for the shifted process X(s)
t = Xs+t−Xs, the bound

H
(s)
t−s ≤ Ht (for 0 ≤ s ≤ t) is obvious from our construction. We can use this simple

observation to bound

N
((∫ σ

0

1{Hs≤ε} 1{Xs≤K} ds
)2)

≤ 2N
(∫ σ

0

ds 1{Hs≤ε} 1{Xs≤K}

∫ σ

s

dt 1{Ht≤ε}
)

≤ 2N
(∫ σ

0

ds 1{Hs≤ε} 1{Xs≤K}

∫ σ

s

dt 1{H(s)
t−s≤ε}

)
= 2N

(∫ σ

0

ds 1{Hs≤ε} 1{Xs≤K}EXs
[ ∫ T0

0

dt 1{Ht≤ε}
])

≤ 2εN
(∫ σ

0

ds 1{Hs≤ε} 1{Xs≤K}Xs

)
(by (1.21))

= 2ε
∫ ε

0

dy E[XL−1(y) 1{L−1(y)<∞,XL−1(y)≤K}] (Proposition 1.1.4)

≤ 2ε2E[XL−1(ε) ∧K]

= o(ε2),

by dominated convergence. As in the proof of Lemma 1.1.3, we can conclude from
(1.22) and the previous estimate that

lim
ε→0

1
ε

∫ Tx

0

1{Hs≤ε} 1{Xs−Is≤K} ds = x

in the L2-norm. Since this holds for every K > 0, (1.20) follows.
From (1.20) and a monotonicity argument we deduce that the convergence of

Lemma 1.3.2 holds in probability. To get L1-convergence, we need a few other esti-
mates. First observe that

E
[ ∫ t

0

1{Hs≤ε}ds
]

=
∫ t

0

dsP [Hs ≤ ε] =
∫ t

0

dsP [Ls ≤ ε] = E[L−1(ε) ∧ t] ≤ C ε,

(1.24)
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with a constant C depending only on t (in the last bound we applied to L−1 an
estimate valid for any subordinator). Then,

E
[( ∫ t

0

1{Hs≤ε}ds
)2]

= 2E
[ ∫ ∫

{0<r<s<t}
drds1{Hr≤ε}1{Hs≤ε}

]
≤ 2E

[ ∫ ∫
{0<r<s<t}

drds1{Hr≤ε}1{H(r)
s−r≤ε}

]
= 2E

[ ∫ t

0

dr 1{Hr≤ε}E
[ ∫ t−r

0

ds 1{Hs≤ε}
]]

≤ 2
(
E
[ ∫ t

0

dr 1{Hr≤ε}
])2

.

As a consequence of the last estimate and (1.24), the variables ε−1
∫ t

0
1{Hs≤ε}ds, ε > 0

are bounded in L2. This completes the proof of Lemma 1.3.2. �

We can now give a useful approximation result for local times of the height process.

Proposition 1.3.3 For every t ≥ 0,

lim
ε→0

sup
a≥0

E
[

sup
s≤t

∣∣∣ε−1

∫ s

0

1{a<Hr≤a+ε} dr − Las
∣∣∣] = 0.

Similarly, for every t ≥ 0,

lim
ε→0

sup
a≥ε

E
[

sup
s≤t

∣∣∣ε−1

∫ s

0

1{a−ε<Hr≤a} dr − L
a
s

∣∣∣] = 0.

There exists a jointly measurable modification of the collection (Las , a ≥ 0, s ≥ 0),
which is continuous and nondecreasing in the variable s, and such that, a.s. for any
nonnegative measurable function g on R+ and any s ≥ 0,∫ s

0

g(Hr) dr =
∫

R+

g(a)Las da. (1.25)

Proof. First consider the case a = 0. Then, ρ0 = ρ and L0
t = l0(t) = −It. Lemma

1.3.2 and a simple monotonicity argument, using the continuity of L0
s, give

lim
ε→0

E
[

sup
s≤t

∣∣∣ε−1

∫ s

0

1{0<Hr≤ε} dr − L
0
s

∣∣∣] = 0. (1.26)

For a > 0, set Aat =
∫ t

0
1{Hs>a} ds. Note that {a < Hs ≤ a + ε} = {ρs((a,∞)) >

0} ∩ {ρs((a+ ε,∞)) = 0}, and so∫ s

0

1{a<Hr≤a+ε} dr =
∫ t

0

1{ρs((a,∞))>0}∩{ρs((a+ε,∞))=0} ds

=
∫ Aat

0

1{ρar ((ε,∞))=0}dr

=
∫ Aat

0

1{0<Har≤ε}dr,

where Ha
t = H(ρat ). The first convergence of the proposition then follows from (1.26),

the trivial bound Aat ≤ t and the fact that ρa has the same distribution as ρ.
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The second convergence is easily derived from the first one by elementary argu-
ments. Let us only sketch the method. For any fixed δ > 0, we can choose ε0 > 0
sufficiently small so that for every a ≥ 0, ε ∈ (0, ε0],

E
[∣∣∣ε−1

∫ t

0

1{a<Hr≤a+ε} dr − Las
∣∣∣] ≤ δ. (1.27)

Then, if 0 < ε < ε0 ∧ a,

E
[∣∣∣ε−1

∫ t

0

1{a−ε<Hr≤a} dr − ε
−1
0

∫ t

0

1{a−ε<Hr≤a−ε+ε0} dr
∣∣∣] < 2δ.

However, if ε is very small in comparison with ε0, one also gets the bound

E
[∣∣∣ε−1

0

∫ t

0

1{a−ε<Hr≤a−ε+ε0} dr − (ε0 − ε)−1

∫ t

0

1{a<Hr≤a+ε0−ε} dr
∣∣∣] ≤ δ.

We get the desired result by combining the last two bounds and (1.27).
The existence of a jointly measurable modification of the process (Las , a ≥ 0, s ≥ 0)

that satisfies the density of occupation time formula (1.25) follows from the first
assertion of the proposition by standard arguments. �

From now on, we will only deal with the jointly measurable modification of the
local times (Las , a ≥ 0, s ≥ 0) given by Proposition 1.3.3. We observe that it is easy
to extend the definition of these local times under the excursion measure N . First
notice that, as an obvious consequence of the first assertion of Proposition 1.3.3, we
have also for every a ≥ 0, t ≥ 0

lim
ε→0

E
[

sup
0≤r≤s≤t

∣∣∣ε−1

∫ s

r

1{a<Hu≤a+ε} du− (Las − Lar)
∣∣∣] = 0. (1.28)

Then, let V be a measurable subset of D(R+,R) such that N [V ] < ∞. For instance
we may take V = {sups≥0Xs > δ} for δ > 0. By considering the first excursion of
X − I that belongs to V , and then using (1.28), we immediately obtain the existence
under N of a continuous increasing process, still denoted by (Las , s ≥ 0), such that

lim
ε→0

N
(

1V sup
s≤t

∣∣∣ε−1

∫ s

0

1{a<Hr≤a+ε} dr − Las
∣∣∣) = 0. (1.29)

The next corollary will now be a consequence of Proposition 1.1.4. We use the notation
introduced before Proposition 1.2.5.

Corollary 1.3.4 For any nonnegative measurable function F on D(R+,R), and every
a > 0,

N
(∫ σ

0

dLas F (X̂(s)
r∧s, r ≥ 0)

)
= E[1{L−1(a)<∞} F (Xr∧L−1(a), r ≥ 0)].

In particular, for any nonnegative measurable function F on Mf (R+),

N
(∫ σ

0

dLas F (ρs)
)

= e−αaE0[F (Ja)].
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Proof. We may assume that F is bounded and continuous. Then let h be a nonneg-
ative continuous function on R+, which vanishes outside [δ, A], for some 0 < δ < A <
∞. For the first identity, it is enough to prove that

N
(∫ σ

0

dLas h(s)F (X̂(s)
r∧s, r ≥ 0)

)
= E[1{L−1(a)<∞} h(L−1(a))F (Xr∧L−1(a), r ≥ 0)].

Notice that the mapping s −→ (X̂(s)
t , t ≥ 0) is continuous except possibly on a

countable set that is not charged by the measure dLas . From (1.29), applied with
V = {ω, σ(ω) > δ}, and then Proposition 1.1.4, we get

N
(∫ σ

0

dLas h(s)F (X̂(s)
r∧s, r ≥ 0)

)
= lim
ε→0

N
(1
ε

∫ σ

0

ds 1{a<Hs≤a+ε} h(s)F (X̂(s)
r∧s, r ≥ 0)

)
= lim
ε→0

1
ε
E
[ ∫ (a+ε)∧L∞

a∧L∞
dxh(L−1(x))F (Xt∧L−1(x), t ≥ 0)

]
= E[1{L−1(a)<∞} h(L−1(a))F (Xr∧L−1(a), r ≥ 0)],

which completes the proof of the first assertion. The second assertion follows from
the first one in the same way as Proposition 1.2.5 was derived from Proposition 1.1.4.
�

We conclude this section with some remarks that will be useful in the applications
developed below. Let x > 0 and let (αj , βj), resp. ωj , j ∈ J , denote the excursion
intervals, resp. the excursions of X − I before time Tx. For every a > 0, we have P
a.s.

LaTx =
∑
j∈J

Laσ(ωj)
(ωj). (1.30)

A first inequality is easily derived by writing

LaTx ≥
∫ Tx

0

dsL
a
s 1{Xs>Is} =

∑
j∈J

(Laβj − L
a
αj ) =

∑
j∈J

Laσ(ωj)
(ωj)

where the last equality follows from the approximations of local time. The converse
inequality seems to require a different argument in our general setting. Observe that,
by excursion theory and then Proposition 1.2.5,

E[LaTx ] ≤ lim inf
k→∞

E
[ 1
εk

∫ Tx

0

ds 1{a<Hs<a+εk}

]
= lim inf

k→∞
E
[∑
j∈J

1
εk

∫ σ(ωj)

0

ds 1{a<Hs(ωj)<a+εk}

]
= lim inf

k→∞
xN

( 1
εk

∫ σ

0

ds 1{a<Hs<a+εk}

)
= lim inf

k→∞

x

εk

∫ a+εk

a

db e−αb

= x e−αa

whereas Corollary 1.3.4 (with F = 1) gives E[
∑
j∈J L

a
σ(ωj)

(ωj)] = xN(Laσ) = x e−αa.
This readily yields (1.30).
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Let us finally observe that we can extend the definition of the local times Las to
the process ρ started at a general initial value µ ∈ Mf (R+). In view of forthcoming
applications consider the case when µ is supported on [0, a), for a > 0. Then, the
previous method can be used to construct a continuous increasing process (Las(ρµ), s ≥
0) such that

Las(ρµ) = lim
ε→0

1
ε

∫ s

0

dr 1{a<H(ρµr )<a+ε}

in probability (or even in the L1-norm). Indeed the arguments of the proof of Propo-
sition 1.3.1 remain valid when ρ is replaced by ρµ, and the construction and approx-
imation of Las(ρµ) follow. Recall the notation τ0 = inf{s ≥ 0 : ρµs = 0} and observe
that τ0 = Tx if x = 〈µ, 1〉. Let (αj , βj), ωj , j ∈ J be as above and set rj = H(k−Iαjµ).
Then we have

Laτ0(ρµ) =
∑
j∈J

L
a−rj
βj−αj (ωj). (1.31)

The proof is much similar to that of (1.30): The fact that the left side of (1.31) is
greater than the right side is easy from our approximations of local time. The equality
is then obtained from a first-moment argument, using Proposition 1.2.6 and Fatou’s
lemma to handle the left side.

1.4 Three applications

1.4.1 The Ray-Knight theorem

Recall that the ψ-continuous-state branching process (in short the ψ-CSBP) is the
Markov process (Ya, a ≥ 0) with values in R+ whose transition kernels are character-
ized by their Laplace transform: For λ > 0 and b > a,

E[exp−λYb | Ya] = exp(−Ya ub−a(λ)),

where ut(λ), t ≥ 0 is the unique nonnegative solution of the integral equation

ut(λ) +
∫ t

0

ψ(us(λ)) ds = λ. (1.32)

Theorem 1.4.1 Let x > 0. The process (LaTx , a ≥ 0) is a ψ-CSBP started at x.

Proof. First observe that LaTx is Ha-measurable. This is trivial for a = 0 since
L0
Tx

= x. For a > 0, note that, if

T ax = inf{s ≥ 0 : Xτ̃as = −x},

we have ∫ Tx

0

ds 1{a−ε<Hs≤a} =
∫ Tax

0

ds 1{a−ε<Hτ̃as ≤a}.

and the right-hand side is measurable with respect to the σ-field Ha. The measurabil-
ity of LaTx with respect to Ha then follows from the second convergence of Proposition
1.3.3.

We then verify that the function

ua(λ) = N [1− e−λL
a
σ ] (a > 0), u0(λ) = λ
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solves equation (1.32). From the strong Markov property of ρ under the excursion
measure N , we get for a > 0

ua(λ) = λN
(∫ σ

0

dLas e
−λ(Laσ−L

a
s )
)

= λN
(∫ σ

0

dLas F (ρs)
)
,

where, for µ ∈ Mf (R+), F (µ) = E[exp(−λLaτ0(ρµ))]. By Corollary 1.3.4, we can
concentrate on the case when µ is supported on [0, a), and then (1.31) gives

F (µ) = exp
(
−
∫ 〈µ,1〉

0

duN(1− exp(−λLa−H(k−uµ)
σ ))

)
= exp

(
−
∫
µ(dr)N(1− exp(−λLa−rσ ))

)
.

Hence, using again Corollary 1.3.4,

ua(λ) = λN
(∫ σ

0

dLas exp(−
∫
ρs(dr)ua−r(λ))

)
= λ e−αaE0

[
exp

(
−
∫
Ja(dr)ua−r(λ)

)]
= λ exp

(
−
∫ a

0

dr ψ̃(ua−r(λ))
)
.

It is a simple matter to verify that (1.32) follows from this last equality.

By (1.30) and excursion theory, we have

E[exp(−λLaTx)] = exp(−xN(1− exp(−λLaσ))) = exp(−xua(λ)). (1.33)

To complete the proof, it is enough to show that for 0 < a < b,

E[exp(−λLbTx) | Ha] = exp(−ub−a(λ)LaTx). (1.34)

Recall the notation ρa from Proposition 1.3.1, and denote by L̃cs the local times of
Ha
s = H(ρas). From our approximations of local times, it is straightforward to verify

that
LbTx = L̃b−aAaTx

,

where Aas =
∫ s

0
dr 1{Hr>a} as previously. Write U = LaTx to simplify notation. If T ar =

inf{t ≥ 0 : la(t) > r}, we have AaTx = T aU (note that la(AaTx) = U by construction,
and that the strong Markov property of X at time Tx implies la(t) > la(AaTx) for
every t > AaTx). Hence,

E[exp(−λLbTx) | Ha] = E[exp(−λL̃b−aTaU
) | Ha] = E[exp(−λL̃b−aTau

)]u=U ,

where in the second equality, we use the fact that the process (L̃b−aTau
, u ≥ 0) is a

functional of ρa, and is thus independent of Ha (Proposition 1.3.1), whereas U = LaTx
is Ha-measurable. Since ρa has the same distribution as ρ, L̃b−aTau

and Lb−aTu
also have

the same law, and the desired result (1.34) follows from (1.33). �

Corollary 1.4.2 For every a ≥ 0, set

v(a) = N
(

sup
0≤s≤σ

Hs > a
)
.

Then,
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(i) If
∫∞

1
du
ψ(u) =∞, we have v(a) =∞ for every a > 0.

(ii) If
∫∞

1
du
ψ(u) <∞, the function (v(a), a > 0) is determined by∫ ∞

v(a)

du

ψ(u)
= a.

Proof. By the lower semi-continuity of H, the condition sup0≤s≤σHs > a holds iff
Aaσ > 0, and our construction shows that this is the case iff Laσ > 0. Thus,

v(a) = N(Laσ > 0) = lim
λ→∞

N(1− e−λL
a
σ ) = lim

λ→∞
ua(λ),

with the notation of the proof of Theorem 1.4.1. From (1.32), we have∫ λ

ua(λ)

du

ψ(u)
= a,

and the desired result follows. �

1.4.2 The continuity of the height process

We now use Corollary 1.4.2 to give a necessary and sufficient condition for the path
continuity of the height process H.

Theorem 1.4.3 The process H has continuous sample paths P a.s. iff
∫∞

1
du
ψ(u) <∞.

Proof. By excursion theory, we have

P
[

sup
0≤s≤Tx

Hs > a
]

= 1− exp(−xv(a)).

By Corollary 1.4.2 (i), we see that H cannot have continuous paths if
∫∞

1
du
ψ(u) =∞.

Assume that
∫∞

1
du
ψ(u) < ∞. The previous formula and the property v(a) < ∞

imply that
lim
t↓0

Ht = 0 P a.s. (1.35)

Since v(a) ↓ 0 as a ↑ ∞, we also get that the process H is locally bounded, a.s.
The path continuity of H will then follow from Lemma 1.2.4 if we can show that for
every fixed interval [a, a+h], h > 0, the number of upcrossings of H along [a, a+h] is
a.s. finite on every finite time interval. Set γ0 = 0 and define by induction for every
n ≥ 1,

δn = inf{t ≥ γn−1 : Ht ≥ a+ h},
γn = inf{t ≥ δn : Ht ≤ a}.

Both δn and γn are (Gt)-stopping times. Note that Hγn ≤ a by the lower semi-
continuity of H. On the other hand, as a straightforward consequence of (1.13), we
have a.s. for every t ≥ 0,

Hγn+t ≤ Hγn +H
(γn)
t .

where H(γn) stands for the height process associated with X
(γn)
t = Xγn+t − Xγn .

Therefore δn+1 − γn ≥ κn, if κn = inf{t ≥ 0 : H(γn)
t ≥ h}. The strong Markov
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property implies that the variables κn are i.i.d. . Furthermore, κn > 0 a.s. by (1.35).
It follows that δn ↑ ∞ as n ↑ ∞, which completes the proof. �

It is easy to see that the condition
∫∞

1
du
ψ(u) < ∞ is also necessary and sufficient

for H to have continuous sample paths N a.e. On the other hand, we may consider
the process ρ started at an arbitrary initial value µ ∈Mf (Rd), as defined by formula
(1.11), and ask about the sample path continuity of H(ρs). Clearly, the answer will be
no if the support of µ is not connected. For this reason, we introduce the set M0

f which
consists of all measures µ ∈ Mf (R+) such that H(µ) < ∞ and suppµ = [0, H(µ)].
By convention the zero measure also belongs to M0

f .
From (1.11) and Lemma 1.2.2, it is easy to verify that the process ρ started at

an initial value µ ∈ M0
f will remain forever in M0

f , and furthermore H(ρs) will have
continuous sample paths a.s. Therefore, we may restrict the state space of ρ to M0

f .
This restriction will be needed in Chapter 4.

1.4.3 Hölder continuity of the height process

In view of applications in Chapter 4, we now discuss the Hölder continuity properties
of the height process. We assume that the condition

∫∞
1
du/ψ(u) <∞ holds so that

H has continuous sample paths by Theorem 1.4.3. We set

γ = sup{r ≥ 0 : lim
λ→∞

λ−rψ(λ) = +∞}.

The convexity of ψ implies that γ ≥ 1.

Theorem 1.4.4 The height process H is P -a.s. locally Hölder continuous with ex-
ponent α for any α ∈ (0, 1 − 1/γ), and is P -a.s. not locally Hölder continuous with
exponent α if α > 1− 1/γ.

Proof. We rely on the following key lemma. Recall the notation L̂(t) for the local
time at 0 of X̂(t) − Ŝ(t) (cf Section 1.2).

Lemma 1.4.5 Let t ≥ 0 and s > 0. Then P a.s.,

Ht+s − inf
r∈[t,t+s]

Hr = H(ρ(t)
s ) ,

Ht − inf
r∈[t,t+s]

Hr = L̂
(t)
t∧R ,

where R = inf{r ≥ 0 : X̂(t)
r > −I(t)

s } (inf ∅ =∞).

Proof. From (1.13), we get, a.s. for every r > 0,

Ht+r = H(k−I(t)r ρt) +H(ρ(t)
r ). (1.36)

From this it follows that
inf

r∈[t,t+s]
Hr = H(k−I(t)s ρt)

and the minimum is indeed attained at the (a.s. unique) time v ∈ [t, t + s] such that
Xv = Itt+s. The first assertion of the lemma now follows by combining the last equality
with (1.36) written with r = s.

Let us turn to the second assertion. If It ≥ Itt+s, then on one hand Xv = Iv and
infr∈[t,t+s]Hr = Hv = 0, on the other hand, R =∞, and the second assertion reduces
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to Ht = L̂
(t)
t which is the definition of Ht. Therefore we can assume that It < Itt+s.

Let
u = sup{r ∈ [0, t] : Xr− < Itt+s}.

As in the proof of Proposition 1.2.3, we have

Hu = H(k−I(t)s ρt) = inf
r∈[t,t+s]

Hr.

On the other hand, the construction of the height process shows that the equality
Hr = L̂

(t)
t − L̂

(t)
t−r holds simultaneously for all r ∈ [0, t] such that Xr− ≤ Irt (cf Lemma

1.2.1). In particular for r = u we get

Ht − inf
r∈[t,t+s]

Hr = Ht −Hu = L̂
(t)
t − (L̂(t)

t − L̂
(t)
t−u) = L̂

(t)
t−u.

To complete the proof, simply note that we have t−u = R on the event {It < Itt+s}.�

To simplify notation we set ϕ(λ) = λ/ψ−1(λ). The right-continuous inverse L−1

of L is a subordinator with Laplace exponent ϕ: See Theorem VII.4 (ii) in [5], and
note that the constant c in this statement is equal to 1 under our normalization of
local time (compare with Lemma 1.1.2).

Lemma 1.4.6 For every t ≥ 0, s > 0 and q > 0,

E[|Ht+s − inf
r∈[t,t+s]

Hr|q] ≤ Cq ϕ(1/s)−q ,

and
E[|Ht − inf

r∈[t,t+s]
Hr|q] ≤ Cq ϕ(1/s)−q ,

where Cq = eΓ(q + 1) is a finite constant depending only on q.

Proof. Recall that H(ρs) = Hs
(d)
= Ls. From Lemma 1.4.5 we have

E[|Ht+s − inf
r∈[t,t+s]

Hr|q] = E[Lqs] = q

∫ +∞

0

xq−1P [Ls > x]dx .

However,

P [Ls > x] = P [s > L−1(x)] ≤ eE[exp(−L−1(x)/s)] = e exp(−xϕ(1/s)).

Thus

E[|Ht+s − inf
[t,t+s]

H|q] ≤ eq
∫ +∞

0

xq−1 exp(−xϕ(1/s)) dx = Cqϕ(1/s)−q .

This completes the proof of the first assertion.
In order to prove the second one, first note that I(t)

s is independent of Gt and
therefore also of the time-reversed process X̂(t). Writing τa = inf{r ≥ 0 : Sr > a},
we get from the second assertion of Lemma 1.4.5

E[|Ht − inf
r∈[t,t+s]

Hr|q] ≤
∫

[0,+∞)

P [−Is ∈ da]E[Lqτa ].
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Note that

E[Lqτa ] = q

∫ +∞

0

xq−1P [Lτa > x] dx ,

and that P [Lτa > x] = P [SL−1(x) < a]. It follows that

E[|Ht − inf
r∈[t,t+s]

Hr|q] ≤ q
∫

[0,+∞)

P [−Is ∈ da]
∫ +∞

0

dxxq−1P [SL−1(x) < a] .

An integration by parts leads to

E[|Ht − inf
r∈[t,t+s]

Hr|q] ≤ q
∫ +∞

0

dxxq−1

∫
[0,+∞)

P [SL−1(x) ∈ db]P [−Is > b] .

However

P [−Is > b] = P [Tb < s] ≤ eE[exp(−Tb/s)] = e exp(−bψ−1(1/s))

since we know ([5] Theorem VII.1) that (Tb, b ≥ 0) is a subordinator with exponent
ψ−1. Recalling Lemma 1.1.2, we get

E[|Ht − inf
r∈[t,t+s]

Hr|q] ≤ eq

∫ +∞

0

dxxq−1E[exp(−ψ−1(1/s)SL−1(x))]

= eq

∫ +∞

0

dxxq−1 exp(−x/(sψ−1(1/s)))

= Cqϕ(1/s)−q.

This completes the proof of Lemma 1.4.6. �

Proof of Theorem 1.4.4. From Lemma 1.4.6 and an elementary inequality, we get
for every t ≥ 0, s > 0 and q > 0

E[|Ht+s −Ht|q] ≤ 2q+1Cq ϕ(1/s)q.

Let α ∈ (0, 1 − 1/γ). Then (1 − α)−1 < γ and thus λ−(1−α)−1
ψ(λ) tends to ∞ as

λ→∞. It easily follows that λα−1ψ−1(λ) tends to 0 and so λ−αϕ(λ) tends to ∞ as
λ→∞. The previous bound then yields the existence of a constant C depending on
q and α such that for every t ≥ 0 and s ∈ (0, 1],

E[|Ht+s −Ht|q] ≤ C sqα.

The classical Kolmogorov lemma gives the first assertion of the theorem.
To prove the second assertion, observe that for every α > 0 and A > 0,

P [Hs < Asα] = P [Ls < Asα] = P [s < L−1(Asα)] .

Then use the elementary inequality

P [s < L−1(Asα)] ≤ e

e− 1
E[1− exp(−L−1(Asα)/s)],

which leads to
P [Hs < Asα] ≤ e

e− 1
(1− exp(−Asαϕ(1/s))).

If α > 1− 1/γ, we can find a sequence (sn) decreasing to zero such sαnϕ(1/sn) tends
to 0. Thus, for any A > 0

lim
n→∞

P [Hsn < Asαn] = 0 ,

and it easily follows that lim sup
s→0

s−αHs =∞, P a.s., which completes the proof. �
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Chapter 2

Convergence of
Galton-Watson trees

2.1 Preliminaries

Our goal in this chapter is to study the convergence in distribution of Galton-Watson
trees, under the assumption that the associated Galton-Watson processes, suitably
rescaled, converge in distribution to a continuous-state branching process. To give a
precise meaning to the convergence of trees, we will code Galton-Watson trees by a
discrete height process, and we will establish the convergence of these (rescaled) dis-
crete processes to the continuous height process of the previous chapter. We will also
prove that similar convergences hold when the discrete height processes are replaced
by the contour processes of the trees.

Let us introduce the basic objects considered in this chapter. For every p ≥ 1,
let µp be a subcritical or critical offspring distribution. That is, µp is a probability
distribution on Z+ = {0, 1, . . .} such that

∞∑
k=0

k µp(k) ≤ 1.

We systematically exclude the trivial cases where µp(1) = 1 or µp(0) = 1. We also
define another probability measure νp on {−1, 0, 1, . . .} by setting νp(k) = µp(k + 1)
for every k ≥ −1.

We denote by V p = (V pk , k = 0, 1, 2, . . .) a discrete-time random walk on Z with
jump distribution νp and started at 0. We also denote by Y p = (Y pk , k = 0, 1, 2, . . .) a
Galton-Watson branching process with offspring distribution µp started at Y p0 = p.

Finally, we consider a Lévy process X = (Xt, t ≥ 0) started at the origin and
satisfying assumptions (H1) and (H2) of Chapter 1. As in Chapter 1, we write ψ
for the Laplace exponent of X. We denote by Y = (Yt, t ≥ 0) a ψ-continuous-state
branching process started at Y0 = 1.

The following variant of a result due to Grimvall [21] plays an important role in
our approach. Unless otherwise specified the convergence in distribution of processes
is in the functional sense, that is in the sense of the weak convergence of the laws

of the processes on the Skorokhod space D(R+,R). We will use the notation
(fd)−→ to

indicate weak convergence of finite-dimensional marginals.
For a ∈ R, [a] denotes the integer part of a.
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Theorem 2.1.1 Let (γp, , p = 1, 2, . . .) be a nondecreasing sequence of positive inte-
gers converging to ∞. The convergence in distribution(

p−1Y p[γpt] , t ≥ 0
)

(d)−→
p→∞

(Yt, t ≥ 0) (2.1)

holds if and only if (
p−1V p[pγpt] , t ≥ 0

)
(d)−→
p→∞

(Xt, t ≥ 0). (2.2)

Proof. By standard results on the convergence of triangular arrays (see e.g. Theorem
2.7 in Skorokhod [46]), the functional convergence (2.2) holds iff

p−1V ppγp
(d)−→
p→∞

X1. (2.3)

Fix any sequence p1 < p2 < · · · < pk < · · · such that γp1 < γp2 < · · ·. If j = γpk
for some k ≥ 1, set cj = pk, V (j) = V pk and let θj be the probability measure on
R defined by θj( ncj ) = νpk(n) for every integer n ≥ −1. Then (2.3) is equivalent to
saying that

1
cj
V

(j)
jcj

(d)−→
j→∞

X1

for any choice of the sequence p1 < p2 < · · ·. Equivalently the convolutions (θj)∗jcj
converge weakly to the law of X1. By Theorems 3.4 and 3.1 of Grimvall [21], this
property holds iff the convergence (2.1) holds along the sequence (pk). (Note that
condition (b) in Theorem 3.4 of [21] is automatically satisfied here since we restrict
our attention to the (sub)critical case.) This completes the proof. �

2.2 The convergence of finite-dimensional marginals

From now on, we suppose that assumption (H3) holds in addition to (H1) and (H2).
Thus we can consider the height process H = (Ht, t ≥ 0) of Chapter 1.

For every p ≥ 1, let Hp = (Hp
k , k ≥ 0) be the discrete height process associated

with a sequence of independent Galton-Watson trees with offspring distribution µp
(cf Section 0.2). As was observed in Section 0.2, we may and will assume that the
processes Hp and V p are related by the formula

Hp
k = Card{j ∈ {0, 1, . . . , k − 1} : V pj = inf

j≤l≤k
V pl }. (2.4)

The following theorem sharpens a result of [32].

Theorem 2.2.1 Under either of the convergences (2.1) or (2.2), we have also(
1
γp
Hp

[pγpt]
, t ≥ 0

)
(fd)−→
p→∞

(Ht, t ≥ 0). (2.5)

Proof. Let f0 be a truncation function, that is a bounded continuous function from R
into R such that f0(x) = x for every x belonging to a neighborhood of 0. By standard
results on the convergence of rescaled random walks (see e.g. Theorem II.3.2 in [23]),
the convergence (2.2) holds iff the following three conditions are satisfied:

(C1) lim
p→∞

pγp

∞∑
k=−1

f0(
k

p
) νp(k) = −α+

∫ ∞
0

(f0(r)− r)π(dr)
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(C2) lim
p→∞

pγp

∞∑
k=−1

f0(
k

p
)2 νp(k) = 2β +

∫ ∞
0

f0(r)2 π(dr)

(C3) lim
p→∞

pγp

∞∑
k=−1

h(
k

p
) νp(k) =

∫ ∞
0

h(r)π(dr),

for any bounded continuous function h on R that vanishes on a neighborhood of 0.

By (2.4) and time-reversal, Hp
k has the same distribution as

Λ(p)
k = Card{j ∈ {1, . . . , k} : V pj = sup

0≤l≤j
V pl }.

Without loss of generality, the Skorokhod representation theorem allows us to assume
that the convergence (

p−1V p[pγpt] , t ≥ 0
)
−→
p→∞

(Xt, t ≥ 0) (2.6)

holds a.s. in the sense of Skorokhod’s topology. Suppose we can prove that for every
t > 0,

lim
p→∞

γ−1
p Λ(p)

[pγpt]
= Lt (2.7)

in probability. (Here L = (Lt, t ≥ 0) is the local time process of X − S at level 0
as in Chapter 1.) Then a simple time-reversal argument implies that γ−1

p Hp
[pγpt]

also

converges in probability to L̂(t)
t = Ht, with the notation of Chapter 1. Therefore the

proof of Theorem 2.2.1 reduces to showing that (2.7) holds.
We first consider the case where

∫
(0,1)

rπ(dr) = ∞. We introduce the stopping
times (τpk )k≥0 defined recursively as follows:

τp0 = 0,
τpm+1 = inf{n > τpm : V pn ≥ V

p
τpm
}.

Conditionally on the event {τpm <∞}, the random variable 1{τpm+1<∞}(V
p
τpm+1

− V p
τpm

)

is independent of the past of V p up to time τpm and has the same law as 1{τp1<∞}V
p
τp1

.
Also recall the classical equality (cf (5.4) in [32]):

P [τp1 <∞, V
p
τp1

= j] = νp([j,∞)) , j ≥ 0. (2.8)

For every u > δ > 0, set:

κ(δ, u) =
∫ ∞

0

π(dr)
∫ r

0

dx 1(δ,u](x) =
∫ ∞

0

π(dr)
(

(r − δ)+ ∧ (u− δ)
)
,

κp(δ, u) =

∑
pδ<j≤pu

νp([j,∞))∑
j≥0

νp([j,∞))
= P [pδ < V p

τp1
≤ pu | τp1 <∞] ,

Lδ,ut = Card{s ≤ t : ∆Ss ∈ (δ, u]} ,
lp,δ,uk = Card{j < k : V

p

j + pδ < V pj+1 ≤ V
p

j + pu} ,
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where V
p

j = sup{V pi , 0 ≤ i ≤ j}. Note that κ(δ, u) ↑ ∞ as δ ↓ 0, by our assumption∫
(0,1)

rπ(dr) =∞. From the a.s. convergence of the processes p−1V[pγpt], we have

lim
p→∞

lp,δ,u[pγpt]
= Lδ,ut , a.s. (2.9)

(Note that P [∆Ss = a for some s > 0] = 0 for every fixed a > 0, by (1.3).) By
applying excursion theory to the process X − S and using formula (1.3), one easily
gets for every u > 0

lim
δ→0

κ(δ, u)−1Lδ,ut = Lt , a.s. (2.10)

We claim that we have also

lim
p→∞

γp κp(δ, u) =
∫ ∞

0

(
(r − δ)+ ∧ (u− δ)

)
π(dr) = κ(δ, u). (2.11)

To get this convergence, first apply (C3) to the function h(x) = (x− δ)+ ∧ (u− δ). It
follows that

lim
p→∞

p γp

∞∑
k=−1

νp(k)
((k
p
− δ)+ ∧ (u− δ)

)
= κ(δ, u).

On the other hand, it is elementary to verify that∣∣∣∣∣∣p γp
∞∑

k=−1

νp(k)
((k
p
− δ)+ ∧ (u− δ)

)
− γp

∑
pδ<j≤pu

νp([j,∞))

∣∣∣∣∣∣ ≤ γp
∑
k≥δp

νp(k)

and the right-hand side tends to 0 by (C3). Thus we get

lim
p→∞

γp
∑

pδ<j≤pu

νp([j,∞)) = κ(δ, u).

Furthermore, as a simple consequence of (C1) and the (sub)criticality of µp, we have
also

∞∑
j=0

νp([j,∞)) = 1 +
∞∑

k=−1

kνp(k) −→
p→∞

1. (2.12)

(This can also be obtained from (2.8) and the weak convergence (2.2).) Our claim
(2.11) now follows.

Finally, we can also obtain a relation between lp,δ,uk and Λ(p)
[pγpt]

. Simply observe

that conditional on {τpk < ∞}, l
p,δ,u
τpk

is the sum of k independent Bernoulli variables
with parameter κp(δ, u). Fix an integer A > 0 and set Ap = γpA + 1. From Doob’s
inequality, we easily get (see [32], p.249 for a similar estimate)

E

 sup
0≤j≤τpAp

∣∣∣ 1
γp

(
Λ(p)
j − κp(δ, u)−1lp,δ,uj

)∣∣∣2
 ≤ 8(A+ 1)

γp
κp(δ, u)−1.

Hence, using (2.11), we have

lim sup
p→∞

E
[

sup
j≤τpAp

∣∣∣ 1
γp

(
Λ(p)
j − κp(δ, u)−1lp,δ,uj

)∣∣∣2] ≤ 8(A+ 1)
κ(δ, u)

. (2.13)
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To complete the proof, let ε > 0 and first choose A large enough so that P [Lt ≥
A− 3ε] < ε. If u > 0 is fixed, we can use (2.10) and (2.13) to pick δ > 0 small enough
and then p0 = p0(δ) so that

P
[∣∣∣κ(δ, u)−1Lδ,ut − Lt

∣∣∣ > ε
]
< ε (2.14)

and

P

 sup
j≤τpAp

∣∣∣ 1
γp

(
Λ(p)
j − κp(δ, u)−1lp,δ,uj

)∣∣∣ > ε

 < ε, if p ≥ p0. (2.15)

From (2.9) and (2.11), we can also find p1(δ) so that for every p ≥ p1,

P

[ ∣∣∣ 1
γpκp(δ, u)

lp,δ,u[pγpt]
− κ(δ, u)−1Lδ,ut

∣∣∣ > ε

]
< ε. (2.16)

By combining the previous estimates (2.14), (2.15) and (2.16), we get for p ≥ p0 ∨ p1

P
[∣∣∣ 1
γp

Λ(p)
[pγpt]

− Lt
∣∣∣ > 3ε

]
≤ 3ε+ P [[pγpt] > τpAp ]. (2.17)

Furthermore, by using (2.15) and then (2.14) and (2.16), we have for p sufficiently
large,

P [τpAp < [pγpt]] ≤ ε+ P
[ 1
γpκp(δ, u)

lp,δ,u[pγpt]
≥ A− ε

]
≤ 3ε+ P [Lt ≥ A− 3ε]
≤ 4ε

from our choice of A. Combining this estimate with (2.17) completes the proof of
(2.7) in the case

∫ 1

0
rπ(dr) =∞.

It remains to treat the case where
∫ 1

0
rπ(dr) <∞. In that case, (H3) implies that

β > 0, and we know from (1.4) that

Lt =
1
β
m({Ss; s ≤ t}) .

Furthermore, (1.3) and the assumption
∫ 1

0
rπ(dr) <∞ imply that for any t > 0 ,

Card {s ∈ [0, t]; ∆Ss > 0} <∞ , a.s.

For every δ > 0 and t ≥ 0, we set

S̃δt = St −
∑
s∈[0,t]

1(δ,∞)(∆Ss)∆Ss .

By the previous remarks, we have a.s. for δ small enough,

S̃δt = St −
∑
s∈[0,t]

∆Ss = m({Ss; s ≤ t}) = βLt . (2.18)

Let us use the same notation τpm, V
p

j as in the case
∫ 1

0
rπ(dr) = ∞, and also set for

any m ≥ 1,
dpm = 1{τpm<∞}(V

p
τpm
− V p

τpm−1
)
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and
S̃δ,pm =

∑
n≥1

dpn1{dpn≤pδ, τpn≤m} .

The convergence (2.6) implies that(
1
p
V
p

[pγps], s ≥ 0
)
−→
p→∞

(Ss, s ≥ 0) , a.s., (2.19)

and, for every t ≥ 0,

1
p

∑
n≥1

dpn1{dpn>pδ, τpn≤[pγpt]} −→p→∞
∑
s∈[0,t]

1(δ,∞)(∆Ss)∆Ss , a.s.

Thus we have
lim
p→∞

1
p
S̃δ,p[pγpt]

= S̃δt a.s. (2.20)

The desired convergence (2.7) is then a consequence of (2.18), (2.20) and the following
result: For every ε > 0,

lim
δ→0

lim sup
p→∞

P [|1
p
S̃δ,p[pγpt]

− β

γp
Λ(p)

[pγpt]
| > ε] = 0 . (2.21)

To prove (2.21), set

α1(p, δ) = E
[
dp1 1{dp1≤δp} | τ

p
1 <∞

]
;

α2(p, δ) = E
[
(dp1)2 1{dp1≤δp} | τ

p
1 <∞

]
.

Observe that

E
[
(dp1 1{dp1≤δp} − α1(p, δ))2 | τp1 <∞

]
≤ α2(p, δ) .

Let A > 0 be an integer and let Ap = γpA+ 1 as above. By Doob’s inequality,

E
[

sup
1≤m≤Ap
τpm<∞

|S̃δ,p
τpm
−mα1(p, δ)|2

]
≤ 4Apα2(p, δ) .

Since
sup

1≤m≤Ap
τpm<∞

|S̃δ,p
τpm
−mα1(p, δ)| = sup

1≤j≤τpAp

|S̃δ,pj − α1(p, δ)Λ(p)
j | .

we have

E
[

sup
0≤j≤τpAp

|1
p
S̃δ,pj −

α1(p, δ)
p

Λ(p)
j |

2
]
≤ 4Ap

p2
α2(p, δ) . (2.22)

We now claim that

lim
p→∞

γp
p
α1(p, δ) = β +

1
2

∫
(0,∞)

(r ∧ δ)2π(dr) −→
δ→0

β , (2.23)

and
lim
δ→0

lim sup
p→∞

γp
p2

α2(p, δ) = 0 . (2.24)
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To verify (2.23), note that, by (2.8),

γp
p
α1(p, δ) =

γp
p

∑[δp]
j=0 j νp([j,∞))∑∞
j=0 νp([j,∞))

=
pγp
2

∑∞
k=0 νp(k)

(
k
p ∧

[δp]
p

)(
k
p ∧

[δp]
p + 1

p

)
∑∞
j=0 νp([j,∞))

(2.25)
We now apply (C1) and (C2) with the truncation function f0(x) = (x ∧ δ) ∨ (−δ).
Multiplying by p−1 the convergence in (C1) and adding the one in (C2), we get

lim
p→∞

pγp

∞∑
k=0

νp(k)
(k
p
∧ δ
)(k

p
∧ δ +

1
p

)
= 2β +

∫
(0,∞)

(r ∧ δ)2π(dr).

Comparing with (2.25) and using (2.12), we immediately get (2.23). The proof of
(2.24) is analogous.

By (2.22) and an elementary inequality, we have

E
[

sup
0≤j≤τpAp

|1
p
S̃δ,pj −

β

γp
Λ(p)
j |

2
]
≤ 8Ap

p2
α2(p, δ) + 2(

Ap
γp

)2 (β − γp
p
α1(p, δ))2 .

Thus, (2.23) and (2.24) imply that for any A > 0

lim
δ→0

lim sup
p→∞

E
[

sup
0≤j≤τpAp

|1
p
S̃δ,pj −

β

γp
Λ(p)
j |

2
]

= 0 . (2.26)

It follows that

lim
δ→0

lim sup
p→∞

P
[
|1
p
S̃δ,p[pγpt]

− β

γp
Λ(p)

[pγpt]
| > ε

]
≤ lim sup

p→∞
P [τpAp < [pγpt]] .

However,

P [τpAp < [pγpt]] ≤ P [
1
p
V
p

[pγpt] ≥
1
p
S̃δ,p
τpAp

, τpAp <∞]

and by (2.26) the right side is bounded above for p large by P [ 1
pV

p

[pγpt] ≥
β
γp
Ap−1]+εδ,

where εδ → 0 as δ → 0. In view of (2.19), this is enough to conclude that

lim
A→∞

lim sup
p→∞

P [τpAp < [pγpt]] = 0 ,

and the desired result (2.21) follows. This completes the proof of (2.7) and of Theorem
2.2.1. �

2.3 The functional convergence

Our goal is now to discuss conditions that ensure that the convergence of Theorem
2.2.1 holds in a functional sense. We assume that the function ψ satisfies the condition∫ ∞

1

du

ψ(u)
<∞. (2.27)

By Theorem 1.4.3, this implies that the height process (Ht, t ≥ 0) has continuous
sample paths. On the other hand, if this condition does not hold, the paths of the
height process do not belong to any of the usual functional spaces.

For every p ≥ 1, we denote by g(p) the generating function of µp, and by g
(p)
n =

g(p) ◦ · · · ◦ g(p) the n-th iterate of g(p).
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Theorem 2.3.1 Suppose that the convergences (2.1) and (2.2) hold and that the con-
tinuity condition (2.27) is satisfied. Suppose in addition that for every δ > 0,

lim inf
p→∞

g
(p)
[δγp](0)p > 0. (2.28)

Then, (
γ−1
p Hp

[pγpt]
, t ≥ 0

)
(d)−→
p→∞

(Ht, t ≥ 0) (2.29)

in the sense of weak convergence on D(R+,R+).

Let us make some important remarks. Condition (2.28) can be restated in prob-
abilistic terms as follows: For every δ > 0,

lim inf
p→∞

P [Y p[δγp] = 0] > 0.

(As will follow from our results, this implies that the extinction time of Y p, scaled by
γ−1
p , converges in distribution to the extinction time of Y , which is finite a.s. under

(2.27).) It is easy to see that the condition (2.28) is necessary for the conclusion
(2.29) to hold. Indeed, suppose that (2.28) fails, so that there exists δ > 0 such that
P [Y p[δγp] = 0] converges to 0 as p→∞, at least along a suitable subsequence. Clearly,
this convergence also holds (along the same subsequence) if Y p starts at [ap] instead
of p, for any fixed a > 0. From the definition of the discrete height process, we get
that

P
[

sup
k≤Tp[ap]

Hp
k ≥ [δγp]

]
−→
p→∞

1 ,

where T pj = inf{k ≥ 0 : V pk = −j}. From (2.2), we know that (pγp)−1T p[ap] converges
in distribution to Ta. Since Ta ↓ 0 as a ↓ 0, a.s., we easily conclude that, for every
ε > 0,

P
[

sup
t≤ε

γ−1
p Hp

[pγpt]
≥ [δγp]

γp

]
−→
p→∞

1 ,

and thus (2.29) cannot hold.
On the other hand, one might think that the condition (2.28) is automatically

satisfied under (2.1) and (2.27). Let us explain why this is not the case. Suppose for
simplicity that ψ is of the type

ψ(λ) = αλ+
∫

(0,∞)

π(dr) (e−λr − 1 + λr),

and for every ε > 0 set

ψε(λ) = αλ+
∫

(ε,∞)

π(dr) (e−λr − 1 + λr).

Note that ψε(λ) ≤ Cελ and so
∫∞

1
ψε(λ)−1dλ =∞. Thus, if Y ε is a ψε-CSBP started

at 1, we have Y εt > 0 for every t > 0 a.s. (Grey [20], Theorem 1). It is easy to verify
that

(Y εt , t ≥ 0) −→
ε→0

(Yt, t ≥ 0)

at least in the sense of the weak convergence of finite-dimensional marginals. Let us fix
a sequence (εk) decreasing to 0. Recall from [27] that every continuous-state branch-
ing process can be obtained as a weak limit of rescaled Galton-Watson branching
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processes. Thus for every k, we can find a subcritical or critical offspring distribution
νk, and two positive integers pk ≥ k and γk ≥ k, in such a way that if Zk = (Zkj , j ≥ 0)
is a Galton-Watson process with offspring distribution νk started at Zk0 = pk, the law
of the rescaled process

Z
(k)
t = (pk)−1Zk[γkt]

is arbitrarily close to that of Y εk . In particular, we may assume that P [Z(k)
k >

0] > 1− 2−k, and that the rescaled processes Z(k) converge to Y in the sense of weak
convergence of finite-dimensional marginals. By Theorem 3.4 of [21], this convergence
also holds in the functional sense in the Skorokhod space. However, the extinction
time of Z(k) converges in probability to +∞, and so the condition (2.28) cannot hold.

There is however a very important special case where (2.28) holds.

Theorem 2.3.2 Suppose that µp = µ for every p and that the convergence (2.1) holds.
Then the condition (2.28) is automatically satisfied and the conclusion of Theorem
2.3.1 holds.

As we will see in the proof, under the assumption of Theorem 2.3.2, the process
X must be stable with index α ∈ (1, 2]. Clearly condition (2.27) holds in that case.

Proof of Theorem 2.3.1. To simplify notation, we set H(p)
t = γ−1

p Hp
[pγpt]

and

V
(p)
t = p−1V p[pγpt]. In view of Theorem 2.2.1, the proof of Theorem 2.3.1 reduces to

checking that the laws of the processes (H(p)
t , t ≥ 0) are tight in the set of probability

measures on D(R+,R). By standard results (see e.g. Corollary 3.7.4 in [14]), it is
enough to verify the following two properties:

(i) For every t ≥ 0 and η > 0, there exists a constant K ≥ 0 such that

lim inf
p→∞

P [H(p)
t ≤ K] ≥ 1− η.

(ii) For every T > 0 and δ > 0,

lim
n→∞

lim sup
p→∞

P
[

sup
1≤i≤2n

sup
t∈[(i−1)2−nT,i2−nT ]

|H(p)
t −H(p)

(i−1)2−nT | > δ
]

= 0.

Property (i) is immediate from the convergence of finite-dimensional marginals.
Thus the real problem is to prove (ii). We fix δ > 0 and T > 0 and first observe that

P
[

sup
1≤i≤2n

sup
t∈[(i−1)2−nT,i2−nT ]

|H(p)
t −H(p)

(i−1)2−nT | > δ
]

(2.30)

≤ A1(n, p) +A2(n, p) +A3(n, p)

where

A1(n, p) = P
[

sup
1≤i≤2n

|H(p)
i2−nT −H

(p)
(i−1)2−nT | >

δ

5

]
A2(n, p) = P

[
sup

t∈[(i−1)2−nT,i2−nT ]

H
(p)
t > H

(p)
(i−1)2−nT +

4δ
5

for some 1 ≤ i ≤ 2n
]

A3(n, p) = P
[

inf
t∈[(i−1)2−nT,i2−nT ]

H
(p)
t < H

(p)
i2−nT −

4δ
5

for some 1 ≤ i ≤ 2n
]
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The term A1 is easy to bound. By the convergence of finite-dimensional marginals,
we have

lim sup
p→∞

A1(n, p) ≤ P
[

sup
1≤i≤2n

|Hi2−nT −H(i−1)2−nT | ≥
δ

5

]
and the path continuity of the process H ensures that the right-hand side tends to 0
as n→∞.

To bound the terms A2 and A3, we introduce the stopping times τ (p)
k , k ≥ 0

defined by induction as follows:

τ
(p)
0 = 0

τ
(p)
k+1 = inf{t ≥ τ (p)

k : H(p)
t > inf

τ
(p)
k ≤r≤t

H(p)
r +

δ

5
}.

Let i ∈ {1, . . . , 2n} be such that

sup
t∈[(i−1)2−nT,i2−nT ]

H
(p)
t > H

(p)
(i−1)2−nT +

4δ
5
. (2.31)

Then it is clear that the interval [(i−1)2−nT, i2−nT ] must contain at least one of the
random times τ (p)

k , k ≥ 0. Let τ (p)
j be the first such time. By construction we have

sup
t∈[(i−1)2−nT,τ

(p)
j )

H
(p)
t ≤ H(p)

(i−1)2−nT +
δ

5
,

and since the positive jumps of H(p) are of size γ−1
p , we get also

H
(p)

τ
(p)
j

≤ H(p)
(i−1)2−nT +

δ

5
+ γ−1

p < H
(p)
(i−1)2−nT +

2δ
5

provided that γp > 5/δ. From (2.31), we have then

sup
t∈[τ

(p)
j ,i2−nT ]

H
(p)
t > H

(p)

τ
(p)
j

+
δ

5
,

which implies that τ (p)
j+1 ≤ i2−nT . Summarizing, we get for p large enough so that

γp > 5/δ

A2(n, p) ≤ P
[
τ

(p)
k < T and τ

(p)
k+1 − τ

(p)
k < 2−nT for some k ≥ 0

]
. (2.32)

A similar argument gives exactly the same bound for the quantity A3(n, p).
The following lemma is directly inspired from [14] p.134-135.

Lemma 2.3.3 For every x > 0 and p ≥ 1, set

Gp(x) = P
[
τ

(p)
k < T and τ (p)

k+1 − τ
(p)
k < x for some k ≥ 0

]
and

Fp(x) = sup
k≥0

P
[
τ

(p)
k < T and τ (p)

k+1 − τ
(p)
k < x

]
.

Then, for every integer L ≥ 1,

Gp(x) ≤ LFp(x) + LeT
∫ ∞

0

dy e−Ly Fp(y).
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Proof. For every integer L ≥ 1, we have

Gp(x) ≤
L−1∑
k=0

P [τ (p)
k < T and τ

(p)
k+1 − τ

(p)
k < x] + P [τ (p)

L < T ]

≤ LFp(x) + eTE
[
1{τ(p)

L <T} exp
(
−
L−1∑
k=0

(τ (p)
k+1 − τ

(p)
k )

)]
≤ LFp(x) + eT

L−1∏
k=0

E
[
1{τ(p)

L <T} exp(−L(τ (p)
k+1 − τ

(p)
k ))

]1/L
.

Then observe that for every k ∈ {0, 1, . . . , L− 1},

E
[
1{τ(p)

L <T} exp(−L(τ (p)
k+1 − τ

(p)
k ))

]
≤ E

[
1{τ(p)

k <T}

∫ ∞
τ
(p)
k+1−τ

(p)
k

dy Le−Ly
]

≤
∫ ∞

0

dy Le−Ly Fp(y).

The desired result follows. �

Thanks to Lemma 2.3.3, the limiting behavior of the right-hand side of (2.32) will
be reduced to that of the function Fp(x). To handle Fp(x), we use the next lemma.

Lemma 2.3.4 The random variables τ (p)
k+1−τ

(p)
k are independent and identically dis-

tributed. Under the assumptions of Theorem 2.3.1, we have

lim
x↓0

(
lim sup
p→∞

P [τ (p)
1 ≤ x]

)
= 0.

We need a simple lemma.

Lemma 2.3.5 Let V be a random walk on Z. For every n ≥ 0, set

Ho
n = Card {k ∈ {0, 1, . . . , n− 1} : Vk = inf

k≤j≤n
Vj}. (2.33)

Let τ be a stopping time of the filtration (Fon) generated by V . Then the process(
Ho
τ+n − inf

τ≤k≤τ+n
Ho
k , n ≥ 0

)
is independent of Foτ and has the same distribution as (Ho

n, n ≥ 0).

Proof. By considering the first time after τ where the random walk V attains its
minimum over [τ, τ + n], one easily gets

inf
τ≤k≤τ+n

Ho
k = Card {k ∈ {0, 1, . . . , τ − 1} : Vk = inf

k≤j≤τ+n
Vj}.

Hence,

Ho
τ+n − inf

τ≤k≤τ+n
Ho
k = Card {k ∈ {τ, . . . , τ + n− 1} : Vk = inf

k≤j≤τ+n
Vj}

= Card {k ∈ {0, . . . , n− 1} : V τk = inf
k≤j≤n

V τj },
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where V τ denotes the shifted random walk V τn = Vτ+n−Vτ . Since V τ is independent
of Fτ and has the same distribution as V , the desired result follows from the previous
formula and (2.33). �

Proof of Lemma 2.3.4. Fix k ≥ 1 and set for every t ≥ 0,

H̃
(p)
t = H

(p)

τ
(p)
k +t

− inf
τ
(p)
k ≤r≤τ

(p)
k +t

H(p)
r .

As a consequence of Lemma 2.3.5, the process (H̃(p)
t , t ≥ 0) is independent of the past

of V (p) up to the stopping time τ (p)
k and has the same distribution as (H(p)

t , t ≥ 0).
Since by definition

τ
(p)
k+1 − τ

(p)
k = inf{t ≥ 0 : H̃(p)

t >
δ

5
}

the first assertion of the lemma follows.
Let us turn to the second assertion. To simplify notation, we write δ′ = δ/5. For

every η > 0, set

T (p)
η = inf{t ≥ 0 : V (p)

t = − [pη]
p
}.

Then,

P [τ (p)
1 ≤ x] = P

[
sup
s≤x

H(p)
s > δ′

]
≤ P

[
sup
s≤T (p)

η

H(p)
s > δ′

]
+ P [T (p)

η < x].

On one hand,
lim sup
p→∞

P [T (p)
η < x] ≤ P [Tη ≤ x],

and for any choice of η > 0, the right-hand side goes to zero as x ↓ 0. On the other
hand, the construction of the discrete height process shows that the quantity

sup
s≤T (p)

η

H(p)
s

is distributed as γ−1
p (Mp − 1), where Mp is the extinction time of a Galton-Watson

process with offspring distribution µp, started at [pη]. Hence,

P
[

sup
s≤T (p)

η

H(p)
s > δ′

]
= 1− g(p)

[δ′γp]+1(0)[pη],

and our assumption (2.28) implies that

lim
η→0

(
lim sup
p→∞

P
[

sup
s≤T (p)

η

H(p)
s > δ′

])
= 0.

The second assertion of the lemma now follows. �

We can now complete the proof of Theorem 2.3.1. Set:

F (x) = lim sup
p→∞

Fp(x) , G(x) = lim sup
p→∞

Gp(x).

Lemma 2.3.4 immediately shows that F (x) ↓ 0 as x ↓ 0. On the other hand, we get
from Lemma 2.3.3 that for every integer L ≥ 1,

G(x) ≤ LF (x) + LeT
∫ ∞

0

dy e−Ly F (y).
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It follows that we have also G(x) ↓ 0 as x ↓ 0. By (2.32), this gives

lim
n→∞

(
lim sup
p→∞

A2(n, p)
)

= 0,

and the same property holds for A3(n, p). This completes the proof of (ii) and of
Theorem 2.3.1. �

Proof of Theorem 2.3.2. We now assume that νp = ν for every p and so g(p)
n = gn.

We first observe that the process X must be stable. This is not immediate, since
the convergence (2.2) a priori implies only that ν belongs to the domain of partial
attraction of the law of X1, which is not enough to conclude that ν is stable. However,
the conditions (C1) – (C3), which are equivalent to (2.2), immediately show that the
sequence γp/γp+1 converges to 1 as p → ∞. Then Theorem 2.3 in [37] implies that
ν belongs to the domain of attraction of the law of X1, and by classical results the
law of X1 must be stable with index α ∈ (0, 2]. We can exclude α ∈ (0, 1] thanks to
our assumptions (H2) and (H3) (the latter is only needed to exclude the trivial case
ψ(λ) = cλ). Thus α ∈ (1, 2] and ψ(λ) = c λα for some c > 0. As a consequence of
(1.32), we have E[e−λYδ ] = exp−(λ−ᾱ + cᾱδ)−1/ᾱ, where ᾱ = α − 1. In particular,
P [Yδ = 0] = exp−(cᾱδ)−1/ᾱ > 0.

Let g = g1 be the generating function of µ. We have g′(1) =
∑
k µ(k) = 1, because

otherwise this would contradict (2.2). From Theorem 2 in [16], p.577, the function∑
k≥x

µ(k)

must be regularly varying as x→∞, with exponent −α. Then note that

g(e−λ)− 1 + λ =
∞∑
k=0

µ(k) (e−λk − 1 + λk) = λ

∫ ∞
0

dx(1− e−λx)
∑
k≥x

µ(k).

An elementary argument shows that g(e−λ)− 1 +λ is also regularly varying as λ→ 0
with exponent α. Put differently,

g(r) = r + (1− r)αL(1− r) , 0 ≤ r < 1 ,

where the function L(x) is slowly varying as x→ 0. This is exactly what we need to
apply a result of Slack [47].

Let Z(p)
1 be a random variable distributed as (1 − g[δγp](0)) times the value at

time [δγp] of a Galton-Watson process with offspring distribution µ started with one
individual at time 0 and conditioned to be non-extinct at time [δγp]. Theorem 1 of
[47] implies that

Z
(p)
1

(d)−→
p→∞

U

where U > 0 a.s. In particular, we can choose positive constants c0 and c1 so that
P [Z(p)

1 > c0] > c1 for all p sufficiently large. On the other hand, we have

1
p
Y p[δγp]

(d)
=

1
p(1− g[δγp](0))

(
Z

(p)
1 + · · ·+ Z

(p)
Mp

)
where Z(p)

1 , Z
(p)
2 , . . . are i.i.d., and Mp is independent of the sequence (Z(p)

j ) and has
a binomial B(p, 1− g[δγp](0)) distribution.
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It is now easy to obtain the condition (2.28). Fix δ > 0. Clearly it suffices to verify
that the sequence p(1−g[δγp](0)) is bounded. If not the case, we can choose a sequence
(pk) such that pk(1 − g[δγpk ](0)) converges to ∞. From the previous representation
for the law of 1

pY
p
[δγp], it then follows that

P
[ 1
pk
Y pk[δγpk ] > c0c1

]
−→
k→∞

1.

From (2.1), we get that P [Yδ ≥ c0c1] = 1, which gives a contradiction since P [Yδ =
0] > 0. This completes the proof of (2.28).

Finally, since (2.27) holds, we can apply Theorem 2.3.1. �

2.4 Convergence of contour processes

In this section, we show that the limit theorems obtained in the previous section for
rescaled discrete height processes can be formulated as well in terms of the contour
processes of the Galton-Watson trees. The proof relies on simple connections between
the height process and the contour process of a sequence of Galton-Watson trees.

To begin with, we consider a (subcritical or critical) offspring distribution µ, and
a sequence of independent µ-Galton-Watson trees. Let (Hn, n ≥ 0) and (Ct, t ≥ 0) be
respectively the height process and the contour process associated with this sequence
of trees (see Section 0.2). We also set

Kn = 2n−Hn.

Note that the sequence Kn is strictly increasing and Kn ≥ n.
Recall that the value at time n of the height process corresponds to the generation

of the individual visited at time n, assuming that individuals are visited in lexico-
graphical order one tree after another. It is easily checked by induction on n that
[Kn,Kn+1] is exactly the time interval during which the contour process goes from
the individual n to the individual n+ 1. From this observation, we get

sup
t∈[Kn,Kn+1]

|Ct −Hn| ≤ |Hn+1 −Hn|+ 1.

A more precise argument for this bound follows from the explicit formula for Ct in
terms of the height process: For t ∈ [Kn,Kn+1],

Ct = (Hn − (t−Kn))+ if t ∈ [Kn,Kn+1 − 1],
Ct = (Hn+1 − (Kn+1 − t))+ if t ∈ [Kn+1 − 1,Kn+1].

These formulas are easily checked by induction on n.
Define a random function f : R+ −→ Z+ by setting f(t) = n iff t ∈ [Kn,Kn+1).

From the previous bound, we get for every integer m ≥ 1,

sup
t∈[0,m]

|Ct −Hf(t)| ≤ sup
t∈[0,Km]

|Ct −Hf(t)| ≤ 1 + sup
n≤m
|Hn+1 −Hn|. (2.34)

Similarly, it follows from the definition of Kn that

sup
t∈[0,m]

|f(t)− t

2
| ≤ sup

t∈[0,Km]

|f(t)− t

2
| ≤ 1

2
sup
n≤m

Hn + 1. (2.35)

We now come back to the setting of the previous sections, considering for every
p ≥ 1 a sequence of independent Galton-Watson trees with offspring distribution µp.
For every p ≥ 1, we denote by (Cpt , t ≥ 0) the corresponding contour process.
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Theorem 2.4.1 Suppose that the convergences (2.2) and (2.29) hold. Then,(
γ−1
p Cppγpt , t ≥ 0

)
(d)−→
p→∞

(Ht/2, t ≥ 0). (2.36)

In particular, (2.36) holds under the assumptions of Theorem 2.3.1 or those of The-
orem 2.3.2.

Proof. For every p ≥ 1, write fp for the analogue of the function f introduced above.
Also set ϕp(t) = (pγp)−1fp(pγpt). By (2.34), we have for every m ≥ 1,

sup
t≤m

∣∣∣ 1
γp
Cppγpt −

1
γp
Hp
pγpϕp(t)

∣∣∣ ≤ 1
γp

+
1
γp

sup
n≤mpγp

|Hp
n+1 −Hp

n| −→
p→∞

0 (2.37)

in probability, by (2.29).
On the other hand, we get from (2.35)

sup
t≤m
|ϕp(t)−

t

2
| ≤ 1

2pγp
sup

k≤mpγp
Hp
k +

1
pγp

−→
p→∞

0 (2.38)

in probability, by (2.29).
The statement of the theorem now follows from (2.29), (2.37) and (2.38). �

2.5 A joint convergence
and an application to conditioned trees

The convergences in distribution (2.29) and (2.36) hold jointly with (2.1) and (2.2).
This fact is useful in applications and we state it here as a corollary.

As previously, we consider for every p a sequence of independent µp-Galton-Watson
trees and we denote by (Hp

n, n ≥ 0) the associated height process and by (Cpt , t ≥ 0)
the associated contour process. The random walk V p with jump distribution νp(k) =
µp(k+1) is related to Hp via formula (2.4). Finally, for every integer k ≥ 0, we denote
by Y pk the number of individuals at generation k in the first p trees of the sequence,
so that, in agreement with the previous notation, (Y pn , n ≥ 0) is a Galton-Watson
process with offspring distribution µp started at Y p0 = p.

Recall that (Lat , a ≥ 0, t ≥ 0) denote the local times of the (continuous-time)
height process associated with the Lévy process X. From Theorem 1.4.1, we know
that (LaT1

, a ≥ 0) is a ψ-CSBP and thus has a càdlàg modification.

Corollary 2.5.1 Suppose that the assumptions of Theorem 2.3.1 are satisfied. Then,(
p−1V p[pγpt], γ

−1
p Hp

[pγpt]
, γ−1
p Cp2pγpt ; t ≥ 0

)
(d)−→
p→∞

(Xt, Ht, Ht; t ≥ 0)

in distribution in D(R+,R3). We have also(
p−1Y p[γpa] , a ≥ 0

)
(d)−→
p→∞

(LaT1
, a ≥ 0)

in distribution in D(R+,R). Furthermore, these two convergences hold jointly, in the
sense that, for any bounded continuous function F on D(R+,R3)× D(R+,R),

lim
p→∞

E
[
F
(

(p−1V p[pγpt], γ
−1
p Hp

[pγpt]
, γ−1
p Cp2pγpt)t≥0, (p−1Y p[γpa])a≥0

)]
= E[F ((Xt, Ht, Ht)t≥0, (LaT1

)a≥0)].
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Proof. To simplify notation, write V (p)
t = p−1V p[pγpt], H

(p)
t = γ−1

p Hp
[pγpt]

, C(p)
t =

γ−1
p Cp2pγpt and Y

(p)
a = p−1Y p[γpa]. By (2.2), (2.29) and (2.36), we know that each

of the three sequences of the laws of the processes V (p), H(p), C(p) is tight, and
furthermore H(p) and C(p) converge in distribution towards a continuous process. By
a standard result (see e.g. Corollary II.3.33 in [24]), we get that the laws of the triples
(V (p), H(p), C(p)) are tight in D(R+,R3). Let (X,H∗, H∗∗) be a weak limit point of
this sequence of triples (with a slight abuse of notation, we may assume that the first
component of the limiting triple is the underlying Lévy process X). By the Skorokhod
representation theorem, we may assume that along a subsequence,

(V (p), H(p), C(p)) −→ (X,H∗, H∗∗)

a.s. in D(R+,R3). However, the convergence (2.6) and a time-reversal argument
imply that

lim
p→∞

H
(p)
t = L̂

(t)
t = Ht

in probability. This is enough to conclude that H∗t = Ht. Similarly, the proof of
Theorem 2.4.1 shows that

lim
p→∞

(C(p)
t −H

(p)
t ) = 0

in probability. This yields H∗∗t = H∗t = Ht and we see that the limiting triple is
equal to (X,H,H) and does not depend on the choice of the subsequence. The first
convergence of the corollary now follows.

By (2.1), we know that

(Y (p)
a , a ≥ 0)

(d)−→
p→∞

(Ya, a ≥ 0)

where Y is a ψ-CSBP started at 1. Since we also know that (LaT1
, a ≥ 0) is a ψ-CSBP

started at 1, the second convergence in distribution is immediate, and the point is to
verify that this convergence holds jointly with the first one. To this end, note that
the laws of the pairs ((V (p), H(p), C(p)), Y (p)) are tight in the space of probability
measures on D(R+,R3) × D(R+,R). By extracting a subsequence and using the
Skorokhod representation theorem, we may assume that(

(V (p), H(p), C(p)), Y (p)
)
−→
p→∞

(
(X,H,H), Z

)
,

a.s. in D(R+,R3)×D(R+,R). The proof will be finished if we can verify that Za = LaT1
,

the local time of H at level a and time T1. To this end, let g be a Lipschitz continuous
function from R+ into R+ with compact support. The preceding convergence implies

lim
p→∞

∫ ∞
0

g(a)Y (p)
a da =

∫ ∞
0

g(a)Za da , a.s. (2.39)

On the other hand, let T pp be the hitting time of −p by V p. The convergence of V (p)

towards X easily implies

lim
p→∞

1
pγp

T pp = inf{t ≥ 0 : Xt = −1} = T1 , a.s. (2.40)

Then, from the definition of the height process of a sequence of trees, we have∫ ∞
0

g(a)Y (p)
a da =

∫ ∞
0

g(a)
1
p
Y p[γpa] da
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=
1
p

∞∑
k=0

∫ γ−1
p (k+1)

γ−1
p k

g(a)
( Tpp−1∑

j=0

1{Hpj =k}

)
da

=
1
p

Tpp−1∑
j=0

∫ γ−1
p (Hpj +1)

γ−1
p Hpj

g(a) da

=
1
pγp

Tpp−1∑
j=0

g(γ−1
p Hp

j ) +O(
1
pγ2
p

T pp )

=
∫ (pγp)−1Tpp

0

g(γ−1
p Hp

[pγps]
) ds+O(

1
pγ2
p

T pp )

and in view of (2.40) this converges to∫ T1

0

g(Hs) ds =
∫ ∞

0

g(a)LaT1
da.

Comparing with (2.39), we conclude that∫ ∞
0

g(a)Za da =
∫ ∞

0

g(a)LaT1
da.

This implies that Za = LaT1
and completes the proof. �

As an application, we now discuss conditioned trees. Fix T > 0 and on some
probability space, consider a µp-Galton-Watson tree conditioned on non-extinction at
generation [γpT ], which is denoted by T̃ p. Let H̃p = (H̃p

n, n ≥ 0) be the associated
height process, with the convention that H̃p

n = 0 for n ≥ Card (T̃ p).

Proposition 2.5.2 Under the assumptions of Theorem 2.3.1, we have(
γ−1
p H̃p

[pγpt]
, t ≥ 0

)
(d)−→
p→∞

(H̃t, t ≥ 0),

where the limiting process H̃ is distributed as H under N(· | supHs ≥ T ).

Remark. We could have stated a similar result for the contour process instead of
the discrete height process.

Proof. Write H̃(p)
s = γ−1

p H̃p
[pγps]

to simplify notation. Also let H(p)
s = γ−1

p Hp
[pγps]

be
as above the rescaled height process for a sequence of independent µp-Galton-Watson
trees. Set

R
(p)
T = inf{s ≥ 0 : H(p)

s =
[γpT ]
γp
},

G
(p)
T = sup{s ≤ R(p)

T : H(p)
s = 0},

D
(p)
T = inf{s ≥ R(p)

T : H(p)
s = 0}.

Then without loss of generality we may assume that

H̃(p)
s = H

(p)

(G
(p)
T +s)∧D(p)

T

, s ≥ 0.

This is simply saying that the first tree with height at least [γpT ] in a sequence
of independent µp-Galton-Watson trees is a µp-Galton-Watson tree conditioned on
non-extinction at generation [γpT ].
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Set

RT = inf{s ≥ 0 : Hs = T},
GT = sup{s ≤ RT : Hs = 0},
DT = inf{s ≥ RT : Hs = 0},

and note that we may take H̃s = H(GT+s)∧DT , by excursion theory for X − I.
We now claim that the convergence in distribution of H̃(p) towards H̃ follows from

the previous corollary, and more precisely from the joint convergence

(V (p), H(p))
(d)−→
p→∞

(X,H).

It is again convenient to use the Skorokhod representation theorem and to assume
that the latter convergence holds a.s. We can then prove that H̃(p) converges a.s.
towards H̃.

To this end we need a technical lemma about the height process. We state it in
greater generality than needed here in view of other applications.

Lemma 2.5.3 Let b > 0. Then P a.s. or N a.e. b is not a local maximum nor a
local minimum of the height process.

Proof. Let

D = {b > 0 : P [ sup
p≤s≤q

Hs = b] > 0 for some rationals q > p ≥ 0}.

Clearly D is at most countable. However, from Proposition 1.3.1 and the relation
between the height process and the exploration process, it immediately follows that
if b ∈ D then b− a ∈ D for every a ∈ [0, b). This is only possible if D = ∅. The case
of local minima is treated in the same way. �

It follows from the lemma that we have also RT = inf{s ≥ 0 : Hs > T}. Then the
a.s. convergence of H(p) towards H easily implies that R(p)

T converges to RT a.s., and
that

lim sup
p→∞

G
(p)
T ≤ GT , lim inf

p→∞
D

(p)
T ≥ DT .

To get reverse inequalities, we may argue as follows. Recall that the support of the
random measure dIs is exactly the set {s : Hs = 0}, so that for every fixed s ≥ 0,
we have Is > IRT a.s. on the set {s < GT }. If I(p)

s = inf{V (p)
r , r ≤ s}, the a.s.

convergence of V (p) to X implies that I(p)
s converges to Is uniformly on compact sets,

a.s. It readily follows that a.s. on the set {s < GT } we have I(p)
s > I

(p)

R
(p)
T

for all p

sufficiently large. Hence a.s. for p large, we have s < G
(p)
T on the set {s < GT }. We

conclude that G(p)
T → GT a.s., and a similar argument gives D(p)

T → DT . From the
preceding formulas for H̃(p) and H̃, it follows that H̃(p) → H̃ a.s. This completes the
proof of the proposition. �

Remark. The methodology of proof of Proposition 2.5.2 could be applied to other
conditioned limit theorems. For instance, we could consider the rescaled height (or
contour) process of the µp-Galton-Watson tree conditioned to have at least pγp vertices
and derive a convergence towards the excursion of the height process H conditioned
to have length greater than 1. We will leave such extensions to the reader. We
point out here that it is much harder to handle degenerate conditionings. To give
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an important example, consider the case where µp = µ for every p. It is natural to
ask for a limit theorem for the (rescaled) height or contour process of a µ-Galton-
Watson tree conditioned to have a large fixed number of vertices. The previous results
strongly suggest that the limiting process should be a normalized (i.e. conditioned
to have length equal to 1) excursion of the height process H. This is indeed true
under suitable assumptions: When µ is critical with finite variance, this was proved
by Aldous [3] in the case of the contour process and the limit is a normalized Brownian
excursion as expected. Aldous’ result has been extended by Duquesne [10] to the case
when µ is in the domain of attraction of a stable law of index γ ∈ (1, 2]. In this more
general setting, the limit is the normalized excursion of the stable height process,
which is discussed in Section 3.5 below.

2.6 The convergence of reduced trees

Consider a µ-Galton-Watson tree, which describes the genealogy of a Galton-Watson
process with offspring distribution µ starting with one individual at time 0. For every
integer n ≥ 1, denote by P (n) the conditional probability knowing that the process
is not extinct at time n, or equivalently the height of the tree is at least n. Under
P (n), we can consider the reduced tree that consists only of those individuals in the
generations up to time n that have descendants at generation n. The results of the
previous sections can be used to investigate the limiting behavior of these reduced trees
when n tends to ∞, even in the more general setting where the offspring distribution
depends on n.

Here, we will concentrate on the population of the reduced tree at every generation.
For every k ∈ {0, 1, . . . , n}, we denote by Znk the number of individuals in the tree
at generation k which have descendants at generation n. Obviously, k → Znk is
nondecreasing, Zn0 = 1 and Znn is equal to the number of individuals in the original
tree at generation n. If g denotes the generating function of µ and gn, n ≥ 0 are the
iterates of g, it is easy to verify that (Znk , 0 ≤ k ≤ n) is a time-inhomogeneous Markov
chain whose transition kernels are characterized by:

E(n)[rZ
n
k+1 | Znk ] =

(g(r(1− gn−k−1(0)) + gn−k−1(0))− gn−k(0)
1− gn−k(0)

)Znk
, 0 ≤ k < n .

The process (Znk , 0 ≤ k ≤ n) (under the probability measure P (n)) will be called the
reduced process of the µ-Galton-Watson tree at generation n. It is easy to see that
for every k ∈ {0, 1, . . . , n− 1}, Znk can be written as a simple functional of the height
process of the tree: Znk counts the number of excursions of the height process above
level k that hit level n.

Consider as in the previous sections a sequence (µp, p = 1, 2, . . .) of (sub)critical
offspring distributions, and for every integer n ≥ 1 let Z(p),n = (Z(p),n

k , 0 ≤ k ≤ n) be
the reduced process of the µp-Galton-Watson tree at generation n. For every T > 0,
we denote by N(T ) the conditional probability N(· | sup{Hs, s ≥ 0} ≥ T ) (this makes
sense provided that the condition (2.27) holds, cf Corollary 1.4.2).

Theorem 2.6.1 Suppose that the assumptions of Theorem 2.3.1 hold and let T > 0.
Then, (

Z
(p),[γpT ]

[γpt]
, 0 ≤ t < T

)
(fd)−→
p→∞

(ZTt , 0 ≤ t < T ) ,

where the limiting process (ZTt , 0 ≤ t < T ) is defined under N(T ) as follows: For every
t ∈ [0, T ), ZTt is the number of excursions of H above level t that hit level T .
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A more explicit description of the limiting process and of the associated tree will
be given in the next section.

Proof. We use the notation of the proof of Proposition 2.5.2. In particular, the height
process of the µp-Galton-Watson tree conditioned on non-extinction at generation
[γpT ] is (H̃p

k , k ≥ 0) and the associated rescaled process is H̃(p)
s = γ−1

p H̃p
[pγps]

. We

may and will assume that H̃(p)
s is given by the formula

H̃(p)
s = H

(p)

(G
(p)
T +s)∧D(p)

T

and that (H̃(p)
s , s ≥ 0) converges a.s. in the sense of the Skorokhod topology, towards

the process H̃s = H(GT+s)∧DT whose law is the distribution of H under N(T ).

Now we observe that the reduced process Z(p),[γpT ]

[γpt]
can be expressed in terms of

H̃(p). More precisely, it is clear by construction that for every k ∈ {0, 1, . . . , [γpT ] −
1}, Z(p),[γpT ]

k is the number of excursions of H̃p above level k that hit level [γpT ].
Equivalently, for every t such that [γpt] < [γpT ],

Z̃
(p)
t := Z

(p),[γpT ]

[γpt]

is the number of excursions of H̃(p) above level [γpt]/γp that hit level [γpT ]/γp.
Let t > 0. Using the fact that t, resp. T , is a.s. not a local minimum, resp.

maximum, of H (Lemma 2.5.3), it is easy to deduce from the convergence H̃(p) → H̃
that the number of excursions of H̃(p) above level [γpt]/γp that hit level [γpT ]/γp
converges a.s. to the number of excursions of H̃ above level t that hit level T . In
other words, Z̃(p)

t converges a.s. to ZTt . This completes the proof. �

2.7 The law of the limiting reduced tree

In this section, we will describe the law of the process (ZTt , 0 ≤ t < T ) of the previous
section, and more precisely the law of the underlying branching tree. We suppose that
the Lévy process X satisfies (2.27) in addition to (H1) – (H3). The random variable
ZTt (considered under the probability measure N(T )) counts the number of excursions
of H above level t that hit level T .

Before stating our result, we recall the notation of Section 1.4. For every λ > 0
and t > 0,

ut(λ) = N(1− exp(−λLtσ))

solves the integral equation

ut(λ) +
∫ t

0

ψ(us(λ)) ds = λ

and
v(t) = ut(∞) = N(Ltσ > 0) = N

(
sup
s≥0

Hs > t
)

is determined by ∫ ∞
v(t)

dx

ψ(x)
= t.

Note the composition property ut ◦ us = ut+s, and in particular ut(v(r)) = v(t+ r).
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Theorem 2.7.1 Under N(T ), the process (ZTt , 0 ≤ t < T ) is a time-inhomogeneous
Markov process whose law is characterized by the following identities: For every λ > 0,

N(T )[exp−λZTt ] = 1− ut((1− e−λ)v(T − t))
v(T )

. (2.41)

and if 0 ≤ t < t′ < T ,

N(T )[exp−λZTt′ | ZTt ] = (N(T−t)[exp−λZT−tt′−t ])
ZTt (2.42)

Alternatively, we can describe the law of the process (ZTt , 0 ≤ t < T ) under N(T ) by
the following properties.

• ZTr = 1 if and only if r ∈ [0, γT ), where the law of γT is given by

N(T )[γT > t] =
ψ̃(v(T ))

ψ̃(v(T − t))
, 0 ≤ t < T, (2.43)

where ψ̃(x) = x−1ψ(x).

• The conditional distribution of ZTγT knowing γT is characterized by

N(T )[r
ZTγT | γT = t] = r

ψ′(U)− γψ(U, (1− r)U)
ψ′(U)− γψ(U, 0)

, 0 ≤ r ≤ 1 (2.44)

where U = v(T − t) and for every a, b ≥ 0,

γψ(a, b) =
{

(ψ(a)− ψ(b)) /(a− b) if a 6= b,
ψ′(a) if a = b .

• Conditionally on γT = t and ZTγT = k, the process (ZTt+r, 0 ≤ r < T − t) is
distributed as the sum of k independent copies of the process (ZT−tr , 0 ≤ r <
T − t) under N(T−t).

Proof. One can give several approaches to Theorem 2.7.1. In particular, the time-
inhomogeneous Markov property could be deduced from the analogous result for dis-
crete reduced trees by using Theorem 2.6.1. We will prefer to give a direct approach
relying on the properties of the height process.

Before stating a key lemma, we introduce some notation. We fix t ∈ (0, T ). Note
that the definition of ZTt also makes sense under the conditional probability N(t). We
denote by (eti, i = 1, . . . , ZTt ) the successive excursions of H above level t that hit
level T − t, shifted in space and time so that each starts from 0 at time 0. Recall the
notation Las for the local times of the height process. We also write Lt(i) for the local
time of H at level t at the beginning of excursion eti.

Lemma 2.7.2 Under N(t), conditionally on the local time Ltσ, the point measure

ZTt∑
i=1

δ(Lt(i),e
t
i)

is Poisson with intensity 1[0,Ltσ](`)d`N(de ∩ {supHs > T − t}). In particular, un-
der N(t) or under N(T ), conditionally on ZTt , the excursions (eti, i = 1, . . . , ZTt ) are
independent with distribution N(T−t).
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Proof. We rely on Proposition 1.3.1 and use the notation of Chapter 1. Under the
probability measure P , denote by f ti , i = 1, 2, . . . the successive excursions of H above
level t that hit T , and let `ti be the local time of H at level t at the beginning (or the
end) of excursion f ti . Then the f ti ’s are also the successive excursions of the process
Ht
s = H(ρts) that hit level T − t, and the numbers `ti are the corresponding local times

(of Ht) at level 0. By Proposition 1.3.1 and excursion theory, the point measure

∞∑
i=1

δ(`ti,fti )

is Poisson with intensity d`N(df ∩{supHs > T − t}) and is independent of the σ-field
Ht.

On the other hand, let λ1 be the local time of H at level t at the end of the first
excursion of H away from 0 that hits level t. From the approximation of local time
provided by Proposition 1.3.3, it is easy to see that λ1 is Ht-measurable. By excursion
theory for X − I, the law under N(t) of the pair

(
Ltσ,

ZTt∑
i=1

δ(Lt(i),e
t
i)

)
is the same as the law under P of(

λ1,
∑

{i:`ti≤λ1}

δ(`ti,fti )

)
.

The first assertion of the lemma now follows from the preceding considerations.
The second assertion stated under N(t) is an immediate consequence of the first

one. The statement under N(T ) follows since N(T ) = N(t)(· | ZTt ≥ 1). �

We return to the proof of Theorem 2.7.1. Note that (2.42) is an immediate con-
sequence of the second assertion of the lemma. Let us prove (2.41). By the first
assertion of the lemma, ZTt is Poisson with intensity v(T − t)Ltσ, conditionally on Ltσ,
under N(t). Hence,

N(t)[e−λZ
T
t ] = N(t)

[
e−L

t
σv(T−t)(1−e−λ)

]
= 1− 1

v(t)
N
(

1− e−L
t
σv(T−t)(1−e−λ)

)
= 1− 1

v(t)
ut((1− e−λ)v(T − t)).

Then observe that

N(t)[1− e−λZ
T
t ] =

1
v(t)

N(1− e−λZ
T
t ) =

v(T )
v(t)

N(T )[1− e−λZ
T
t ].

Formula (2.41) follows immediately.
It is clear that there exists a random variable γT such that ZTt = 1 iff 0 ≤ t < γT ,

N(T ) a.s. (γT is the minimum of the height process between the first and the last
hitting time of T ). Let us prove (2.43). By (2.41), we have,

N(T )[γT > t] = lim
λ→∞

eλN(T )[e−λZ
T
t ] = lim

λ→∞
eλ
(

1− ut((1− e−λ)v(T − t))
v(T )

)
.

66



Recalling that ut(v(T − t)) = v(T ), we have as ε→ 0,

ut((1− ε)v(T − t)) = v(T )− εv(T − t)∂ut
∂λ

(v(T − t)) + o(ε),

and it follows that

N(T )[γT > t] =
v(T − t)
v(T )

∂ut
∂λ

(v(T − t)).

Formula (2.43) follows from that identity and the fact that, for λ > 0,

∂ut
∂λ

(λ) =
ψ(ut(λ))
ψ(λ)

. (2.45)

To verify (2.45), differentiate the integral equation for ut(λ):

∂ut
∂λ

(λ) = 1−
∫ t

0

∂us
∂λ

(λ)ψ′(us(λ)) ds

which implies
∂ut
∂λ

(λ) = exp
(
−
∫ t

0

ψ′(us(λ))ds
)
.

Then note that ∂
∂t logψ(ut(λ)) = −ψ′(ut(λ)) and thus∫ t

0

ψ′(us(λ))ds = logψ(ut(λ))− logψ(λ).

This completes the proof of (2.45) and (2.43).

We now prove the last assertion of the theorem. Recall the notation introduced
before Lemma 2.7.2. Clearly it suffices to prove that the following property holds:

(P) Under N(T ), conditionally on γT = t and ZTγT = n, the excursions eγT1 , . . . , eγTn
are i.i.d. according to the distribution N(T−t).

We can deduce property (P) from Lemma 2.7.2 via an approximation procedure.
Let us sketch the argument. For any p ≥ 2 and any bounded continuous functional
F on R+ × C(R+,R+)p,

N(T )[1{ZTγT =p}F (γT , e
γT
1 , . . . , eγTp )]

= lim
n→∞

n−1∑
j=1

N(T )

[
1{ZT

jT/n
=p;(j−1)T/n<γT≤jT/n}F (

jT

n
, e
jT/n
1 , . . . , ejT/np )

]
.(2.46)

Note that the event {γT ≤ jT/n} contains {ZTjT/n = p}. As a consequence of the
second part of Lemma 2.7.2 (applied with t = jT/n) we have

N(T )

[
1{ZT

jT/n
=p;γT≤jT/n}F (

jT

n
, e
jT/n
1 , . . . , ejT/np )

]
= N(T )

[
1{ZT

jT/n
=p;γT≤jT/n}∫

N(T−jT/n)(df1) . . . N(T−jT/n)(dfp)F (
jT

n
, f1, . . . , fp)

]
.

We want to get a similar identity where the event {γT ≤ jT/n} is replaced by
{γT ≤ (j−1)T/n} = {ZT(j−1)T/n ≥ 2}. A slightly more complicated argument (relying
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on two applications of Lemma 2.7.2, the first one with t = (j − 1)T/n and then with
t = T/n) shows similarly that

N(T )

[
1{ZT

jT/n
=p;γT≤(j−1)T/n}F (

jT

n
, e
jT/n
1 , . . . , ejT/np )

]
= N(T )

[
1{ZT

jT/n
=p;γT≤(j−1)T/n}

×
∫
N(T−jT/n)(df1) . . . N(T−jT/n)(dfp)F (

jT

n
, f1, . . . , fp)

]
.

By making the difference between the last two displays, we see that the sum in
the right side of (2.46) exactly equals

n−1∑
j=1

N(T )

[
1{ZT

jT/n
=p;(j−1)T/n<γT≤jT/n}

×
∫
N(T−jT/n)(df1) . . . N(T−jT/n)(dfp)F (

jT

n
, f1, . . . , fp)

]
.

Using an easy continuity property of the mapping r → N(r), we get from this and
(2.46) that

N(T )[1{ZTγT =p}F (γT , e
γT
1 , . . . , eγTp )]

= N(T )

[
1{ZTγT =p}

∫
N(T−γT )(df1) . . . N(T−γT )(dfp)F (γT , f1, . . . , fp)

]
,

which completes the proof of property (P) and of the last assertion of the theorem.
We finally verify (2.44). First observe from (2.43) that the density of the law of

γT under N(T ) is given by

hT (t) = ψ̃(v(T ))h(T − t)

where

h(t) =
v(t)ψ′(v(t))
ψ(v(t))

− 1.

On the other hand, fix δ ∈ (0, T ), and note that {γT > δ} = {ZTδ = 1}. By the last
assertion of Lemma 2.7.2 we have for any nonnegative function f ,

N(T )[f(γT , ZTγT ) 1{γT>δ} | γT > δ] = N(T−δ)[f(γT−δ + δ, ZT−δγT−δ
)].

Hence, if (θTt (k), k = 2, 3, . . .), 0 < t < T denotes a regular version of the conditional
law of ZTγT knowing that γT = t, we have∫ T

δ

dt h(T − t)
∞∑
k=2

θTt (k)f(t, k) =
∫ T−δ

0

dt h(T − δ − t)
∞∑
k=2

θT−δt (k)f(t+ δ, k)

=
∫ T

δ

dt h(T − t)
∞∑
k=2

θT−δt−δ (k)f(t, k).

This shows that we must have θTt = θT−δt−δ for a.a. t ∈ (δ, T ). By simple arguments, we
can choose the regular versions θTt (k) in such a way that θTt (k) = θT−t(k) for every
k ≥ 2, T > 0 and t ∈ (0, T ).
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We can then compute N(T )[e−λL
T
σ ] in two different ways. First,

N(T )[e−λL
T
σ ] = 1− N(1− e−λLTσ )

v(T )
= 1− uT (λ)

v(T )
.

Then, using property (P) once again,

N(T )[e−λL
T
σ ] = N(T )

[(
N(T−t)[e−λL

T−t
σ ]t=γT

)ZTγT ]
=

∫ T

0

dt hT (t)
∞∑
k=2

θT−t(k)
(

1− uT−t(λ)
v(T − t)

)k
.

By comparing with the previous display and using the formula for hT (t), we get∫ T

0

dt
(ψ′(v(t))v(t)

ψ(v(t))
− 1
) ∞∑
k=2

θt(k)
(

1− ut(λ)
v(t)

)k
=
v(T )− uT (λ)
ψ(v(T ))

.

We can now differentiate with respect to T (for a proper justification we should argue
that the mapping t→ θt is continuous, but we omit details). It follows that(ψ′(v(T ))v(T )

ψ(v(T ))
− 1
) ∞∑
k=2

θT (k)
(

1− uT (λ)
v(T )

)k
= −1 +

ψ′(v(T ))v(T )
ψ(v(T ))

+
ψ(uT (λ))− uT (λ)ψ′(v(T ))

ψ(v(T ))
.

Hence,
∞∑
k=2

θT (k)
(

1− uT (λ)
v(T )

)k
= 1− ψ(uT (λ))− uT (λ)ψ′(v(T ))

ψ(v(T ))− v(T )ψ′(v(T ))
.

If we substitute r = 1− uT (λ)
v(T ) in this last identity we get

∞∑
k=2

θT (k) rk = 1− ψ((1− r)v(T ))− (1− r)v(T )ψ′(v(T ))
ψ(v(T ))− v(T )ψ(v(T )

.

Formula (2.44) follows after straightforward transformations of the last expression.
The proof of Theorem 2.7.1 is now complete. Observe that the (time-inhomoge-

neous) Markov property of the process (ZTt , 0 ≤ t < T ) is a consequence of the
description provided in the second part of the theorem, and in particular of the
special form of the law of γT and the fact that the law of ZTγT under N(T )[· | γT > δ]
coincides with the law of ZT−δγT−δ

under N(T−δ). �

Let us discuss special cases of the theorem. When ψ(u) = cuα, with c > 0 and
1 < α ≤ 2, we have v(t) = (c(α − 1)t)−1/(α−1), and formula (2.43) shows that the
law of γT is uniform over [0, T ]. This is the only case where this property holds: If
we assume that γT is uniform over [0, T ], (2.43) implies that ψ̃(v(t)) = C/t for some
C > 0. By differentiating log v(t), we then get that v(t) = C ′t−C and it follows that
ψ is of the desired form.

Also in the stable case ψ(u) = cuα, formula (2.44) implies that ZTγT is independent
of γT , and that its distribution is characterized by

N(T )[r
ZTγT ] =

(1− r)α − 1 + αr

α− 1
.
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Of course when α = 2, we recover the well known fact that ZTγT = 2. When α ∈ (1, 2),
we get

N(T )[ZTγT = k] =
α(2− α)(3− α) · · · (k − 1− α)

k!
, k ≥ 2.

To conclude let us mention that limiting reduced trees have been studied exten-
sively in the literature. In the finite variance case, the uniform distribution for γT
appears in Zubkov [50], and the full structure of the reduced tree is derived by Fleis-
chmann and Siegmund-Schultze [17]. Analogous results in the stable case (and in the
more general setting of multitype branching processes) can be found in Vatutin [48]
and Yakymiv [49].
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Chapter 3

Marginals of continuous trees

3.1 Duality properties of the exploration process

In this section, we study certain duality properties of the process ρ. In view of forth-
coming applications, the main result is the time-reversal property stated in Corollary
3.1.6 below. However the intermediate results needed to derive this property are of
independent interest.

We work in the general setting of Chapter 1. In particular, the Lévy process
X satisfies assumptions (H1) – (H3), and starts at 0 under the probability measure
P . Since the subordinator SL−1(t) has drift β (Lemma 1.1.2), it readily follows from
formula (1.10) that the continuous part of ρt is β1[0,Ht](r)dr. We can thus rewrite
Definition 1.2.2 in an equivalent way as follows:

ρt(dr) = β1[0,Ht](r) dr+
∑

0<s≤t
Xs−<Ist

(Ist −Xs−) δHs(dr). (3.1)

We then introduce another measure-valued process (ηt, t ≥ 0) by setting

ηt(dr) = β1[0,Ht](r) dr+
∑

0<s≤t
Xs−<Ist

(Xs − Ist ) δHs(dr). (3.2)

In the same way as ρt, the measure ηt is supported on [0, Ht]. We will see below that
ηt is a.s. a finite measure, a fact that is not obvious from the previous formula. In
the queueing system interpretation of [32], the measure ρt accounts for the remaining
service times for all customers present in the queue at time t. In this interpretation,
ηt describes the services already accomplished for these customers.

We will see that in some sense, the process (ηt, t ≥ 0) is the dual of (ρt, t ≥ 0).
It turns out that the study of (ηt, t ≥ 0) is significantly more difficult than that of
(ρt, t ≥ 0). We start with a basic lemma.

Lemma 3.1.1 For each fixed value of t > 0, we have 〈ηt, 1〉 < ∞, P a.s. or N
a.e. The process (ηt, t ≥ 0), which takes values in Mf (R+), is right-continuous in
probability under P . Similarly, (ηt, t > 0) is right-continuous in measure under N .

Proof. Let us first prove that 〈ηt, 1〉 <∞, P a.s. It is enough to verify that∑
0<s≤t

∆Xs 1{Xs−<Ist } <∞
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P a.s. By time-reversal, this is equivalent to∑
0<s≤t

∆Xs 1{Xs>Ss−} <∞ (3.3)

P a.s. However, for every a > 0,

E
[ ∑

0<s≤L−1(a)

(∆Xs ∧ 1) 1{Xs>Ss−}
]

= aN∗((∆Xσ) ∧ 1)1{Xσ>0})

= a

∫
π(dx)

∫ x

0

dz(z ∧ 1)

≤ a

∫
π(dx) (x ∧ x2)

< ∞

using (1.3) in the second equality. This gives our claim (3.3) and the first assertion of
the lemma under P . The property 〈ηt, 1〉 <∞, N a.e., then follows from arguments
of excursion theory, using in particular the Markov property of X under N .

The preceding considerations also imply that

lim
t↓0

∑
0<s≤t

∆Xs 1{Xs>Ss−} = 0

in P -probability. Via time-reversal, it follows that the process ηt is right-continuous at
t = 0 in probability under P . Then let t0 > 0. We first observe that ηt0({Ht0}) = 0 P
a.s. This follows from the fact that there is a.s. no value of s ∈ (0, t0] with Xs > Ss−
and Ls = 0. Then, for t > t0, write u = u(t) for the (first) time of the minimum of X
over [t0, t]. Formula (3.2) implies that ηt is bounded below by the restriction of ηt0 to
[0, Hu), and bounded above by ηt0 + η̃

(t)
t−t0 , where 〈η̃(t)

t−t0 , 1〉 has the same distribution
as 〈ηt−t0 , 1〉 (more precisely, η̃(t)

t−t0 is distributed as ηt−t0 , up to a translation by Hu).
The right-continuity in P -probability of the mapping t → ηt at t = t0 follows from
this observation, the property ηt0({Ht0}) = 0, the a.s. lower semi-continuity of Ht,
and the case t0 = 0.

The right-continuity in measure under N follows from the same arguments. �

Rather than investigating the Markovian properties of (ηt, t ≥ 0) we will consider
the pair (ρt, ηt). We first introduce some notation. Let (µ, ν) ∈ Mf (R+)2, and let
a > 0. Recall the notation of Proposition 1.2.3. In a way analogous to Chapter 1, we
define ka(µ, ν) ∈Mf (R+)2 by setting

ka(µ, ν) = (µ, ν)

where µ = kaµ and the measure ν is the unique element of Mf (R+) such that

(µ+ ν)|[0,H(kaµ)] = kaµ+ ν.

Note that the difference µ|[0,H(kaµ)] − kaµ is a nonnegative multiple of the Dirac
measure at H(kaµ), so that ν and ν|[0,H(kaµ)] may only differ at the point H(kaµ).

Then, if θ1 = (µ1, ν1) ∈ Mf (R+)2 and θ2 = (µ2, ν2) ∈ Mf (R+)2, and if H(µ1) <
∞, we define the concatenation [θ1, θ2] by

[θ1, θ2] = ([µ1, µ2], ν)

where 〈ν, f〉 =
∫
ν1(ds)1[0,H(µ1)](s)f(s) +

∫
ν2(ds)f(H(µ1) + s).
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Proposition 3.1.2 (i) Let s ≥ 0 and t > 0. Then, for every nonnegative measurable
function f on Mf (R+)2,

E[f(ρs+t, ηs+t) | Gs] = Π0
tf(ρs, ηs)

where Π0
t ((µ, ν), dµ′dν′) is the distribution of the pair

[k−It(µ, ν), (ρt, ηt)]

under P . The collection (Π0
t , t > 0) is a Markovian semigroup on Mf (R+)2.

(ii) Let s > 0 and t > 0. Then, for every nonnegative measurable function f on
Mf (R+)2,

N(f(ρs+t, ηs+t) 1{s+t<σ} | Gs) = 1{s<σ}Πtf(ρs, ηs)

where Πt((µ, ν), dµ′dν′) is the distribution of the pair

[k−It(µ, ν), (ρt, ηt)]

under P (· ∩ {T<µ,1> > t}). The collection (Πt, t > 0) is a submarkovian semigroup
on Mf (R+)2.

Proof. (i) Recall the notation of the proof of Proposition 1.2.3, and in particular
formula (1.13). According to this formula, we have

ρs+t = [k−I(s)t
ρs, ρ

(s)
t ] (3.4)

where the pair (I(s)
t , ρ

(s)
t ) is defined in terms of the shifted process X(s), which is

independent of Gs. We then want to get an analogous expression for ηt. Precisely, we
claim that

(ρs+t, ηs+t) = [k−I(s)t
(ρs, ηs), (ρ

(s)
t , η

(s)
t )] (3.5)

with an obvious notation. Note that (3.4) is the equality of the first components in
(3.5).

To deal with the second components, recall the definition of ηs+t

ηs+t(du) = β1[0,Hs+t](u) du+
∑

0<r≤s+t
Xr−<Irs+t

(Xr − Irs+t) δHr (du).

First consider the absolutely continuous part. By (3.4), we have

Hs+t = H(k−I(s)t
ρs) +H(ρ(s)

t ) = H(k−I(s)t
ρs) +H

(s)
t

and thus∫
du 1[0,Hs+t](u) f(u)

=
∫
du 1[0,H(k

−I(s)t

ρs)](u) f(u) +
∫
du 1

[0,H
(s)
t ]

(u) f(H(k−I(s)t
ρs) + u).

This shows that the absolutely continuous part of ηs+t is the same as that of the
second component of the right side of (3.5).
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Then the singular part of ηs+t is equal to∑
0<r≤s

Xr−<Irs+t

(Xr − Irs+t) δHr+
∑

s<r≤s+t
Xr−<Irs+t

(Xr − Irs+t) δHr . (3.6)

Note that, if r ∈ (s, s+ t] is such that Xr− < Irs+t, we have Hr = H(k−I(s)t
ρs) +H

(s)
r−s

(see the proof of Proposition 1.2.3). Thanks to this remark, we see that the second
term of the sum in (3.6) is the image of the singular part of η(s)

t under the mapping
u→ H(k−I(s)t

ρs) + u.
To handle the first term of (3.6), we consider two cases. Suppose first that Is <

Iss+t. Then set
v = sup{r ∈ (0, s] : Xr− < Iss+t}.

In the first term of (3.6), we need only consider values r ∈ (0, v]. Note that Hv =
H(k−I(s)t

ρs) and that the measures ρv and k−I(s)t
ρs are equal except possibly at the

point Hv (see again the proof of Proposition 1.2.3). Then,∑
0<r<v

Xr−<Irs+t

(Xr − Irs+t) δHr =
∑

0<r<v
Xr−<Irs

(Xr − Irs ) δHr

coincides with the restriction of the singular part of ηs to [0, Hv) = [0, H(k−I(s)t
ρs)).

On the other hand, ηs+t({Hv}) is equal to

Xv − Ivs+t = ηs({Hv}) + ρs([0, H(k−I(s)t
ρs)])− 〈k−I(s)t

ρs, 1〉

since by construction

ηs({Hv}) = Xv − Ivs ,
ρs([0, H(k−I(s)t

ρs)]) = ρs([0, Hv]) = Ivs − Is ,

〈k−I(s)t
ρs, 1〉 = Xs − Is + I

(s)
t = Iss+t − Is = Ivs+t − Is .

By comparing with the definition of ka(µ, ν), we see that the proof of (3.5) is complete
in the case Is < Iss+t.

The case Is ≥ Iss+t is easier. In that case k−I(s)t
ρs = 0, and even k−I(s)t

(ρs, ηs) =
(0, 0) (note that ηs gives no mass to 0, a.s.). Furthermore, the first sum in (3.6)
vanishes, and it immediately follows that (3.5) holds.

The first assertion in (i) is a consequence of (3.5) and the fact that X(s) is inde-
pendent of Gs.

As for the second assertion, it is enough to verify that, for every s, t > 0 we have

[k−I(s)t
[k−Is(µ, ν), (ρs, ηs)], (ρ

(s)
t , η

(s)
t )] = [k−Is+t(µ, ν), (ρs+t, ηs+t)]. (3.7)

Note that the case µ = ν = 0 is just (3.5). To prove (3.7), we consider the same two
cases as previously.

If Iss+t > Is, or equivalently −I(s)
t < 〈ρs, 1〉, then Is = Is+t and so k−Is(µ, ν) =

k−Is+t(µ, ν). Furthermore, it is easy to verify that a.s.

k−I(s)t
[k−Is(µ, ν), (ρs, ηs)] = [k−Is(µ, ν), k−I(s)t

(ρs, ηs)].
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Hence

[k−I(s)t
[k−Is(µ, ν), (ρs, ηs)], (ρ

(s)
t , η

(s)
t )] = [[k−Is(µ, ν), k−I(s)t

(ρs, ηs)], (ρ
(s)
t , η

(s)
t )]

= [k−Is(µ, ν), [k−I(s)t
(ρs, ηs), (ρ

(s)
t , η

(s)
t )]],

and (3.7) follows from (3.5).
Finally, if Iss+t ≤ Is, or equivalently −I(s)

t > 〈ρs, 1〉, it easily follows from our
definitions (and from the fact that ηs({0}) = 0 a.s.) that

k−I(s)t
[k−Is(µ, ν), (ρs, ηs)] = k−Is+t(µ, ν) , a.s.

Furthermore, the property Iss+t ≤ Is also implies that (ρ(s)
t , η

(s)
t ) = (ρs+t, ηs+t), and

this completes the proof of (3.7).
(ii) First note that, for s, t > 0, the identity (3.5) also holds N a.e. on {s+ t < σ}

with the same proof (the argument is even simpler as we do not need to consider the
case Iss+t ≤ Is). Also observe that N a.e. on {s < σ}, the condition s + t < σ holds
iff −I(s)

t < Xs = 〈ρs, 1〉, or equivalently t < T
(s)
<ρs,1>

= inf{r ≥ 0 : X(s)
r = −〈ρs, 1〉}.

The first assertion in (ii) follows from these observations and the Markov property
under N .

The second assertion in (ii) follows from (3.7) and the fact that

{T<µ,1> > s+ t} = {Is+t > −〈µ, 1〉}

= {Is > −〈µ, 1〉} ∩ {I(s)
t > −〈µ, 1〉 −Xs}

= {Is > −〈µ, 1〉} ∩ {T (s)
<k−Isµ+ρs,1>

> t} .

�

The previous proposition shows that the process (ρs, ηs) is Markovian under P .
We now proceed to investigate its invariant measure.

Let N (dsd`dx) be a Poisson point measure on (R+)3 with intensity

ds π(d`) 1[0,`](x)dx.

For every a > 0, we denote by Ma the law on Mf (R+)2 of the pair (µa, νa) defined
by

〈µa, f〉 =
∫
N (dsd`dx) 1[0,a](s)xf(s) + β

∫ a

0

ds f(s)

〈νa, f〉 =
∫
N (dsd`dx) 1[0,a](s) (`− x)f(s) + β

∫ a

0

ds f(s).

Note that Ma is invariant under the symmetry (µ, ν)→ (ν, µ). We also set

M =
∫ ∞

0

da e−αa Ma.

The marginals of M coincide with the measure M of Chapter 1.

Proposition 3.1.3 Let Φ be a nonnegative measurable function on Mf (R+)2. Then,

N
(∫ σ

0

dtΦ(ρt, ηt)
)

=
∫

M(dµdν) Φ(µ, ν).
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Proof. This is an extension of Proposition 1.2.5 and the proof is much analogous.
Consider (under P ) the countable collection of instants si, i ∈ I such that Xsi > Ssi−.
It follows from (1.3) that(

L∞,
∑
i∈I

δ(Lsi ,∆Xsi ,Xsi−Ssi−)(dsd`dx)
)

(d)
=
(
ζ, 1[0,ζ](s)N (dsd`dx)

)
(3.8)

where ζ is an exponential variable with parameter α independent of N (ζ = ∞ if
α = 0). Recall from Chapter 1 the definition of the time-reversed process X̂(t). As
in (1.10), we can rewrite the definition of ρt and ηt in terms of the reversed process
X̂(t):

〈ρt, f〉 = β

∫ L̂
(t)
t

0

dr f(r)+
∑

0<s≤tbX(t)
s >bS(t)

s−

(X̂(t)
s − Ŝ

(t)
s−) f(L̂(t)

t − L̂(t)
s ),

〈ηt, f〉 = β

∫ L̂
(t)
t

0

dr f(r)+
∑

0<s≤tbX(t)
s >bS(t)

s−

(Ŝ(t)
s− − X̂

(t)
s−) f(L̂(t)

t − L̂(t)
s ).

Hence we can write (ρt, ηt) = Γ(X̂(t)
s∧t, s ≥ 0) with a measurable functional Γ that is

made explicit in the previous formulas. Proposition 1.1.4 now gives

N
(∫ σ

0

dtΦ(ρt, ηt)
)

= E
[ ∫ L∞

0

daΦ ◦ Γ(Xs∧L−1(a), s ≥ 0)
]
.

However, Γ(Xs∧L−1(a), s ≥ 0) = (µa, νa), with

〈µa, f〉 = β

∫ a

0

dr f(r) +
∑
i∈I

1[0,a](Lsi) (Xsi − Ssi−) f(a− Lsi)

〈νa, f〉 = β

∫ a

0

dr f(r) +
∑
i∈I

1[0,a](Lsi) (∆Xsi − (Xsi − Ssi−)) f(a− Lsi).

Now use (3.8) to complete the proof. �

For every t > 0, we denote by Π̂t the image of the kernel Πt under the symmetry
(µ, ν)→ (ν, µ), that is

Π̂tΦ(µ, ν) =
∫

Πt((ν, µ), dν′dµ′) Φ(µ′, ν′).

Theorem 3.1.4 The kernels Πt and Π̂t are in duality under M.

This means that for any nonnegative measurable functions Φ and Ψ on Mf (R+)2,

M(ΦΠtΨ) = M(ΨΠ̂tΦ).

Proof. We first consider the potential kernels

U =
∫ ∞

0

dtΠt , Û =
∫ ∞

0

dt Π̂t
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and we prove that
M(ΦUΨ) = M(ΨÛΦ). (3.9)

This is equivalent to saying that the measure

M(dµdν)U((µ, ν), dµ′dν′)

is invariant under the transformation (µ, ν, µ′, ν′)→ (ν′, µ′, ν, µ).
To this end, we first derive an explicit expression for the kernel U . By the definition

of the kernels Πt, we have

UΦ(µ, ν) = E
[ ∫ T<µ,1>

0

dtΦ([k−It(µ, ν), (ρt, ηt)])
]
.

This is computed in a way similar to the proof of Proposition 1.2.6, using Proposition
3.1.3 in place of Proposition 1.2.5. It follows that

UΦ(µ, ν) =
∫ <µ,1>

0

dr

∫
M(dµ′dν′) Φ([kr(µ, ν), (µ′, ν′)]). (3.10)

We then need to get more information about the joint distribution of ((µ, ν), kr(µ, ν))
under M(dµdν)1[0,<µ,1>](r)dr. Recall the notation N , µa, νa introduced before the
statement of Proposition 3.1.3. Write

N =
∑
i∈I

δ(si,`i,xi)

for definiteness, in such a way that

(µa, νa) = (βma +
∑
si≤a

xi δsi , βma +
∑
si≤a

(`i − xi) δsi),

where ma denotes Lebesgue measure on [0, a]. Since Ma is the law of (µa, νa), we get∫
Ma(dµdν)

∫ <µ,1>

0

dr F ((µ, ν), kr(µ, ν)) (3.11)

= E
[ ∫ <µa,1>

0

dr F ((µa, νa), kr(µa, νa))
]

= E
[
β

∫ a

0

dsF ((µa, νa), (µa|[0,s], νa|[0,s]))
]

+E
[ ∑
si≤a

∫ xi

0

dy F ((µa, νa), (µa|[0,si) + yδsi , νa|[0,si) + (`i − y)δsi))
]

using the definition of kr.
At this point, we recall the following well-known lemma about Poisson measures.

Lemma 3.1.5 Let E be a measurable space and let ∆ be a σ-finite measure on E.
Let M be a Poisson point measure on [0, a] × E with intensity ds∆(de). Then, for
any nonnegative measurable function Φ,

E
[ ∫
M(dsde) Φ((s, e),M)

]
= E

[ ∫ a

0

ds

∫
E

∆(de) Φ((s, e),M+ δ(s,e))
]
.
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Thanks to this lemma, the second term in the right side of (3.11) can be written
as

E
[ ∫ a

0

ds

∫
π(d`)

∫ `

0

dx

∫ x

0

dy

F ((µa + xδs, νa + (`− x)δs), (µa|[0,s) + yδs, νa|[0,s) + (`− y)δs))
]
.

We now integrate (3.11) with respect to e−αada. After some easy transformations,
we get∫

M(dµdν)
∫ <µ,1>

0

dr F ((µ, ν), kr(µ, ν))

= β

∫
M(dµ1dν1)M(dµ2dν2)F ([(µ1, ν1), (µ2, ν2)], (µ1, ν1))

+
∫

M(dµ1dν1)M(dµ2dν2)
∫
π(d`)

∫ `

0

dx

∫ x

0

dy

F ([(µ1, ν1), (xδ0 + µ2, (`− x)δ0 + ν2)], [(µ1, ν1), (yδ0, (`− y)δ0)]).

Recalling formula (3.10) for the potential kernel U , we see that the measure

M(dµdν)U((µ, ν), dµ′dν′)

is the sum of two terms. The first one is the distribution under

βM(dµ1dν1)M(dµ2dν2)M(dµ3dν3)

of the pair

(µ, ν) = [(µ1, ν1), (µ2, ν2)] , (µ′, ν′) = [(µ1, ν1), (µ3, ν3)].

The second one is the distribution under

M(dµ1dν1)M(dµ2, dν2)M(dµ3dν3)π(d`)1{0<y<x<`}dx dy

of the pair

(µ, ν) = [(µ1, ν1), (xδ0+µ2, (`−x)δ0+ν2)] , (µ′, ν′) = [(µ1, ν1), (yδ0+µ3, (`−y)δ0+ν3)].

In this form, it is clear that M(dµdν)U((µ, ν), dµ′dν′) has the desired invariance
property. This completes the proof of (3.9).

Consider now the resolvent kernels

Up((µ, ν), dµ′dν′) =
∫ ∞

0

dt e−ptΠt((µ, ν), dµ′, dν′).

By a standard argument (see e.g. [9], p.54), (3.9) also implies that, for every p > 0,
M(ΦUpΨ) = M(ΨÛpΦ), or equivalently∫ ∞

0

dt e−pt M(ΦΠtΨ) =
∫ ∞

0

dt e−pt M(ΨΠtΦ). (3.12)

Recall that our goal is to prove the identity M(ΦΠtΨ) = M(ΨΠtΦ) for every t > 0.
We may assume that the functions Φ and Ψ are continuous and both dominated
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by e−a<µ,1> for some a > 0. The latter condition guarantees that M(Φ) < ∞ and
M(Ψ) < ∞. From the definition of Πt and the right-continuity in probability of the
mapping t → (ρt, ηt) (Lemma 3.1.1), it is easy to verify that t → ΠtΨ(µ, ν) is right-
continuous over (0,∞). The same holds for the mapping t → M(ΦΠtΨ), and the
statement of the theorem follows from (3.12). �

For notational reasons, we make the convention that ρs = ηs = 0 if s < 0.

Corollary 3.1.6 The process (ηs, s ≥ 0) has a càdlàg modification under N or under
P . Furthermore, the processes (ρs, ηs; s ≥ 0) and (η(σ−s)−, ρ(σ−s)−; s ≥ 0) have the
same distribution under N .

A consequence of the corollary is the fact that the processes (Ht, t ≥ 0) and
(H(σ−t)∨0, t ≥ 0) have the same distribution (say in the sense of finite-dimensional
marginals when H is not continuous) under N . In view of the results of Chapter
2, this is not surprising, as the same time-reversal property obviously holds for the
discrete contour process. The more precise statement of the corollary will be useful
in the next sections.
Proof. The second part of the corollary is essentially a consequence of the duality
property stated in the previous theorem. Since we have still little information about
regularity properties of the process η, we will proceed with some care. We first
introduce the Kuznetsov measure K, which is the σ-finite measure on R × D(R+,R)
defined by

K(drdω) = dr N(dω).

We then define γ(r, ω) = r, δ(r, ω) = r + σ(ω) and, for every t ∈ R,

ρt(r, ω) = ρt−r(ω) , ηt(r, ω) = ηt−r(ω)

with the convention explained before the statement of the corollary. Note that
(ρt, ηt) 6= (0, 0) iff γ < t < δ.

It readily follows from Proposition 3.1.3 that, for every t ∈ R, the distribution of
(ρt, ηt) under K(·∩{(ρt, ηt) 6= (0, 0)}) is M. Let t1, . . . , tp ∈ R with t1 < t2 < · · · < tp.
Using Proposition 3.1.2 and induction on p, we easily get that the restriction to
(Mf (R+)2\{(0, 0)})p of the distribution of the p-tuple ((ρt1 , ηt1), . . . , (ρtp , ηtp)) is

M(dµ1dν1) Πt2−t1((µ1, ν1), dµ2dν2) . . .Πtp−tp−1((µp−1, νp−1), dµpdνp).

By Theorem 3.1.4, this measure is equal to

M(dµpdνp) Π̂tp−tp−1((µp, νp), dµp−1dνp−1) . . . Π̂t2−t1((µ2, ν2), dµ1dν1).

Hence the two p-tuples ((ρt1 , ηt1), . . . , (ρtp , ηtp)) and ((η−t1 , ρ−t1), . . . , (η−tp , ρ−tp))
have the same distribution, in restriction to (Mf (R+)2\{(0, 0)})p, under K. Since
(ρt, ηt) 6= (0, 0) iff γ < t < δ, a simple argument shows that we can remove the
restriction and conclude that these two p-tuples have the same distribution under K.
(This distribution is σ-finite except for an infinite mass at the point (0, 0)p.)

In particular, (ρt1 , . . . , ρtp) and (η−t1 , . . . , η−tp) have the same distribution under
K. Let F be a bounded continuous function on Mf (R+)p, such that F (0, . . . , 0) = 0.
Suppose that 0 < t1 < t2 < . . . < tp and let u < v. Then we have

K(1[u,v](γ)F (ργ+t1 , . . . , ργ+tp))

= lim
ε→0

∑
k∈Z, kε∈[u,v]

K
(

1{ρkε=0,ρ(k+1)ε 6=0}F (ρkε+t1 , . . . , ρkε+tp)
)
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and the similar formula

K(1[u,v](−δ)F (ηδ−t1 , . . . , ηδ−tp))

= lim
ε→0

∑
k∈Z, kε∈[u,v]

K
(

1{η−kε=0,η−(k+1)ε 6=0}F (η−kε−t1 , . . . , η−kε−tp)
)
,

using the right-continuity in N -measure of ηt. Hence the vectors (γ, ργ+t1 , . . . , ργ+tp)
and (−δ, ηδ−t1 , . . . , ηδ−tp) have the same distribution under K. It follows that the
processes (ρt, t ≥ 0) and (ησ−t, t ≥ 0) have the same finite-dimensional marginals
under N . Since we already know that (ρt, t ≥ 0) is càdlàg, we obtain that (ηt, t ≥ 0)
has a càdlàg modification under N . The time-reversal property of the corollary follows
immediately from the previous identification of finite-dimensional marginals. This
property implies in particular that η0+ = ησ− = 0 N a.e.

It remains to verify that (ηt, t ≥ 0) has a càdlàg modification under P . On each
excursion interval of X − I away from 0, we can apply the result derived above under
the excursion measure N . It remains to deal with instants t such that Xt = It, for
which ηt = 0. To this end, we note that, for every ε > 0,

N
(

sup
s∈[0,σ]

〈ηs, 1〉 > ε
)

= N
(

sup
s∈[0,σ]

〈ρs, 1〉 > ε
)
<∞.

Hence, for any fixed x > 0, we will have 〈ηs, 1〉 ≤ ε for all s ∈ [0, Tx] except possibly
for s belonging to finitely many excursion intervals of X − I. Together with the
continuity of η at times 0 and σ under N , this implies that P a.s. for every t such
that Xt = It, the right and left limits of ηs both exist at time t and vanish. �

3.2 The tree associated with Poissonnian marks

3.2.1 Trees embedded in an excursion

We first give the definition of the tree associated with a continuous function e : [a, b]→
R+ and p instants t1, . . . , tp with a ≤ t1 ≤ t2 ≤ · · · ≤ tp ≤ b.

Recall from Section 0.1 the definition of a (finite) rooted ordered tree, and the
notation T for the collection of these trees. If v is an individual (a vertex) in the
tree T ∈ T, the notation kv(T ) stands for the number of children of v. Individuals
v without children, i.e. such that kv(T ) = 0, are called leaves. For every p ≥ 1, we
denote by Tp the set of all (rooted ordered) trees with p leaves.

If T 1, T 2, . . . , T k are k trees, the concatenation of T 1, . . . , T k, which is denoted
by [T 1, T 2, . . . , T k], is defined in the obvious way: For n ≥ 1, (i1, . . . , in) belongs to
[T 1, T 2, . . . , T k] if and only if 1 ≤ i1 ≤ k and (i2, . . . , in) belongs to T i1 .

A marked tree is a pair θ = (T , {hv, v ∈ T }), where hv ≥ 0 for every v ∈ T . The
number hv is interpreted as the lifetime of individual v, and T is called the skeleton
of θ. We denote by Tp the set of all marked trees with p leaves.

Let θ1 = (T 1, {h1
v, v ∈ T }) ∈ Tp1 , . . . , θk = (T k, {hkv , v ∈ T k}) ∈ Tpk , and

h ≥ 0. The concatenation [θ1, θ2, . . . , θk]h is the element of Tp1+...+pk whose skeleton
is [T 1, T 2, . . . , T k] and such that the lifetimes of vertices in T i, 1 ≤ i ≤ k become the
lifetimes of the corresponding vertices in [T 1, T 2, . . . , T k], and finally the lifetime of
∅ in [θ1, θ2, . . . , θk]h is h.

Let a, b ∈ R+ with a ≤ b and let e : [a, b] −→ R+ be a continuous function. For
every a ≤ u ≤ v ≤ b, we set

m(u, v) = inf
u≤t≤v

e(t).
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Let t1, . . . , tp ∈ R+ be such that a ≤ t1 ≤ t2 ≤ · · · ≤ tp ≤ b. We will now construct a
marked tree

θ(e, t1, . . . , tp) = (T (e, t1, . . . , tp), {hv(e, t1, . . . , tp), v ∈ T }) ∈ Tp

associated with the function e and the times t1, . . . , tp. We proceed by induction on
p. If p = 1, T (e, t1) = {∅} and h∅(e, t1) = e(t1).

Let p ≥ 2 and suppose that the tree has been constructed up to order p− 1. Then
there exists an integer k ∈ {1, . . . , p−1} and k integers 1 ≤ i1 < i2 < · · · < ik ≤ p−1
such that m(ti, ti+1) = m(t1, tp) iff i ∈ {i1, . . . , ik}. For every ` ∈ {0, 1, . . . , k}, define
e` by the formulas

e0(t) = e(t)−m(t1, tp), t ∈ [t1, ti1 ],
e`(t) = e(t)−m(t1, tp), t ∈ [ti`+1, ti`+1 ], 1 ≤ ` ≤ k − 1.
ek(t) = e(t)−m(t1, tp), t ∈ [tik+1, tp].

We then set:

θ(e, t1, . . . , tp) = [θ(e0, t1, . . . , ti1), θ(e1, ti1+1, . . . , ti2), . . . , θ(ek, tik+1, . . . , tp)]m(t1,tp).

This completes the construction of the tree by induction. Note that k + 1 is the
number of children of ∅ in the tree θ(e, t1, . . . , tp), and m(t1, tp) is the lifetime of ∅.

3.2.2 Poissonnian marks

We consider a standard Poisson process with parameter λ defined under the probabil-
ity measure Qλ. We denote by τ1 ≤ τ2 ≤ · · · the jump times of this Poisson process.
Throughout this section, we argue under the measure Qλ ⊗ N , which means that
we consider the excursion measure of X − I together with independent Poissonnian
marks with intensity λ on R+. To simplify notation however, we will systematically
write N instead of Qλ ⊗N .

Set M = sup{i ≥ 1 : τi ≤ σ}, which represents the number of marks that fall in
the excursion interval (by convention, sup ∅ = 0). Then,

N(M ≥ 1) = N(1− e−λσ) = ψ−1(λ),

where the second equality follows from the fact that the Laplace exponent of the
subordinator Tx is ψ−1(λ) (see [5], Theorem VII.1).

From now on, we assume that the condition
∫∞

1
du
ψ(u) < ∞ holds, so that H

has continuous sample paths (Theorem 1.4.3). We can then use subsection 3.2.1 to
define the embedded tree θ(H, τ1, . . . , τM ) under N(· | M ≥ 1). Our main goal is to
determine the law of this tree.

Theorem 3.2.1 Under the probability measure N(· |M ≥ 1), the tree θ(H, τ1, . . . , τM )
is distributed as the family tree of a continuous-time Galton-Watson process starting
with one individual at time 0 and such that:
• Lifetimes of individuals have exponential distributions with parameter ψ′(ψ−1(λ));
• The offspring distribution is the law of the variable ξ with generating function

E[rξ] = r +
ψ((1− r)ψ−1(λ))
ψ−1(λ)ψ′(ψ−1(λ))

.
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Remark. As the proof will show, the theorem remains valid without the assump-
tion that H has continuous paths. We will leave this extension to the reader. Apart
from some technical details, it simply requires the straightforward extension of the
construction of subsection 3.2.1 to the case when the function e is only lower semi-
continuous.

The proof of Theorem 3.2.1 requires a few intermediate results. To simplify no-
tation, we will write τ = τ1. We start with an important application of Corollary
3.1.6.

Lemma 3.2.2 For any nonnegative measurable function f on Mf (R+),

N(f(ρτ )1{M≥1}) = λ

∫
M(dµdν) f(µ) e−ψ

−1(λ) 〈ν,1〉.

Proof. We have

N(f(ρτ )1{M≥1}) = λN
(∫ σ

0

dt e−λt f(ρt)
)

= λN
(∫ σ

0

dt e−λ(σ−t) f(ηt)
)
,

using the time-reversal property of Corollary 3.1.6. At this point, we use the Markov
property of X under N :

N
(∫ σ

0

dt e−λ(σ−t) f(ηt)
)

= N
(∫ σ

0

dt f(ηt)EXt [e
−λT0 ]

)
.

We have already noticed that for x ≥ 0,

Ex[e−λT0 ] = E0[e−λTx ] = e−xψ
−1(λ).

Since Xt = 〈ρt, 1〉 under N , it follows that

N(f(ρτ )1{M≥1}) = λN
(∫ σ

0

dt f(ηt) e−〈ρt,1〉ψ
−1(λ)

)
= λ

∫
M(dµdν) f(ν) e−〈µ,1〉ψ

−1(λ),

using Proposition 3.1.3. Since M is invariant under the mapping (µ, ν)→ (ν, µ), this
completes the proof. �

We now set

K =
{

inf{Hs : τ1 ≤ s ≤ τM} if M ≥ 2
∞ if M ≤ 1

Then K represents the lifetime of the ancestor in the tree θ(H, τ1, . . . , τM ) (assuming
that the event {M ≥ 2} holds). To give a formula for the number of children ξ of the
ancestor, set

τ(K) = inf{t ≥ τ : Ht ≤ K} , τ ′(K) = inf{t ≥ τ : Ht < K}.

Then, again on the event {M ≥ 2}, ξ−1 is the number of excursions of H above level
K, on the time interval [τ(K), τ

′
(K)], which contain at least one of the Poissonnian

marks. This identification follows readily from the construction of subsection 3.2.1.
The next proposition gives the joint distribution of the pair (K, ξ) under N(· ∩

{M ≥ 2}).
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Proposition 3.2.3 Let r ∈ [0, 1] and let h be a nonnegative measurable function on
[0,∞], with h(∞) = 0. Then,

N(rξh(K) |M ≥ 1)

=
(
rψ′(ψ−1(λ)) +

ψ((1− r)ψ−1(λ))− λ
ψ−1(λ)

)∫ ∞
0

db h(b) e−bψ
′(ψ−1(λ)).

The basic idea of the proof is to apply the Markov property to the process ρ at
time τ . To this end, we need some notation. We write P∗µ for the probability measure
under which ρ starts at an arbitrary measure µ ∈Mf (Rd) and is stopped when it hits
0. As usual, Ht = H(ρt). Under P∗µ, the process Xt = 〈ρt, 1〉 is the underlying Lévy
process started at 〈µ, 1〉, stopped at T0 = inf{t ≥ 0 : Xt = 0}. We keep the notation
It for the minimum process of X. We let (aj , bj), j ∈ J be the collection of excursion
intervals of X − I away from 0 and before time T0. For every j ∈ J we define the
corresponding excursion by

ωj(t) = X(aj+t)∧bj − Iaj , t ≥ 0.

From excursion theory, we know that the point measure∑
j∈J

δ(Iaj ,ωj)

is Poisson under P∗µ, with intensity 1[0,<µ,1>](u)duN(dω) (cf the proof of Proposition
1.2.6). On the other hand, by properties of the exploration process derived in Chapter
1, we know that P∗µ a.s. for every s ∈ [0, T0] such thatXs−Is = 0 (and in particular for
s = aj , j ∈ J) we have ρs = k<µ,1>−Isµ and thus Hs = H(k<µ,1>−Isµ). Observe also
that the image of the measure 1[0,<µ,1>](u)du under the mapping u→ H(k<µ,1>−uµ)
is exactly µ(dh). By combining these observations, we get:
(P) The point measure

∑
j∈J δ(Haj ,ωj) is Poisson under P∗µ, with intensity µ(dh)N(dω).

Finally, assume that we are also given a collection Pλ of Poisson marks with
intensity λ, independently of ρ under P∗µ, and set

L = inf{Haj : j ∈ J, (aj , bj) ∩ Pλ 6= ∅}, (inf ∅ =∞),
ζ = Card{j ∈ J : Haj = L and (aj , bj) ∩ Pλ 6= ∅}.

Then the Markov property of the exploration process at time τ shows that, for
any nonnegative measurable function h on [0,∞] such that h(∞) = 0,

N(1{M≥1}r
ξ−1h(K)) = N(1{M≥1}E∗ρτ [rζh(L)]). (3.13)

To verify this equality, simply observe that those excursions of H above level K on
the time interval [τ(K), τ

′
(K)] that contain one Poissonnian mark, exactly correspond

to those excursions of the shifted process 〈ρτ+t, 1〉 above its minimum that start from
the height K and contain one mark.

The next lemma is the key step towards the proof of Proposition 3.2.3.

Lemma 3.2.4 Let a ≥ 0 and let µ ∈ Mf (R+) be such that suppµ = [0, a] and
µ(dt) = β1[0,a](t)dt+ µs(dt), where µs is a countable sum of multiples of Dirac point
masses at elements of [0, a]. Then, if r ∈ [0, 1] and h is a nonnegative measurable
function on [0,∞] such that h(∞) = 0,

E∗µ[rζh(L)] = βrψ−1(λ)
∫ a

0

db e−ψ
−1(λ)µ([0,b]) h(b)

+
∑

µ({s})>0

(
e−(1−r)µ({s})ψ−1(λ) − e−µ({s})ψ−1(λ)

)
e−µ([0,s))ψ−1(λ) h(s). (3.14)
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Proof. First note that it is easy to derive the law of L under P∗µ. Let b ∈ [0, a]. We
have by property (P)

P∗µ[L > b] = P∗µ[(aj , bj) ∩ Pλ = ∅ for every j ∈ J s.t. Haj ≤ b]
= E∗µ[exp(−µ([0, b])N(1− e−λσ))]

= exp(−µ([0, b])ψ−1(λ)).

In particular, atoms of the distribution of L in [0,∞) exactly correspond to atoms of
µ, and the continuous part of the distribution of L is the measure

βψ−1(λ) exp(−µ([0, b])ψ−1(λ))1[0,a](b)db.

We then need to distinguish two cases:
(1) Let s ∈ [0, a] be an atom of µ. By the preceding formula,

P∗µ[L = s] = (1− e−µ({s})ψ−1(λ)))e−µ([0,s))ψ−1(λ).

Note that the excursions ωj that start at height s are the atoms of a Poisson measure
with intensity µ({s})N . Using also the independence properties of Poisson measures,
we get that, conditionally on {L = s}, ξ is distributed as a Poisson random variable
with intensity µ({s})ψ−1(λ), conditioned to be greater than or equal to 1:

E∗µ[rξ | L = s] =
e−(1−r)µ({s})ψ−1(λ)) − e−µ({s})ψ−1(λ))

1− e−µ({s})ψ−1(λ))
.

(2) If L is not an atom of µ, then automatically ξ = 1. This is so because the values
Haj corresponding to indices j such that µ({Haj}) = 0 must be distinct, by (P) and
standard properties of Poisson measures.

The lemma follows by combining these two cases with the distribution of L. �

Proof of Proposition 3.2.3. By combining (3.13), Lemma 3.2.2 and (3.14), we
obtain that

N(1{M≥1}r
ξ−1h(K)) = A1 +A2

where

A1 = βrλψ−1(λ)
∫ ∞

0

da e−αa
∫

Ma(dµdν)e−〈ν,1〉ψ
−1(λ)

∫ a

0

db e−ψ
−1(λ)µ([0,b]) h(b),

and

A2 = λ

∫ ∞
0

da e−αa
∫

Ma(dµdν)e−〈ν,1〉ψ
−1(λ)

×
∑

µ({s})>0

(
e−(1−r)µ({s})ψ−1(λ) − e−µ({s})ψ−1(λ)

)
e−µ([0,s))ψ−1(λ) h(s).

To compute A1, we observe that for u > 0 and 0 ≤ b ≤ a,

Ma(e−u(µ([0,b])+ν([0,a])) = Ma(e−u(µ+ν)([0,b]))Ma(e−uν((b,a]))

= e−βu(a+b) exp
(
− b

∫
π(d`)`(1− e−u`)

)
× exp

(
− (a− b)

∫
π(d`)

∫ `

0

dx(1− e−ux)
)

= eαa exp(−bψ′(u)− (a− b)ψ(u)
u

),
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using the easy formulas∫
π(d`)`(1− e−u`) = ψ′(u)− α− 2βu ,∫
π(d`)

∫ `

0

dx(1− e−ux) =
1
u

(ψ(u)− αu− βu2) .

It follows that

A1 = βrλψ−1(λ)
∫ ∞

0

da

∫ a

0

db h(b)e−bψ
′(ψ−1(λ))−(a−b)(λ/ψ−1(λ))

= βrψ−1(λ)2

∫ ∞
0

db h(b)e−bψ
′(ψ−1(λ)).

To evaluate A2, first observe that, with the notation preceding Proposition 3.1.3,
we have

A2 = λ

∫ ∞
0

da e−αaE
[ ∫
{s≤a}

N (dsd`dx)h(s) (e−(1−r)xψ−1(λ) − e−xψ
−1(λ))

× exp
(
− ψ−1(λ)

(∫
{s′≤a}

N (ds′d`′dx′)(`′ − x′) +
∫
{s′<s}

N (ds′d`′dx′)x′
))]

.

From Lemma 3.1.5, it follows that

A2 = λ

∫ ∞
0

da e−αa
∫ a

0

db h(b) Ma(e−(µ([0,b])+ν([0,a]))ψ−1(λ))

×
∫
π(d`)

∫ `

0

dx(e−(1−r)xψ−1(λ) − e−xψ
−1(λ))e−(`−x)ψ−1(λ)

= ψ−1(λ)
∫ ∞

0

db h(b) e−bψ
′(ψ−1(λ))

×
∫
π(d`)

∫ `

0

dx(e−(1−r)xψ−1(λ) − e−xψ
−1(λ))e−(`−x)ψ−1(λ)

where the last equality is obtained from the same calculations as those made in
evaluating A1. Furthermore, straightforward calculations give∫

π(d`)
∫ `

0

dx(e−(1−r)xψ−1(λ) − e−xψ
−1(λ))e−(`−x)ψ−1(λ)

= ψ′(ψ−1(λ))− βrψ−1(λ) +
1

rψ−1(λ)
(ψ((1− r)ψ−1(λ))− λ).

By substituting this in the previous display and combining with the formula for A1,
we arrive at the result of the proposition. �

Proof of Theorem 3.2.1. It is convenient to introduce the random variable Λ
defined by

Λ =
{
K if M ≥ 2
Hτ if M = 1

On the event {M = 1} we also set ξ = 0. We can easily compute the law of the pair
(Λ, ξ). Indeed, by applying the Markov property at τ as previously, we easily get

N(h(Λ)1{M=1}) = N(h(Hτ )1{M=1})
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= N(h(Hτ ) e−<ρτ ,1>ψ
−1(λ))

= λ

∫ ∞
0

da e−αa h(a)
∫

M(dµdν) e−(<µ,1>+<ν,1>)ψ−1(λ))

= λ

∫ ∞
0

da h(a) e−ψ
′(ψ−1(λ))a

By combining with Proposition 3.2.3, we get

N(rξh(Λ)1{M≥1})

=
(
rψ−1(λ)ψ′(ψ−1(λ)) + ψ((1− r)ψ−1(λ))

)∫ ∞
0

db h(b) e−bψ
′(ψ−1(λ)).

This formula entails that we have the following properties under N(· | M ≥ 1):
The variables Λ and ξ are independent, Λ is exponentially distributed with param-
eter ψ′(ψ−1(λ)), and the generating function of ξ is as stated in Theorem 3.2.1.
To complete the proof, it remains to verify the “recursivity property” of the tree
θ(H, τ1, . . . , τM ), that is to verify that under N(· | M ≥ 2), the shifted trees corre-
sponding to each individual in the first generation are independent and distributed
as the whole tree under N(· |M ≥ 1). This is a consequence of the following claim.
Claim. Let (αj , βj), j = 1, . . . , ξ be the excursion intervals of H above level Λ that
contain at least one mark, ranked in chronological order, and for every j = 1, . . . , ξ
let hj(s) = H(αj+s)∧βj − Λ be the corresponding excursion. Then, conditionally on
the pair (Λ, ξ), the excursions h1, . . . , hξ are independent and distributed according to
the law of (Hs, s ≥ 0) under N(· |M ≥ 1).

To verify this property, we first argue under P∗µ as previously. Precisely, we
consider the excursions ωj for all j ∈ J such that Haj = L and (aj , bj) ∩ Pλ 6= ∅. We
denote by ω̃1, . . . , ω̃ζ these excursions, ranked in chronological order. Then property
(P) and familiar properties of Poisson measures give the following fact. For every
k ≥ 1, under the measure P∗µ(· | ζ = k), the excursions ω̃1, . . . , ω̃k are independent,
distributed according to N(· | M ≥ 1), and these excursions are also independent of
the measure ∑

Haj>L

δ(Iaj ,ωj) .

Let σL := inf{s ≥ 0 : Hs = L}. Excursion theory for X − I allows us to reconstruct
the process (Xs∧σL , s ≥ 0) as a measurable function of the point measure in the last
display. Hence we can also assert that, under P∗µ(· | ζ = k), ω̃1, . . . , ω̃k are independent
of (Xs∧σL , s ≥ 0). In particular, they are independent of L = H(k<µ,1>−IσLµ).

We now apply these properties to the shifted processXτ+· underN(· |M ≥ 1). We
slightly abuse notation and keep denoting by ω̃1, . . . , ω̃ζ the excursions of Xτ+·− Iτ+·
that contain a mark (so that ζ = ξ − 1 on the event M ≥ 2). By construction, for
every j ∈ {2, . . . , ξ}, the function hj is the height process of ω̃j−1. Hence it follows
from the previous properties under P∗µ that under N(· | ξ = k) (for a fixed k ≥ 2), the
processes h2, . . . , hk are independent, have the distribution given in the claim, and
are also independent of the pair (h1,Λ). Hence, for any test functions F1, . . . , Fk, G,
we get

N(F1(h1) . . . Fk(hk)G(Λ) | ξ = k)
= N(F2(H) |M ≥ 1) · · ·N(Fk(H) |M ≥ 1)N(F1(h1)G(Λ) | ξ = k).

Now from Corollary 3.1.6, we know that the time-reversed process (H(σ−s)+ , s ≥ 0)
has the same distribution under N as the process (Hs, s ≥ 0). Furthermore, this
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time-reversal operation will leave Λ and ξ invariant and transform the excursion h1

into the time-reversal of hξ, denoted by ĥξ (provided we do simultaneously the similar
transformation on the underlying Poissonnian marks). It follows that

N(F1(h1)G(Λ) | ξ = k) = N(F1(ĥk)G(Λ) | ξ = k)

= N(F1(ĥk) | ξ = k)N(G(Λ) | ξ = k)
= N(F1(H) |M ≥ 1)N(G(Λ) |M ≥ 1).

By substituting this equality in the previous displayed formula, we obtain the claim.
This completes the proof of Theorem 3.2.1. �

3.3 Marginals of stable trees

We first reformulate Theorem 3.2.1 in a way more suitable for our applications. Recall
that Tp is the set of all (rooted ordered) trees with p leaves. If T ∈ Tp we denote by
LT the set of all leaves of T , and set NT = T \LT . Recall the notation kv = kv(T )
for the number of children of an element v of T . We write T∗p for the subset of Tp

composed of all trees T such that kv(T ) ≥ 2 for every v ∈ NT . By construction, the
skeleton of the marked trees θ(e, t1, . . . , tp) always belongs to T∗p.

Theorem 3.3.1 Let p ≥ 1. Then, for any nonnegative measurable function Φ on Tp,
and every λ > 0,

N
(
e−λσ

∫
{t1<···<tp<σ}

dt1 . . . dtp Φ(θ(H, t1, . . . , tp))
)

=
∑
T ∈T∗p

( ∏
v∈NT

|ψ(kv)(ψ−1(λ))|
kv!

)
×
∫ ∏

v∈T
dhv exp

(
− ψ′(ψ−1(λ))

∑
v∈T

hv

)
Φ(T , (hv)v∈T ).

Proof. By elementary properties of the standard Poisson process, the left side is
equal to

λ−pN(Φ(θ(H, τ1, . . . , τM ))1{M=p})

with the notation of the previous section. This quantity can be evaluated thanks to
Theorem 3.2.1: From the generating function of the offspring distribution, we get

P [ξ = 0] =
λ

ψ−1(λ)ψ′(ψ−1(λ))
P [ξ = 1] = 0

P [ξ = k] =
1
k!
ψ−1(λ)k−1|ψ(k)(ψ−1(λ))|

ψ′(ψ−1(λ))
, for every k ≥ 2.

Hence the probability underN(· |M ≥ 1) that the skeleton of the tree θ(H, τ1, . . . , τM )
is equal to a given tree T ∈ T∗p is( ∏

v∈NT

1
kv!

ψ−1(λ)kv−1|ψ(kv)(ψ−1(λ))|
ψ′(ψ−1(λ))

)( λ

ψ−1(λ)ψ′(ψ−1(λ))

)p
=

1
ψ−1(λ)

1
ψ′(ψ−1(λ))|T |

λp
∏
v∈NT

( 1
kv!
|ψ(kv)(ψ−1(λ))|

)
.
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Recalling thatN(M ≥ 1) = ψ−1(λ), and using the fact that the lifetimes hv, v ∈ T are
independently distributed according to the exponential distribution with parameter
ψ′(ψ−1(λ)), we easily arrive at the formula of the theorem. �

By letting λ → 0 in the preceding theorem, we get the following corollary, which
is closely related to Proposition 3.2 of [33].

Corollary 3.3.2 Suppose that
∫
π(dr) rp < ∞. Then, for any nonnegative measur-

able function Φ on Tp,

N
(∫
{t1<···<tp<σ}

dt1 . . . tp Φ(θ(H, t1, . . . , tp))
)

=
∑
T ∈T∗p

( ∏
v∈NT

βkv

)∫ ∏
v∈T

dhv exp
(
− α

∑
v∈T

hv

)
Φ(T , (hv)v∈T ) ,

where, for every k = 2, . . . , p,

βk =
|ψ(k)(0)|

k!
= β1{k=2} +

1
k!

∫
rk π(dr).

Remark. The formula of the corollary still holds without the assumption
∫
π(dr) rp <

∞ but it has to be interpreted properly since some of the numbers βk may be infinite.

From now on, we concentrate on the stable case ψ(u) = uγ for 1 < γ < 2. Then
the Lévy process X satisfies the scaling property

(Xλt, t ≥ 0)
(d)
= (λ1/γXt, t ≥ 0)

under P . Thanks to this property, it is possible to choose a regular version of the
conditional probabilities N(u) := N(· | σ = u) in such a way that for every u > 0 and
λ > 0, the law of (λ−1/γXλt, t ≥ 0) under N(λu) is N(u). Standard arguments then
show that the height process (Hs, s ≥ 0) is well defined as a continuous process under
the probability measures N(u). Furthermore, it follows from the approximations of
Ht (see Lemma 1.1.3) that the law of (Hλs, s ≥ 0) under N(λu) is equal to the law of
(λ1− 1

γHs, s ≥ 0) under N(u).
The probability measure N(1) is called the law of the normalized excursion. The

tree coded by the process (Ht, 0 ≤ t ≤ 1) under N(1) (in the sense of Section 0.6)
is called the stable continuum random tree. The next theorem identifies its finite-
dimensional marginals, in the sense of Aldous [3].

Theorem 3.3.3 Suppose that ψ(u) = uγ for some γ ∈ (1, 2). Then the law of the
tree θ(H, t1, . . . , tp) under the probability measure

p! 1{0<t1<t2<...<tp<1}dt1 . . . dtpN(1)(dω)

is characterized by the following properties:
(i) The probability of a given skeleton T ∈ T∗p is

p!∏
v∈NT

kv!

∏
v∈NT

|(γ − 1)(γ − 2) . . . (γ − kv + 1)|

(γ − 1)(2γ − 1) . . . ((p− 1)γ − 1)
.
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(ii) If p ≥ 2, then conditionally on the skeleton T , the lifetimes (hv)v∈T have a density
with respect to Lebesgue measure on RT+ given by

Γ(p− 1
γ )

Γ(δT )
γ|T |

∫ 1

0

duuδT −1 q(γ
∑
v∈T

hv, 1− u)

where δT = p− (1− 1
γ )|T | − 1

γ > 0, and q(s, u) is the continuous density at time s of
the stable subordinator with exponent 1− 1

γ , which is characterized by∫ ∞
0

du e−λu q(s, u) = exp(−s λ1− 1
γ ).

If p = 1, then T = {∅} and the law of h∅ has density

γ Γ(1− 1
γ

) q(γh, 1)

with respect to Lebesgue measure on R+.

Proof. For every u > 0, let Θ(u) be the law of the tree θ(H, s1, . . . , sp) under the
probability measure

p!u−p 1{s1<s2<···<sp<u} ds1 . . . dspN(u)(dω).

By the scaling properties of the height process (see the remarks before Theorem 3.3.3),
we have, for every u > 0 and every T ∈ T∗p,

Θ(u)({T } × RT+) = Θ(1)({T } × RT+).

Hence, by conditioning with respect to σ in Theorem 3.3.1, we get

1
p!
N(σpe−λσ) Θ(1)({T } × RT+) = ψ′(ψ−1(λ))−|T |

∏
v∈NT

|ψ(kv)(ψ−1(λ))|
kv!

. (3.15)

From this, we can compute Θ(1)({T } × RT+) by observing that, for every k ≥ 1,

ψ(k)(ψ−1(λ)) = γ(γ − 1) · · · (γ − k + 1)λ1− kγ ,

and

N(σpe−λσ) = | d
p

dλp
N(1− e−λσ)| = | d

p

dλp
ψ−1(λ)| = | 1

γ
(
1
γ
− 1) · · · ( 1

γ
− p+ 1)|λ

1
γ−p.

If we substitute these expressions in (3.15), the terms in λ cancel and we get part (i)
of the theorem.

To prove (ii), fix T ∈ T∗p, and let D be a bounded Borel subset of RT+. Write
pσ(du) for the law of σ under N . Then by applying Theorem 3.3.1 with Φ = 1{T }×D
and Φ = 1{T }×RT+ , we get∫

pσ(du) e−λu up Θ(u)({hv}v∈T ∈ D | T ) (3.16)

=
(∫

pσ(du) e−λu up
)∫

D

∏
v∈T

dhv ψ
′(ψ−1(λ))|T | exp

(
− ψ′(ψ−1(λ))

∑
v∈T

hv

)
.

89



By scaling (or inverting N(1−e−λσ) = λ1/γ), we have pσ(du) = c u−1− 1
γ du. It follows

that ∫ ∞
0

du e−λu up−1− 1
γ Θ(u)({hv}v∈T ∈ D | T )

=
γ|T |Γ(p− 1

γ )

λδT

∫
D

∏
v∈T

dhv exp(−γλ1− 1
γ

∑
v∈T

hv),

where δT = p− (1− 1
γ )|T | − 1

γ as in the theorem. Suppose first that p ≥ 2. To invert
the Laplace transform, observe that the right side can be written as

γ|T |Γ(p− 1
γ )

Γ(δT )

∫ ∞
0

du e−λu uδT −1 ×
∫ ∞

0

du′ e−λu
′
(∫

D

∏
v∈T

dhv q(γ
∑
v∈T

hv, u
′)
)

=
γ|T |Γ(p− 1

γ )

Γ(δT )

∫ ∞
0

du e−λu
(∫

D

∏
v∈T

dhv

∫ u

0

dr rδT −1 q(γ
∑
v∈T

hv, u− r)
)
.

The first formula of (ii) now follows. In the case p = 1, we get∫ ∞
0

du e−λu u−
1
γ Θ(u)(h∅ ∈ D) = γΓ(1− 1

γ
)
∫
D

dh exp(−γλ1− 1
γ h),

and the stated result follows by inverting the Laplace transform. �

Remarks. (a) The previous proof also readily gives the analogue of Theorem 3.3.3 in
the case ψ(u) = u2, which corresponds to the finite-dimensional marginals of Aldous’
continuum random tree (see Aldous [3], or Chapter 3 of [31]). In that case, the discrete
skeleton of θ(H, t1, . . . , tp) is with probability one a binary tree, meaning that kv = 2
for every v ∈ T . The law of T (H, t1, . . . , tp) is the uniform probability measure on
the set of all binary trees in T∗p, so that the probability of each possible skeleton is

p!
2p−1 (1× 3× · · · × (2p− 3))

.

This formula can be deduced informally by letting γ tend to 2 in Theorem 3.3.3 (i).
To obtain the analogue of (ii), note that there is an explicit formula for q(s, u)

when ψ(u) = u2:
q(s, u) =

s

2
√
πu3/2

e−s
2/(4u).

Observe that when the skeleton is binary, we have always |T | = 2p − 1. It follows
that the powers of λ cancel in the right side of (3.16), and after straightforward
calculations, we obtain that the density of (hv)v∈T on R2p−1

+ is

22p−1Γ(p− 1
2

) q(2
∑

hv, 1) = 2p (1× 3× · · · × (2p− 3)) (
∑

hv) exp(−(
∑

hv)2).

Compare with Aldous [3] or Chapter 3 of [31], but note that constants are different
because ψ(u) = u2 corresponds to a Brownian motion with variance 2t (also the CRT
is coded by twice the normalized Brownian excursion in [3]).

(b) We could get rid of the factor

p!∏
v∈NT

kv!

in Theorem 3.3.3 by considering rooted (unordered) trees with p labelled leaves rather
than rooted ordered trees : See the discussion at the end of Chapter 3 of [31].
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Chapter 4

The Lévy snake

4.1 The construction of the Lévy snake

Our goal is now to combine the branching structure studied in the previous chapters
with a spatial displacement prescribed by a Markov process ξ. Throughout this
chapter, we assume that H has continuous paths (the condition

∫∞
du/ψ(u) < ∞

holds) although many of the results can presumably be extended to the general case.

4.1.1 Construction of the snake with a fixed lifetime process

We consider a Markov process ξ with càdlàg paths and values in a Polish space E,
whose topology is defined by a metric δ. For simplicity, we will assume that ξ is defined
on the canonical space D(R+, E) of càdlàg functions from R+ into E. For every x ∈ E,
we denote by Πx the distribution of ξ started at x. It is implicitly assumed in our
definition of a Markov process that the mapping x → Πx is measurable. We also
assume that ξ is continuous in probability under Πx (equivalently, ξ has no fixed
discontinuities, Πx[ξs 6= ξs−] = 0 for every s > 0). On the other hand, we do not
assume that ξ is strong Markov.

For x ∈ E, we denote by Wx the space of all E-valued killed paths started at x.
An element of Wx is a càdlàg mapping w : [0, ζ) −→ E such that w(0) = x. Here
ζ ∈ (0,∞) is called the lifetime of the path. When there is a risk of confusion we
write ζ = ζw. Note that we do not require the existence of the left limit w(ζ−). By
convention, the point x is also considered as a killed path with lifetime 0. We set
W = ∪x∈EWx and equip W with the distance

d(w,w′) = δ(w(0),w′(0)) + |ζ − ζ ′|+
∫ ζ∧ζ′

0

dt (dt(w≤t,w′≤t) ∧ 1),

where dt is the Skorokhod metric on the space D([0, t], E), and w≤t denotes the
restriction of w to the interval [0, t]. It is then elementary to check that the space
(W, d) is a Polish space. The space (E, δ) is embedded isometrically in W thanks to
the previous convention.

Let x ∈ E and w ∈ Wx. If a ∈ [0, ζw) and b ∈ [a,∞), we can define a probability
measure Ra,b(w, dw′) on Wx by requiring that:

(i) Ra,b(w, dw′) a.s., w′(t) = w(t), ∀t ∈ [0, a);

(ii) Ra,b(w, dw′) a.s., ζw′ = b;
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(iii) the law of (w′(a+ t), 0 ≤ t < b− a) under Ra,b(w, dw′) is the law of (ξt, 0 ≤ t <
b− a) under Πw(a−).

In (iii), w(0−) = x by convention. In particular, R0,b(w, dw′) is the law of (ξt, 0 ≤
t < b) under Πx, and R0,0(w, dw′) = δx(dw′).

When w(ζw−) exists, we may and will extend the previous definition to the case
a = ζw.

We denote by (Ws, s ≥ 0) the canonical process on the product space (W)R+ .
We will abuse notation and also write (Ws, s ≥ 0) for the canonical process on the
set C(R+,W) of all continuous mappings from R+ into W. Let us fix x ∈ E and
w0 ∈ Wx, and let h ∈ C(R+,R+) be such that h(0) = ζw0 . For 0 ≤ s ≤ s′, we set

mh(s, s′) = inf
s≤r≤s′

h(r).

We assume that either w0(ζw0−) exists or mh(0, r) < h(0) for every r > 0. Then,
the Kolmogorov extension theorem can be used to construct the (unique) probability
measure Qhw0

on (Wx)R+ such that, for 0 = s0 < s1 < · · · < sn,

Qhw0
[Ws0 ∈ A0, . . . ,Wsn ∈ An]

= 1A0(w0)
∫
A1×···×An

Rmh(s0,s1),h(s1)(w0, dw1) . . . Rmh(sn−1,sn),h(sn)(wn−1, dwn).

Notice that our assumption on the pair (w0, h) is needed already for n = 1 to make
sense of the measure Rmh(s0,s1),h(s1)(w0, dw1).

From the previous definition, it is clear that, for every s < s′, Qhw0
a.s.,

Ws′(t) = Ws(t), ∀t < mh(s, s′),

and furthermore ζWs = h(s), ζWs′ = h(s′). Hence,

d(Ws,Ws′) ≤ |h(s)− h(s′)|+ |(h(s) ∧ h(s′))−mh(s, s′)| = (h(s) ∨ h(s′))−mh(s, s′).

From this bound, it follows that the mapping s −→ Ws is Qhw0
a.s. uniformly con-

tinuous on the bounded subsets of [0,∞) ∩ Q. Hence this mapping has Qhw0
a.s. a

continuous extension to the positive real line. We abuse notation and still denote
by Qhw0

the induced probability measure on C(R+,Wx). By an obvious continuity
argument, we have ζWs = h(s), for every s ≥ 0, Qhw0

a.s., and

Ws′(t) = Ws(t), ∀t < mh(s, s′), ∀s < s′, Qhw0
a.s.

We will refer to this last property as the snake property. The process (Ws, s ≥ 0) is
under Qhw0

a time-inhomogeneous continuous Markov process.

4.1.2 The definition of the Lévy snake

Following the remarks of the end of Chapter 1, we now consider the exploration
process ρ as a Markov process with values in the set

M0
f = {µ ∈Mf (R+) : H(µ) <∞ and suppµ = [0, H(µ)]} ∪ {0}.

We denote by Pµ the law of (ρs, s ≥ 0) started at µ. We will write indifferently H(ρs)
or Hs.

We then define Θ as the set of all pairs (µ,w) ∈ M0
f ×W such that ζw = H(µ),

and at least one of the following two properties hold:
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(i) µ({H(µ)}) = 0;

(ii) w(ζw−) exists.

We equip Θ with the product distance on M0
f × W. For every y ∈ E, we also set

Θy = {(µ,w) ∈ Θ : w(0) = y}.
From now on until the end of this section, we fix a point x ∈ E.
Notice that when H(µ) > 0 and µ({H(µ)}) = 0, we have inf [0,s]H(ρr) < H(µ)

for every s > 0, Pµ a.s. To see this, note that Is < 0 for every s > 0, P -a.s., by the
regularity of 0 for (−∞, 0), for the underlying Lévy process. Then, P -a.s. for every
s > 0 we can pick r ∈ (0, s) such that Xr = Ir < 0. Formula (1.11) then shows that
ρµr = k−Irµ and our assumption µ({H(µ)}) = 0 implies that H(ρµr ) < H(µ), which
gives the claim.

Using the last observation and the previous subsection, we can for every (µ,w) ∈
Θx define a probability measure Pµ,w on D(R+,Mf (R+)×W) by the formula

Pµ,w(dρ dW ) = Pµ(dρ)QH(ρ)
w (dW ),

where in the right side H(ρ) obviously stands for the function (H(ρs), s ≥ 0), which
is continuous Pµ a.s.

We will write Px instead of P0,x when µ = 0.

Proposition 4.1.1 The process (ρs,Ws) is under Pµ,w a càdlàg Markov process in
Θx.

Proof. We first verify that Pµ,w a.s. the process (ρs,Ws) does not visit Θc
x. We must

check that Ws(Hs−) exists whenever ρs({Hs}) > 0. Suppose thus that ρs({Hs}) > 0.
Then, we have also ρs′({Hs}) > 0, and so Hs′ ≥ Hs, for all s′ > s sufficiently
close to s. In particular, we can find a rational s1 > s such that Hs1 ≥ Hs and
inf [s,s1]Hr = Hs, which by the snake property implies that Ws1(t) = Ws(t) for every
t ∈ [0, Hs). However, from the construction of the measures Qhw, it is clear that a.s.
for every rational r > 0, the killed path Wr must have a left limit at every t ∈ (0, Hr].
We conclude that Ws(Hs−) = Ws1(Hs−) exists.

The càdlàg property of paths is obvious by construction. To obtain the Markov
property, we consider nonnegative functions f1, . . . , fn on M0

f and g1, . . . , gn on Wx.
Then, if 0 < s1 < · · · < sn,

Eµ,w[f1(ρs1)g1(Ws1) . . . fn(ρsn)gn(Wsn)]

= Eµ

[
f1(ρs1) . . . fn(ρsn)QH(ρ)

w [g1(Ws1) . . . gn(Wsn)]
]

= Eµ

[
f1(ρs1) . . . fn(ρsn)

∫
RmH(ρ)(0,s1),H(ρs1 )(w, dw1)

. . . RmH(ρ)(sn−1,sn),H(ρsn )(wn−1, dwn) g1(w1) . . . gn(wn)
]

= Eµ,w
[
f1(ρs1)g1(Ws1) . . . fn−1(ρsn−1)gn−1(Wsn−1)

Eρsn−1

[
fn(ρsn−sn−1)

∫
RmH(ρ)(0,sn−sn−1),H(ρsn−sn−1 )(Wsn−1 , dw)gn(w)

]]
,

where in the last equality we used the Markov property for (ρs, s ≥ 0) at time sn−1.
We get the desired result with a transition kernel given by

QrG(µ,w) =
∫

Pµ(dρ)
∫
RmH(ρ)(0,r),H(ρr)(w, dw′)G(ρr,w′)

=
∫

Pµ(dρ)
∫
QH(ρ)

w (dW )G(ρr,Wr).
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�
In what follows we will often use the convenient notation W s = (ρs,Ws). By

our construction, the conditional distribution under Pµ,w of (Ws, s ≥ 0) knowing
(ρs, s ≥ 0) is QH(ρ)

w . In particular, if we write ζs = ζWs
for the lifetime of Ws, we

have
ζs = H(ρs) = Hs for every s ≥ 0, Pµ,w a.s.

4.1.3 The strong Markov property

We denote by (Fs)s≥0 the canonical filtration on D(R+,Mf (R+)×W).

Theorem 4.1.2 The process (W s, s ≥ 0; Pµ,w, (µ,w) ∈ Θx) is strong Markov with
respect to the filtration (Fs+).

Proof. Let (µ,w) ∈ Θx. It is enough to prove that, if T is a bounded stopping time
of the filtration (Fs+), then, for any bounded FT+-measurable functional F , for any
bounded Lipschitz continuous function f on Θx, and for every t > 0,

Eµ,w[F f(WT+t)] = Eµ,w[F EWT
[f(W t)]].

First observe that

Eµ,w[F f(WT+t)] = lim
n→∞

∞∑
k=1

Eµ,w[F 1{ k−1
n ≤T<

k
n}
f(W k

n+t)]

= lim
n→∞

∞∑
k=1

Eµ,w[F 1{ k−1
n ≤T<

k
n}

Qtf(W k
n

)].

In the first equality, we used the right continuity of paths, and in the second one
the ordinary Markov property. We see that the desired result follows from the next
lemma.

Lemma 4.1.3 Let t > 0, let T be a bounded stopping time of the filtration (Fs+)
and let f be a bounded Lipschitz continuous function on Θx. Then the mapping
s −→ Qtf(W s) is Pµ,w a.s. right-continuous at s = T .

Proof of Lemma 4.1.3. We use the notation Ys =
〈
ρs, 1

〉
. Recall that Y is

distributed under Pµ,w as the reflected Lévy process X − I started at
〈
µ, 1
〉
. Let

ε > 0. By the right-continuity of the paths of Y , if s > T is sufficiently close to T ,
we have

ε1(s) = YT − inf
u∈[T,s]

Yu < ε, ε2(s) = Ys − inf
u∈[T,s]

Yu < ε.

On the other hand, we know from (1.13) that ρT+s = [kε1ρT , ρ
(T )
s ], and it follows

that kε1ρT = kε2ρs. Furthermore, inf [T,s]H(ρu) = H(kε1ρT ) = H(kε2ρs), and by the
snake property,

Ws(u) = WT (u), ∀u ∈ [0, H(kε1ρT )).

Let us fix w = (µ,w) ∈ Θx, and set

Vε(w) =
{

w′ = (µ′,w′) ∈ Θx; ∃ε1, ε2 ∈ [0, ε), kε1µ = kε2µ
′,

and w′(u) = w(u), ∀u ∈ [0, H(kε1µ))
}
.
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In view of the preceding observations, the proof of Lemma 4.1.3 reduces to checking
that

lim
ε→0

(
sup

w′∈Vε(w)

∣∣Qtf(w′)−Qtf(w)
∣∣) = 0. (4.1)

We will use a coupling argument to obtain (4.1). More precisely, if w′ ∈ Vε(w),
we will introduce two (random) variables w(1) and w(2) such that w(1), resp. w(2),
is distributed according to Qt(w, ·), resp. Qt(w′, ·), and w(1) and w(2) are close to
each other. Let us fix w′ ∈ Vε(w) and let ε1, ε2 ∈ [0, ε) be associated with w′ as in
the definition of Vε(w). For definiteness we assume that ε1 ≤ ε2 (the other case is
treated in a symmetric way). Let X(1) be a copy of the Lévy process X started at
0 and let I(1) and ρ(1) be the analogues of I and ρ for X(1). We can then define
w(1) = (µ(1),w(1)) by

µ(1) = [k−I(1)t
µ, ρ

(1)
t ]

w(1)(r) =

{
w(r) if r < H(k−I(1)t

µ),
ξ(1)(r −H(k−I(1)t

µ)) if H(k−I(1)t
µ) ≤ r < H(µ(1)),

where, conditionally on X(1), ξ(1) = (ξ(1)(t), t ≥ 0) is a copy of the spatial motion ξ
started at w(H(k−I(1)t

µ)−). Clearly, w(1) is distributed according to Qt(w, ·).
The definition of w(2) is analogous but we use another copy of the underlying Lévy

process. Precisely, we let Z be a copy of X independent of the pair (X(1), ξ(1)), and
if T∗(Z) := inf{r ≥ 0 : Zr = ε1 − ε2}, we set

X(2)
s =

{
Zs if 0 ≤ s ≤ T∗(Z),
ε1 − ε2 +X

(1)
s−T∗(Z) if s > T∗(Z).

We then take, with an obvious notation,

µ(2) = [k−I(2)t
µ′, ρ

(2)
t ].

The definition of w(2) is somewhat more intricate. Let τ (1) be the (a.s. unique) time
of the minimum of X(1) over [0, t]. Consider the event

A(ε, ε1, ε2) = {T∗(Z) + τ (1) < t, I
(1)
t < −ε}.

Notice that T∗(Z) is small in probability when ε is small, and I(1)
t < 0 a.s. It follows

that P [A(ε, ε1, ε2)] ≥ 1− α(ε), where the function α(ε) satisfies α(ε) −→ 0 as ε→ 0.
However, on the event A(ε, ε1, ε2), we have I(2)

t = ε1 − ε2 + I
(1)
t , and so

k−I(2)t
µ′ = k−I(1)t −ε1

kε2µ
′ = k−I(1)t −ε1

kε1µ = k−I(1)t
µ.

Also recall that from the definition of Vε(w), we have w′(r) = w(r) for every r <
H(kε1µ), hence for every r < H(k−I(1)t

µ) when A(ε, ε1, ε2) holds.
We construct w(2) by imposing that, on the set A(ε, ε1, ε2),

w(2)(r) =

{
w′(r) = w(r) if r < H(k−I(2)t

µ′) = H(k−I(1)t
µ),

ξ(1)(r −H(k−I(1)t
µ)) if H(k−I(1)t

µ) ≤ r < H(µ(2)),

whereas on A(ε, ε1, ε2)c, we take

w(2)(r) =

{
w′(r) if r < H(k−I(2)t

µ′),
ξ(2)(r −H(k−I(2)t

µ′)) if H(k−I(2)t
µ′) ≤ r < H(µ(2)),
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where, conditionally on X(2), ξ(2) is independent of ξ(1) and distributed according
to the law of ξ started at w′(H(k−I(2)t

µ′)−). Note that, in the first case, we use the

same process ξ(1) as in the definition of w(1). It is again easy to verify that w(2) is
distributed according to Qt(w′, ·).

To complete the proof, note that the distance in variation dvar(µ(1), µ(2)) is equal
to dvar(ρ

(1)
t , ρ

(2)
t ) on the set A(ε, ε1, ε2). Furthermore, from the construction of X(2),

on the set A(ε, ε1, ε2), we have also

ρ
(2)
t = ρ

(1)
t−T∗(Z).

and thus dvar(µ(1), µ(2)) = dvar(ρ
(1)
t , ρ

(1)
t−T∗(Z)) is small in probability when ε is small,

because t is a.s. not a discontinuity time of ρ(1). In addition, again on the set
A(ε, ε1, ε2), the paths w(1) and w(2) coincide on the interval [0, H(µ(1)) ∧ H(µ(2))),
and so

d(w(1),w(2)) ≤ |H(µ(2))−H(µ(1))| = |H(ρ(1)
t−T∗(Z))−H(ρ(1)

t )|

is small in probability when ε goes to 0. The limiting result (4.1) now follows from
these observations and the fact that P [A(ε, ε1, ε2)c] tends to 0 as ε goes to 0. �

4.1.4 Excursion measures

We know that µ = 0 is a regular recurrent point for the Markov process ρs, and the
associated local time is the process L0

s of Section 1.3. It immediately follows that
(0, x) is also a regular recurrent point for the Lévy snake (ρs,Ws), with associated
local time L0

s. We will denote by Nx the corresponding excursion measure. It is
straightforward to verify that

(i) the law of (ρs, s ≥ 0) under Nx is the excursion measure N(dρ);

(ii) the conditional distribution of (Ws, s ≥ 0) under Nx knowing (ρs, s ≥ 0) is QH(ρ)
x .

From these properties and Proposition 1.2.5, we easily get for any nonnegative
measurable function F on Mf (R+)×W,

Nx
(∫ σ

0

dsF (ρs,Ws)
)

=
∫ ∞

0

da e−αaE0 ⊗Πx[F (Ja, (ξr, 0 ≤ r ≤ a))] (4.2)

Here, as in Chapter 1, Ja(dr) stands for the measure 1[0,a](r)dUr, where U is under
the probability measure P 0 a subordinator with Laplace exponent ψ̃(λ) − α, where
ψ̃(λ) = ψ(λ)/λ. Note that the right side of (4.2) gives an invariant measure for the
Lévy snake (ρs,Ws).

The strong Markov property of the Lévy snake can be extended to the excur-
sion measures in the following form. Let T be a stopping time of the filtration
(Fs+) such that T > 0, Nx a.e., let F be a nonnegative FT+-measurable functional
on D(R+,Mf (R+) × W), and let G be any nonnegative measurable functional on
D(R+,Mf (R+)×W). Then,

Nx[F G(WT+s, s ≥ 0)] = Nx[F E∗
WT

[G]],

where P∗µ,w denotes the law under Pµ,w of the process (W s, s ≥ 0) stopped at inf{s ≥
0, ρs = 0}. This statement follows from Theorem 4.1.2 by standard arguments.
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4.2 The connection with superprocesses

4.2.1 Statement of the result

In this section, we state and prove the basic theorem relating the Lévy snake with
the superprocess with spatial motion ξ and branching mechanism ψ. This connection
was already obtained in a less precise form in [33].

We start with a few simple observations. Let κ(ds) be a random measure on R+,
measurable with respect to the σ-field generated by (ρs, s ≥ 0). Then, from the form
of the conditional distribution of (Ws, s ≥ 0) knowing (ρs, s ≥ 0), it is easy to see
that, for any nonnegative measurable functional F on Wx,

Ex
[ ∫

κ(ds)F (Ws)
]

= Ex
[ ∫

κ(ds) Πx[F (ξr, 0 ≤ r < Hs)]
]
,

and a similar formula holds under Nx. This identity implies in particular that the
left limit Ws(Hs−) exists κ(ds) a.e., Px a.s. (or Nx a.e.). We will apply this simple
observation to the random measure dsLas associated with the local time of H at level
a (cf Chapter 1). To simplify notation, we will write Ŵs = Ws(Hs−) when the limit
exists, and when the limit does not exist, we take Ŵs = ∆, where ∆ is a cemetery
point added to E.

In order to state the main theorem of this section, we denote by Za = Za(ρ,W )
the random measure on E defined by〈

Za, f
〉

=
∫ σ

0

dsL
a
s f(Ŵs).

This definition makes sense under the excursion measures Nx.

Theorem 4.2.1 Let µ ∈Mf (E) and let∑
i∈I

δ(xi,ρi,W i)

be a Poisson point measure with intensity µ(dx)Nx(dρdW ). Set Z0 = µ and for every
a > 0

Za =
∑
i∈I
Za(ρi,W i).

The process (Za, a ≥ 0) is a superprocess with spatial motion ξ and branching mech-
anism ψ, started at µ.

This means that (Za, a ≥ 0) is a Markov process with values in Mf (E), whose
semigroup is characterized by the following Laplace functional. For every 0 ≤ a ≤ b
and every function f ∈ Bb+(E),

E[exp−〈Zb, f〉 | Za] = exp−〈Za, ub−a〉

where the function (ut(y), t ≥ 0, y ∈ E) is the unique nonnegative solution of the
integral equation

ut(y) + Πy

(∫ t

0

ψ(ut−r(ξr)) dr
)

= Πy(f(ξt)). (4.3)

The proof of Theorem 4.2.1 is easily reduced to that of the following proposition.
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Proposition 4.2.2 Let 0 < a < b and let f ∈ Bb+(E). Then,

Nx(exp−〈Zb, f〉 | (Zr, 0 ≤ r ≤ a)) = exp−〈Za, ub−a〉 (4.4)

where for every t > 0 and y ∈ E,

ut(y) = Ny(1− exp−〈Zt, f〉).

Furthermore, if we set u0(y) = f(y), the function (ut(y), t ≥ 0, y ∈ E) is the unique
nonnegative solution of the integral equation (4.3).

Remark. Although Nx is an infinite measure, the conditioning in (4.4) makes sense
because we can restrict our attention to the set {Za 6= 0} = {Laσ > 0} which has finite
Nx-measure (cf Corollary 1.4.2). A similar remark applies in several places below, e.g.
in the statement of Proposition 4.2.3.

Given Proposition 4.2.2, it is a straightforward exercise to verify that the process
(Za, a ≥ 0) of Theorem 4.2.1 has the finite-dimensional marginals of the superpro-
cess with spatial motion ξ and branching mechanism ψ, started at µ. In fact the
statement of Propostion 4.2.2 means that the laws of (Za, a > 0) under Ny, y ∈ E
are the canonical measures of the superprocess with spatial motion ξ and branching
mechanism ψ, and given this fact, Theorem 4.2.1 is just the canonical representation
of superprocesses.

The remaining part of this section is devoted to the proof of Proposition 4.2.2.
We will proceed in two steps. In the first one, we introduce a σ-field Ea that contains
σ(Zu, 0 ≤ u ≤ a), and we compute Nx(exp−

〈
Zb, f

〉
| Ea) in the form given by (4.4).

In the second step, we establish the integral equation (4.3).

4.2.2 First step

Recall the notation of Section 1.3

τ̃as = inf{r :
∫ r

0

du 1{Hu≤a} > s}.

Note that τ̃as < ∞ for every s ≥ 0, Nx a.e. For a > 0, we let Ea be the σ-field
generated by the right-continuous process (ρτ̃as ,Wτ̃as

; s ≥ 0) and augmented with the
class of all sets that are Nx-negligible for every x ∈ E. From the second approximation
of Proposition 1.3.3, it is easy to verify that Laσ is measurable with respect to the σ-
field generated by (ρτ̃as , s ≥ 0), and in particular with respect to Ea (cf the beginning
of the proof of Theorem 1.4.1).

We then claim that Za is Ea-measurable. It is enough to check that, if g is bounded
and continuous on Wx, ∫ σ

0

dLas g(Ws)

is Ea-measurable. However, by Proposition 1.3.3, this integral is the limit in Nx-
measure as ε→ 0 of

1
ε

∫ σ

0

ds 1{a−ε<Hs≤a} g(Ws).

For ε < a, this quantity coincides with

1
ε

∫ ∞
0

ds 1{a− ε < Hτ̃as
≤ a} g(Wτ̃as

),
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and the claim follows from the definition of Ea.
We then decompose the measure Zb according to the contributions of the different

excursions of the process H above level a. Precisely, we let (αi, βi), i ∈ I be the
excursion intervals of H above a over the time interval [0, σ]. We will use the following
simple facts that hold N a.e.: For every i ∈ I and every t > 0, we have∫ βi+t

0

1{Hs≤a}ds >
∫ βi

0

1{Hs≤a}ds

and
Laβi+t > Laβi .

The first assertion is an easy consequence of the strong Markov property of ρ, recalling
that ρs({a}) = 0 for every s ≥ 0, N a.e. To get the second one, we can use Proposition
1.3.1 and the definition of the local time La to see that it is enough to prove that∫ βi+t

0

1{Hs>a}ds >
∫ βi

0

1{Hs>a}ds

for every t > 0 and i ∈ I. Via a time-reversal argument (Corollary 3.1.6), it suffices
to verify that, if σqa = inf{s > q : Hs > a}, we have∫ σqa+t

0

1{Hs≤a}ds >
∫ σqa

0

1{Hs≤a}ds

for every t > 0 and every rational q > 0, N a.e. on the set {q < σqa <∞}. The latter
fact is again a consequence of the strong Markov property of the process ρ.

As was observed in the proof of Proposition 1.3.1, for every i ∈ I, for every
s ∈ (αi, βi), the restriction of ρs to [0, a] coincides with ραi = ρβi . Furthermore, the
snake property implies that, for every i ∈ I, the paths Ws, αi < s < βi take the
same value xi at time a, and this value must be the same as the left limit Ŵαi = Ŵβi

(recall our assumption that ξ has no fixed discontinuities). We can then define the
pair (ρi,W i) ∈ D(R+,Mf (R+)×W) by setting〈

ρis, g
〉

=
∫

(a,∞)
ραi+s(dr) g(r − a) if 0 < s < βi − αi

ρis = 0 if s = 0 or s ≥ βi − αi,

and

W i
s(r) = Wαi+s(a+ r), ζW i

s
= Hαi+s − a if 0 < s < βi − αi

W i
s = xi if s = 0 or s ≥ βi − αi.

Proposition 4.2.3 Under Nx, conditionally on Ea, the point measure∑
i∈I

δ(ρi,W i)

is a Poisson point measure with intensity∫
Za(dy) Ny(·).
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Proof. Let the process ρat be defined as in Proposition 1.3.1. Note that under N
the definition of ρat only makes sense for t <

∫ σ
0
ds 1{Hs>a}. For convenience, we take

ρat = 0 if t ≥
∫ σ

0
ds 1{Hs>a}. We also set

ρ̃t = ρτ̃at , W̃t = Wτ̃at
.

With these definitions, the processes ρi, i ∈ I are exactly the excursions of the
process ρa away from 0. For every i ∈ I, introduce the local time at the beginning
(or the end) of excursion ρi:

`i = Laαi .

By Proposition 1.3.1 and standard excursion theory, we know that conditionally on
the process ρ̃t, the point measure ∑

i∈I
δ(`i,ρi)

is Poisson with intensity 1[0,Laσ ](`)d`N(dρ) (recall that Laσ is measurable with re-
spect to the σ-field generated by ρ̃). Note that Proposition 1.3.1 is formulated under
Px: However, by considering the first excursion of ρ away from 0 that hits the set
{supHs > a}, we can easily derive the previous assertion from Proposition 1.3.1.

Define L̃as = Laτ̃as (note that this is a continuous process), and let γa(r) be the
right-continuous inverse of L̃a:

γa(r) = inf{s ≥ 0 : L̃as > r}.

Then, if f is any nonnegative measurable function on E, we have Nx a.e.

〈Za, f〉 =
∫ ∞

0

dLas f(Ŵs) =
∫ ∞

0

dL̃as f(̂̃W s) =
∫ Laσ

0

d` f(̂̃W γa(`)). (4.5)

Notice that both processes L̃a and γa are measurable with respect to the σ-field
generated by ρ̃ (for L̃a, this follows again from Proposition 1.3.3).

Consider now the processes W̃ and W i, i ∈ I. The following two properties are
straightforward consequences of our construction:

(i) The law of W̃ under QH(ρ)
x is QH(ρ̃)

x .

(ii) Under QH(ρ)
x , conditionally on W̃ , the “excursions” W i, i ∈ I are independent

and the conditional distribution of W i is QH(ρi)
xi , where xi = Ŵβi = ̂̃W γa(`i).

To verify the second expression for xi, note that if Ãas =
∫ s

0
dr 1{Hr≤a}, we have

Wβi = W̃Ãaβi
(because Ãaβi+t > Ãaβi for every t > 0) and Ãaβi = γa(`i) (because

Laβi+t > Laβi = `i for every t > 0).
As a consequence of (i), the conditional distribution (under Nx) of W̃ knowing ρ

depends only on ρ̃. Hence, W̃ and the point measure
∑
i∈I δ(`i,ρi) are conditionally

independent given ρ̃ under Nx.
Let F be a nonnegative measurable function on D(R+,Mf (R+)×W). We use the

previous observations in the following calculation:

Nx
(
G(ρ̃, W̃ ) exp(−

∑
i∈I

F (ρi,W i))
)
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=
∫
N(dρ)QH(ρ)

x

(
G(ρ̃, W̃ ) exp(−

∑
i∈I

F (ρi,W i))
)

=
∫
N(dρ)QH(ρ)

x

(
G(ρ̃, W̃ )

∏
i∈I

Q
H(ρi)
ˆ̃Wγa(`i)

(e−F (ρi,·))
)

= Nx
(
G(ρ̃, W̃ )

∏
i∈I

Q
H(ρi)
ˆ̃Wγa(`i)

(e−F (ρi,·))
)

= Nx
(
G(ρ̃, W̃ ) exp

(
−
∫ Laσ

0

d`

∫
N(dρ)QH(ρ)

ˆ̃Wγa(`)

(1− e−F (ρ,·))
))
.

The second equality follows from (ii) above. In the last one, we used the condi-
tional independence of W̃ and of the point measure

∑
i∈I δ(`i,ρi), given ρ̃, and the

fact that the conditional distribution of this point measure is Poisson with intensity
1[0,Laσ ](`)d`N(dρ). Using (4.5), we finally get

Nx
(
G(ρ̃, W̃ ) exp(−

∑
i∈I

F (ρi,W i))
)

= Nx
(
G(ρ̃, W̃ ) exp

(
−
∫ Laσ

0

d`N ˆ̃Wγa(`)
(1− e−F (ρ,W ))

))
= Nx

(
G(ρ̃, W̃ ) exp(−

∫
Za(dy) Ny(1− e−F ))

)
.

This completes the proof. �

Let f be a nonnegative measurable function on E, and let 0 ≤ a < b. With the
preceding notation, it is easy to verify that Nx a.s.

〈
Zb, f

〉
=

∫ σ

0

dLbs f(Ŵs)

=
∑
i∈I

∫ βi

αi

dLbs f(Ŵs)

=
∑
i∈I

∫ ∞
0

dLb−as (ρi) f(Ŵ i
s)

=
∑
i∈I

〈
Zb−a(ρi,W i), f

〉
.

As a consequence of Proposition 4.2.3, we have then

Nx[exp−
〈
Zb, f

〉
| Ea] = exp−

〈
Za, ub−a

〉
,

where
ur(y) = Ny[1− exp−

〈
Zr, f

〉
].

4.2.3 Second step

It remains to prove that the function (ur(y), r ≥ 0, y ∈ E) introduced at the end of
the first step solves the integral equation (4.3). By definition, we have for a > 0,

ua(y) = Ny
(

1− exp−
∫ ∞

0

dLas f(Ŵs)
)
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= Ny
(∫ ∞

0

dLas f(Ŵs) exp
(
−
∫ ∞
s

dLar f(Ŵr)
))

= Ny
(∫ ∞

0

dLas f(Ŵs) E∗ρs,Ws

[
exp−

∫ ∞
0

dLar f(Ŵr)
])

(4.6)

where we recall that P∗µ,w stands for the law of the Lévy snake started at (µ,w) and
stopped when ρs first hits 0. In the last equality, we replaced exp−

∫∞
s
dLar f(Ŵr)

by its optional projection, using the strong Markov property of the Lévy snake to
identify this projection.

We now need to compute for a fixed (µ,w) ∈ Θx,

E∗µ,w
[

exp−
∫ ∞

0

dLar f(Ŵr)
]
.

We will derive this calculation from a more general fact, that is also useful for forth-
coming applications. First recall that Yt =

〈
ρt, 1

〉
is distributed under P∗µ,w as the

underlying Lévy process started at
〈
µ, 1
〉

and stopped when it first hits 0. We write
Kt = infr≤t Yr, and we denote by (αi, βi), i ∈ I the excursion intervals of Yt − Kt

away from 0. For every i ∈ I, we set hi = Hαi = Hβi . From the snake property, it is
easy to verify that Ws(hi) = w(hi−) for every s ∈ (αi, βi), i ∈ I, P∗µ,w a.s. We then
define the pair (ρi,W i) by the formulas〈

ρis, g
〉

=
∫

(hi,∞)
ραi+s(dr) g(r − hi) if 0 ≤ s ≤ βi − αi

ρis = 0 if s > βi − αi,

and

W i
s(t) = Wαi+s(hi + t), ζis = Hαi+s − hi if 0 < s < βi − αi

W i
s = w(hi−) if s = 0 or s ≥ βi − αi.

Lemma 4.2.4 Let (µ,w) ∈ Θx. The point measure∑
i∈I

δ(hi,ρi,W i)

is under P∗µ,w a Poisson point measure with intensity

µ(dh) Nw(h−)(dρ dW ).

Proof. Consider first the point measure∑
i∈I

δ(hi,ρi).

If Is = Ks−
〈
µ, 1
〉
, we have hi = H(ραi) = H(k−Iαiµ). Excursion theory for Ys−Ks

ensures that ∑
i∈I

δ(−Iαi ,ρi)

is under P∗µ,w a Poisson point measure with intensity 1[0,<µ,1>](u) duN(dρ). Since
the image measure of 1[0,<µ,1>](u) du under the mapping u −→ H(kuµ) is precisely
the measure µ, it follows that ∑

i∈I
δ(hi,ρi)
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is a Poisson point measure with intensity µ(dh)N(dρ). To complete the proof, it
remains to obtain the conditional distribution of (W i, i ∈ I) knowing (ρs, s ≥ 0).
However, the form of the conditional law QHw easily implies that under QHw , the
processes W i, i ∈ I are independent, and furthermore the conditional distribution of
W i is QH

i

w(hi−), where Hi
s = H(ρis). It follows that∑

i∈I
δ(hi,ρi,W i)

is a Poisson measure with intensity

µ(dh)N(dρ)QH(ρ)
w(h−)(dW ) = µ(dh) Nw(h−)(dρdW ).

This completes the proof. �
We apply Lemma 4.2.4 to a pair (µ,w) such that H(µ) ≤ a and µ({H(µ)}) = 0.

Then, it is easy to verify that P∗µ,w a.s.∫ ∞
0

dLar f(Ŵr) =
∑
i∈I

∫ βi

αi

dLar f(Ŵr) =
∑
i∈I

∫ ∞
0

dLa−hir (ρi) f(Ŵ i
r),

and thus, by Lemma 4.2.4,

E∗µ,w
[

exp−
∫ ∞

0

dLar f(Ŵr)
]

= exp
(
−
∫
µ(dh) Nw(h−)[1− exp−

〈
Za−h, f

〉
]
)
. (4.7)

We now come back to formula (4.6). As a consequence of Proposition 1.2.5, we
know that ρs({a}) = 0 for every s ≥ 0, Ny a.e. We can thus use (4.7) to get

ua(y) = Ny
(∫ ∞

0

dLas f(Ŵs) exp
(
−
∫
ρs(dh) NWs(h−)[1− exp−

〈
Za−h, f

〉
]
))

= Ny
(∫ ∞

0

dLas f(Ŵs) exp
(
−
∫
ρs(dh)ua−h(Ws(h−))

))
. (4.8)

Let Ja, P 0 be as in (4.2).

Lemma 4.2.5 For any nonnegative measurable function F on Θy,

Ny
(∫ ∞

0

dLas F (ρs,Ws)
)

= e−αaE0 ⊗Πy[F (Ja, (ξr, 0 ≤ r < a))].

Proof. If F (ρs,Ws) depends only on ρs, the result follows from Corollary 1.3.4. In
the general case, we may take F such that F (ρs,Ws) = F1(ρs)F2(Ws), and we use
the simple observation of the beginning of this section. �

From (4.8) and Lemma 4.2.5, we get

ua(y) = e−αaE0 ⊗Πy

[
f(ξa) exp

(
−
∫
Ja(dh)ua−h(ξh−)

)]
= Πy

[
f(ξa) exp

(
−
∫ a

0

ψ̃(ua−r(ξr)) dr
)]
.

The proof of (4.3) is now completed by routine calculations. We have

ua(y) = Πy[f(ξa)]−Πy

[
f(ξa)

∫ a

0

db ψ̃(ua−b(ξb)) exp
(
−
∫ a

b

ψ̃(ua−r(ξr)) dr
)]

103



= Πy[f(ξa)]−Πy

[ ∫ a

0

db ψ̃(ua−b(ξb))

Πξb

[
f(ξa−b) exp

(
−
∫ a−b

0

ψ̃(ua−b−r(ξr)) dr
)]]

= Πy[f(ξa)]−Πy

[ ∫ a

0

db ψ̃(ua−b(ξb))ua−b(ξb)
]
,

which gives (4.3) and completes the proof of Proposition 4.2.2. �

Remark. By combining the previous arguments, especially Lemma 4.2.4, with the
duality properties of ρ (see the derivation of (4.33) below), we could have obtained the
following result. Let f and g be nonnegative measurable functions defined respectively
on E and on Mf (E). Let V be a subordinator with Laplace exponent ψ′(λ)−α defined
under the probability measure P 0. Then, for every a > 0,

Nx
(∫
Za(dy) f(y) g(Za)

)
= e−αaE0 ⊗Πx

[
f(ξa)EaV,ξ

[
g
(∫
N (dsdρdW )Za−s(ρ,W )

)]]
, (4.9)

whereN (dsdρdW ) is under P aV,ξ a Poisson point measure on R+×D(R+,Mf (R+)×W)
with intensity

1[0,a](s) dVs Nξs(dρdW ).

Formula (4.9) identifies the Palm distributions associated with the random mea-
sure Za under Nx. It should be compared with the results of Chapter 4 of [8], in
particular Proposition 4.1.5. In the stable case considered in [8], V is a stable sub-
ordinator, which arises analytically in the derivation of the Palm measure formula.
Here V can be interpreted probabilistically in terms of the measure-valued processes
ρ and η. As (4.9) will not be needed in the applications below, we will leave details
of the proof to the reader.

4.3 Exit measures

Throughout this section, we consider an open set D ⊂ E, and we denote by τ the
first exit time of ξ from D:

τ = inf{t ≥ 0 : ξt /∈ D},

where inf ∅ =∞ as usual. By abuse of notation, we will also denote by τ(w) the exit
time from D of a killed path w ∈ W,

τ(w) = inf{t ∈ [0, ζw) : w(t) /∈ D} .

Let x ∈ D. The next result is much analogous to Proposition 1.3.1.

Proposition 4.3.1 Assume that Πx(τ <∞) > 0. Then,∫ ∞
0

ds 1{τ(Ws)<Hs} =∞ , Px a.s.

Furthermore, let

σDs = inf{t ≥ 0 :
∫ t

0

dr 1{τ(Wr)<Hr} > s},
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and let ρDs ∈Mf (R+) be defined by

〈ρDs , f〉 =
∫
ρσDs (dr) f(r − τ(WσDs

)) 1{r>τ(WσDs
)}.

Then the process (ρDs , s ≥ 0) has the same distribution under Px as (ρs, s ≥ 0).

Remark. We could have considered the more general situation of a space-time open
set D (as a matter of fact, this is not really more general as we could replace ξt by
(t, ξt)). Taking D = [0, a) × E, we would recover part of the statement of Proposi-
tion 1.3.1. This proposition contains an independence statement that could also be
extended to the present setting.

Proof. To simplify notation, we set

ADs =
∫ s

0

dr 1{τ(Wr)<Hr}.

By using (4.2), excursion theory and our assumption Πx(τ < ∞) > 0, it is a simple
exercise to verify that AD∞ = ∞, Px a.s., and thus the definition of σDs makes sense
for every s ≥ 0, a.s. The arguments then are much similar to the proof of Proposition
1.3.1. For every ε > 0, we introduce the stopping times Skε , T kε , k ≥ 1, defined
inductively by:

S1
ε = inf{s ≥ 0 : τ(Ws) <∞ and ρs((τ(Ws),∞)) ≥ ε},
T kε = inf{s ≥ Skε : τ(Ws) =∞},
Sk+1
ε = inf{s ≥ T kε : τ(Ws) <∞ and ρs((τ(Ws),∞)) ≥ ε}.

It is easy to see that these stopping times are a.s. finite, and Skε ↑ ∞, T kε ↑ ∞ as
k ↑ ∞.

From the key formula (1.13), we see that for

Skε ≤ s < inf{r ≥ Skε : 〈ρr, 1〉 ≤ ρSkε ([0, τ(WSkε
)])}

we have Hs > τ(WSkε
), and the paths Ws and WSkε

coincide over [0, τ(WSkε
)] (by the

snake property), so that in particular τ(Ws) = τ(WSkε
) <∞. On the other hand, for

s = inf{r ≥ Skε : 〈ρr, 1〉 ≤ ρSkε ([0, τ(WSkε
)])}

the path Ws is the restriction of WSkε
to [0, τ(WSkε

)) and thus τ(Ws) = ∞. From
these observations, we see that

T kε = inf{r ≥ Skε : 〈ρr, 1〉 ≤ ρSkε ([0, τ(WSkε
)])}

and that conditionally on the past up to time Skε , the process

Y k,εs = ρ(Skε+s)∧Tkε ((τ(WSkε
),∞))

is distributed as the underlying Lévy process started at ρSkε ((τ(WSkε
),∞)) and stopped

at its first hitting time of 0.
The same argument as in the proof of (1.18) shows that, for every t ≥ 0,

lim
ε→0

sup
{k≥1,Skε≤t}

ρSkε ((τ(WSkε
),∞)) = 0, a.s. (4.10)
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The remaining part of the proof is very similar to the end of the proof of Proposi-
tion 1.3.1. Using (4.10) and the observations preceding (4.10), we get by a passage to
the limit ε→ 0 that the total mass process 〈ρDs , 1〉 = ρσDs ((τ(WσDs

),∞)) has the same
distribution as the process 〈ρs, 1〉. Then the statement of the proposition follows by
an argument similar to the second step of the proof of Proposition 1.3.1. �

Let `D = (`D(s), s ≥ 0) be the local time at 0 of the process 〈ρD, 1〉. Recall the
notation ADs from the previous proof. We define the exit local time from D by the
formula

LDs = `D(ADs ) = `D(
∫ s

0

dr 1{τ(Wr)<Hr}).

Recall from (4.2) the notation Ja, P
0.

Proposition 4.3.2 For any nonnegative measurable function Φ on Mf (R+)×W,

Nx
(∫ σ

0

dLDs Φ(ρs,Ws)
)

= E0 ⊗Πx

[
1{τ<∞}e−ατ Φ(Jτ , (ξr, 0 ≤ r < τ))

]
.

Proof. By applying Lemma 1.3.2 to the reflected Lévy process 〈ρD, 1〉, we get for
every s ≥ 0,

`D(s) = lim
ε→0

1
ε

∫ s

0

dr 1{0<H(ρDr )≤ε}

in L1(Px). From a simple monotonicity argument, we have then for every t ≥ 0

lim
ε→0

Ex
[
sup
s≤t

∣∣∣∣`D(s)− 1
ε

∫ s

0

dr 1{0<H(ρDr )≤ε}

∣∣∣∣] = 0.

Using the formulas LDs = `D(ADs ) and H(ρσDr ) = τ(WσDr
)+H(ρDr ) (the latter holding

on the set {H(ρσDr ) > τ(WσDr
)}, by the definition of ρD), we obtain

lim
ε→0

Ex
[
sup
s≤t

∣∣∣∣LDs − 1
ε

∫ s

0

dr 1{τ(Wr)<Hr≤τ(Wr)+ε}

∣∣∣∣] = 0.

Arguing as in the derivation of (1.29), we get, for any measurable subset V of
D(R+,Mf (R+)×W) such that Nx(V ) <∞,

lim
ε→0

Nx
(

1V sup
s≤t

∣∣∣∣LDs − 1
ε

∫ s

0

dr 1{τ(Wr)<Hr≤τ(Wr)+ε}

∣∣∣∣) = 0. (4.11)

We then observe that for any bounded measurable function F on R+×Mf (R+)×
W, we have

Nx
(∫ σ

0

dsF (s, ρs,Ws)
)

= E ⊗Πx

[ ∫ L∞

0

daF (L−1(a),Σa, (ξr, 0 ≤ r < a))
]

(4.12)

where the random measure Σa is defined under P by

〈Σa, g〉 =
∫ L−1(a)

0

dSs g(a− Ls).

Indeed, we observe that the special case where F (s, µ,w) does not depend on w,

N
(∫ σ

0

dsF (s, ρs)
)

= E
[ ∫ L∞

0

daF (L−1(a),Σa)
]
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is a consequence of Proposition 1.1.4 (see the proof of Proposition 1.2.5), and it then
suffices to use the conditional distribution of W knowing (ρs, s ≥ 0).

After these preliminaries, we turn to the proof of the proposition. We let F be
a bounded continuous function on R+ ×Mf (R+) ×W, and assume in addition that
there exist δ > 0 and A > 0 such that F (s, µ,w) = 0 if s ≤ δ or s ≥ A. As a
consequence of (4.11) and (4.12), we have then

Nx
(∫ σ

0

dLDs F (s, ρs,Ws)
)

= lim
ε→0

Nx
(1
ε

∫ σ

0

dr F (r, ρr,Wr) 1{τ(Wr)<Hr≤τ(Wr)+ε}

)
= lim
ε→0

1
ε
E ⊗Πx

[ ∫ L∞

0

daF (L−1(a),Σa, (ξr, 0 ≤ r < a)) 1{τ<a≤τ+ε}

]
= E ⊗Πx[1{τ<L∞} F (L−1(τ),Στ , (ξr, 0 ≤ r < τ))].

From this identity, we easily get

Nx
(∫ σ

0

dLDs Φ(ρs,Ws)
)

= E ⊗Πx[1{τ<L∞}Φ(Στ , (ξr, 0 ≤ r < τ))].

Recall that P [L∞ > a] = e−αa and, that conditionally on {L∞ > a}, Σa has the
same distribution as Ja. The last formula is thus equivalent to the statement of the
proposition.

�
We now introduce an additional assumption. Namely we assume that for every

x ∈ D, the process ξ is Πx a.s. continuous at t = τ , on the event {τ <∞}. Obviously
this assumption holds if ξ has continuous sample paths, but there are other cases of
interest.

Under this assumption, Proposition 4.3.2 ensures that Nx a.e. the left limit Ŵs

exists dLDs a.e. over [0, σ] and belongs to ∂D. We define under Nx the exit measure
ZD from D by the formula

〈ZD, g〉 =
∫ σ

0

dLDs g(Ŵs).

The previous considerations show that ZD is a (finite) measure supported on ∂D.
As a consequence of Proposition 4.3.2, we have for every nonnegative measurable
function g on ∂D,

Nx(〈ZD, g〉) = Πx(1{τ<∞}e−ατg(ξτ )).

Theorem 4.3.3 Let g be a bounded nonnegative measurable function on ∂D. For
every x ∈ D set

u(x) = Nx(1− exp−〈ZD, g〉).

Then u solves the integral equation

u(x) + Πx

(∫ τ

0

dt ψ(u(ξt))
)

= Πx(1{τ<∞}g(ξτ )).

Proof. Several arguments are analogous to the second step of the proof of Proposition
4.2.2 in Section 4, and so we will skip some details. By the definition of ZD, we have

u(x) = Nx
(

1− exp−
∫ σ

0

dLDs g(Ŵs)
)
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= Nx
(∫ σ

0

dLDs g(Ŵs) exp
(
−
∫ σ

s

dLDr g(Ŵr)
))

= Nx
(∫ σ

0

dLDs g(Ŵs) E∗ρs,Ws

[
exp−

∫ ∞
0

dLDr g(Ŵr)
])
.

Note that the definition of the random measure dLDr makes sense under P∗µ,w, provided
that τ(w) =∞, thanks to Lemma 4.2.4 and the approximations used in the proof of
Proposition 4.3.2. Using Lemma 4.2.4 as in subsection 4.2.3, we get if (µ,w) ∈ Θx is
such that τ(w) =∞,

E∗µ,w
[

exp−
∫ ∞

0

dLDr g(Ŵr)
]

= exp
(
−
∫
µ(dh) Nw(h−)

(
1− exp−

∫ σ

0

dLDr g(Ŵr)
))

= exp
(
−
∫
µ(dh) Nw(h−)

(
1− e−〈Z

D,g〉
))

= exp(−
∫
µ(dh)u(w(h−))).

Hence, using also Proposition 4.3.2,

u(x) = Nx
(∫ σ

0

dLDs g(Ŵs) exp(−
∫
ρs(dh)u(Ws(h−))

)
= E0 ⊗Πx

[
1{τ<∞}e−ατg(ξτ ) exp(−

∫
Jτ (dh)u(ξh−))

]
= Πx

[
1{τ<∞} g(ξτ ) exp

(
−
∫ τ

0

dh ψ̃(u(ξh))
)]
.

The integral equation of the theorem now follows by the same routine arguments used
in the end of the proof of Proposition 4.2.2. �

4.4 Continuity properties of the Lévy snake

From now on until the end of this chapter we assume that the underlying spatial
motion ξ has continuous sample paths. The construction of Section 4.1 applies with
the following minor simplification. Rather than considering càdlàg paths, we can
define Wx as the set of all E-valued killed continuous paths started at x. An element
of W is thus a continuous mapping w : [0, ζ) −→ E, and the distance between w and
w′ is defined by

d(w,w′) = δ(w(0),w′(0)) + |ζ − ζ ′|+
∫ ζ∧ζ′

0

dt (sup
r≤t

δ(w(r),w′(r)) ∧ 1). (4.13)

Without risk of confusion, we will keep the same notation as in Section 4.1. The
construction developed there goes through without change with these new definitions.

Our goal is to provide conditions on ψ and ξ that will ensure that the process
Ws is continuous with respect to a distance finer than d, which we now introduce.
We need to consider stopped paths rather than killed paths. A stopped (continuous)
path is a continuous mapping w : [0, ζ] −→ E, where ζ ≥ 0. When ζ = 0, we identify
w with w(0) ∈ E. We denote by W∗ the set of all stopped paths in E. The set W∗
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is equipped with the distance

d∗(w,w′) = |ζ − ζ ′|+ sup
t≥0

δ(w(t ∧ ζ),w(t ∧ ζ ′)).

Note that (W∗, d∗) is a Polish space.
If w ∈ W is a killed path such that ζ > 0 and the left limit ŵ = w(ζ−) exists, we

write w∗ for the corresponding stopped path w∗(t) = w(t) if t < ζ, and w∗(ζ) = ŵ.
When ζ = 0 we make the convention that x∗ = x. Note that W ∗s is well defined Px
a.s., for every fixed s ≥ 0.

As in Chapter 1, we set

γ = sup{a ≥ 0 : lim
λ→∞

λ−aψ(λ) =∞} ≥ 1.

Proposition 4.4.1 Suppose that there exist three constants p > 0, q > 0 and C <∞
such that for every t > 0 and x ∈ E,

Πx

[
sup
r≤t

δ(x, ξr)p
]
≤ C tq. (4.14)

Suppose in addition that

q(1− 1
γ

) > 1.

Then the left limit Ŵs = Ws(Hs−) exists for every s ≥ 0, Px a.s. or Nx a.e. Further-
more the process (W ∗s , s ≥ 0) has continuous sample paths with respect to the distance
d∗, Px a.s. or Nx a.e.

Remark. Only the small values of t are relevant in our assumption (4.14) since we
can always replace the distance δ by δ ∧ 1. Uniformity in x could also be relaxed, but
we do not strive for the best conditions.

Proof. It is enough to argue under Px. Let us fix t ≥ 0 and s ∈ (0, 1). Then,

Ex[d∗(W ∗t ,W
∗
t+s)

p] ≤ 2p
(
Ex[|Ht+s−Ht|p]+Ex

[
sup
r≥0

δ(W ∗t (r∧Ht),W ∗t+s(r∧Ht+s))p
])

.

To simplify notation, set m = mH(t, t + s) = inf [t,t+s]Hr. From the conditional
distribution of the process W knowing H, we easily get

Ex
[

sup
u≥0

δ(W ∗t (u ∧Hs),W ∗t+s(u ∧Ht+s))p
∣∣∣Hr, r ≥ 0

]
≤ 2p

(
Πx

[
Πξm

[
sup

u≤Ht−m
δ(ξ0, ξu)p

]]
+ Πx

[
Πξm

[
sup

u≤Ht+s−m
δ(ξ0, ξu)p

]])
≤ C 2p (|Ht −m|q + |Ht+s −m|q) ,

using our assumption (4.14) in the last bound. By combining the previous estimates
with Lemma 1.4.6, we arrive at

Ex[d∗(W ∗t ,W
∗
t+s)

p] ≤ 22p+1
(
Cpϕ(1/s)−p + C Cqϕ(1/s)−q

)
,

where ϕ(λ) = λ/ψ−1(λ). Now choose α ∈ (0, 1 − 1
γ ) such that qα > 1. Notice that

we may also assume pα > 1 since by replacing the distance δ by δ ∧ 1, we can take
p as large as we wish. The condition α < 1 − 1

γ and the definition of γ imply that
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ϕ(λ) ≥ cλα for every λ ≥ 1, for some constant c > 0. Hence, there exists a constant
C ′ independent of t and s such that

Ex[d∗(W ∗t ,W
∗
t+s)

p] ≤ C ′(spα + sqα) .

The Kolmogorov lemma then gives the existence of a continuous modification of the
process (W ∗s , s ≥ 0) with respect to the distance d∗. The various assertions of the
proposition follow easily, recalling that we already know that the process (Ws, s ≥ 0)
has continuous paths for the distance d. �

4.5 The Brownian motion case

In this section, we concentrate on the case when the underlying spatial motion ξ is
Brownian motion in Rd. We will give a necessary and sufficient condition for the
process W ∗ to have a modification that is continuous with respect to the distance d∗.

To this end, we introduce the following condition on ψ:∫ ∞
1

(∫ t

0

ψ(u) du
)−1/2

dt <∞. (4.15)

Note that this condition is stronger than the condition
∫∞

1
du/ψ(u) <∞ for the path

continuity of H. In fact, since ψ is convex, there exists a positive constant c such
ψ(t) ≥ ct for every t ≥ 1. Then, for t ≥ 1,∫ t

0

ψ(u)du ≤ tψ(t) ≤ c−1ψ(t)2

and thus ∫ ∞
1

du

ψ(u)
≤ c−1/2

∫ ∞
1

(∫ t

0

ψ(u) du
)−1/2

dt.

Also note that (4.15) holds if γ > 1. On the other hand, it is easy to produce examples
where (4.15) does not hold although H has continuous sample paths.

Condition (4.15) was introduced in connection with solutions of ∆u = ψ(u) in
domains of Rd. We briefly review the results that will be relevant to our needs (see
[25],[41] and also Lemma 2.3 in [45]). We denote by Br the open ball of radius r
centered at the origin in Rd.

A. If (4.15) holds, then, for every r > 0, there exists a positive solution of the
problem {

1
2∆u = ψ(u) in Br
u|∂Br =∞ .

(4.16)

Here the condition u|∂Br =∞ means that u(x) tends to +∞ as x→ y, x ∈ Br,
for every y ∈ ∂Br.

B. If (4.15) does not hold, then for every c > 0, there exists a positive solution of
the problem {

1
2∆u = ψ(u) in Rd
u(0) = c .

(4.17)

Connections between the Lévy snake and the partial differential equation ∆u =
ψ(u) follow from Theorem 4.3.3. Note that this is just a reformulation of the well-
known connections involving superprocesses. We use the notation of Section 4.3. A
domain D in Rd is regular if every point y of ∂D is regular for Dc, meaning that:
inf{t > 0 : ξt /∈ D} = 0, Πy a.s.
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Proposition 4.5.1 Assume that ξ is Brownian motion in Rd. Let D be a bounded
regular domain in Rd, and let g be a nonnegative continuous function on ∂D. Then
the function

u(x) = Nx(1− exp−〈ZD, g〉)
is twice continuously differentiable in D and is the unique nonnegative solution of the
problem {

1
2∆u = ψ(u) in D
u|∂D = g .

(4.18)

Proof. This follows from Theorem 4.3.3 by standard arguments. In the context of
superprocesses, the result is due to Dynkin [12]. See e.g. Chapter 5 in [31] for a proof
in the case ψ(u) = u2, which is readily extended. �

We can now state our main result.

Theorem 4.5.2 Assume that ξ is Brownian motion in Rd. The following conditions
are equivalent.

(i) N0(ZBr 6= 0) <∞ for some r > 0.

(ii) N0(ZBr 6= 0) <∞ for every r > 0.

(iii) The left limit Ŵs = Ws(ζs−) exists for every s ≥ 0, P0 a.s., and the mapping
s→ Ŵs is continuous, P0 a.s.

(iv) The left limit Ŵs = Ws(ζs−) exists for every s ≥ 0, P0 a.s., and the mapping
s→W ∗s is continuous for the metric d∗, P0 a.s.

(v) Condition (4.15) holds.

Remark. The conditions of Theorem 4.5.2 are also equivalent to the a.s. compactness
of the range of the superprocess with spatial motion ξ and branching mechanism ψ,
started at a nonzero initial measure µ with compact support. This fact, that follows
from Theorem 5.1 in [45], can be deduced from the representation of Theorem 4.2.1.

Proof. The equivalence between (i),(ii) and (v) is easy given facts A. and B. recalled
above. We essentially reproduce arguments of [45]. By fact B., if (v) does not hold,
then we can for every c > 0 find a nonnegative function vc such that vc(0) = c and
1
2∆vc = ψ(vc) in Rd. Let r > 0 and λ > 0. By Proposition 4.5.1, the nonnegative
function

uλ,r(x) = Nx(1− exp−λ〈ZBr , 1〉), x ∈ Br
solves 1

2∆uλ,r = ψ(uλ,r) in Br with boundary condition λ on ∂Br. By choosing λ
sufficiently large so that sup{vc(y), y ∈ ∂Br} < λ, and using the comparison principle
for nonnegative solutions of 1

2∆u = ψ(u) (see Lemma V.7 in [31]), we see that vc ≤
uλ,r in Br. In particular,

c = vc(0) ≤ uλ,r(0) ≤ N0(ZBr 6= 0).

Since c was arbitrary, we get N0(ZBr 6= 0) = ∞ and we have proved that (i) ⇒ (v).
Trivially (ii) ⇒ (i).

Suppose now that (v) holds. Let r > 0. By fact A., we can find a function u(r) such
that 1

2∆u(r) = ψ(u(r)) in Br with boundary condition +∞ on ∂Br. The maximum
principle then implies that, for every λ > 0, uλ,r ≤ u(r). Hence

N0(ZBr 6= 0) = lim
λ↑∞
↑ uλ,r(0) ≤ u(r)(0) <∞
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and (ii) holds. We have thus proved the equivalence of (i),(ii) and (v).
Let us prove that (iii) ⇒ (ii). We assume that (iii) holds. Let r > 0. Then on the

event {ZBr 6= 0}, there exists s ∈ (0, σ) such that Ŵs ∈ ∂Br. It follows that

N0

(
sup

s∈(0,σ)

|Ŵs| ≥ r
)
≥ N0(ZBr 6= 0).

Let T1 = inf{s ≥ 0 : L0
s > 1} (in agreement with the notation of Chapter 1). The

path continuity of Ŵs ensures that P0 a.s. there are only finitely many excursions
intervals (αi, βi) of Hs away from 0, before time T1, such that

sup
s∈(αi,βi)

|Ŵs| ≥ r.

On the other hand, excursion theory implies that the number of such intervals is
Poisson with parameter

N0

(
sup

s∈(0,σ)

|Ŵs| ≥ r
)
.

We conclude that the latter quantity is finite, and so N0(ZBr 6= 0) <∞.
Note that (iv) ⇒ (iii). Thus, to complete the proof of Theorem 4.5.2, it remains

to verify that (ii) ⇒ (iv). From now on until the end of the proof, we assume that
(ii) holds.

We use the following simple lemma.

Lemma 4.5.3 Let D be a domain in Rd containing 0, and let

S = inf{s ≥ 0 : Ws(t) /∈ D for some t ∈ [0, Hs)}.

Then N0(ZD 6= 0) ≥ N0(S <∞).

Proof. By excursion theory, we have

P0[S ≥ T1] = exp(−N0(S <∞)).

Then, let τ be as previously the exit time from D. If there exists s < T1 such that
τ(Ws) < Hs, then the same property holds for every s′ > s such that s′ − s is
sufficiently small, by the continuity of H and the snake property. Hence,

{S < T1} ⊂ {
∫ T1

0

ds 1{τ(Ws)<Hs} > 0}, P0 a.e.

It follows that

P0[S ≥ T1] ≥ P0

[ ∫ T1

0

ds 1{τ(Ws)<Hs} = 0
]

= P0[LDT1
= 0],

where the second equality is a consequence of the formula

LDT1
= `D(

∫ T1

0

ds 1{τ(Ws)<Hs}),

together with the fact that `D(s) > 0 for every s > 0, a.s.
Using again excursion theory and the construction of the exit measure under N0,

we get
P0[S ≥ T1] ≥ P0[LDT1

= 0] = exp(−N0(ZD 6= 0)).
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By comparing with the first formula of the proof, we get the desired inequality. �

Let ε > 0. We specialize the previous lemma to the case D = Bε and write S = Sε1 .
Then, for every r > 0,

P0[Sε1 ≥ Tr] = exp(−rN0(Sε1 <∞)) ≥ exp(−rN0(ZBε 6= 0)).

From (ii), it follows that Sε1 > 0, P0 a.e. Also note that Sε1 is a stopping time of the
filtration (Fs+) and that {WSε1

(t) : 0 ≤ t < HSε1
} ⊂ B̄ε (if this inclusion were not

true, the snake property would contradict the definition of Sε1).
Recall the notation mH(s, s′) = inf [s,s′]Hr for s ≤ s′. We define inductively a

sequence (Sεn)n≥1 of stopping times (for the filtration (Fs+)) by setting

Sεn+1 = inf{s > Sεn : |Ws(t)−Ws(t ∧mH(Sεn, s))| > ε for some t ∈ [0, Hs)}.

At this point we need another lemma.

Lemma 4.5.4 Let T be a stopping time of the filtration (Fs+), such that T <∞, P0

a.s. For every s ≥ 0, define a killed path W̃s with lifetime H̃s by setting

W̃s(t) = Ws(mH(T, T+s)+t)−Ws(mH(T, T+s)), 0 ≤ t < H̃s := HT+s−mH(T, T+s)

with the convention that W̃s = 0 if H̃s = 0. Then the process (W̃s, s ≥ 0) is indepen-
dent of FT+ and has the same distribution as (Ws, s ≥ 0) under P0.

This lemma follows from the strong Markov property of the Lévy snake, together
with Lemma 4.2.4. The translation invariance of the spatial motion is of course crucial
here.

As a consequence of the preceding lemma, we obtain that the random variables
Sε1 , S

ε
2 − Sε1 , . . . , Sεn+1 − Sεn, . . . are independent and identically distributed. Recall

that these variables are positive a.s. Also observe that

{WSεn+1
(t)−WSεn+1

(t ∧mH(Sεn, S
ε
n+1)) : t ∈ [0, HSεn+1

)} ⊂ B̄ε,

by the same argument as used previously for {WSε1
(t) : t ∈ [0, HSε1

)}.
Let a > 0. We claim that N0 a.s. we can choose δ1 > 0 small enough so that, for

every s, s′ ∈ [0, Ta] such that s ≤ s′ ≤ s+ δ1,

|Ws′(t)−Ws′(mH(s, s′) ∧ t)| ≤ 3ε, for every t ∈ [0, Hs′). (4.19)

Let us verify that the claim holds if we take

δ1 = inf{Sεn+1 − Sεn ; n ≥ 1, Sεn ≤ Ta} > 0.

Consider s, s′ ∈ [0, Ta] with s ≤ s′ ≤ s+ δ1. Then two cases may occur.
Either s, s′ belong to the same interval [Sεn, S

ε
n+1]. Then, from the definition of

Sεn+1 we know that

|Ws′(t)−Ws′(t ∧mH(Sεn, s
′))| ≤ ε for every t ∈ [0, Hs′). (4.20)

Since mH(s, s′) ≥ mH(Sεn, s
′) we can replace t by t ∧m(s, s′) to get

|Ws′(t ∧mH(s, s′))−Ws′(t ∧mH(Sεn, s
′))| ≤ ε for every t ∈ [0, Hs′),

and our claim (4.19) follows by combining this bound with the previous one.
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Then we need to consider the case where s ∈ [Sεn−1, S
ε
n] and s′ ∈ (Sεn, S

ε
n+1]

for some n ≥ 1 (by convention Sε0 = 0). If mH(s, s′) = mH(Sεn, s
′), then the same

argument as in the first case goes through. Therefore we can assume that mH(s, s′) <
mH(Sεn, s

′), which implies mH(Sεn−1, S
ε
n) < mH(Sεn, s

′). Note that the bound (4.20)
still holds. We also know that

|WSεn
(t)−WSεn

(t ∧mH(Sεn−1, S
ε
n))| ≤ ε for every t ∈ [0, HSεn

). (4.21)

We replace t by t ∧mH(Sεn, s
′) in this bound, and note that WSεn

(t ∧mH(Sεn, s
′)) =

Ws′(t ∧ mH(Sεn, s
′)) for every t ∈ [0, HSεn

∧ Hs′), by the snake property. It follows
that

|Ws′(t ∧mH(Sεn, s
′))−WSεn

(t ∧mH(Sεn−1, S
ε
n))| ≤ ε for every t ∈ [0, Hs′). (4.22)

Similarly, we can replace t by t∧mH(s, s′) in (4.21), using again the snake property to
write WSεn

(t∧mH(s, s′)) = Ws′(t∧mH(s, s′)) (note that mH(Sεn−1, S
ε
n) ≤ mH(s, s′) <

mH(Sεn, s
′)). It follows that

|Ws′(t ∧mH(s, s′))−WSεn
(t ∧mH(Sεn−1, S

ε
n))| ≤ ε for every t ∈ [0, Hs′). (4.23)

Our claim (4.19) is now a consequence of (4.20), (4.22) and (4.23).
We can already derive from (4.19) the fact that the left limit Ŵs exists for every

s ∈ [0, Ta], P0 a.s. We know that this left limit exists for every rational s ∈ [0, Ta],
P0 a.s. Let s ∈ (0, Ta], and let sn be a sequence of rationals increasing to s. Then
the sequence mH(sn, s) also increases to Hs. If mH(sn, s) = Hs for some n, then the
snake property shows that Ws(t) = Wsn(t) for every t ∈ [0, Hs) and the existence of
Ŵs is an immediate consequence. Otherwise, (4.19) shows that for n large enough,

sup
t∈[0,Hs)

|Ws(t)−Ws(t ∧mH(sn, s))| ≤ 3ε

and by applying this to a sequence of values of ε tending to 0 we also get the existence
of Ŵs.

We finally use a time-reversal argument. From Corollary 3.1.6, we know that the
processes (Ht∧Ta , t ≥ 0) and (H(Ta−t)+ , t ≥ 0) have the same distribution. By consid-
ering the conditional law of W knowing H, we immediately obtain that the processes
(Wt∧Ta , t ≥ 0) and (W(Ta−t)+ , t ≥ 0) also have the same distribution. Thanks to this
observation and the preceding claim, we get that P0 a.s. there exists δ2 > 0 such that
for every s, s′ ∈ [0, Ta] with s ≤ s′ ≤ s+ δ2,

|Ws(t)−Ws(mH(s, s′) ∧ t)| ≤ 3ε, for every t ∈ [0, Hs). (4.24)

To complete the proof, note that the snake property implies that

W ∗s (mH(s, s′)) = W ∗s′(mH(s, s′)),

using a continuity argument in the case mH(s, s′) = Hs ∧Hs′ . Thus, if s ≤ s′ ≤ Ta
and s′ − s ≤ δ1 ∧ δ2,

sup
t≥0
|W ∗s (t ∧Hs)−W ∗s′(t ∧Hs′)|

≤ sup
t∈[0,Hs]

|W ∗s (t)−W ∗s (t ∧mH(s, s′))|+ sup
t∈[0,Hs′ ]

|W ∗s′(t)−W ∗s′(t ∧mH(s, s′))|

= sup
t∈[0,Hs)

|Ws(t)−Ws(t ∧mH(s, s′))|+ sup
t∈[0,Hs′ )

|Ws′(t)−Ws′(t ∧mH(s, s′))|

≤ 6ε .

This gives the continuity of the mapping s → W ∗s with respect to the distance d∗,
and completes the proof of (iv). �
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4.6 The law of the Lévy snake at a first exit time

Our goal in this section is to give explicit formulas for the law of the Lévy snake at its
first exit time from a domain. We keep assuming that H has continuous sample paths
and in addition we suppose that the process W ∗ has continuous sample paths with
respect to the metric d∗. Note that the previous two sections give sufficient conditions
for this property to hold.

Let D be an open set in E and x ∈ D. We slightly abuse notation by writing
τ(w) = inf{t ∈ [0, ζw] : w(t) /∈ D} for any stopped path w ∈ W∗. We also set

TD = inf{s > 0 : τ(W ∗s ) <∞}.

The continuity of W ∗ with respect to the metric d∗ immediately implies that TD > 0,
Nx a.e. or Px a.e. Furthermore, on the event {TD < ∞} the path W ∗TD hits the
boundary of D exactly at its lifetime. The main result of this section determines the
law of the pair (ρTD ,WTD ) under Nx(· ∩ {TD <∞}).

Before stating this result, we need some notation and a preliminary lemma. For
every y ∈ D, we set

u(y) = Ny(TD <∞) <∞.

Recall that, for every a, b ≥ 0, we have defined

γψ(a, b) =
{

(ψ(a)− ψ(b)) /(a− b) if a 6= b,
ψ′(a) if a = b .

Note that γψ(a, 0) = ψ̃(a) (by convention ψ̃(0) = ψ′(0) = α). The following formulas
will be useful: For every a, b ≥ 0,∫

π(dr)
∫ r

0

d` (1− e−a`−b(r−`)) = γψ(a, b)− α− β(a+ b) (4.25)∫
π(dr)

∫ r

0

d` e−a`(1− e−b(r−`)) = γψ(a, b)− ψ̃(a)− βb . (4.26)

The first formula is easily obtained by observing that, if a 6= b,∫ r

0

d`(1− e−`a−(r−`)b) =
1

a− b
(r(a− b) + (e−ra − e−rb)).

The second one is a consequence of the first one and the identity

ψ̃(a) = α+ βa+
∫
π(dr)

∫ r

0

d`(1− e−a`).

Recall from Section 3.1 the definition of the probability measures Ma on Mf (R+)2.

Lemma 4.6.1 (i) Let a > 0 and let F be a nonnegative measurable function on
Mf (R+)×Mf (R+)×W. Then,

Nx
(∫ σ

0

dLas F (ρs, ηs,Ws)
)

= e−αa
∫

Ma(dµ dν) Πx[F (µ, ν, (ξr, 0 ≤ r < a))].

(ii) Let f, g be two nonnegative measurable functions on R+. Then,

N
(∫ σ

0

dLas exp(−〈ρs, f〉 − 〈ηs, g〉)
)

= exp
(
−
∫ a

0

γψ(f(t), g(t)) dt
)
.
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Proof. (i) As in the proof of Lemma 4.2.5, we may restrict our attention to a function
F (ρs, ηs,Ws) = F (ρs, ηs). Then the desired result follows from Corollary 1.3.4 in the
same way as Proposition 3.1.3 was deduced from Proposition 1.1.4.
(ii) By part (i) we have

N
(∫ σ

0

dLas exp(−〈ρs, f〉 − 〈ηs, g〉)
)

= e−αa
∫

Ma(dµ dν) exp(−〈µ, f〉 − 〈ν, g〉).

From the definition of Ma this is equal to

exp
(
− αa− β

∫ a

0

(f(t) + g(t))dt−
∫ a

0

dt

∫
π(dr)

∫ r

0

d`(1− e−`f(t)−(r−`)g(t))
)
.

The stated result now follows from (4.25). �

Theorem 4.6.2 Assume that u(x) > 0. Let a > 0, let F be a nonnegative measurable
function on W∗x and let g be a nonnegative measurable function on R+ with support
contained in [0, a]. Then

Nx
(

1{TD<∞}1{a<HTD}F (WTD (t), 0 ≤ t ≤ a) exp(−〈ρTD , g〉)
)

= Πx

[
1{a<τ}u(ξa)F (ξr, 0 ≤ r ≤ a) exp

(
−
∫ a

0

γψ(u(ξr), g(r))dr
)]
.(4.27)

Alternatively, the law of WTD under Nx(· ∩ {TD <∞}) is characterized by:

Nx
(

1{TD<∞}1{a<HTD}F (WTD (t), 0 ≤ t ≤ a)
)

= Πx

[
1{a<τ}u(ξa)F (ξr, 0 ≤ r ≤ a) exp

(
−
∫ a

0

ψ̃(u(ξr))dr
)]
, (4.28)

and the conditional law of ρTD knowing WTD is the law of

β1[0,HTD ](r) dr +
∑
i∈I

(vi − `i) δri

where
∑
δ(ri,vi,`i) is a Poisson point measure on R3

+ with intensity

1[0,HTD ](r)1[0,v](`)e−`u(WTD
(r)) dr π(dv)d`. (4.29)

Proof. We will rely on results obtained in Section 4.2 above. As in subsection 4.2.2,
we denote by (ρi,W i), i ∈ I the “excursions” of the Lévy snake above height a. We
let (αi, βi) be the time interval corresponding to the excursion (ρi,W i) and `i = Laαi .
We also use the obvious notation

TD(W i) = inf{s ≥ 0 : τ(W i∗
s ) <∞}.

For every s ≥ 0, set
Gs = 1{s<TD}F (W ∗s ) exp(−〈ρs, g〉).

Then it is easy to verify that∑
i∈I

Gαi 1{TD(W i)<∞} = 1{TD<∞}1{a<HTD}F (WTD (t), 0 ≤ t ≤ a) exp(−〈ρTD , g〉).

(4.30)
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In fact, the sum in the left side contains at most one nonzero term, and exactly one
iff TD <∞ and a < HTD . On this event, TD belongs to one excursion interval above
height a, say (αj , βj), and then the restriction of ρTD to [0, a] coincides with ραj (see
the second step of the proof of Proposition 1.3.1), whereas the snake property ensures
that the paths WTD and Wαi are the same over [0, a). Our claim (4.30) follows.

Recall the notation W̃ , ρ̃, γa(`) introduced in the proof of Proposition 4.2.3. The
proof of this proposition shows that conditionally on the σ-field Ea, the point measure∑

i∈I
δ(`i,ρi,W i)

is Poisson with intensity

1[0,Laσ](`) d`N ˆ̃Wγa(`)
(dρdW ).

Note that the statement of Proposition 4.2.3 is slightly weaker than this, but the
preceding assertion follows readily from the proof.

We now claim that we can find a deterministic function ∆ and an Ea-measurable
random variable Z such that, for every j ∈ I, we have

Gαj = ∆(Z, `j , (`i,W i)i∈I). (4.31)

Precisely, this relation holds if we take for every ` ≥ 0,

∆(Z, `, (`i,W i)i∈I) =
( ∏
i:`i<`

1{TD(W i)=∞}

)
1{W̃r(t)∈D,∀ r∈[0,γa(`)],t∈[0,a]}

×F (W̃ ∗γa(`)) exp(−〈ρ̃γa(`), g〉).

Note that the right side of the last formula depends on `, on (`i,W i)i∈I and on the
triple (W̃ , ρ̃, γa) which is Ea-measurable, and thus can be written in the form of the
left side. Then, to justify (4.31), note that

1{αj<TD} =
( ∏
i:`i<`j

1{TD(W i)=∞}

)
1{W̃r(t)∈D,∀ r∈[0,γa(`j)],t∈[0,a]},

since γa(`j) =
∫ αj

0
dr 1{Hr≤a} as observed in the proof of Proposition 4.2.3. The latter

proof also yields the identities

Wαj = Wβj = W̃γa(`j) , ραj = ρβj = ρ̃γa(`j)

from which (4.31) follows.
Then, by an application of Lemma 3.1.5 to the point measure

∑
i∈I δ(`i,ρi,W i),

which is Poisson conditional on Ea, we have

Nx
(∑
j∈I

Gαj 1{TD(W j)<∞}

∣∣∣ Ea)
= Nx

(∑
j∈I

∆(Z, `j , (`i,W i)i∈I) 1{TD(W j)<∞}

∣∣∣ Ea)
= Nx

(∫ Laσ

0

d`

∫
N ˆ̃Wγa(`)

(dρ′dW ′) 1{TD(W ′)<∞}∆(Z, `, (`i,W i)i∈I)
∣∣∣ Ea)

= Nx
(∫ Laσ

0

d`∆(Z, `, (`i,W i)i∈I) N ˆ̃Wγa(`)
(TD <∞)

∣∣∣ Ea).
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Now use the definition of ∆(Z, `, (`i,W i)i∈I) to get

Nx
(∑
j∈I

Gαj 1{TD(W j)<∞}

)
= Nx

(∫ Laσ

0

d` u(̂̃W γa(`))
( ∏
i:`i<`

1{TD(W i)=∞}

)
1{TD(W̃ )>γa(`)}

×F (W̃ ∗γa(`)) exp(−〈ρ̃γa(`), g〉)
)

= Nx
(∫ σ

0

dLas u(Ŵs)F (W ∗s ) exp(−〈ρs, g〉) 1{s<TD}
)
. (4.32)

The last equality is justified by the change of variables ` = Las and the fact that dLas
a.e.,

W̃γa(Las ) = W̃Ãas
= Ws , ρ̃γa(Las ) = ρ̃Ãas

= ρs,

(where Ãas =
∫ s

0
dr 1{Hr≤a} as previously) and similarly, dLas a.e.,( ∏

i:`i<Las

1{TD(W i)=∞}

)
1{TD(W̃ )>γa(Las )} = 1{W∗r (t)∈D, ∀r≤s, t∈[a,Hr]} 1{TD(W̃ )>Ãas}

= 1{s<TD}.

To evaluate the right side of (4.32), we use a duality argument. It follows from
Corollary 3.1.6 and the construction of the Lévy snake that the triples

(ρs, Las ,Ws; 0 ≤ s ≤ σ)

and
(η(σ−s)−, L

a
σ − Laσ−s,Wσ−s; 0 ≤ s ≤ σ)

have the same distribution under Nx. From this we get

Nx
(∫ σ

0

dLas u(Ŵs)F (W ∗s ) exp(−〈ρs, g〉) 1{s<TD}
)

= Nx
(∫ σ

0

dLas u(Ŵs)F (W ∗s ) exp(−〈ηs, g〉) 1{τ(W∗r )=∞, ∀r≥s}

)
. (4.33)

Now we can use the strong Markov property of the Lévy snake (as in the second step
of the proof of Proposition 4.2.2), and then Lemma 4.2.4, to get

Nx
(∫ σ

0

dLas u(Ŵs)F (W ∗s ) exp(−〈ηs, g〉) 1{τ(W∗r )=∞, ∀r≥s}

)
= Nx

(∫ σ

0

dLas u(Ŵs)F (W ∗s ) exp(−〈ηs, g〉) 1{τ(W∗s )=∞} P∗ρs,Ws
[TD =∞]

)
= Nx

(∫ σ

0

dLas u(Ŵs)F (W ∗s )

× exp(−〈ηs, g〉) 1{τ(W∗s )=∞} exp
(
−
∫
ρs(dt)u(Ws(t))

))
. (4.34)

Finally, we use Lemma 4.6.1 to write

Nx
(∫ σ

0

dLas u(Ŵs)F (W ∗s ) 1{τ(W∗s )=∞} exp(−〈ηs, g〉) exp
(
−
∫
ρs(dt)u(Ws(t))

))
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= e−αa
∫

Ma(dµdν) Πx

[
1{a<τ}u(ξa)F (ξr, 0 ≤ r ≤ a) e−<ν,g> exp(−

∫
µ(dr)u(ξr))

]
= e−αaΠx

[
1{a<τ}u(ξa)F (ξr, 0 ≤ r ≤ a)

∫
Ma(dµdν) e−<ν,g> exp(−

∫
µ(dr)u(ξr))

]
= Πx

[
1{a<τ}u(ξa)F (ξr, 0 ≤ r ≤ a) exp

(
−
∫ a

0

γψ(u(ξr), g(r))dr
)]
.

Formula (4.27) follows by combining this equality with (4.30), (4.32), (4.33) and
(4.34).

Formula (4.28) is the special case g = 0 in (4.27). To prove the last assertion, let
ζ(WTD , dµ) be the law of the random measure

β1[0,HTD ](r) dr +
∑
i∈I

(vi − `i) δri

where
∑
δ(ri,vi,`i) is a Poisson point measure on R3

+ with intensity given by formula
(4.29). Then, for every a > 0, we can use (4.28) to compute

Nx
(
F (WTD (r), 0 ≤ r ≤ a) 1{TD<∞}1{a<HTD}

∫
ζ(WTD , dµ) e−〈µ,g〉

)
= Πx

[
1{a<τ} F (ξr, 0 ≤ r ≤ a)u(ξa) exp

(
−
∫ a

0

ψ̃(u(ξr)) dr
)

× exp
(
− β

∫ a

0

dr g(r)−
∫ a

0

dr

∫
π(dv)

∫ v

0

d`e−`u(ξr)(1− e−(v−`)g(r))
)]

= Πx

[
1{a<τ} F (ξr, 0 ≤ r ≤ a)u(ξa) exp

(
−
∫ a

0

γψ(u(ξr), g(r)) dr
)]
,

using (4.26) in the last equality.
Set NDx = Nx(· | TD <∞) to simplify notation. By comparing with (4.27), we see

that for any nonnegative measurable function g with support in [0, a], we have

NDx [e−〈ρTD ,g〉 |WTD ] =
∫
ζ(WTD , dµ) e−〈µ,g〉,

a.s. on the set {HTD > a}. This is enough to conclude that ζ(WTD , dµ) is the
conditional distribution of ρTD knowing WTD , provided that we already know that
ρTD ({HTD}) = 0 a.s. The latter fact however is a simple consequence of (4.2). This
completes the proof of the theorem. �

The case of Brownian motion. Suppose that the spatial motion ξ is d-
dimensional Brownian motion and that D is a domain in Rd. Then, it is easy to see
that the function u(x) = Nx(TD <∞), x ∈ D is of class C2 and solves 1

2∆u = ψ(u).
In the context of superprocesses, this was observed by Dynkin [12]. We may argue
as follows. First note that the set of nonnegative solutions of 1

2∆u = ψ(u) in a do-
main is closed under pointwise convergence (for a probabilistic proof, reproduce the
arguments of the proof of Proposition 9 (iii) in [31]). Then let (Dn) be a sequence
of bounded regular subdomains of D, such that D̄n ⊂ Dn+1 and D = lim ↑ Dn. For
every n ≥ 0, set

vn(x) = Nx(ZDn 6= 0) , un(x) = Nx(TDn <∞) , x ∈ Dn.

From the properties of the exit measure, it is immediate to see that vn ≤ un. On the
other hand, by writing

vn(x) = lim
λ↑∞
↑ Nx(1− exp−λ〈ZDn , 1〉),
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we deduce from Proposition 4.5.1 and the stability of the set of nonnegative solutions
under pointwise convergence that vn is of class C2 and solves 1

2∆vn = ψ(vn) in D.
Since the function x −→ Nx(1 − exp−λ〈ZDn , 1〉) has boundary value λ on ∂Dn

(Proposition 4.5.1), we also see that vn has boundary value +∞ on ∂Dn.
Then, it follows from Lemma 4.5.3 and our assumption D̄n ⊂ Dn+1 that vn(x) ≥

un+1(x) for x ∈ Dn. Since it is easy to see that un(x) decreases to u(x) as n → ∞,
for every x ∈ D, we conclude from the inequalities un+1(x) ≤ vn(x) ≤ un(x) that
vn(x) also converges to u(x) pointwise as n→∞. Hence u is a nonnegative solution
of 1

2∆u = ψ(u) in D. The preceding argument gives more. Let v be any nonnegative
solution of ∆v = 1

2ψ(v) in D. Since vn|∂Dn = +∞, the comparison principle (Lemma
V.7 in [31]) implies that v ≤ vn in Dn. By passing to the limit n→∞, we conclude
that v ≤ u. Hence u is the maximal nonnegative solution of 1

2∆u = ψ(u) in D.
Suppose that u(x) > 0 for some x ∈ D. It is easy to see that this implies u(y) > 0

for every y ∈ D (use a suitable Harnack principle or a probabilistic argument relying
on the fact that u(ξt) exp(−

∫ t
0
ψ̃(u(ξr))dr) is a martingale). By applying Itô’s formula

to log u(ξt), we see that Πx a.s. on {t < τ},

log u(ξt) = log u(x) +
∫ t

0

∇u
u

(ξr) · dξr +
1
2

∫ t

0

∆(log u)(ξr)dr

= log u(x) +
∫ t

0

∇u
u

(ξr) · dξr +
∫ t

0

(
ψ̃(u(ξr))−

1
2

∣∣∣∇u
u

∣∣∣2(ξr)
)
dr.

We can then rewrite (4.28) in the form

NDx
(

1{TD<∞}1{t<HTD}F (WTD (r), 0 ≤ r ≤ t)
)

= Πx

[
1{t<τ} exp

(∫ t

0

∇u
u

(ξr) · dξr −
1
2

∫ t

0

∣∣∣∇u
u

∣∣∣2(ξr) dr
)
F (ξr, 0 ≤ r ≤ t)

]
.

An application of Girsanov’s theorem then shows that WTD is distributed as the
solution of the stochastic differential equation

dxt = dBt +
∇u
u

(xt)dt
x0 = x

(where B is a standard d-dimensional Brownian motion) which can be defined up to
its first hitting time of ∂D. See [29] for a discussion and another interpretation of
this distribution on paths in the case ψ(u) = u2.

4.7 The reduced tree in an open set

We keep the notation and assumptions of the previous section. In particular, we
assume that W ∗ has continuous sample paths with respect to the distance d∗, D is an
open set in E, x ∈ D, TD = inf{s > 0 : τ(W ∗s ) <∞} and u(x) = Nx(TD <∞) <∞.
To avoid trivialities, we assume that u(x) > 0, and we recall the notation NDx = Nx(· |
TD <∞). We will assume in addition that

sup
y∈K

u(y) <∞ (4.35)

for every compact subset K of D. This assumption holds in particular when ξ is
Brownian motion in Rd, under the condition (4.15) (use translation invariance and
the fact that u(0) <∞ when D is an open ball centered at the origin).
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We also set:
LD = sup{s ≥ 0 : τ(W ∗s ) <∞},

and
mD = inf

TD≤s≤LD
Hs.

As a consequence of the first lemma below, we will see that mD < HTD , NDx a.s.
Our goal is to describe the genealogical structure of the paths Ws that exit D,

up to their first exit time from D, under the probability measure NDx . To be more
precise, all paths Ws such that τ(W ∗s ) < ∞ must coincide up to level mD. At level
mD there is a branching point with finitely many branches, each corresponding to an
excursion of H above level mD during which W hits Dc. In each such excursion, the
paths Ws that hit Dc will be the same up to a level (strictly greater than mD) at
which there is another branching point, and so on.

We will describe this genealogical structure in a recursive way. We will first derive
the law of the common part to the paths Ws that do exit D. This common part
is represented by a stopped path WD

0 in Wx with lifetime ζWD
0

= mD. Then we
will obtain the distribution of the “number of branches” at level mD, that is the
number of excursions of W above height mD that hit Dc. Finally, we will see that
conditionally on WD

0 , these excursions are independent and distributed according to
NŴD

0
(· | TD < ∞). This completes our recursive description since we can apply to

each of these excursions the results obtained under NDx .
Before coming to the main result of this section, we state an important lemma.

Lemma 4.7.1 The point TD is not isolated in {s ≥ 0 : τ(W ∗s ) < ∞}, Nx a.e. on
{TD <∞}.

Proof. We start with some preliminary observations. Let (µ,w) ∈ Θx be such that
µ({H(µ)}) = 0 and w(t) ∈ D for every t ∈ [0, H(µ)). As an application of Lemma
4.2.4, we have

P∗µ,w[TD <∞] = 1− exp−
∫

[0,H(µ))

Nw(t)(TD <∞)µ(dt)

= 1− exp−
∫

[0,H(µ))

u(w(t))µ(dt).

By the previous formula, the equality P∗µ,w[TD = 0] = 1 can only hold if∫
[0,H(µ))

u(w(t))µ(dt) =∞. (4.36)

Conversely, condition (4.36) also implies that P∗µ,w[TD = 0] = 1. To see this, first
note that our assumption (4.35) guarantees that for every ε > 0,∫

[0,H(µ)−ε]
u(w(t))µ(dt) <∞,

and thus we have also under (4.36)∫
(H(µ)−ε,H(µ))

u(w(t))µ(dt) =∞.
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Then write µε for the restriction of µ to [0, H(µ)− ε], and set

Sε = inf{s ≥ 0 : 〈ρs, 1〉 = 〈µε, 1〉}.

Lemma 4.2.4 again implies that

P∗µ,w[TD ≤ Sε] = 1− exp−
∫

(H(µ)−ε,H(µ))

u(w(t))µ(dt) = 1.

Since Sε ↓ 0 as ε ↓ 0, P∗µ,w a.s., we get that P∗µ,w[TD = 0] = 1, which was the desired
result.

Let us prove the statement of the lemma. Thanks to the strong Markov property,
it is enough to prove that P∗ρTD ,WTD

[TD = 0] = 1, Nx a.e. on {TD < ∞}. Note that
we have ρTD ({HTD}) = 0 and WTD (t) ∈ D for every t < HTD , Nx a.e. on {TD <∞}.
By the preceding observations, it is enough to prove that∫

[0,HTD )

u(WTD (t)) ρTD (dt) =∞ , a.e. on {TD <∞}. (4.37)

To this end, set for every s > 0,

Ms = Nx(TD <∞ | Fs).

The Markov property at time s shows that we have for every s > 0, Nx a.e.,

Ms = 1{TD≤s} + 1{s<TD}P
∗
ρs,Ws

[TD <∞]

= 1{TD≤s} + 1{s<TD}
(

1− exp−
∫
u(Ws(t)) ρs(dt)

)
Since the process (ρs) is right-continuous for the variation distance on measures,
it is easy to verify that the process 1{s<TD}(1 − exp−

∫
u(Ws(t)) ρs(dt)) is right-

continuous. Because (Ms, s > 0) is a martingale with respect to the filtration (Fs),
a standard result implies that this process also has left limits at every s > 0, Nx a.e.
In particular the left limit at TD

lim
s↑TD,s<TD

Ms = lim
s↑TD,s<TD

(
1− exp−

∫
u(Ws(t)) ρs(dt)

)
exists Nx a.e. on {TD < ∞}. It is not hard to verify that this limit is equal to 1: If
Dn = {y ∈ D : dist(y,Dc) > n−1} and Tn = TDn , we have Tn < TD and Tn ↑ TD
on {TD < ∞}, and MTn = Nx(TD < ∞ | FTn) converges to 1 as n → ∞ on the set
{TD <∞} because TD is measurable with respect to the σ-field

∨
FTn .

Summarizing, we have proved that

lim
s↑TD,s<TD

∫
u(Ws(t)) ρs(dt) = +∞ (4.38)

Nx a.e. on {TD < ∞}. Then, for every rational a > 0, consider on the event
{TD < ∞} ∩ {HTD > a}, the number α(a) defined as the left end of the excursion
interval of H above a that straddles TD. As a consequence of the considerations in
subsection 4.2.2, the following two facts hold on {TD <∞} ∩ {HTD > a}:

ρα(a) is the restriction of ρTD to [0, a)
Wα(a)(t) = WTD (t) , for every t ∈ [0, a).
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Thus, we have also on the same event∫
u(Wα(a)(t)) ρα(a)(dt) =

∫
[0,a)

u(WTD (t)) ρTD (dt).

Now on the event {TD <∞} we can pick a sequence (an) of rationals strictly increas-
ing to HTD . We observe that α(an) also converges to TD (if S is the increasing limit
of α(an), the snake property implies that ŴS = ŴTD ∈ Dc and so we have S ≥ TD,
whereas the other inequality is trivial). Therefore, using (4.38),

∞ = lim
n→∞

∫
u(Wα(an)(t)) ρα(an)(dt) = lim

n→∞

∫
[0,an)

u(WTD (t)) ρTD (dt),

which yields (4.37). �

Lemma 4.7.1 implies that TD < LD, NDx a.s. Since we know that ρTD ({HTD}) = 0,
NDx a.s., an application of the strong Markov property at time TD shows that mD <
HTD , NDx a.s. We define WD

0 as the stopped path which is the restriction of WTD to
[0,mD]. Then we define the excursions of W above level mD in a way analogous to
subsection 4.2.2. If

RD = sup{s ≤ TD : Hs = mD} , SD = inf{s ≥ LD : Hs = mD},

we let (aj , bj), j ∈ J be the connected components of the open set (RD, SD) ∩ {s ≥
0 : Hs > mD}. For each j ∈ J , we can then define the process W (j) ∈ C(R+,W) by
setting

W
(j)
s (r) = Waj+s(mD + r), ζ

W
(j)
s

= Haj+s −mD if 0 < s < bj − aj
W

(j)
s = ŴD

0 if s = 0 or s ≥ bj − aj .

By a simple continuity argument, the set {j ∈ J : TD(W (j)) < ∞} is finite a.s., and
we set

ND = Card {j ∈ J : TD(W (j)) <∞}.

We write WD,1,WD,2, . . . ,WD,ND for the excursions W (j) such that TD(W (j)) <∞,
listed in chronological order.

We are now ready to state our main result.

Theorem 4.7.2 For every r ≥ 0, set θ(r) = ψ′(r) − ψ̃(r). Then the law of WD
0 is

characterized by the following formula, valid for any nonnegative measurable function
F on W∗:

Nx(1{TD<∞}F (WD
0 ))

=
∫ ∞

0

dbΠx

[
1{b<τ}u(ξb) θ(u(ξb)) exp

(
−
∫ b

0

ψ′(u(ξr))dr
)
F (ξr, 0 ≤ r ≤ b)

]
.(4.39)

The conditional distribution of ND knowing WD
0 is given by:

NDx [rND |WD
0 ] = r

ψ′(U)− γψ(U, (1− r)U)
ψ′(U)− γψ(U, 0)

, 0 ≤ r ≤ 1, (4.40)

where U = u(ŴD
0 ). Finally, conditionally on the pair (WD

0 , ND), the processes
WD,1,WD,2, . . . ,WD,ND are independent and distributed according to ND

ŴD
0

.
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Proof. Our first objective is to compute the conditional distribution of mD knowing
WTD . To this end, we will apply the strong Markov property of the Lévy snake at
time TD. We have for every b > 0

NDx [mD > b | ρTD ,WTD ] = P∗ρTD ,WTD
[ inf
0≤s≤LD

Hs > b].

By Lemma 4.2.4, the latter expression is equal to the probability that in a Poisson
point measure with intensity

ρTD (dh) NWTD
(h)(dρdW )

there is no atom (hi, ρi,W i) such that hi ≤ b and TD(W i) <∞. We conclude that

NDx [mD > b | ρTD ,WTD ] = exp−
∫

[0,b]

ρTD (dh) NWTD
(h)(TD <∞)

= exp−
∫

[0,b]

ρTD (dh)u(WTD (h)). (4.41)

Recall that the conditional law of ρTD knowing WTD is given in Theorem 4.6.2. Using
this conditional distribution we see that

NDx [mD > b |WTD ] = exp
(
−β

∫ b

0

da u(WTD (a))
)
E
[

exp−
∑
ri≤b

(vi− `i)u(WTD (ri))
]
,

where
∑
δ(ri,vi,`i) is a Poisson point measure with intensity (depending on WTD )

given by (4.29). By exponential formulas for Poisson measures, we have

E
[

exp−
∑
ri≤b

(vi − `i)u(WTD (ri))
]

= exp−
∫ b

0

dr

∫
π(dv)

∫
d` e−`u(WTD

(r))(1− e−(v−`)u(WTD
(r))).

By substituting this in the previous displayed formula, and using (4.26), we get

NDx [mD > b |WTD ] = exp
(
−
∫ b

0

dr (ψ′(u(WTD (r)))− ψ̃(u(WTD (r))))
)
. (4.42)

Hence, if θ(r) = ψ′(r)− ψ̃(r) as in the statement of the theorem, the conditional law
of mD knowing WTD has density

1[0,HTD )(b) θ(u(WTD (r))) exp
(
−
∫ b

0

θ(u(WTD (r))) dr
)
.

It follows that

Nx
(

1{TD<∞} F (WD
0 )
)

= Nx
(

1{TD<∞} F (WTD (t), 0 ≤ t ≤ mD)
)

= Nx
(

1{TD<∞}

∫ HTD

0

db θ(u(WTD (b))) exp
(
−
∫ b

0

θ(u(WTD (r))) dr
)

× F (WTD (t), 0 ≤ t ≤ b)
)

124



=
∫ ∞

0

dbNx
(

1{TD<∞}1{b<HTD}θ(u(WTD (b))) exp
(
−
∫ b

0

θ(u(WTD (r))) dr
)

× F (WTD (t), 0 ≤ t ≤ b)
)

=
∫ ∞

0

dbΠx

[
1{b<τ}u(ξb)θ(u(ξb)) exp(−

∫ b

0

ψ′(u(ξr)) dr)F (ξr, 0 ≤ r ≤ b)
]
,

using (4.28) in the last equality. This gives the first assertion of the theorem.
We now turn to the distribution of ND. We use again the strong Markov prop-

erty at time TD and Lemma 4.2.4 to analyse the conditional distribution of the pair
(mD, ND) knowing (ρTD ,WTD ). Conditional on (ρTD ,WTD ), let

∑
δ(hi,ρi,W i) be a

Poisson point measure with intensity

ρTD (dh) NWTD
(h)(dρdW ).

Set

m = inf{hi : TD(W i) <∞},
M = Card {i : hi = m and TD(W i) <∞}.

Then Lemma 4.2.4 and the strong Markov property show that the pairs (m, 1 + M)
and (mD, ND) have the same distribution conditional on (ρTD ,WTD ). Recall that the
conditional distribution of mD (or of m) is given by (4.41).

Now note that:

• If ρTD ({m}) = 0, then M = 1 because the Poisson measure
∑
δ(hi,ρi,W i) cannot

have two atoms at a level h such that ρTD ({h}) = 0.

• Let b ≥ 0 be such that ρTD ({b}) > 0. The event {m = b} occurs with probability

exp
(
−
∫

[0,b)

ρTD (dh)u(WTD (h))
)(

1− e−ρTD ({b})u(WTD
(b))
)
.

Conditionally on this event, M is distributed as a Poisson variable with param-
eter c = ρTD ({b})u(WTD (b)) and conditioned to be (strictly) positive, whose
generating function is

e−c(1−r) − e−c

1− e−c
.

Since the continuous part of the law of m has density

β u(WTD (b)) exp
(
−
∫

[0,b)

ρTD (dh)u(WTD (h))
)

we get by combining the previous two cases that

NDx [f(mD)rND | ρTD ,WTD ]

= βr2

∫ HTD

0

db f(b)u(WTD (b)) exp
(
−
∫

[0,b)

ρTD (dh)u(WTD (h))
)

+r
∑

ρTD ({b})>0

f(b) exp
(
−
∫

[0,b)

ρTD (dh)u(WTD (h))
)

×
(
e−ρTD ({b})u(WTD

(b))(1−r) − e−ρTD ({b})u(WTD
(b))
)
. (4.43)
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We now need to integrate the right side of (4.43) with respect to the conditional law
of ρTD knowing WTD . We get

NDx [f(mD)rND |WTD ] = A1 +A2

where

A1 = βr2NDx
[ ∫ HTD

0

db f(b)u(WTD (b)) exp
(
−
∫

[0,b)

ρTD (dh)u(WTD (h))
) ∣∣∣WTD

]
= βr2

∫ HTD

0

db f(b)u(WTD (b)) exp
(
−
∫

[0,b)

θ(u(WTD (h))) dh
)
, (4.44)

by the calculation used in the proof of (4.42). We then compute A2. To this end, let
N (dbdvd`) be (conditionally on WTD ) a Poisson point measure in R3

+ with intensity

1[0,HTD ](b)1[0,v](`)e−`u(WTD
(b)) dbπ(dv)d`.

From Theorem 4.6.2, we get

A2 = rNDx
[ ∫
N (dbdvd`) f(b) e−β

R b
0 da u(WTD

(a))−
R
{a<b}N (dadv′d`′)(v′−`′)u(WTD

(a))

×(e−(v−`)u(WTD
(b))(1−r) − e−(v−`)u(WTD

(b))
) ∣∣∣WTD

]
From Lemma 3.1.5 and (once again) the calculation used in proving (4.42), we arrive
at

A2 = r

∫ HTD

0

db f(b) exp
(
−
∫

[0,b)

θ(u(WTD (a))) da
)

×
∫
π(dv)

∫ v

0

d` e−`u(WTD
(b))
(
e−(v−`)(1−r)u(WTD

(b)) − e−(v−`)u(WTD
(b))
)
.

From (4.26), we have∫
π(dv)

∫ v

0

d` e−`u(WTD
(b))
(
e−(v−`)(1−r)u(WTD

(b)) − e−(v−`)u(WTD
(b))
)

= ψ′(u(WTD (b)))− γψ(u(WTD (b)), (1− r)u(WTD (b)))− βru(WTD (b))).

By substituting this identity in the previous formula for A2, and then adding the
formula for A1, we arrive at:

NDx [f(mD)rND |WTD ]

= r

∫ HTD

0

db f(b) exp
(
−
∫ b

0

da θ(u(WTD (a)))
)

×
(
ψ′(u(WTD (b)))− γψ(u(WTD (b)), (1− r)u(WTD (b)))

)
= NDx [f(mD) r

ψ′(u(WTD (mD)))− γψ(u(WTD (mD)), (1− r)u(WTD (mD)))
ψ′(u(WTD (mD)))− γψ(u(WTD (mD)), 0)

∣∣∣WTD

]
.

In the last equality we used the conditional distribution of mD knowing WTD , and
the fact that θ(u) = ψ′(u)− ψ̃(u) = ψ′(u)− γψ(u, 0).

Finally, if U = u(WTD (mD)) = u(ŴD
0 ), we have obtained

NDx [rND |WD
0 ] = r

ψ′(U)− γψ(U, (1− r)U)
ψ′(U)− γψ(U, 0)

,
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which is formula (4.40) of the theorem.
It remains to obtain the last assertion of the theorem. Here again, we will rely

on Lemma 4.2.4 and the strong Markov property at time TD. We need to restate the
result of Lemma 4.2.4 in a slightly different form. Let (µ,w) ∈ Θx with µ({H(µ)} = 0
and w(t) ∈ D for every t < H(µ). Under P∗µ,w, we write Yt = 〈ρt, 1〉, Kt = infr≤t Yr
and It = Kt−〈µ, 1〉. If (αi, βi), i ∈ I are the excursion intervals of Y −K away from
0, we introduce the “excursions” (ρi,W i), i ∈ I as defined before the statement of
Lemma 4.2.4. The starting height of excursion (ρi,W i) is hi = Hαi = H(k−Iαiµ).
The proof of Lemma 4.2.4 shows that the point measure∑

i∈I
δ(−Iαi ,ρi,W i)

is Poisson with intensity 1[0,<µ,1>](u)duNw(H(kuµ))(dρ dW ) (this is slightly more pre-
cise than the statement of Lemma 4.2.4).

We then write i1, i2, . . . for the indices i ∈ I such that TD(W i) < ∞, ranked
in such a way that Iαi1 < Iαi2 < · · ·. Our assumption (4.35) guarantees that this
ordering is possible, and we have clearly hi1 ≤ hi2 ≤ · · ·. By well-known properties
of Poisson measures, the processes W i1 ,W i2 , . . . are independent conditionally on the
sequence hi1 , hi2 , . . ., and the conditional distribution of W i` is NDw(hi` )

.
If we apply the previous considerations to the shifted process (ρTD+s,WTD+s; s ≥

0), taking µ = ρTD and w = WTD and relying on the strong Markov property at TD,
we can easily identify

mD = hi1

ND = 1 + sup{k ≥ 1 : hik = hi1}
WD,ND = W i1 , WD,ND−1 = W i2 , . . . , WD,2 = W iND−1 .

By a preceding observation, we know that conditionally on (mD, ND), the processes
W i1 , . . . , W iND−1 are independent and distributed according to NDw(mD).

Combining this with the strong Markov property at time TD, we see that, con-
ditionally on (ND,WD

0 ), the processes WD,2, . . . ,WD,ND are independent and dis-
tributed according to ND

ŴD
0

(recall that ŴD
0 = WTD (mD)). An argument sim-

ilar to the end of the proof of Theorem 3.2.1 (relying on independence proper-
ties of Poisson measures) also shows that, conditionally on (ND,WD

0 ), the vector
(WD,2, . . . ,WD,ND ) is independent of WD,1. Furthermore, denote by W̌D,` the time-
reversed processes

W̌D,`
s = WD,`

(σ(WD,`)−s)+ .

The time-reversal property already used in the proof of Theorem 4.6.2 implies that
the vectors (WD,1, . . . ,WD,ND ) and (W̌D,ND , . . . , W̌D,1) have the same conditional
distribution given (ND,WD

0 ). Hence, the conditional distribution of W̌D,1, or equiv-
alently that of WD,1, is also equal to ND

ŴD
0

. This completes the proof of Theorem
4.7.2. �

Remarks. (i) By considering the special case where the spatial motion ξt is deter-
ministic, ξt = t, and E = R+, x = 0 and D = [0, T ) for some fixed T > 0, we obtain an
alternative proof of formulas derived in Theorem 2.7.1. In particular, formula (2.44)
is a special case of (4.40). Similarly, (2.43) can be seen as a special case of (4.42).

(ii) In the stable case ψ(u) = cuα, the variable ND is independent of WD
0 , and its

law is given by

NDx [rND ] =
(1− r)α − 1 + αr

α− 1
.
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Of course when α = 2, we have ND = 2.
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exploration process. Ann. Probab. 26, 213-252.

[33] Le Gall, J.F., Le Jan, Y. (1998) Branching processes in Lévy processes:
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[39] Neveu, J., Pitman, J.W. (1989) The branching process in a Brownian excur-
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Notation Index

X Lévy process (Sect. 1.1.1)

P probability measure under which X starts from 0

ψ Laplace functional of X (Sect. 1.1.1)

ψ(u) = αu+ βu2 +
∫

(0,∞)
π(dr) (e−ru − 1 + ru)

ψ̃(λ) = ψ(λ)
λ

ϕ(λ) = λ
ψ−1(λ)

St = sup
s≤t

Xs

It = inf
s≤t

Xs

Ist = inf
s≤r≤t

Xr

Tx = inf{t ≥ 0 : Xt = −x}

N excursion measure of X − I (Sect. 1.1.2)

N∗ excursion measure of X − S (Sect. 1.1.2)

σ duration of the excursion under N or under N∗

Lt local time of X − S at level 0

L−1(t) = inf{s ≥ 0 : Ls > t}

X
(T )
s = XT+s −XT

X̂
(t)
s process time-reversed at t: X̂(t)

s = Xt −X(t−s)−

Ht height process (Sect. 1.2)

H(µ) = sup(supp(µ))

ρt exploration process (Sect. 1.2)

Mf (R+) set of all finite measures on R+

kaµ “killing operator” on measures (Sect. 1.2, Sect. 3.1)

[µ, ν] concatenation of the measures µ and ν (Sect. 1.2)

133



ρµ exploration process started at µ ∈Mf (R+)

Pµ law of ρµ

M invariant measure of ρ (Sect. 1.2)

Lat local times of the height process

ut(λ) = N(1− exp(−λLtσ))

v(t) = N
(

sup
s≥0

Hs > t
)

γψ(a, b) =
ψ(a)− ψ(b)

a− b
ηt dual of the exploration process (Sect. 3.1)

M invariant measure of (ρ, η) (Sect. 3.1)

T set of all finite rooted ordered trees (Sect. 0.1)

kv(T ) number of children of the vertex v in the tree T

hv mark (lifetime) of v

θ(e, t1, . . . , tp) tree associated with the function e and the times t1, . . . , tp (Sect. 3.2)

ξ Markov process in E (Sect. 4.1)

Πx law of ξ started at x

W set of all E-valued killed paths

ζ = ζw lifetime of the killed path w

ŵ = w(ζw−)

mh(s, s′) = inf
s≤r≤s′

h(r)

W s = (ρs,Ws) Lévy snake (Sect. 4.1)

Pµ,w law of the Lévy snake started at (µ,w)

Qs transition kernels of the Lévy snake

Nx excursion measure for the Lévy snake

P∗µ,w law of the Lévy snake started at (µ,w) and stopped at inf{s ≥ 0 : ρs = 0}

〈Za, f〉 =
∫ σ

0

dLasf(Ŵs)

τ(w) = inf{t ≥ 0 : w(t) /∈ D}

LDs exit local time from D (Sect. 4.3)

ZD exit measure from D (Sect. 4.3)

W∗ set of all E-valued stopped paths

TD = inf{s ≥ 0 : τ(W ∗s ) <∞}
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Index

approximation of local time
for the height process, 36
for the Lévy process, 23

conditioned Galton-Watson tree, 61
continuous-state branching process, 39
contour function, 6
contour process, 7
convergence of rescaled contour processes,

59
convergence of rescaled Galton-Watson pro-

cesses, 46
convergence of rescaled height processes

finite dimensional marginals, 46
functional convergence, 52
stable case, 53

duality property of exploration process,
13, 76

excursion measure
of Lévy process, 10, 21
of Lévy snake, 16, 96

exit local time, 106
exit measure, 107
exploration process, 9, 26

first-exit distribution, 116
Brownian case, 119

generalized Ray-Knight theorem, 39

height function, 6
height process

continuous, 9, 25
discrete, 7
Hölder continuity, 42
path continuity, 41

invariant measure
for exploration process, 31
for exploration process and its dual,

75

for Lévy snake, 96

local time
at the maximum, 21
at the minimum, 21
of the height process, 34

Lévy measure, 19
Lévy process, 19
Lévy snake, 16, 92

uniform continuity, 109
uniform continuity in Brownian case,

111

partial differential equation, 111

reduced tree
convergence, 63
for a Galton-Watson tree, 63
spatial, 17, 120

snake property, 92
stable continuum tree, 15, 88
strong Markov property of Lévy snake, 94
superprocess, 97

time-reversal property, 79
tree

associated with Poissonnian marks,
81

coding by a function, 14
embedded in a function, 80
finite-dimensional marginals, 15, 88
Galton-Watson, 7
rooted ordered, 6
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