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Outline
Goal of the lecture: Describe how the basic models of random
geometry (obtained as scaling limits of random graphs embedded in
the sphere) can be constructed from random trees equipped with
Brownian labels.

Compact models:
The Brownian sphere (or Brownian map)
The Brownian disk

Non-compact models:
The Brownian plane
The Brownian half-plane
The infinite Brownian disk

Our construction allows us to study relations between different models.
These models can also be viewed as quantum surfaces: cf. the work
of Sheffield, Miller, Gwynne, Holden, Sun, etc.
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1. Brownian spheres and Brownian disks
Definition
A planar map is a proper embedding of a finite connected graph into
the two-dimensional sphere (considered up to orientation-preserving
homeomorphisms). Self-loops and multiple edges are allowed.

root
vertex

root
edge

A rooted quadrangulation with 7
faces

Faces = connected components of
the complement of edges
p-angulation:

each face is incident to
p half-edges

p = 3: triangulation
p = 4: quadrangulation

Rooted map: distinguished
oriented edge
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The Brownian sphere (or Brownian map)
Let Mn be uniform over M4

n = {rooted quadrangulations with n faces}.
V (Mn) vertex set of Mn

dgr graph distance on V (Mn)

πn uniform probability measure on V (Mn)

Theorem (LG 2013, Miermont 2013)(
V (Mn), (

9
8n

)1/4 dgr, πn

)
(d)−→

n→∞
(m∞,D,Vol)

in the Gromov-Hausdorff-Prokhorov sense. The limit (m∞,D,Vol) is a
random compact metric measure space called the Brownian sphere
(or Brownian map).

Remark A similar result holds for random triangulations and for much
more general random planar maps, with the same limit (universality of
the Brownian sphere). One can even randomize edge lengths:
assigning i.i.d. lengths to edges does not change the scaling limit
(Curien-LG, Ann. Sci. ENS 2019).
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A large triangulation of the sphere (simulation: N.Curien)
(an approximation of the Brownian sphere)
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Two properties of the Brownian sphere

Theorem (Hausdorff dimension)

dim(m∞,D) = 4 a.s.

Uniform control of the volume of balls: for δ > 0,

cδ(ω) r4+δ ≤ Vol(B(x , r)) ≤ c′δ(ω) r4−δ,

with (random) constants cδ(ω), c′δ(ω) independent of x ∈ m∞ and
r ∈ (0,1].

Theorem (topological type, LG-Paulin 2008)

Almost surely, (m∞,D) is homeomorphic to the 2-sphere S2.
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Quadrangulations with a boundary

A quadrangulation
with a boundary of
size 14.

A quadrangulation with a boundary is a rooted planar map M such that
The root face (to the left of the root edge) has an arbitrary even
degree. (In the figure, the root face is the “external” face)
All other faces have degree 4.

The degree of the root face is the boundary size of M.
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Boltzmann quadrangulations with a boundary

For p ≥ 1, let M4,p be the set of all (rooted) quadrangulations with a
boundary of size 2p.
If Q ∈M4,p, let |Q| stand for the number of faces of Q

A Boltzmann quadrangulation with boundary size 2p is a random
quadrangulation with a boundary Qp such that :

P(Qp = Q) = cp 12−n for every Q ∈M4,p with |Q| = n

here cp > 0 is the appropriate normalizing constant (depending on p).

This makes sense because

#{Q ∈M4,p : |Q| = n} ≈
n→∞

c′p n−5/2 12n
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Convergence to the Brownian disk
Recall that Qp is a Boltzmann quadrangulation with boundary size 2p.
Equip the vertex set V (Qp) with the graph distance dgr and the
counting measure mp.

Theorem (Bettinelli and Miermont)(
V (Qp), (

3
2p

)1/2dgr,
2
p2 mp

)
(d)−→

p→∞

(
D,∆,Vol

)
in the Gromov-Hausdorff-Prokhorov sense. The limit (D,∆,Vol) is a
random compact metric measure space called the free Brownian disk
with perimeter 1.

(A similar result for the simple boundary case has been obtained by
Gwynne and Miller, see also Albenque-Holden-Sun for triangulations)

By scaling one can define the free Brownian disk with perimeter r .
By conditioning on Vol(D) = v , one defines the Brownian disk with
perimeter r and volume v .
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Properties of the Brownian disk

Fact (Bettinelli): The free Brownian disk D (with perimeter r > 0) is
homeomorphic to the closed unit disk.
Hence one can make sense of the boundary ∂D.

Remark. Similarly as Brownian spheres, Brownian disks can be
viewed as Liouville quantum gravity surfaces: recent work of Miller,
Sheffield, Gwynne, Holden, ...

Special subsets of the Brownian sphere (m∞,D) can be identified as
Brownian disks.
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Brownian disks in the Brownian sphere

h

D(x∗, x)

connected components
of m∞\B(h)

x∗

For h > 0, let B(h) be the ball of
radius h centered at the
distinguished point x∗ in the
Brownian sphere (m∞,D)

Let Dj , j ∈ J be the connected
components of m∞\B(h). We can
equip each Dj with its intrinsic
metric D(j)

Vol : volume measure on m∞

Theorem
For every j, the limit

|∂Dj | := limε→0 ε
−2Vol{x ∈ Dj : D(x , ∂Dj) < ε}

exists, and, conditionally on (|∂Dj |,Vol(Dj))j∈J , the metric spaces
(D̄j ,D(j)) are independent Brownian disks with the prescribed volumes
and perimeters.
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2. The construction of the Brownian sphere
A key ingredient: The Brownian tree (Aldous’ CRT), or tree coded by
a Brownian excursion under n+(de) (the Itô excursion measure).

t

e(t)

σ

Te
ρ

Informally, glue s, t ∈ [0, σ] if they correspond to the ends of a
horizontal chord drawn below the graph of e.

Formally, say that s ∼ t iff e(s) = e(t) = minu∈[s∧t ,s∨t] e(u).
The Brownian tree is Te := [0, σ]/∼, with the metric induced by

de(s, t) = e(s) + e(t)− 2 minu∈[s∧t ,s∨t] e(u).
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The Brownian tree
Te := [0, σ]/∼, where

s ∼ t iff e(s) = e(t) = minu∈[s∧t ,s∨t] e(u)

de(s, t) = e(s) + e(t)− 2 minu∈[s∧t ,s∨t] e(u).

Then (Te,de) is a compact R-tree
(means that two points of Te are connected by a
unique arc [[a,b]], which is isometric to a line
segment — d(a,b) is the length of the blue path
connecting a to b) Te

ρ

a

b

Let pe : [0, σ]→ Te = [0, σ]/∼ be the canonical projection:
Te is rooted at ρ := pe(0) = pe(σ)

the volume measure is the push forward of Lebesgue measure
under pe.
the Brownian tree Te also inherits a cyclic ordering from the
projection pe (it makes sense to explore the tree “clockwise” from
one point to another)
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Brownian motion indexed by the Brownian tree

Conditionally on Te, Z = (Za)a∈Te is the centered Gaussian process
characterized by:

Zρ = 0
E[(Za − Zb)2] = de(a,b) for every a,b ∈ Te

(Technical difficulty: Z is a random process indexed by a random set.
Since Te = [0, σ]/∼, one can as well define Z as indexed by [0, σ] —
this is the Brownian snake construction)

Fact: Z has continuous sample paths.

One views Za as a Brownian label assigned to a ∈ Te. When moving
along a line segment of Te, labels evolve like linear Brownian motion.

Motivations for studying Te and (Za)a∈Te : These objects arise in a
number of asymptotics for discrete models, in combinatorics,
interacting particle systems, statistical physics, etc.
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Brownian motion indexed by the Brownian tree 2

0

de(ρ, a)

Za Te
ρ

The collection (Za)a∈Te forms a “tree of Brownian paths” whose
genealogy is prescribed by Te.
Za is also interpreted as a “label” assigned to vertex a ∈ Te.
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Brownian motion indexed by the Brownian tree 4

0

de(ρ, a)

Za Te
ρ

a1

Za1

a2

Za2

The collection (Za)a∈Te forms a “tree of Brownian paths” whose
genealogy is prescribed by Te.
Za is also interpreted as a “label” assigned to vertex a ∈ Te.

Jean-François Le Gall (Univ. Paris-Saclay) Random Geometry November 6, 2020 17 / 44



The construction of the Brownian sphere
Te is the Brownian tree, (Za)a∈Te Brownian motion
indexed by Te (Two levels of randomness!).
Set, for every a,b ∈ Te,

D0(a,b) = Za + Zb − 2 max
(

min
c∈[a,b]

Zc , min
c∈[b,a]

Zc

)
where [a,b] is the “interval” from a to b corresponding to
the cyclic ordering on Te (vertices visited when going
from a to b in clockwise order around the tree).

a

b
the interval
[a, b]

ρ

Then let D be the maximal symmetric function on Te × Te that is
bounded above by D0 and satisfies the triangle inequality. Also set

a ≈ b if and only if D(a,b) = 0 (equivalent to D0(a,b) = 0).

Definition
The free Brownian sphere m∞ is the quotient space m∞ := Te/ ≈,
which is equipped with the distance induced by D.

To get the “standard” Brownian sphere, condition on σ(= Vol(Te) ) = 1.
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Summary and interpretation

Starting from the Brownian tree Te, with Brownian labels Za,a ∈ Te,
→ Identify two vertices a,b ∈ Te if D◦(a,b) = 0, meaning that:

they have the same label Za = Zb,
one can go from a to b around the tree (in clockwise or in
counterclockwise order) visiting only vertices with label greater
than or equal to Za = Zb.

Key fact: If x∗ is the vertex with minimal label (Zx∗ = min{Za : a ∈ Te})
then, for every a

D(x∗,a) = Za − Zx∗

(labels correspond to distances from x∗, up to a shift)

→ conn.comp. of complement of a ball = excursions of Z above a level
→ Brownian disks correspond to excursions of the process Z !!

Jean-François Le Gall (Univ. Paris-Saclay) Random Geometry November 6, 2020 19 / 44



Summary and interpretation

Starting from the Brownian tree Te, with Brownian labels Za,a ∈ Te,
→ Identify two vertices a,b ∈ Te if D◦(a,b) = 0, meaning that:

they have the same label Za = Zb,
one can go from a to b around the tree (in clockwise or in
counterclockwise order) visiting only vertices with label greater
than or equal to Za = Zb.

Key fact: If x∗ is the vertex with minimal label (Zx∗ = min{Za : a ∈ Te})
then, for every a

D(x∗,a) = Za − Zx∗

(labels correspond to distances from x∗, up to a shift)

→ conn.comp. of complement of a ball = excursions of Z above a level
→ Brownian disks correspond to excursions of the process Z !!

Jean-François Le Gall (Univ. Paris-Saclay) Random Geometry November 6, 2020 19 / 44



Summary and interpretation

Starting from the Brownian tree Te, with Brownian labels Za,a ∈ Te,
→ Identify two vertices a,b ∈ Te if D◦(a,b) = 0, meaning that:

they have the same label Za = Zb,
one can go from a to b around the tree (in clockwise or in
counterclockwise order) visiting only vertices with label greater
than or equal to Za = Zb.

Key fact: If x∗ is the vertex with minimal label (Zx∗ = min{Za : a ∈ Te})
then, for every a

D(x∗,a) = Za − Zx∗

(labels correspond to distances from x∗, up to a shift)

→ conn.comp. of complement of a ball = excursions of Z above a level
→ Brownian disks correspond to excursions of the process Z !!

Jean-François Le Gall (Univ. Paris-Saclay) Random Geometry November 6, 2020 19 / 44



A different approach to the Brownian sphere

Miller, Sheffield (2015-2016) have developed a program aiming to
relate the Brownian sphere with Liouville quantum gravity:

new construction of the Brownian sphere using the Gaussian free
field and the random growth process called Quantum Loewner
Evolution (an analog of the celebrated SLE processes studied by
Lawler, Schramm and Werner)
this construction makes it possible to equip the Brownian sphere
with a conformal structure, and in fact to show that this conformal
structure is determined by the Brownian sphere.

More recently: the Miller-Sheffield construction has been simplified by
a direct construction of the Liouville quantum gravity metric from the
Gaussian free field (Gwynne-Miller 2019 after the work of several other
authors).
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3. Excursions of Brownian motion indexed by the
Brownian tree

0

Za Te

excursion
C1

excursion
C3

excursion
C2

excursion
C4

C3

C1

C4

ρ

distance
from a
to the root Recall:

Te Brownian tree
(Za)a∈Te Brownian
motion indexed by Te

Let (Ci)i∈I be the
connected
components of
{a ∈ Te : Za 6= 0}.

The excursions of Z are
(
C̄i , (Za)a∈C̄i

)
, i ∈ I, viewed as R-trees

equipped with continuous labels (here C̄i is the closure of Ci )
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The law of excursions
For each “excursion”

(
C̄i , (Za)a∈C̄i

)
, one can define its boundary size

|∂Ci | = lim
ε→0

ε−2 Vol
(
{a ∈ Ci : |Za| < ε}

)

Theorem (Abraham-LG, JEMS 2018)
There exists a σ-finite measure M (with appropriate scaling properties)
on the space of compact R-trees T equipped with a volume measure
Vol(·) and with labels (z(a))a∈T , such that, conditionally on (|∂Ci |)i∈I ,

the “excursions”
(
C̄i , (Za)a∈C̄i

)
, i ∈ I are independent

for every i ∈ I, the distribution of
(
C̄i , (Za)a∈C̄i

)
knowing |∂Ci | = r is

M(r) := M
(
· | Σ = r

)
where Σ = limε→0 ε

−2 Vol
(
{a ∈ T : |z(a)| < ε}

)
(the limit exists M a.e.)

We can write M = M+ + M− and interpret M+ as a measure on “trees
of Brownian paths in [0,∞)”. One similarly defines M(r)

+ .
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The tree of paths under M+

0

R+

distance from the root

Under M+, we now have a
tree of nonnegative
“Brownian paths” all starting
from 0, which stay positive
during some interval (0, ε]
and are stopped at the time
when they return to 0, if
they do return to 0.

Informally, the boundary
size Σ counts the number of
paths that return to 0
(circled points on the
figure).
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Explicit formulas under M+

Joint distribution of boundary size and volume: The distribution of the
pair (Σ,Vol(T )) under M+ has density

f (s, v) =

√
3

2π
√

s v−5/2 exp
(
− s2

2v
)

As a consequence, for every s > 0, the density of Vol(T ) under
M(s)

+ := M+(· | Σ = s
)

is

gs(v) =
1√
2π

s3 v−5/2 exp
(
− s2

2v
)

(this is the asymptotic distribution of the volume of a Boltzmann
quadrangulation with a boundary of size n when n→∞ and the
volume is rescaled by n−2)
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4. The construction of Brownian disks under M+

0

a

b
the interval
[a, b]

ρ
Za

distance from a
to the root Under M(r)

+ = M+(· | Σ = r),
we have an R-tree T
and nonnegative labels
z(a), a ∈ T

Also cyclic order structure on T
that allows one to define
intervals [a,b] (informally,
points visited when going from
a to b around the tree).

For a,b ∈ T , set

D◦(a,b) = z(a) + z(b)− 2 max
{

min
c∈[a,b]

z(c), min
c∈[b,a]

z(c)
}
.

Imitating the construction of the Brownian sphere would require
identifying a and b if D◦(a,b) = 0. But here this would mean identifying
all boundary points (all c such that z(c) = 0)!
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Constructing free Brownian disks
Recall D◦(a,b) = z(a) + z(b)− 2 max

{
min

c∈[a,b]
z(c), min

c∈[b,a]
z(c)

}
.

Set ∂T = {c ∈ T : z(c) = 0}, T ◦ = T \∂T and, for a,b ∈ T ◦,

∆◦(a,b) =

{
D◦(a,b) if max

{
min[a,b] z(c),min[b,a] z(c)

}
> 0,

∞ otherwise,

and
∆(a,b) = inf

a=a0,a1,...,ak =b
ai∈T ◦

k∑
i=1

∆◦(ai−1,ai).

Theorem (LG, Ann.IHP 2019)

Under M(r)
+ , (∆(a,b),a,b ∈ T ◦) has a continuous extension to T × T ,

which is a pseudo-metric on T . The associated quotient space D
equipped with the distance induced by ∆ is a free Brownian disk with
perimeter r .

Remark: ∂D corresponds to ∂T in the quotient space.
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Uniform measure on the boundary

0

a

b

Zc

distance from c
to the root Interpretation: We glue a,b ∈ T ◦ if

they have the same label z(a) = z(b) > 0
going from a to b “around” the tree T one
encounters only vertices with greater label.

The Bettinelli-Miermont construction also relied
on using a labeled forest, but here we have the
additional remarkable interpretation of labels:

z(c) = ∆(c, ∂D) coincides with the distance from
(the equivalence class of) c to ∂D.

One can use this to construct the uniform measure on the boundary.

Proposition

The formula 〈µ, ϕ〉 = lim
ε→0

ε−2
∫
D

Vol(dx)ϕ(x) 1{∆(x ,∂D)<ε}

defines a finite measure on the boundary with total mass r .
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5. Cutting Brownian disks at heights

h

connected components
of {x : H(x) > h}

H(x) = ∆(x, ∂D)

D

∂D

(D,∆) is the free Brownian disk with
perimeter r
For x ∈ D, H(x) = ∆(x , ∂D) is called
the height of x .
Fix h > 0. For each connected
component C of {x : H(x) > h}, can
define its boundary size (perimeter)

|∂C|= lim
ε→0

1
ε2 Vol({x ∈ C :H(x) < h + ε})

Theorem (LG-Riera AOP 2020)
Conditionally on their boundary sizes, the connected components of
{x ∈ D : H(x) > h}, equipped with their intrinsic metrics, are
independent free Brownian disks with the prescribed perimeters.
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Question. How does the collection of perimeters of connected
components of {x ∈ D : H(x) > h} evolve as h varies ?

Write C1,h, C2,h, . . . for the connected components of
{x ∈ D : H(x) > h} ranked in decreasing order of their boundary sizes,
and

X(h) = (|∂C1,h|, |∂C2,h|, . . .)
The preceding theorem suggests that (X(h))h≥0 satisfies a kind of
branching property analogous to that of growth-fragmentation
processes.
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Growth-fragmentation processes
Basic ingredient: Y self-similar Markov process with values in R+

and only negative jumps, absorbed at 0.

t1 t2

−∆Yt1

−∆Yt2

r

−∆Y ′t′1

t′1t1

t2

t′1

Yt

Y ′t

Y ′′t

−∆Yt1

−∆Y ′t′1

−∆Yt2

u

3 particles
alive at
time u

The process starts with an initial
particle (Eve particle) whose mass
evolves in time according to the law
of Y started at r .

When the mass of the initial
particle has a (negative) jump of
size −δ, a new particle (child of the
Eve particle) is created, whose
mass then evolves according to the
law of Y started at δ.
In turn, each child of the Eve
particle has children at jump times
of its mass process, and so on.

The associated growth-fragmentation process is:
Y(t) = ranked sequence of masses of particles alive at time t .
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Growth-fragmentation process in the Brownian disk
Recall that D is the free Brownian disk with perimeter r , and

X(h) = (|∂C1,h|, |∂C2,h|, . . .)
Here C1,h, C2,h, . . . are the connected components of {x ∈ D :H(x)>h}.
Theorem (LG-Riera, AOP 2020)
(X(h))h≥0 is a growth-fragmentation process whose Eve particle mass
process X (starting from 1) can be obtained as follows:

Xt = exp(ξτ(t)),

where

τ(t) = inf
{

u ≥ 0 :

∫ u

0
eξs/2 ds > t

}
and ξ is the spectrally negative Lévy process with Laplace exponent

ψ(q) =

√
3

2π

(
− 8

3
q +

∫ 1

1/2
(xq − 1 + q(1− x)) (x(1− x))−5/2 dx

)
.
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Remarks

The formula
Xt = exp(ξτ(t))

is the Lamperti representation of a self-similar Markov process in
terms of a Lévy process.
The theorem is closely related to the work of Bertoin, Curien,
Kortchemski who studied asymptotics for a discrete analog of the
process X(h) (for triangulations with a boundary).
The measure

(x(1− x))−5/2 dx

that appears in the formula for ψ should be compared with the
dislocation measure (x(1− x))−3/2 dx corresponding to the (pure)
fragmentation process obtained by cutting the Brownian tree at
heights (Bertoin).
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6. Non-compact models of random geometry
The Brownian plane
Let Mn be uniform over {rooted quadrangulations with n faces}.

V (Mn) vertex set of Mn, V (Mn) is pointed at the root vertex
dgr graph distance on V (Mn)

Theorem (Curien-LG)
Let an be a sequence of positive reals converging to 0 such that
n1/4an −→∞. Then (

V (Mn),an dgr

)
(d)−→

n→∞
(P,D)

in the local Gromov-Hausdorff sense. The limit (P,D) is a random
pointed (non-compact) metric space called the Brownian plane.

The Brownian plane is also the scaling limit of the Uniform Infinite
Planar Quadrangulation (or of the UIPT, cf. Budzinski).

(P,D) is homeomorphic to the usual plane
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The infinite Brownian disk
For p,n ≥ 1, let M4,p,n be the set of all (rooted) quadrangulations with
a boundary of size 2p and n internal faces.
Let Qp,n be uniformly distributed over M4,p,n.
The vertex set V (Qp,n) of Qp,n is a pointed metric space for dgr

Theorem (Baur-Miermont-Ray)

Let (np)p∈N be a sequence of positive integers with np/p2 −→∞ as
p →∞. Then (

V (Qp,np ), (
3

2p
)1/2dgr

)
(d)−→

p→∞

(
D∞1 ,∆

∞)
in the local Gromov-Hausdorff sense. The limit (D∞1 ,∆

∞) is a random
pointed non-compact metric space called the infinite Brownian disk
with perimeter 1.

The infinite Brownian disk is homeomorphic to the complement of the
(open) unit disk of the plane.
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The Brownian half-plane
Keep the notation of the preceding slide : Qp,n is uniformly distributed
over the set of all quadrangulations with a boundary of size 2p and n
internal faces.

Theorem (Baur-Miermont-Ray)

Let (np)p∈N be a sequence of positive integers with np/p2 −→∞ as
p →∞, and let (ap)p∈N be a sequence of positive reals tending to 0,
with

√
p ap −→∞. Then(

V (Qp,np ),ap dgr

)
(d)−→

p→∞

(
H,D∞

)
in the local Gromov-Hausdorff sense. The limit (H,D∞) is a random

pointed non-compact metric space called the Brownian half-plane.

The Brownian half-plane is homeomorphic to the usual half-plane.
Baur-Miermont-Ray (AOP 2019) classify all possible scaling limits of
quadrangulations with a boundary: the Brownian plane, the Brownian
half-plane and the infinite Brownian disk are the basic non-compact
models that can appear in the limit.
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Constructing the non-compact models
Basic ingredient: the infinite Brownian tree (Aldous 1990)

This tree consists of
An infinite spine isometric to [0,∞)

Brownian subtrees branching off the left side
and the right side of the spine

To get the subtrees branching off the left side,
recall n+ is the Brownian excursion measure,
consider a Poisson point measure∑

i∈I

δ(hi ,ei )

with intensity 2 dh n+(de), and for every i ∈ I graft
the tree Tei coded by ei at height hi of the spine.
Proceed similarly for the right side.
−→ Get a non-compact R-tree
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Labels and truncation of the infinite Brownian tree
Assign a label to each point of the infinite Brownian tree.

labels
Labels along the spine evolve
like a 3-dimensional Bessel
process (started from 0)
For each subtree Te, labels on
this subtree are given by
Brownian motion indexed by Te
(started from the label of the
point of the spine where Te is
grafted)

KEY POINT: Subtrees are truncated at points where the label
vanishes (so that all labels remain nonnegative) — of course after this
truncation, the subtrees are no longer Brownian trees.
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The construction of non-compact models (LG-Riera)
The preceding model of a labeled tree allows us to construct the three
non-compact models of Brownian geometry.

Labels
Can define a quantity Z
measuring the number of points
with zero label.
By imitating the construction of
the Brownian disk, one gets

The Brownian plane under
the conditioning Z = 0
The infinite Brownian disk
with perimeter a under the
conditioning Z = a
The Brownian half-plane
under Z =∞

In fact in the third case, no conditioning is needed (Z =∞ a.s. in the
unconditioned model!)
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The case of the Brownian plane
The conditioning Z = 0 means that labels do not vanish on any
subtree branching off the spine.

Labels Under this conditioning:
Labels on the spine evolve like a
9-dimensional Bessel process
The subtrees are Brownian trees
equipped with Brownian labels
conditioned to have only positive
labels

In the Brownian plane, labels correspond
to distances from the distinguished point
x∗ which is the bottom of the spine.

(Similarly, in the construction of the infinite Brownian disk or of the
Brownian half-plane, labels correspond to distances from the
boundary)
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Hulls in the Brownian plane
B(r) ball of radius r centered at the distinguished point x∗ in the
Brownian plane P
Then P\B(r) is not connected, but has a unique unbounded
component: the hull B•(r) is the complement of this unbounded
component
(informally, B•(r) is obtained by filling in the bounded holes in B(r))

x∗ x∗

Ball B(r) Hull B•(r)
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Complement of hulls in the Brownian plane

Recall: B•(r) is the hull of radius r in the Brownian plane P

r

0

In the infinite tree picture, the
complement of B•(r)
corresponds to:

Keeping the part of the
spine above the last point
with label r on the spine
Keeping the subtrees
branching off this part of
the spine, but truncating
them at level r

This resembles the spine representation of the infinite Brownian disk.
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Spatial Markov property in the Brownian plane

Recall:
P is the Brownian plane
B•(r) is the hull of radius r (P\B•(r) is the unbounded connected
component of P\B(r))

Equip both B•(r) and P\B•(r) with their intrinsic metrics.
One can define a boundary size |∂B•(r)| as the limit of ε−2 times the
volume of the ε-tubular neighborhood of ∂B•(r).

Theorem (LG-Riera)

Conditionally on |∂B•(r)|, the hull B•(r) and its complement P\B•(r)
are independent, and moreover (the closure of) P\B•(r) is an infinite
Brownian disk with perimeter |∂B•(r)|.
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Isoperimetric inequalities in the Brownian plane
Let 0 < r1 < r2 < r3 < · · · .
Then the annuli B•(r2)− B•(r1),
B•(r3)− B•(r2), B•(r3)− B•(r2),...
are independent conditionally on
their boundary sizes.
−→Key ingredient for next theorem.

B•(r1)
B•(r2)B•(r3)

B•(r4)

x∗

Let K be the collection of all (closures of) Jordan domains containing
x∗ in the Brownian plane. (A Jordan domain D is the interior of a simple
loop, |∂D| is the length of this loop and and |D| is the volume of D)

Theorem (Riera)
For any nondecreasing funtion f : [0,∞) −→ (0,∞), we have

inf
D∈K

|∂D|
|D|1/4 f (| log |D||) > 0 or = 0 a.s.

according as
∑

n∈N
1

f (n)2 <∞ or =∞.
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Let 0 < r1 < r2 < r3 < · · · .
Then the annuli B•(r2)− B•(r1),
B•(r3)− B•(r2), B•(r3)− B•(r2),...
are independent conditionally on
their boundary sizes.
−→Key ingredient for next theorem.

B•(r1)
B•(r2)B•(r3)

B•(r4)

x∗

Let K be the collection of all (closures of) Jordan domains containing
x∗ in the Brownian plane. (A Jordan domain D is the interior of a simple
loop, |∂D| is the length of this loop and and |D| is the volume of D)

Theorem (Riera)
For any nondecreasing funtion f : [0,∞) −→ (0,∞), we have

inf
D∈K

|∂D|
|D|1/4 f (| log |D||) > 0 or = 0 a.s.

according as
∑

n∈N
1

f (n)2 <∞ or =∞.
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Thank you for your attention
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