Random Geometry on the Sphere

Jean-François Le Gall

Université Paris-Sud Orsay and Institut universitaire de France

Goal: Define a canonical random geometry in two dimensions (motivations from physics: 2D quantum gravity)

Goal: Define a canonical random geometry in two dimensions (motivations from physics: 2D quantum gravity) Method:

- Replace the sphere S² by a discretization, namely a graph drawn on the sphere (= planar map).
- Choose such a planar map uniformly at random in a suitable class and equip its vertex set with the graph distance.

Goal: Define a canonical random geometry in two dimensions (motivations from physics: 2D quantum gravity) Method:

- Replace the sphere S² by a discretization, namely a graph drawn on the sphere (= planar map).
- Choose such a planar map uniformly at random in a suitable class and equip its vertex set with the graph distance.

• Let the size of the graph tend to infinity and pass to the limit after rescaling to get a random metric space: the Brownian map.

Goal: Define a canonical random geometry in two dimensions (motivations from physics: 2D quantum gravity) Method:

- Replace the sphere S² by a discretization, namely a graph drawn on the sphere (= planar map).
- Choose such a planar map uniformly at random in a suitable class and equip its vertex set with the graph distance.

• Let the size of the graph tend to infinity and pass to the limit after rescaling to get a random metric space: the Brownian map.

Strong analogy with Brownian motion, which is a canonical model for a random curve in space, obtained as the scaling limit of random walks on the lattice.

Definition

A planar map is a proper embedding of a finite connected graph into the two-dimensional sphere (considered up to orientation-preserving homeomorphisms of the sphere).

Definition

A planar map is a proper embedding of a finite connected graph into the two-dimensional sphere (considered up to orientation-preserving homeomorphisms of the sphere).

A rooted quadrangulation with 7 faces Faces = connected components of the complement of edges

p-angulation:

- each face is bounded by *p* edges
- p = 3: triangulation
- p = 4: quadrangulation

Definition

A planar map is a proper embedding of a finite connected graph into the two-dimensional sphere (considered up to orientation-preserving homeomorphisms of the sphere).

A rooted quadrangulation with 7 faces Faces = connected components of the complement of edges

p-angulation:

- each face is bounded by *p* edges
- p = 3: triangulation
- p = 4: quadrangulation

Definition

A planar map is a proper embedding of a finite connected graph into the two-dimensional sphere (considered up to orientation-preserving homeomorphisms of the sphere).

A rooted quadrangulation with 7 faces Faces = connected components of the complement of edges

p-angulation:

- each face is bounded by p edges
- p = 3: triangulation
- p = 4: quadrangulation

Definition

A planar map is a proper embedding of a finite connected graph into the two-dimensional sphere (considered up to orientation-preserving homeomorphisms of the sphere).

A rooted quadrangulation with 7 faces Faces = connected components of the complement of edges

p-angulation:

- each face is bounded by p edges
- p = 3: triangulation
- p = 4: quadrangulation

The same planar map:

The same planar map:

A large triangulation of the sphere (simulation: N. Curien) Can we get a continuous model out of this ?

Planar maps as metric spaces

M planar map

- V(M) = set of vertices of M
- $d_{\rm gr}$ graph distance on V(M)
- $(V(M), d_{gr})$ is a (finite) metric space

In blue : distances from the root vertex

Planar maps as metric spaces

M planar map

- V(M) = set of vertices of M
- $d_{\rm gr}$ graph distance on V(M)
- $(V(M), d_{gr})$ is a (finite) metric space

In blue : distances from the root vertex

- $\mathbb{M}_n^p = \{ \text{rooted } p \text{angulations with } n \text{ faces} \}$
- \mathbb{M}_n^p is a finite set (finite number of possible "shapes")

Choose M_n uniformly at random in \mathbb{M}_n^p .

Planar maps as metric spaces

M planar map

- V(M) = set of vertices of M
- $d_{\rm gr}$ graph distance on V(M)
- $(V(M), d_{gr})$ is a (finite) metric space

In blue : distances from the root vertex

- $\mathbb{M}_n^p = \{ \text{rooted } p \text{angulations with } n \text{ faces} \}$
- \mathbb{M}_n^p is a finite set (finite number of possible "shapes")

Choose M_n uniformly at random in \mathbb{M}_n^p .

View $(V(M_n), d_{gr})$ as a random variable with values in

 $\mathbb{K} = \{ \text{compact metric spaces, modulo isometries} \}$

which is equipped with the Gromov-Hausdorff distance.

The Gromov-Hausdorff distance

The Hausdorff distance. K_1 , K_2 compact subsets of a metric space

 $d_{\text{Haus}}(K_1, K_2) = \inf\{\varepsilon > 0 : K_1 \subset U_{\varepsilon}(K_2) \text{ and } K_2 \subset U_{\varepsilon}(K_1)\}$

 $(U_{\varepsilon}(K_1) \text{ is the } \varepsilon \text{-enlargement of } K_1)$

The Gromov-Hausdorff distance

The Hausdorff distance. K_1 , K_2 compact subsets of a metric space

 $d_{\text{Haus}}(K_1, K_2) = \inf\{\varepsilon > 0 : K_1 \subset U_{\varepsilon}(K_2) \text{ and } K_2 \subset U_{\varepsilon}(K_1)\}$

 $(U_{\varepsilon}(K_1) \text{ is the } \varepsilon \text{-enlargement of } K_1)$

Definition (Gromov-Hausdorff distance)

If (E_1, d_1) and (E_2, d_2) are two compact metric spaces,

$$\mathcal{A}_{\mathrm{GH}}(\mathcal{E}_1, \mathcal{E}_2) = \inf\{\mathcal{A}_{\mathrm{Haus}}(\psi_1(\mathcal{E}_1), \psi_2(\mathcal{E}_2))\}$$

the infimum is over all isometric embeddings $\psi_1 : E_1 \to E$ and $\psi_2 : E_2 \to E$ of E_1 and E_2 into the same metric space E.

Jean-François Le Gall (Université Paris-Sud)

Gromov-Hausdorff convergence of rescaled maps

Fact

If $\mathbb{K} = \{\text{isometry classes of compact metric spaces}\}$, then

 (\mathbb{K}, d_{GH}) is a separable complete metric space (Polish space)

Gromov-Hausdorff convergence of rescaled maps

Fact

If $\mathbb{K} = \{\text{isometry classes of compact metric spaces}\}$, then

 (\mathbb{K}, d_{GH}) is a separable complete metric space (Polish space)

→ If M_n is uniformly distributed over {p – angulations with n faces}, it makes sense to study the convergence in distribution of

$$(V(M_n), n^{-a}d_{\rm gr})$$

as random variables with values in \mathbb{K} .

(Problem stated for triangulations by O. Schramm [ICM, 2006])

Gromov-Hausdorff convergence of rescaled maps

Fact

If $\mathbb{K} = \{\text{isometry classes of compact metric spaces}\}$, then

 (\mathbb{K}, d_{GH}) is a separable complete metric space (Polish space)

→ If M_n is uniformly distributed over {p – angulations with n faces}, it makes sense to study the convergence in distribution of

$$(V(M_n), n^{-a}d_{\rm gr})$$

as random variables with values in \mathbb{K} .

(Problem stated for triangulations by O. Schramm [ICM, 2006])

Choice of the rescaling factor n^{-a} : a > 0 is chosen so that $\operatorname{diam}(V(M_n)) \approx n^a$.

 $\Rightarrow a = \frac{1}{4}$ [cf Chassaing-Schaeffer PTRF 2004 for quadrangulations]

Main result: The Brownian map

 $\mathbb{M}_n^p = \{ \text{rooted } p - \text{angulations with } n \text{ faces} \}$ $M_n \text{ uniform over } \mathbb{M}_n^p, V(M_n) \text{ vertex set of } M_n, d_{gr} \text{ graph distance}$

Main result: The Brownian map

 $\mathbb{M}_n^p = \{ \text{rooted } p - \text{angulations with } n \text{ faces} \}$ $M_n \text{ uniform over } \mathbb{M}_n^p, V(M_n) \text{ vertex set of } M_n, d_{gr} \text{ graph distance} \}$

Theorem (The scaling limit of *p*-angulations)

Suppose that either p = 3 (triangulations) or $p \ge 4$ is even. Set

$$c_3 = 6^{1/4}$$
 , $c_p = \left(\frac{9}{p(p-2)}\right)^{1/4}$ if p is even.

Then,

$$(V(M_n), c_p n^{-1/4} d_{\mathrm{gr}}) \xrightarrow[n \to \infty]{(\mathrm{d})} (\mathbf{m}_{\infty}, D^*)$$

in the Gromov-Hausdorff sense. The limit $(\mathbf{m}_{\infty}, D^*)$ is a random compact metric space that does not depend on p (universality) and is called the Brownian map (after Marckert-Mokkadem).

Main result: The Brownian map

 $\mathbb{M}_n^p = \{ \text{rooted } p - \text{angulations with } n \text{ faces} \}$ $M_n \text{ uniform over } \mathbb{M}_n^p, V(M_n) \text{ vertex set of } M_n, d_{gr} \text{ graph distance} \}$

Theorem (The scaling limit of *p*-angulations)

Suppose that either p = 3 (triangulations) or $p \ge 4$ is even. Set

$$c_3 = 6^{1/4}$$
 , $c_p = \left(\frac{9}{p(p-2)}\right)^{1/4}$ if p is even.

Then,

$$(V(M_n), c_p n^{-1/4} d_{\mathrm{gr}}) \xrightarrow[n \to \infty]{(\mathrm{d})} (\mathbf{m}_{\infty}, D^*)$$

in the Gromov-Hausdorff sense. The limit $(\mathbf{m}_{\infty}, D^*)$ is a random compact metric space that does not depend on p (universality) and is called the Brownian map (after Marckert-Mokkadem).

Remarks. The case p = 4 was obtained independently by Miermont. The case p = 3 solves Schramm's problem (2006) Expect the result to be also true for any odd value of p

Two properties of the Brownian map

Theorem (Hausdorff dimension)

$$\dim(\mathbf{m}_{\infty}, D^*) = 4 \qquad a.s.$$

(Already "known" in the physics literature.)

Two properties of the Brownian map

Theorem (Hausdorff dimension)

$$\dim(\mathbf{m}_{\infty}, D^*) = 4$$
 a.s.

(Already "known" in the physics literature.)

Theorem (topological type, LG-Paulin 2007)

Almost surely, $(\mathbf{m}_{\infty}, D^*)$ is homeomorphic to the 2-sphere \mathbb{S}^2 .

Two properties of the Brownian map

Theorem (Hausdorff dimension)

$$\dim(\mathbf{m}_{\infty}, D^*) = 4 \qquad a.s.$$

(Already "known" in the physics literature.)

Theorem (topological type, LG-Paulin 2007)

Almost surely, $(\mathbf{m}_{\infty}, D^*)$ is homeomorphic to the 2-sphere \mathbb{S}^2 .

Consequence: for a typical planar map M_n with *n* faces, diameter $\approx n^{1/4}$ but: no cycle of size $o(n^{1/4})$ in M_n , such that both sides have diameter $\geq \varepsilon n^{1/4}$

 combinatorics [Tutte '60 (towards the 4-color thm), many recent papers on planar maps and planar graphs, cf lecture by M. Noy]

- combinatorics [Tutte '60 (towards the 4-color thm), many recent papers on planar maps and planar graphs, cf lecture by M. Noy]
- theoretical physics
 - enumeration of maps related to matrix integrals ['t Hooft 74, Brézin, Itzykson, Parisi, Zuber 78, etc.]
 recent work of Guionnet, Eynard, etc.

- combinatorics [Tutte '60 (towards the 4-color thm), many recent papers on planar maps and planar graphs, cf lecture by M. Noy]
- theoretical physics
 - enumeration of maps related to matrix integrals ['t Hooft 74, Brézin, Itzykson, Parisi, Zuber 78, etc.]
 recent work of Guionnet, Eynard, etc.
 - large random planar maps as models of random geometry (2D-quantum gravity, cf Ambjørn, Durhuus, Jonsson 95, recent papers of Bouttier-Guitter 2005-2012,

- combinatorics [Tutte '60 (towards the 4-color thm), many recent papers on planar maps and planar graphs, cf lecture by M. Noy]
- theoretical physics
 - enumeration of maps related to matrix integrals ['t Hooft 74, Brézin, Itzykson, Parisi, Zuber 78, etc.]
 recent work of Guionnet, Eynard, etc.
 - large random planar maps as models of random geometry (2D-quantum gravity, cf Ambjørn, Durhuus, Jonsson 95, recent papers of Bouttier-Guitter 2005-2012, Duplantier-Sheffield 2011)

- combinatorics [Tutte '60 (towards the 4-color thm), many recent papers on planar maps and planar graphs, cf lecture by M. Noy]
- theoretical physics
 - enumeration of maps related to matrix integrals ['t Hooft 74, Brézin, Itzykson, Parisi, Zuber 78, etc.]
 recent work of Guionnet, Eynard, etc.
 - large random planar maps as models of random geometry (2D-quantum gravity, cf Ambjørn, Durhuus, Jonsson 95, recent papers of Bouttier-Guitter 2005-2012, Duplantier-Sheffield 2011)
- probability theory: models for a Brownian surface
 - analogy with Brownian motion as continuous limit of discrete paths
 - universality of the limit (conjectured by physicists)
 - asymptotic properties of "typical" large planar graphs

- combinatorics [Tutte '60 (towards the 4-color thm), many recent papers on planar maps and planar graphs, cf lecture by M. Noy]
- theoretical physics
 - enumeration of maps related to matrix integrals ['t Hooft 74, Brézin, Itzykson, Parisi, Zuber 78, etc.]
 recent work of Guionnet, Eynard, etc.
 - large random planar maps as models of random geometry (2D-quantum gravity, cf Ambjørn, Durhuus, Jonsson 95, recent papers of Bouttier-Guitter 2005-2012, Duplantier-Sheffield 2011)
- probability theory: models for a Brownian surface
 - analogy with Brownian motion as continuous limit of discrete paths
 - universality of the limit (conjectured by physicists)
 - asymptotic properties of "typical" large planar graphs
- algebraic and geometric motivations: cf Lando-Zvonkin 04 Graphs on surfaces and their applications

2. A key tool: Bijections between maps and trees

- A plane tree τ with vertex set $V(\tau) = \{ \emptyset, 1, 2, 21, 22, 212, \ldots \}$ (rooted **ordered** tree)
- the (lexicographical) order on the tree will play an important role

Jean-François Le Gall (Université Paris-Sud)

2. A key tool: Bijections between maps and trees

- A plane tree τ with vertex set $V(\tau) = \{ \emptyset, 1, 2, 21, 22, 212, \ldots \}$ (rooted **ordered** tree)
- the (lexicographical) order on the tree will play an important role

A well-labeled tree $(\tau, (\ell_v)_{v \in V(\tau)})$ Properties of labels:

2111

21

211

212

213

221

22

• $\ell_{\varnothing} = 1$

•
$$\ell_{v} \in \{1, 2, 3, ...\}, \forall v$$

•
$$|\ell_{v} - \ell_{v'}| \leq 1$$
, if v, v' neighbors

Jean-François Le Gall (Université Paris-Sud)

Coding maps with trees, the case of quadrangulations

 $\mathbb{T}_n = \{ \text{well-labeled trees with } n \text{ edges} \}$

 $\mathbb{M}_n^4 = \{\text{rooted quadrangulations with } n \text{ faces}\}$
Coding maps with trees, the case of quadrangulations

 $\mathbb{T}_n = \{ \text{well-labeled trees with } n \text{ edges} \}$

 $\mathbb{M}_n^4 = \{\text{rooted quadrangulations with } n \text{ faces}\}$

Fact (Cori-Vauquelin, Schaeffer)

There is a bijection $\Phi : \mathbb{T}_n \longrightarrow \mathbb{M}_n^4$ such that, if $M = \Phi(\tau, (\ell_v)_{v \in V(\tau)})$, then

$$V(M) = V(\tau) \cup \{\partial\}$$
 (∂ is the root vertex of M)
 $d_{gr}(\partial, v) = \ell_v$, $\forall v \in V(\tau)$

Key properties.

- Vertices of τ become vertices of M
- The label in the tree becomes the distance from the root in the map.

Coding maps with trees, the case of quadrangulations

 $\mathbb{T}_n = \{ \text{well-labeled trees with } n \text{ edges} \}$

 $\mathbb{M}_n^4 = \{\text{rooted quadrangulations with } n \text{ faces}\}$

Fact (Cori-Vauquelin, Schaeffer)

There is a bijection $\Phi : \mathbb{T}_n \longrightarrow \mathbb{M}_n^4$ such that, if $M = \Phi(\tau, (\ell_v)_{v \in V(\tau)})$, then

$$V(M) = V(\tau) \cup \{\partial\}$$
 (∂ is the root vertex of M)
 $d_{\rm gr}(\partial, v) = \ell_v$, $\forall v \in V(\tau)$

Key properties.

- Vertices of τ become vertices of M
- The label in the tree becomes the distance from the root in the map.

Coding of more general maps: Bouttier, Di Francesco, Guitter (2004)

Jean-François Le Gall (Université Paris-Sud)

Random Geometry on the Sphere

Rules

rooted quadrangulation

Jean-François Le Gall (Université Paris-Sud)

Random Geometry on the Sphere

Rules

• Add extra vertex ∂ labeled 0

- Add extra vertex ∂ labeled 0
- Follow the contour of the tree

- Add extra vertex ∂ labeled 0
- Follow the contour of the tree (so that one visits all "corners" of the tree)

- Add extra vertex ∂ labeled 0
- Follow the contour of the tree
- Draw a red edge between each corner and the last visited corner with smaller label (a corner with label 1 is connected to ∂)

Rules

- Add extra vertex ∂ labeled 0
- Follow the contour of the tree
- Draw a red edge between each corner and the last visited corner with smaller label (a corner with label 1 is connected to ∂)

Jean-François Le Gall (Université Paris-Sud)

Random Geometry on the Sphere

Rules

- Add extra vertex ∂ labeled 0
- Follow the contour of the tree
- Draw a red edge between each corner and the last visited corner with smaller label (a corner with label 1 is connected to ∂)

Jean-François Le Gall (Université Paris-Sud)

Random Geometry on the Sphere

- Add extra vertex ∂ labeled 0
- Follow the contour of the tree
- Draw a red edge between each corner and the last visited corner with smaller label (a corner with label 1 is connected to ∂)

- Add extra vertex ∂ labeled 0
- Follow the contour of the tree
- Draw a red edge between each corner and the last visited corner with smaller label (a corner with label 1 is connected to ∂)

- Add extra vertex ∂ labeled 0
- Follow the contour of the tree
- Draw a red edge between each corner and the last visited corner with smaller label (a corner with label 1 is connected to ∂)

Rules

- Add extra vertex ∂ labeled 0
- Follow the contour of the tree
- Draw a red edge between each corner and the last visited corner with smaller label (a corner with label 1 is connected to ∂)

Jean-François Le Gall (Université Paris-Sud)

Random Geometry on the Sphere

- Add extra vertex ∂ labeled 0
- Follow the contour of the tree
- Draw a red edge between each corner and the last visited corner with smaller label (a corner with label 1 is connected to ∂)

- Add extra vertex ∂ labeled 0
- Follow the contour of the tree
- Draw a red edge between each corner and the last visited corner with smaller label (a corner with label 1 is connected to ∂)

- Add extra vertex ∂ labeled 0
- Follow the contour of the tree
- Draw a red edge between each corner and the last visited corner with smaller label (a corner with label 1 is connected to ∂)

- Add extra vertex ∂ labeled 0
- Follow the contour of the tree
- Draw a red edge between each corner and the last visited corner with smaller label (a corner with label 1 is connected to ∂)

Rules

- Add extra vertex ∂ labeled 0
- Follow the contour of the tree
- Draw a red edge between each corner and the last visited corner with smaller label (a corner with label 1 is connected to ∂)

Jean-Francois Le Gall (Université Paris-Sud)

rooted quadrangulation

Random Geometry on the Sphere

- Add extra vertex ∂ labeled 0
- Follow the contour of the tree
- Draw a red edge between each corner and the last visited corner with smaller label (a corner with label 1 is connected to ∂)

Rules

- Add extra vertex ∂ labeled 0
- Follow the contour of the tree
- Draw a red edge between each corner and the last visited corner with smaller label (a corner with label 1 is connected to ∂)

Jean-François Le Gall (Université Paris-Sud)

Random Geometry on the Sphere

Rules

- Add extra vertex ∂ labeled 0
- Follow the contour of the tree
- Draw a red edge between each corner and the last visited corner with smaller label (a corner with label 1 is connected to ∂)
- The collection of red edges forms a quadrangulation

Jean-Francois Le Gall (Université Paris-Sud)

rooted quadrangulation

- Add extra vertex ∂ labeled 0
- Follow the contour of the tree
- Draw a red edge between each corner and the last visited corner with smaller label (a corner with label 1 is connected to ∂)
- The collection of red edges forms a quadrangulation
- The label in the tree becomes the distance from ∂ in the map

- Add extra vertex ∂ labeled 0
- Follow the contour of the tree
- Draw a red edge between each corner and the last visited corner with smaller label (a corner with label 1 is connected to ∂)
- The collection of red edges forms a quadrangulation
- The label in the tree becomes the distance from ∂ in the map

The Brownian map $(\mathbf{m}_{\infty}, D^*)$ is constructed by identifying certain pairs of points in Aldous' Brownian continuum random tree (CRT).

The Brownian map $(\mathbf{m}_{\infty}, D^*)$ is constructed by identifying certain pairs of points in Aldous' Brownian continuum random tree (CRT).

- As the scaling limit of many classes of discrete trees
- As the random real tree whose contour is a Brownian excursion.

The Brownian map $(\mathbf{m}_{\infty}, D^*)$ is constructed by identifying certain pairs of points in Aldous' Brownian continuum random tree (CRT).

- As the scaling limit of many classes of discrete trees
- As the random real tree whose contour is a Brownian excursion. Coding a (discrete) plane tree by its contour function (or Dyck path):

The Brownian map $(\mathbf{m}_{\infty}, D^*)$ is constructed by identifying certain pairs of points in Aldous' Brownian continuum random tree (CRT).

- As the scaling limit of many classes of discrete trees
- As the random real tree whose contour is a Brownian excursion. Coding a (discrete) plane tree by its contour function (or Dyck path):

The Brownian map $(\mathbf{m}_{\infty}, D^*)$ is constructed by identifying certain pairs of points in Aldous' Brownian continuum random tree (CRT).

- As the scaling limit of many classes of discrete trees
- As the random real tree whose contour is a Brownian excursion. Coding a (discrete) plane tree by its contour function (or Dyck path):

The Brownian map $(\mathbf{m}_{\infty}, D^*)$ is constructed by identifying certain pairs of points in Aldous' Brownian continuum random tree (CRT).

Constructions of the CRT (Aldous, 1991-1993):

- As the scaling limit of many classes of discrete trees
- As the random real tree whose contour is a Brownian excursion. Coding a (discrete) plane tree by its contour function (or Dyck path):

From the contour back to the tree (by gluing certain pairs of segments of the graph)

The Brownian map $(\mathbf{m}_{\infty}, D^*)$ is constructed by identifying certain pairs of points in Aldous' Brownian continuum random tree (CRT).

Constructions of the CRT (Aldous, 1991-1993):

- As the scaling limit of many classes of discrete trees
- As the random real tree whose contour is a Brownian excursion. Coding a (discrete) plane tree by its contour function (or Dyck path):

From the contour back to the tree (by gluing certain pairs of segments of the graph)

The notion of a real tree

Definition

A real tree, or \mathbb{R} -tree, is a (compact) metric space \mathcal{T} such that:

- any two points *a*, *b* ∈ *T* are joined by a unique continuous and injective path (up to re-parametrization)
- this path is isometric to a line segment

 \mathcal{T} is a rooted real tree if there is a distinguished point ρ , called the root.

The notion of a real tree

Definition

A real tree, or \mathbb{R} -tree, is a (compact) metric space \mathcal{T} such that:

- any two points *a*, *b* ∈ *T* are joined by a unique continuous and injective path (up to re-parametrization)
- this path is isometric to a line segment

 \mathcal{T} is a rooted real tree if there is a distinguished point ρ , called the root.

Remark. A real tree can have

- infinitely many branching points
- (uncountably) infinitely many leaves

The notion of a real tree

Definition

A real tree, or \mathbb{R} -tree, is a (compact) metric space \mathcal{T} such that:

- any two points *a*, *b* ∈ *T* are joined by a unique continuous and injective path (up to re-parametrization)
- this path is isometric to a line segment

 \mathcal{T} is a rooted real tree if there is a distinguished point ρ , called the root.

Remark. A real tree can have

- infinitely many branching points
- (uncountably) infinitely many leaves

Fact. The coding of discrete trees by contour functions can be extended to real trees: also gives a cyclic ordering on the tree.

The real tree coded by a function g

The real tree coded by a function g

 $d_g(s,t) = g(s) + g(t) - 2 m_g(s,t)$ pseudo-metric on [0, 1] $t \sim t'$ iff $d_g(t,t') = 0$ (or equivalently $g(t) = g(t') = m_g(t,t')$)
The real tree coded by a function g

 $d_g(s,t) = g(s) + g(t) - 2 m_g(s,t)$ pseudo-metric on [0, 1] $t \sim t'$ iff $d_g(t,t') = 0$ (or equivalently $g(t) = g(t') = m_g(t,t')$)

Proposition

 $T_g := [0, 1] / \sim$ equipped with d_g is a real tree, called the tree coded by g. It is rooted at $\rho = 0$.

The canonical projection $[0,1] \to \mathcal{T}_g$ induces a cyclic ordering on \mathcal{T}_g

Jean-François Le Gall (Université Paris-Sud)

Every horizontal blue line segment below the curve is identified to a single point.

Every horizontal blue line segment below the curve is identified to a single point.

Every horizontal blue line segment below the curve is identified to a single point.

Definition of the CRT

Let $(\mathbf{e}_t)_{0 \le t \le 1}$ be a Brownian excursion with duration 1 (= Brownian motion started from 0 conditioned to be at 0 at time 1 and to stay ≥ 0)

Definition

The CRT (T_e, d_e) is the (random) real tree coded by the Brownian excursion **e**.

Simulation of a Brownian excursion

Assigning Brownian labels to a real tree

Let (\mathcal{T}, d) be a real tree with root ρ .

 $(Z_a)_{a \in \mathcal{T}}$: Brownian motion indexed by (\mathcal{T}, d) = centered Gaussian process such that

•
$$Z_{
ho} = 0$$

•
$$E[(Z_a-Z_b)^2]=d(a,b), \qquad a,b\in\mathcal{T}$$

Assigning Brownian labels to a real tree

Let (\mathcal{T}, d) be a real tree with root ρ .

 $(Z_a)_{a \in \mathcal{T}}$: Brownian motion indexed by (\mathcal{T}, d) = centered Gaussian process such that

•
$$Z_{
ho} = 0$$

•
$$E[(Z_a-Z_b)^2]=d(a,b), \qquad a,b\in\mathcal{T}$$

Labels evolve like Brownian motion along the branches of the tree:

- The label Z_a is the value at time d(ρ, a) of a standard Brownian motion
- Similar property for Z_b, but one uses
 - the same BM between 0 and $d(\rho, a \wedge b)$
 - An independent BM between d(ρ, a ∧ b) and d(ρ, b)

 (\mathcal{T}_{e}, d_{e}) is the CRT, $(Z_{a})_{a \in \mathcal{T}_{e}}$ Brownian motion indexed by the CRT (Two levels of randomness!).

 (\mathcal{T}_{e}, d_{e}) is the CRT, $(Z_{a})_{a \in \mathcal{T}_{e}}$ Brownian motion indexed by the CRT (Two levels of randomness!).

Set, for every $a, b \in \mathcal{T}_e$,

$$D^0(a,b) = Z_a + Z_b - 2 \max\left(\min_{c \in [a,b]} Z_c, \min_{c \in [b,a]} Z_c\right)$$

where [a, b] is the "interval" from *a* to *b* corresponding to the cyclic ordering on \mathcal{T}_{e} (vertices visited when going from *a* to *b* in clockwise order around the tree).

 (\mathcal{T}_{e}, d_{e}) is the CRT, $(Z_{a})_{a \in \mathcal{T}_{e}}$ Brownian motion indexed by the CRT (Two levels of randomness!).

Set, for every $a, b \in \mathcal{T}_{e}$,

$$D^0(a,b) = Z_a + Z_b - 2 \max\left(\min_{c \in [a,b]} Z_c, \min_{c \in [b,a]} Z_c\right)$$

where [a, b] is the "interval" from *a* to *b* corresponding to the cyclic ordering on \mathcal{T}_{e} (vertices visited when going from *a* to *b* in clockwise order around the tree).

Then set

$$D^{*}(a,b) = \inf_{a_{0}=a,a_{1},...,a_{k-1},a_{k}=b} \sum_{i=1}^{\kappa} D^{0}(a_{i-1},a_{i}),$$

 $a \approx b$ if and only if $D^{*}(a,b) = 0$ (equivalent to $D^{0}(a,b) = 0$).

1.

 (\mathcal{T}_{e}, d_{e}) is the CRT, $(Z_{a})_{a \in \mathcal{T}_{e}}$ Brownian motion indexed by the CRT (Two levels of randomness!).

Set, for every $a, b \in \mathcal{T}_e$,

$$D^0(a,b) = Z_a + Z_b - 2 \max\left(\min_{c \in [a,b]} Z_c, \min_{c \in [b,a]} Z_c\right)$$

where [a, b] is the "interval" from *a* to *b* corresponding to the cyclic ordering on \mathcal{T}_{e} (vertices visited when going from *a* to *b* in clockwise order around the tree).

Then set

$$D^{*}(a,b) = \inf_{a_{0}=a,a_{1},...,a_{k-1},a_{k}=b} \sum_{i=1}^{k} D^{0}(a_{i-1},a_{i}),$$

b if and only if $D^{*}(a,b) = 0$ (equivalent to $D^{0}(a,b) = 0$).

Definition

 $a \approx$

The Brownian map \mathbf{m}_{∞} is the quotient space $\mathbf{m}_{\infty} := \mathcal{T}_{\mathbf{e}} / \approx$, which is equipped with the distance induced by D^* .

Summary and interpretation

Starting from the CRT \mathcal{T}_{e} , with Brownian labels $Z_{a}, a \in \mathcal{T}_{e}$, \rightarrow Identify two vertices $a, b \in \mathcal{T}_{e}$ if:

- they have the same label $Z_a = Z_b$,
- one can go from *a* to *b* around the tree (in clockwise or in counterclockwise order) visiting only vertices with label greater than or equal to $Z_a = Z_b$.

Summary and interpretation

Starting from the CRT \mathcal{T}_{e} , with Brownian labels $Z_{a}, a \in \mathcal{T}_{e}$, \rightarrow Identify two vertices $a, b \in \mathcal{T}_{e}$ if:

- they have the same label $Z_a = Z_b$,
- one can go from *a* to *b* around the tree (in clockwise or in counterclockwise order) visiting only vertices with label greater than or equal to $Z_a = Z_b$.

Remark. Not many vertices are identified:

- A "typical" equivalence class is a singleton.
- Equivalence classes may contain at most 3 points.

Still these identifications drastically change the topology.

Interpretation of the equivalence relation \approx

In Schaeffer's bijection: \exists edge between *u* and *v* if

•
$$\ell_u = \ell_v - 1$$

•
$$\ell_{w} \geq \ell_{v}$$
, $\forall w \in]u, v]$

Explains why in the continuous limit

$$Z_a = Z_b = \min_{c \in [a,b]} Z_c$$

 $\Rightarrow a \text{ and } b \text{ are identified}$

Interpretation of the equivalence relation \approx

In Schaeffer's bijection: \exists edge between *u* and *v* if

•
$$\ell_u = \ell_v - 1$$

•
$$\ell_{w} \geq \ell_{v}$$
, $\forall w \in]u, v]$

Explains why in the continuous limit

$$Z_a = Z_b = \min_{c \in [a,b]} Z_c$$

 $\Rightarrow a$ and b are identified

Key points of the proof of the main theorem:

- Prove the converse (no other pair of points are identified)
- Obtain the formula for the limiting distance D*

Properties of distances in the Brownian map Let ρ_* be the (unique) vertex of $\mathcal{T}_{\mathbf{e}}$ such that

$$Z_{
ho_*} = \min_{m{c}\in\mathcal{T}_{e}} Z_{m{c}}$$

Then, for every $a \in \mathcal{T}_{e}$,

$$D^*(\rho_*, a) = Z_a - \min Z.$$

("follows" from the analogous property in the discrete setting)

Properties of distances in the Brownian map Let ρ_* be the (unique) vertex of \mathcal{T}_{e} such that

$$Z_{
ho_*} = \min_{m{c}\in\mathcal{T}_{e}} Z_{m{c}}$$

Then, for every $a \in \mathcal{T}_{e}$,

$$D^*(\rho_*, \boldsymbol{a}) = Z_{\boldsymbol{a}} - \min Z.$$

("follows" from the analogous property in the discrete setting) No such simple expression for $D^*(a, b)$ in terms of labels, but

$$D^*(a,b) \leq D^0(a,b) = Z_a + Z_b - 2 \max\left(\min_{c \in [a,b]} Z_c, \min_{c \in [b,a]} Z_c\right)$$

(in the discrete setting, corresponds to constructing a path between *a* and *b* from the union of the two geodesics from *a*, resp. from *b*, to ∂ until the point when they merge)

Properties of distances in the Brownian map Let ρ_* be the (unique) vertex of \mathcal{T}_e such that

$$Z_{
ho_*} = \min_{m{c}\in\mathcal{T}_{e}} Z_{m{c}}$$

Then, for every $a \in T_e$,

$$D^*(\rho_*, a) = Z_a - \min Z.$$

("follows" from the analogous property in the discrete setting) No such simple expression for $D^*(a, b)$ in terms of labels, but

$$D^*(a,b) \leq D^0(a,b) = Z_a + Z_b - 2 \max\left(\min_{c \in [a,b]} Z_c, \min_{c \in [b,a]} Z_c\right)$$

(in the discrete setting, corresponds to constructing a path between a and b from the union of the two geodesics from a, resp. from b, to ∂ until the point when they merge)

 D^* is the maximal metric that satisfies this inequality

Geodesics in quadrangulations

Use Schaeffer's bijection between quadrangulations and well-labeled trees.

To construct a geodesic from v to ∂ :

Geodesics in quadrangulations

Use Schaeffer's bijection between quadrangulations and well-labeled trees.

To construct a geodesic from v to ∂ :

Look for the last visited vertex (before v) with label l_v - 1. Call it v'. There is an edge of the quadrangulation between v and v'.

Geodesics in quadrangulations

Use Schaeffer's bijection between quadrangulations and well-labeled trees.

To construct a geodesic from v to ∂ :

- Look for the last visited vertex (before v) with label l_v 1. Call it v'. There is an edge of the quadrangulation between v and v'.
- Proceed in the same way from v' to get a vertex v'' with label l_v 2.

Geodesics in quadrangulations

Use Schaeffer's bijection between quadrangulations and well-labeled trees.

To construct a geodesic from v to ∂ :

- Look for the last visited vertex (before v) with label l_v 1. Call it v'. There is an edge of the quadrangulation between v and v'.
- Proceed in the same way from v' to get a vertex v'' with label l_v 2.
- And so on.
- Eventually one reaches ∂ .

Recall : ρ_* is the unique point of $\mathcal{T}_{\mathbf{e}}$ s.t.

$$Z_{
ho_*} = \min_{m{c}\in\mathcal{T}_{m{e}}} Z_{m{c}}$$

then, for every $b \in \mathcal{T}_{e}$,

$$D^*(\rho_*, b) = Z_b - \min Z \stackrel{(\text{notation})}{=} \widetilde{Z}_b.$$

Recall : ρ_* is the unique point of \mathcal{T}_e s.t.

$$Z_{
ho_*} = \min_{m{c}\in\mathcal{T}_{m{e}}} Z_{m{c}}$$

then, for every $b \in \mathcal{T}_e$,

$$D^*(\rho_*, b) = Z_b - \min Z \stackrel{(\text{notation})}{=} \widetilde{Z}_b.$$

If $a \in \mathcal{T}_{e}$ is fixed, we construct a <u>geodesic</u> from *a* to ρ_{*} by setting: for $t \in [0, \widetilde{Z}_{a}]$, $\varphi_{a}(t) =$ last vertex *b* before *a* s.t. $\widetilde{Z}_{b} = t$ ("last" refers to the cyclic order)

Recall : ρ_* is the unique point of \mathcal{T}_{e} s.t.

$$Z_{
ho_*} = \min_{m{c}\in\mathcal{T}_{m{e}}} Z_{m{c}}$$

then, for every $b \in \mathcal{T}_{e}$,

$$D^*(\rho_*, b) = Z_b - \min Z \stackrel{(\text{notation})}{=} \widetilde{Z}_b.$$

If $a \in \mathcal{T}_{e}$ is fixed, we construct a <u>geodesic</u> from *a* to ρ_{*} by setting: for $t \in [0, \widetilde{Z}_{a}]$, $\varphi_{a}(t) =$ last vertex *b* before *a* s.t. $\widetilde{Z}_{b} = t$ ("last" refers to the cyclic order)

Fact

All geodesics to ρ_* are of this form.

Recall : ρ_* is the unique point of \mathcal{T}_{e} s.t.

$$Z_{
ho_*} = \min_{m{c}\in\mathcal{T}_{m{e}}} Z_{m{c}}$$

then, for every $b \in \mathcal{T}_{e}$,

$$D^*(\rho_*, b) = Z_b - \min Z \stackrel{(\text{notation})}{=} \widetilde{Z}_b.$$

If $a \in \mathcal{T}_{e}$ is fixed, we construct a <u>geodesic</u> from *a* to ρ_{*} by setting: for $t \in [0, \widetilde{Z}_{a}]$, $\varphi_{a}(t) =$ last vertex *b* before *a* s.t. $\widetilde{Z}_{b} = t$ ("last" refers to the cyclic order)

Fact

All geodesics to ρ_* are of this form.

If *a* is not a leaf, there are several possible choices, depending on which side of *a* one starts.

Jean-François Le Gall (Université Paris-Sud)

The main result about geodesics

Define the skeleton of \mathcal{T}_e by $Sk(\mathcal{T}_e) = \mathcal{T}_e \setminus \{\text{leaves of } \mathcal{T}_e\}$ and set

 $\operatorname{Skel} = \pi(\operatorname{Sk}(\mathcal{T}_{e}))$, where $\pi : \mathcal{T}_{e} \to \mathcal{T}_{e} / \approx = \mathbf{m}_{\infty}$ canonical projection Then

- the restriction of π to $Sk(\mathcal{T}_e)$ is a homeomorphism onto Skel
- dim(Skel) = 2 (recall dim(\mathbf{m}_{∞}) = 4)

The main result about geodesics

Define the skeleton of \mathcal{T}_e by $Sk(\mathcal{T}_e) = \mathcal{T}_e \setminus \{\text{leaves of } \mathcal{T}_e\}$ and set

 $\operatorname{Skel} = \pi(\operatorname{Sk}(\mathcal{T}_{\mathbf{e}}))$, where $\pi : \mathcal{T}_{\mathbf{e}} \to \mathcal{T}_{\mathbf{e}} / \approx = \mathbf{m}_{\infty}$ canonical projection Then

- the restriction of π to $Sk(\mathcal{T}_e)$ is a homeomorphism onto Skel
- dim(Skel) = 2 (recall dim(\mathbf{m}_{∞}) = 4)

Theorem (Geodesics from the root)

Let $x \in \mathbf{m}_{\infty}$. Then,

• if $x \notin \text{Skel}$, there is a unique geodesic from ρ_* to x

if x ∈ Skel, the number of distinct geodesics from ρ_{*} to x is the multiplicity m(x) of x in Skel (note: m(x) ≤ 3).

The main result about geodesics

Define the skeleton of \mathcal{T}_e by $Sk(\mathcal{T}_e) = \mathcal{T}_e \setminus \{ \text{leaves of } \mathcal{T}_e \}$ and set

 $\operatorname{Skel} = \pi(\operatorname{Sk}(\mathcal{T}_{\mathbf{e}}))$, where $\pi : \mathcal{T}_{\mathbf{e}} \to \mathcal{T}_{\mathbf{e}} / \approx = \mathbf{m}_{\infty}$ canonical projection Then

- the restriction of π to $Sk(\mathcal{T}_e)$ is a homeomorphism onto Skel
- $\dim(\text{Skel}) = 2$ (recall $\dim(\mathbf{m}_{\infty}) = 4$)

Theorem (Geodesics from the root)

Let $x \in \mathbf{m}_{\infty}$. Then,

- if $x \notin \text{Skel}$, there is a unique geodesic from ρ_* to x
- if x ∈ Skel, the number of distinct geodesics from ρ_{*} to x is the multiplicity m(x) of x in Skel (note: m(x) ≤ 3).

Remarks

- Skel is the cut-locus of **m**_∞ relative to ρ_{*}: cf classical Riemannian geometry [Poincaré, Myers, ...], where the cut-locus is a tree.
- same results if ρ_* replaced by a point chosen "at random" in \mathbf{m}_{∞} .

Illustration of the cut-locus

The cut-locus Skel is homeomorphic to a non-compact real tree and is dense in \mathbf{m}_{∞}

Geodesics to ρ_* do not visit Skel (except possibly at their starting point) but "move around" Skel.

Confluence property of geodesics

Fact: Two geodesics to ρ_* coincide near ρ_* . (easy from the definition)

Corollary

Given $\delta > 0$, there exists $\varepsilon > 0$ s.t.

- if $D^*(\rho_*, \mathbf{X}) \geq \delta$, $D^*(\rho_*, \mathbf{Y}) \geq \delta$
- if γ is any geodesic from ρ_* to x
- if γ' is any geodesic from ρ_* to y then

 $\gamma(t) = \gamma'(t)$ for all $t \leq \varepsilon$

"Only one way" of leaving ρ_* along a geodesic. (also true if ρ_* is replaced by a typical point of \mathbf{m}_{∞})

Uniqueness of geodesics in discrete maps

 M_n uniform distributed over $\mathbb{M}_n^p = \{p - \text{angulations with } n \text{ faces}\}$ $V(M_n)$ set of vertices of M_n , ∂ root vertex of M_n , d_{gr} graph distance

For $v \in V(M_n)$, set $\text{Geo}(\partial \to v) = \{\text{geodesics from } \partial \text{ to } v\}$

If γ , γ' are two discrete paths in M_n (with the same length)

$$d(\gamma,\gamma') = \max_{i} d_{\rm gr}(\gamma(i),\gamma'(i))$$

Uniqueness of geodesics in discrete maps

 M_n uniform distributed over $\mathbb{M}_n^p = \{p - \text{angulations with } n \text{ faces}\}$ $V(M_n)$ set of vertices of M_n , ∂ root vertex of M_n , d_{gr} graph distance For $v \in V(M_n)$, set $\text{Geo}(\partial \to v) = \{\text{geodesics from } \partial \text{ to } v\}$

If γ , γ' are two discrete paths in M_n (with the same length)

$$d(\gamma,\gamma') = \max_{i} d_{\rm gr}(\gamma(i),\gamma'(i))$$

Corollary

Let $\delta > 0$. Then,

$$\frac{1}{n}\#\{\mathbf{v}\in V(M_n):\exists\gamma,\gamma'\in\operatorname{Geo}(\partial\rightarrow\mathbf{v}),\ \mathbf{d}(\gamma,\gamma')\geq\delta n^{1/4}\}\underset{n\rightarrow\infty}{\longrightarrow}\mathbf{0}$$

Two discrete geodesics (between two typical points) are within a distance $o(n^{-1/4})$ (Macroscopic uniqueness, also true for "approximate geodesics"= paths with length $d_{\rm gr}(\partial, v) + o(n^{1/4})$)

Jean-François Le Gall (Université Paris-Sud)
5. Canonical embeddings: Open problems

Recall that a planar map is defined up to (orientation-preserving) homeomorphisms of the sphere.

It is possible to choose a particular (canonical) embedding of the graph satisfying conformal invariance properties, and this choice is unique (at least up to the Möbius transformations, which are the conformal transformations of the sphere \mathbb{S}^2).

5. Canonical embeddings: Open problems

Recall that a planar map is defined up to (orientation-preserving) homeomorphisms of the sphere.

It is possible to choose a particular (canonical) embedding of the graph satisfying conformal invariance properties, and this choice is unique (at least up to the Möbius transformations, which are the conformal transformations of the sphere \mathbb{S}^2).

Question

Applying this canonical embedding to M_n (uniform over p-angulations with n faces), can one let n tend to infinity and get a random metric Δ on the sphere \mathbb{S}^2 satisfying conformal invariance properties, and such that

 $(\mathbb{S}^2,\Delta) \stackrel{(\mathrm{d})}{=} (\mathbf{m}_{\infty}, D^*)$

Canonical embeddings via circle packings 1

From a circle packing, construct a graph *M* :

- V(M) = {centers of circles}
- edge between *a* and *b* if the corresponding circles are tangent.

A triangulation (without loops or multiple edges) can always be represented in this way.

Representation unique up to Möbius transformations.

Canonical embeddings via circle packings 2

Apply to M_n uniform over {triangulations with *n* faces}. Let $n \rightarrow \infty$. Expect to get

 Random metric ∆ on S² (with conformal invariance properties) such that

$$(\mathbb{S}^2,\Delta)=(\mathbf{m}_\infty,D^*)$$

 Random volume measure on S²

Connections with the Gaussian free field ?

Recent progress: Miller-Sheffield (Quantum Loewner Evolut.)

A few references

BENJAMINI: Random planar metrics. Proc. ICM 2010. BOUTTIER, DI FRANCESCO, GUITTER: Planar maps as labeled mobiles. *Electr. J. Combinatorics* (2004)

- DUPLANTIER, SHEFFIELD: Liouville quantum gravity and KPZ. *Invent. Math.* (2011)
- LE GALL: The topological structure of scaling limits of large planar maps. *Invent. Math.* (2007)
- LE GALL: Geodesics in large planar maps ... Acta Math. (2010)
- LE GALL: Uniqueness and universality of the Brownian map. *Ann. Probab.* (2013)
- MARCKERT, MOKKADEM: Limit of normalized quadrangulations: The Brownian map. *Ann. Probab.* (2006)
- MILLER, SHEFFIELD: Quantum Loewner evolution (2013)
- MIERMONT: The Brownian map is the scaling limit of uniform random plane quadrangulations. *Acta Math.* (2013)
- SCHRAMM: Conformally invariant scaling limits. Proc. ICM 2006.