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Goal: Define a canonical random geometry in two dimensions
(motivations from physics: 2D quantum gravity)

Method:
Replace the sphere S2 by a discretization,
namely a graph drawn on the sphere
(= planar map).
Choose such a planar map uniformly at
random in a suitable class and equip its
vertex set with the graph distance.

Let the size of the graph tend to infinity and
pass to the limit after rescaling to get a
random metric space: the Brownian map.

Strong analogy with Brownian motion, which is a canonical model for a
random curve in space, obtained as the scaling limit of random walks
on the lattice.
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1. Statement of the main result

Definition
A planar map is a proper embedding of a finite connected graph into
the two-dimensional sphere (considered up to orientation-preserving
homeomorphisms of the sphere).

Root
vertex

Root
edge

A rooted quadrangulation
with 7 faces

Faces = connected components of
the complement of edges
p-angulation:

each face is bounded by
p edges

p = 3: triangulation
p = 4: quadrangulation

Rooted map: distinguished
oriented edge
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The same planar map:

Two different planar maps:
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The same planar map:

Two different planar maps:
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A large triangulation of the sphere (simulation: N. Curien)
Can we get a continuous model out of this ?
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Planar maps as metric spaces

M planar map
V (M) = set of vertices of M
dgr graph distance on V (M)

(V (M),dgr) is a (finite) metric space

0

1

1

2

1

2

2

3

4

In blue : distances
from the root vertex

Mp
n = {rooted p − angulations with n faces}

Mp
n is a finite set (finite number of possible “shapes”)

Choose Mn uniformly at random in Mp
n.

View (V (Mn),dgr) as a random variable with values in

K = {compact metric spaces, modulo isometries}
which is equipped with the Gromov-Hausdorff distance.
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The Gromov-Hausdorff distance
The Hausdorff distance. K1, K2 compact subsets of a metric space

dHaus(K1,K2) = inf{ε > 0 : K1 ⊂ Uε(K2) and K2 ⊂ Uε(K1)}
(Uε(K1) is the ε-enlargement of K1)

Definition (Gromov-Hausdorff distance)
If (E1,d1) and (E2,d2) are two compact metric spaces,

dGH(E1,E2) = inf{dHaus(ψ1(E1), ψ2(E2))}
the infimum is over all isometric embeddings ψ1 : E1 → E and
ψ2 : E2 → E of E1 and E2 into the same metric space E .

E1 E2E1

ψ1

ψ2
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Gromov-Hausdorff convergence of rescaled maps

Fact
If K = {isometry classes of compact metric spaces}, then

(K,dGH) is a separable complete metric space (Polish space)

→ If Mn is uniformly distributed over {p − angulations with n faces},
it makes sense to study the convergence in distribution of

(V (Mn),n−adgr)

as random variables with values in K.
(Problem stated for triangulations by O. Schramm [ICM, 2006])

Choice of the rescaling factor n−a : a > 0 is chosen so that
diam(V (Mn)) ≈ na.

⇒ a = 1
4 [cf Chassaing-Schaeffer PTRF 2004 for quadrangulations]
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Main result: The Brownian map
Mp

n = {rooted p − angulations with n faces}
Mn uniform over Mp

n, V (Mn) vertex set of Mn, dgr graph distance

Theorem (The scaling limit of p-angulations)
Suppose that either p = 3 (triangulations) or p ≥ 4 is even. Set

c3 = 61/4 , cp =
( 9

p(p − 2)

)1/4
if p is even.

Then,

(V (Mn), cp n−1/4 dgr)
(d)−→

n→∞
(m∞,D∗)

in the Gromov-Hausdorff sense. The limit (m∞,D∗) is a random
compact metric space that does not depend on p (universality) and is
called the Brownian map (after Marckert-Mokkadem).

Remarks. The case p = 4 was obtained independently by Miermont.
The case p = 3 solves Schramm’s problem (2006)
Expect the result to be also true for any odd value of p
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Two properties of the Brownian map

Theorem (Hausdorff dimension)

dim(m∞,D∗) = 4 a.s.

(Already “known” in the physics literature.)

Theorem (topological type, LG-Paulin 2007)

Almost surely, (m∞,D∗) is homeomorphic to the 2-sphere S2.

Consequence: for a typical
planar map Mn with n faces,
diameter ≈ n1/4 but:
no cycle of size o(n1/4) in Mn,
such that both sides have
diameter ≥ εn1/4

≥ ε n1/4 ≥ ε n1/4

cycle
length o(n1/4)
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Why study planar maps and their continuous limits ?

combinatorics [Tutte ’60 (towards the 4-color thm), many recent
papers on planar maps and planar graphs, cf lecture by M. Noy]

theoretical physics
I enumeration of maps related to matrix integrals [’t Hooft 74, Brézin,

Itzykson, Parisi, Zuber 78, etc.]
recent work of Guionnet, Eynard, etc.

I large random planar maps as models of random geometry
(2D-quantum gravity, cf Ambjørn, Durhuus, Jonsson 95,
recent papers of Bouttier-Guitter 2005-2012,
Duplantier-Sheffield 2011)

probability theory: models for a Brownian surface
I analogy with Brownian motion as continuous limit of discrete paths
I universality of the limit (conjectured by physicists)
I asymptotic properties of “typical” large planar graphs

algebraic and geometric motivations: cf Lando-Zvonkin 04 Graphs
on surfaces and their applications
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2. A key tool: Bijections between maps and trees

∅

1 2

21 22

211

2111

212 213 221

A plane tree τ with vertex set
V (τ) = {∅,1,2,21,22,212, . . .}
(rooted ordered tree)

the (lexicographical) order on the
tree will play an important role

∅

1 2

21 22

211

2111

212 213 221

1

2 1

12

2213

3

A well-labeled tree (τ, (`v )v∈V (τ))
Properties of labels:

`∅ = 1
`v ∈ {1,2,3, . . .}, ∀v
|`v − `v ′ | ≤ 1, if v , v ′ neighbors
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Coding maps with trees, the case of quadrangulations

Tn = {well-labeled trees with n edges}
M4

n = {rooted quadrangulations with n faces}

Fact (Cori-Vauquelin, Schaeffer)

There is a bijection Φ : Tn −→M4
n such that, if M = Φ(τ, (`v )v∈V (τ)),

then

V (M) = V (τ) ∪ {∂} (∂ is the root vertex of M)

dgr(∂, v) = `v ,∀v ∈ V (τ)

Key properties.
Vertices of τ become vertices of M
The label in the tree becomes the distance from the root in the
map.

Coding of more general maps: Bouttier, Di Francesco, Guitter (2004)
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Schaeffer’s bijection between quadrangulations and
well-labeled trees

1

2

2 1 3

1 2 4

well-labeled tree rooted quadrangulation

Rules
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Schaeffer’s bijection between quadrangulations and
well-labeled trees

1

2

2 1 3

1 2 4

1

2

2 1 3

2 41

well-labeled tree rooted quadrangulation

Rules
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Schaeffer’s bijection between quadrangulations and
well-labeled trees

labeled 0

1

2

2 1 3

1 2 4

1

2

2 1 3

2 41

0
∂

well-labeled tree rooted quadrangulation

• Add extra vertex ∂
Rules

Jean-François Le Gall (Université Paris-Sud) Random Geometry on the Sphere ICM 2014 Seoul 19 / 71



Schaeffer’s bijection between quadrangulations and
well-labeled trees

labeled 0

1

2

2 1 3

1 2 4

1

2

2 1 3

2 41

0
∂

• Follow the contour
of the tree

well-labeled tree rooted quadrangulation

• Add extra vertex ∂
Rules

Jean-François Le Gall (Université Paris-Sud) Random Geometry on the Sphere ICM 2014 Seoul 20 / 71



Schaeffer’s bijection between quadrangulations and
well-labeled trees

labeled 0

1

2

2 1 3

1 2 4

1

2

2 1 3
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3. The Brownian map

The Brownian map (m∞,D∗) is constructed by identifying certain pairs
of points in Aldous’ Brownian continuum random tree (CRT).

Constructions of the CRT (Aldous, 1991-1993):
As the scaling limit of many classes of discrete trees
As the random real tree whose contour is a Brownian excursion.

Coding a (discrete) plane tree by its contour function (or Dyck path):
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The notion of a real tree

Definition
A real tree, or R-tree, is a (compact) metric
space T such that:

any two points a,b ∈ T are joined by a
unique continuous and injective path (up
to re-parametrization)
this path is isometric to a line segment

T is a rooted real tree if there is a
distinguished point ρ, called the root.

ρ

a b

Remark. A real tree can have
infinitely many branching points
(uncountably) infinitely many leaves

Fact. The coding of discrete trees by contour functions can be
extended to real trees: also gives a cyclic ordering on the tree.
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The real tree coded by a function g

g : [0,1] −→ [0,∞)
continuous,

g(0) = g(1) = 0

mg(s, t) = min
[s∧t ,s∨t]

g

s t t′

mg(s, t)

g(t)

g(s)

1

dg(s, t) = g(s) + g(t)− 2 mg(s, t) pseudo-metric on [0,1]

t ∼ t ′ iff dg(t , t ′) = 0 (or equivalently g(t) = g(t ′) = mg(t , t ′))

Proposition
Tg := [0,1]/∼ equipped with dg is a real tree, called the tree coded by
g. It is rooted at ρ = 0.

The canonical projection [0,1]→ Tg induces a cyclic ordering on Tg
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Coding a tree by a function

Every horizontal blue
line segment below
the curve is identified
to a single point.
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Definition of the CRT
Let (et )0≤t≤1 be a Brownian excursion with duration 1 (= Brownian
motion started from 0 conditioned to be at 0 at time 1 and to stay ≥ 0)

Definition
The CRT (Te,de) is the (random) real tree coded by the Brownian
excursion e.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Simulation of a
Brownian excursion
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A simulation of the CRT
(simulation: I. Kortchemski)
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Assigning Brownian labels to a real tree
Let (T ,d) be a real tree with root ρ.

(Za)a∈T : Brownian motion indexed by (T ,d)
= centered Gaussian process such that

Zρ = 0
E [(Za − Zb)2] = d(a,b), a,b ∈ T

ρ

a

b

a ∧ b

Labels evolve like Brownian motion along the
branches of the tree:

The label Za is the value at time d(ρ,a) of a
standard Brownian motion
Similar property for Zb, but one uses

I the same BM between 0 and d(ρ,a ∧ b)
I an independent BM between d(ρ,a ∧ b) and

d(ρ,b)
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The definition of the Brownian map
(Te,de) is the CRT, (Za)a∈Te Brownian motion indexed by the CRT
(Two levels of randomness!).

Set, for every a,b ∈ Te,

D0(a,b) = Za + Zb − 2 max
(

min
c∈[a,b]

Zc , min
c∈[b,a]

Zc

)
where [a,b] is the “interval” from a to b corresponding to the cyclic
ordering on Te (vertices visited when going from a to b in clockwise
order around the tree).
Then set

D∗(a,b) = inf
a0=a,a1,...,ak−1,ak=b

k∑
i=1

D0(ai−1,ai),

a ≈ b if and only if D∗(a,b) = 0 (equivalent to D0(a,b) = 0).

Definition
The Brownian map m∞ is the quotient space m∞ := Te/ ≈, which is
equipped with the distance induced by D∗.
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Summary and interpretation

Starting from the CRT Te, with Brownian labels Za,a ∈ Te,
→ Identify two vertices a,b ∈ Te if:

they have the same label Za = Zb,
one can go from a to b around the tree (in clockwise or in
counterclockwise order) visiting only vertices with label greater
than or equal to Za = Zb.

Remark. Not many vertices are identified:
A “typical” equivalence class is a singleton.
Equivalence classes may contain at most 3 points.

Still these identifications drastically change the topology.
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Interpretation of the equivalence relation ≈

In Schaeffer’s bijection:
∃ edge between u and v if

`u = `v − 1
`w ≥ `v , ∀w ∈]u, v ]

Explains why in the continuous limit

Za = Zb = minc∈[a,b] Zc

⇒ a and b are identified
1

2

2

1

1
3

24

5

4 5

35

4
5

6
4

u

v

Key points of the proof of the main theorem:

Prove the converse (no other pair of points are identified)
Obtain the formula for the limiting distance D∗
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Key points of the proof of the main theorem:

Prove the converse (no other pair of points are identified)
Obtain the formula for the limiting distance D∗
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Properties of distances in the Brownian map
Let ρ∗ be the (unique) vertex of Te such that

Zρ∗ = min
c∈Te

Zc

Then, for every a ∈ Te,

D∗(ρ∗,a) = Za −min Z .

(“follows” from the analogous property in the discrete setting)

No such simple expression for D∗(a,b) in terms of labels, but

D∗(a,b) ≤ D0(a,b) = Za + Zb − 2 max
(

min
c∈[a,b]

Zc , min
c∈[b,a]

Zc

)
(in the discrete setting, corresponds to constructing a path between a
and b from the union of the two geodesics from a, resp. from b, to ∂
until the point when they merge)
D∗ is the maximal metric that satisfies this inequality
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4. Geodesics in the Brownian map

Geodesics in quadrangulations

Use Schaeffer’s bijection between
quadrangulations and well-labeled trees.

To construct a geodesic from v to ∂:

v

∂
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4. Geodesics in the Brownian map

Geodesics in quadrangulations

Use Schaeffer’s bijection between
quadrangulations and well-labeled trees.

To construct a geodesic from v to ∂:
Look for the last visited vertex (before
v ) with label `v − 1. Call it v ′. There is
an edge of the quadrangulation
between v and v ′.

vv′

∂
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To construct a geodesic from v to ∂:
Look for the last visited vertex (before
v ) with label `v − 1. Call it v ′.There is
an edge of the quadrangulation
between v and v ′.
Proceed in the same way from v ′ to
get a vertex v ′′ with label `v − 2.

vv′

v′′

∂
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4. Geodesics in the Brownian map

Geodesics in quadrangulations

Use Schaeffer’s bijection between
quadrangulations and well-labeled trees.

To construct a geodesic from v to ∂:
Look for the last visited vertex (before
v ) with label `v − 1. Call it v ′. There is
an edge of the quadrangulation
between v and v ′.
Proceed in the same way from v ′ to
get a vertex v ′′ with label `v − 2.
And so on.
Eventually one reaches ∂.

vv′

v′′

∂
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Geodesics to ρ∗ in the Brownian map
Recall : ρ∗ is the unique point of Te s.t.

Zρ∗ = min
c∈Te

Zc

then, for every b ∈ Te,

D∗(ρ∗,b) = Zb −min Z
(notation)

= Z̃b.
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Geodesics to ρ∗ in the Brownian map

Recall : ρ∗ is the unique point of Te s.t.
Zρ∗ = min

c∈Te
Zc

then, for every b ∈ Te,

D∗(ρ∗,b) = Zb −min Z
(notation)

= Z̃b.

If a ∈ Te is fixed, we construct a geodesic
from a to ρ∗ by setting: for t ∈ [0, Z̃a],

ϕa(t) = last vertex b before a s.t. Z̃b = t
(“last” refers to the cyclic order)

a

ρ∗

Fact
All geodesics to ρ∗ are of this form.

If a is not a leaf, there are several possible choices, depending on
which side of a one starts.
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The main result about geodesics
Define the skeleton of Te by Sk(Te) = Te\{leaves of Te} and set
Skel = π(Sk(Te)) , where π : Te → Te/≈ = m∞ canonical projection
Then

the restriction of π to Sk(Te) is a homeomorphism onto Skel
dim(Skel) = 2 (recall dim(m∞) = 4)

Theorem (Geodesics from the root)
Let x ∈ m∞. Then,

if x /∈ Skel, there is a unique geodesic from ρ∗ to x
if x ∈ Skel, the number of distinct geodesics from ρ∗ to x is the
multiplicity m(x) of x in Skel (note: m(x) ≤ 3).

Remarks
Skel is the cut-locus of m∞ relative to ρ∗: cf classical Riemannian
geometry [Poincaré, Myers, ...], where the cut-locus is a tree.
same results if ρ∗ replaced by a point chosen “at random” in m∞.
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Illustration of the cut-locus

x

ρ∗

m∞

the cut-locus
Skel

The cut-locus Skel
is homeomorphic to
a non-compact real tree
and is dense in m∞

Geodesics to ρ∗
do not visit Skel
(except possibly
at their starting point)
but “move around” Skel.
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Confluence property of geodesics

Fact: Two geodesics to ρ∗ coincide near ρ∗.
(easy from the definition)

Corollary
Given δ > 0, there exists ε > 0 s.t.

if D∗(ρ∗, x) ≥ δ, D∗(ρ∗, y) ≥ δ
if γ is any geodesic from ρ∗ to x
if γ′ is any geodesic from ρ∗ to y

then

γ(t) = γ′(t) for all t ≤ ε

ρ∗
ε

δ

x

y

“Only one way” of leaving ρ∗ along a geodesic.
(also true if ρ∗ is replaced by a typical point of m∞)
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Uniqueness of geodesics in discrete maps
Mn uniform distributed over Mp

n = {p − angulations with n faces}
V (Mn) set of vertices of Mn, ∂ root vertex of Mn, dgr graph distance

For v ∈ V (Mn), set Geo(∂ → v) = {geodesics from ∂ to v}
If γ, γ′ are two discrete paths in Mn (with the same length)

d(γ, γ′) = max
i

dgr(γ(i), γ′(i))

Corollary
Let δ > 0. Then,

1
n

#{v ∈ V (Mn) : ∃γ, γ′ ∈ Geo(∂ → v), d(γ, γ′) ≥ δn1/4} −→
n→∞

0

Two discrete geodesics (between two typical points) are within a
distance o(n−1/4)
(Macroscopic uniqueness, also true for
“approximate geodesics”= paths with length dgr(∂, v) + o(n1/4))
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5. Canonical embeddings: Open problems

Recall that a planar map is defined up to (orientation-preserving)
homeomorphisms of the sphere.

It is possible to choose a particular (canonical) embedding of the graph
satisfying conformal invariance properties, and this choice is unique (at
least up to the Möbius transformations, which are the conformal
transformations of the sphere S2).

Question
Applying this canonical embedding to Mn (uniform over p-angulations
with n faces), can one let n tend to infinity and get a random metric ∆
on the sphere S2 satisfying conformal invariance properties, and such
that

(S2,∆)
(d)
= (m∞,D∗)
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Canonical embeddings via circle packings 1

From a circle packing,
construct a graph M :

V (M) = {centers of
circles}

edge between a and b
if the corresponding
circles are tangent.

A triangulation (without
loops or multiple edges) can
always be represented in
this way.

Representation unique up
to Möbius transformations.
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Canonical embeddings via circle packings 2
Apply to Mn uniform over
{triangulations with n faces}.
Let n→∞. Expect to get

Random metric ∆ on
S2 (with conformal
invariance properties)
such that
(S2,∆) = (m∞,D∗)
Random volume
measure on S2

Connections with the
Gaussian free field ?
Recent progress:
Miller-Sheffield
(Quantum Loewner Evolut.)
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