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1. Division euclidienne : Ecole élémentaire

Soit Z 1’anneau des nombres entiers naturels positifs ou négatifs, et soit N = Z, C Z e
sous-ensemble des entiers qui sont positifs.

Définition 1.1. Diviser avec reste un entier ¢ > 1 par un entier 1 < b < a qui lui est
inférieur, cela consiste a trouver un quotient entier ¢ > 0 et un reste entier > 0 tels que :

a = qb+r,

le quotient ¢ étant maximal possible, de telle sorte que dans le reste r, on ne puisse plus
extraire «du b» :

0<r<b-1.

Il est bien connu que diviser avec reste est toujours possible, le couple (¢,7) € N x N
étant alors déterminé de maniere unique en partant de @ > letde bavecl < b < a
quelconques.

Exemple 1.2. Comme a I’école élémentaire, soit a diviser a = 126 par b = 35 :
126 | 35

— 1053
21

Mentalement, on essaie de multiplier 35 successivement par 1, 2, 3, 4, et on trouve que
3 % 35 = 105 est le résultat maximum qui demeure inférieur a 126. On reporte alors — 105
a gauche, on soustrait 126 — 105 = 21, et on trouve :
126 = 3 - 35 + 21 .
—~ ~— ~—
a q b T
Cet exemple s’inscrit dans un contexte général, connu depuis la Préhistoire sur Terre,
sur Mars, sur Jupiter, sur Vénus, et sans doute aussi sur quelques exoplanetes dotées de

mathématiques encore embryonnaires.
1
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Théoréme 1.3. [Division euclidienne des entiers] Etant donné deux nombres entiers po-
sitifs quelconques a € N* et b € N* avec 1 < b < a, il existe toujours un entier positif
unique q € N* et un entier positif unique r € N — parfois égal a 0 — tels que :

Exercice 1. En s’inspirant de la figure située a droite du portrait d’Euclide, expliquer en quoi la division
posseéde un sens géométrique.

2. Division euclidienne : polynomes a coefficients entiers

La division euclidienne fonctionne de maniere essentiellement analogue dans 1’anneau
Z[z] des polyndmes a une indéterminée x et a coefficients entiers, sachant que plusieurs
opérations de soustraction successives s’averent nécessaires.

Exemple 2.1. Soit le polyndme quartique :
A(z) == 3x*+22° +x +5,
a diviser avec reste par le polyndme quadratique (donc de degré inférieur) :
B(z) == x> +2z +3,
les deux monoémes de téte de A et de B étant placés en premiere position. On se convainc

mentalement que ¢’est la multiplication par le mondme 3 2 qui permet de faire monter le
monodme de téte de B(x) a ce nouveau niveau de celui de A(z) :

3x* = 327 %2,
et donc, on est conduit a soustraire :

A(x) —32° B(w),
~———
—324—623 922
procédé que I’on peut aussi représenter agréablement sous forme d’un tableau incomplet
qui commence a se remplir :

32t 42234+ 0+ +5|22+22x+3
—3x* =623 —922 3 x?

—423—922+x+5
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De cette maniere, on fait apparaitre le reste intermédiaire :
—4x® - 922+ +5,

qui posseéde un nouveau mondme de téte — 4 x3, de telle sorte que c’est maintenant le
mondme multiplicateur :

—4x
qui permet de faire remonter le mondme de téte x* de B(x) au niveau — 4 x3.
Apres itération et épuisement de ces calculs, le tableau final s’écrit :
3zt +223+ 0+ +5 |22 +22+3
— 32t — 623 —9a? 322

— 422 =922+ +5
423+ 822+ 12x —4x

— 22413z +5
2 4+2x+3 —1

15x+ 8

’3X2—4X—1‘

Ce tableau synoptique permet alors de lire instantanément le quotient et le reste dans la
division du polynéme A(z) par le polyndme B(x) :

A(z) = Qx) -B(z) + R(x),
—— ——
quotient reste
équation qui s’écrit donc explicitement :
3zt +22°+x+5 = (3x*—4x—1)  (z”+3z+3) +15x+ 8.

Bien entendu, ce deuxieme exemple simple suggere aussi un procédé général, probable-
ment déja connu du lecteur-étudiant.

3. Division euclidienne : polynomes a coefficients dans un anneau

Afin d’embrasser la division euclidienne dans un cadre algébrique adapté, nous travaille-
rons maintenant avec un anneau commutatif :

(o, +, %),
possédant un élément unité 1 € .o/ pour la multiplication :
l-r=r-1=r (Vred),

la multiplication étant souvent notée « - » a la place de « X », voire méme sous-entendue en
omettant tout symbole.

Définition 3.1. Un élément u € o7 est appelé une unité s’il existe v’ € o7 tel que :
ur =vu=1,

et le groupe (multiplicatif, commutatif) des unités de <7 est alors noté o7 *.
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Soit maintenant x un symbole qui désigne une indéterminée. L’espace vectoriel des
polyndmes a coefficients dans <7 :

x| = {anx”—l—amx”’l—l—-~~+a1x—|—a0: neN, a,ap_1,...,a1,a9 € 527},

est a nouveau un anneau commutatif possédant la méme unité 1 € o (exercice de révision
mentale).

Supposons temporairement pour simplifier que les polyndmes :

B(z) = by X™ + by 2™ 4 -+ by (m>0),
par lesquels on cherche a diviser d’autres polyndmes :

Al) = apnx® + ap_ 2"+ -+ ag (n>0),,
de degré supérieur n > m ont toujours un coefficient de té€te b,, € &/ qui est une unité.
Définition 3.2. Etant donné un polynéme de degré k > 0 :

P(x) = cux* +opr a4+ e (cx £0),
on appelle monéme de téte de P son terme de plus haut degré et on le note :
Tete(P(z)) = ckx*.

Algorithme: Division polynomiale avec reste
e Entrées : Deux polynémes

Ax) = Z a; 1 et B(z) = Z b’
0<i<n 0<jsm

a coefficients a; € o et b; € </ de degrés respectifs n > m > 1 tels que le
coefficient b,, € &> du mondme de téte b, x™ de B(x) est une unité de I'anneau
A

e Sorties : Un polynéme-quotient @ € o/[x] et un polynd6me-reste R € </ [x] satis-
faisant :

A= QB+R,
le degré de R étant strictement inférieur a celui de B :

0 < degR < m.

e Algorithme :

> R<+— A

» pouri=n—m,n—m—1,...,0, faire :
si deg R = m + i alors Q; <— Tete (R) /by,
sinon Q; «— 0

» Retourner Q@ = .., ,, Qi et R.

Ici, le lecteur-étudiant est invité a déchiffrer soigneusement les instructions de cet algo-
rithme, afin premierement de se convaincre par la réflexion qu’il correspond bien a la si-
tuation générale exemplifiée ci-dessus, et deuxiemement, afin de reconstituer par lui-méme
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les arguments qui démontrent le caractere bien-fondé des calculs, et notamment, de vérifier
que [’algorithme termine en temps fini.

Contentons-nous de détailler la démonstration d’un lemme plus simple.

Lemme 3.3. [Unicité du quotient et du reste] Lorsque le coefficient b,, €
mathcal A* du monéme de téte by, X™ de B(x) est une unité, le polynéme-quotient Q)(x)
et le polynéme-reste R(x) dans la division de A(x) par B(x) :

A= QB+R,
sont déterminés de maniere unique.
Démonstration. En effet, une autre équation :

A=Q B+ R,
soustraite a A = () B + R donne apres réorganisation :

@-QB=R-F
et comme le membre de droite est de degré < degB — 1, le membre de gauche ne peut
qu’étre identiquement nul, d’ott )’ = @ puis R’ = R. d
4. Anneaux integres euclidiens

Pourrait-on, par une conceptualisation adéquate, capturer dans un seul filet les deux
situations analogues classiques que sont :

e ]a division euclidienne dans N ou dans Z ;
e la division euclidienne dans Z[x] ou dans Qx| ?

Dans les deux cas, ce qui compte, c’est I’existence d’une fonction naturelle qui mesure
I’abaissement de la complexité ou de la taille des objets apres une division élémentaire.

Définition 4.1. [Anneaux euclidiens] Un anneau commutatif intégre </ muni d’une unité
1 € o est appelé un anneau euclidien s’il existe une fonction :

60: Z\{0} — N, 0(0) := —o0,

telle que, pour tous a,b € o7 avec b # 0, il est possible de diviser a par b avec un reste
d-inférieur au sens précis ou :

il existe ¢, r € & avec | d(r) < &(b) | satisfaisant .

Bien que I'unicité de q et celle de r ne soient pas requises dans cette définition, on dit
souvent que q est le quotient dans la division de a par b, et que r en est le reste.

Noter que la fonction ¢ est soumise a la seule condition de diriger les « abaissements de
complexité » d(r) < d(b).

Terminologie 4.2. On dira que ¢ est la fonction euclidienne de 1’anneau euclidien (<7, ).
Avec la fonction valeur absolue d(a) := |al, il est bien connu que 1’anneau des entiers

naturels Z est un anneau euclidien, et d’ailleurs, I’unicité du quotient ¢ et du reste r sont
garanties des lors qu’on demande que r > 0, ce qu’il est raisonnable de faire.
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Lorsque «f = K]Jz| est I’anneau des polyndmes sur un corps, la fonction degré
d(a) := deg a, avec deg(0) := —oo, est la fonction naturelle qui munit K& [x] d’une structure
d’anneau euclidien, I’unicité du quotient et du reste étant faciles a vérifier.

Rappelons qu’un élément p € o/ divise un autre élément ¢ € o s’il existe r € &
satisfaisant :

p = rq.

Définition 4.3. [Plus grand commun diviseur] Soit ./ un anneau commutatif quelconque
et soient deux éléments a,b € 7. On dit qu’un élément ¢ € &7 est un plus grand commun
diviseur entre a et b, ce qu’on note ¢ = pgcd(a, b), lorsque :

e cdivise a et c divise b;
e siun élément d € o7 divise simultanément a et b, alors en fait, d divise ¢

Classiquement, le fait qu’un élément p € .o/ divise un autre élément ¢ € <7 se note :

plg.

Définition 4.4. [Plus petit commun multiple] Soit </ un anneau quelconque et soient
deux éléments a,b € o7. On dit qu’un élément e € .7 est un plus petit commun multiple
entre a et b, ce qu’on note e = ppcm(a, b), lorsque :

ealeeth|e;
e si un élément f € o7 est divisible simultanément par a et par b, alors en fait, e | f.

Certes en général, pgcd et ppcm ne sont pas, strictement parlant, uniques. Toutefois, il
est aisé, sur o7 = Z et sur &/ = Z|[x] d’assurer leur unicité (voir infra).

Comme on le sait, entre deux nombres quelconques a, b € Z, le pgcd est unique des lors
qu’on demande qu’il appartienne a N. Alors le lecteur-étudiant reconstituera sans difficulté
la démonstration des propriétés élémentaires du pged.

Lemme 4.5. Sur I’anneau 7. des entiers naturels, la fonction a deux arguments pgced(-, -)
possede les cing propriétés suivantes :

(i) pged(a,b) = |a| <= a|b;

(ii) pged(a,b) = pged(b, a);

(iii) pged(a, pged(b, c)) = pged(pged(a, b), c).

(iv) pged(c- a, ¢-b) = |c| pged(a, b).

(v) |a| = |b| => pgcd(a, ¢) = pged(b, ). O

Notons « pour le fun » que I’associativité générale s’écrit :

pged(ay, ..., an) = pged (a1, pged(ay, ..., pged(an_1,a,)...)).

Les anneaux euclidiens sont exactement ceux dans lesquels des divisions euclidiennes
successives sont possibles, notamment pour trouver un pgcd entre deux éléments quel-
conques donnés.



4. Anneaux intégres euclidiens 7

a=gxb +r

e

b=qxr +r'

e

r=qgxr' +r"

En partant de deux éléments a, b € <7 que I’on renomme 7, 7, € o7 avec §(rg) = 0(r1),
une premiere division euclidienne :

o = q171+ T2,
suivie de divisions successives entre les restes nouveaux ry, 13, 74, . .. qui appaissent, peut
étre représentée synoptiquement comme suit :

(5(7’()) > 5(7‘1)
o = qir1 + T2
5(7‘1) > 5(7’2)
TL = Q22 + T3
d(re) = 6(r3)
Ty = @373 + T4
5(7‘3) > 5(7'4)
T3 = qa|7T4|+0
ou I’on suppose ici que le procédé termine a la quatrieme division, a savoir que 75 = 0.
Lorsque &/ = Z, il est bien connu alors que le pgcd est le dernier reste non nul, ici 74, et on
démontre en cours d’ Algebre que cela est encore vrai dans tout anneau euclidien (.27, 0).

Algorithme: Division euclidienne classique

e Entrées : Deux éléments a,b € (<, 0) d’'un anneau commutatif intégre euclidien
<7 muni d’une fonction euclidienne 6.
e Sortie : Un plus grand commun diviseur h € o7 entre a €t b.
> rg<—ia,r <—ib.
> i< 1
» tant que r; #£ 0 faire r;,; +— Reste (ri,l divisé par n»)
11+ 1
» Retourner r;_;.

Comme cela a déja été illustré sur I’exemple qui le précede, cet algorithme (antique)

divise les restes successifs :
(S(Ti,1) > 5(T‘L)
i1 = ;T + Tig1,

remplace a chaque étape les couples :
[7iy Tipa] < [ric, 1),

puis recommence a diviser :
6(ri) = 6(rit1)
Ti = it1Tig1 + Tit2,
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et ainsi de suite.

Sans utiliser d’indices, I’algorithme de division euclidienne classique peut aussi €tre
représenté sous la forme d’une carte d’instructions en boucle :

a et b 2 ertiers naturels
nonnulset a=b

LW
| -

aprend lavaleur de b Caledler le reste (r) de
b prend lavaleurder la division de a par b
A

PGCD =b

Exemple 4.6. 11 est avisé de représenter synoptiquement la recherche, déja entamée supra,
du pgcd entre 126 et 35 :
126 > 35
126 = 3-35 + 21

35

> 21
3 =1-21 + 14

21 > 14
21=1-14+7

14 > 7

14 =2-[7]+o0,

et ici, puisque le cinquieme reste 5 = 0 est nul, I’avant-dernier reste 7, = 7 est un (le)
pgcd recherché.

Exemple 4.7. De maniere alternative, on peut représenter sous forme d’un tableau le calcul
qui montre que 315 et 307 sont premiers entre eux.

Dividende Diviseur | Reste
315=1x307 + 8 315 307 | 8
307 =8x38+3 307 *| 8 % 3
8=2x3+2 o3 A
3=2x1+1 4 > & 1
2=2x1+0 . 1 % o0

5. Croissance des expressions intermédiaires et normalisations

Les calculs avec des polyndmes, des fractions rationnelles, ou des matrices a coefficients
entiers souffrent souvent d’une « maladie » propre au calcul numérique ou symbolique : la
croissance parfois débridée des expressions.
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Exemple 5.1. Voici le déroulement du calcul du plus grand commun diviseur entre les deux
polyndmes a coefficients entiers :
A=7x"—222"+552° + 942° — 87z + 56
=: Ry,
B=62x*—-972"+ 732"+ 42 + 83
=: Ry,
au moyen de I’algorithme d’Euclide ; a cause notamment du fait que les deux coefficients

de téte 7 et 62 de A et de B ne sont pas des unités, les polyndmes-restes dans les divisions

successives : .
R5 := reste dans la division de R, par R,

Rj3 := reste dans la division de R, par Ro,
R, := reste dans la division de R, par Rs,
Rs5 := reste dans la division de R3 par Ry,
possedent des coefficients rationnels qui « explosent » de maniere assez surprenante :
~ 113293 5 409605 , 183855 272119

Fo= = ™ T30 ¥ " 1o U1 3saa

18423282923092 ,  15239170790368 10966361258256

12835303849 12835303849 v 12835303849
216132274653792395448637 631179956389122192280133

Ry =— 44148979404824831944178 ©  83297958809649663333356 '
_20556791167692068695002336923491296504125

Hs = 3639427682941980248860941972667354081

Afin de remédier — au moins en partie — a ce phénomene, il est avisé de normaliser
systématiquement les polyndomes intermédiaires de maniere a ce que le coefficient de leur
terme de téte soit toujours égal a 1.

3 =

Terminologie 5.2. Etant donné un polyndme de degré k > 0 :
P(x) = XX+ op 2"+ 4 (ck #£0),
on appelle coefficient de téte le nombre :
cx € A,

et on dit que P unitaire lorsque :
Ck = 1.

Par exemple, dans I’anneau &/ = Q[z] des polyndmes a coefficients dans le corps des
nombres rationnels, on peut toujours diviser P(x) par son coefficient de téte de maniere a
le rendre unitaire :

ip(q;) — Xk+£xk*1+...+@_

Ck Ck Ck
Une expérience renouvelée des calculs a la main ou sur ordinateur a montré que dans 1’al-
gorithme d’Euclide, il est avisé de rendre unitaires tous les restes intermédiaires afin de
rabaisser la complexité des coefficients rationnels des polyndomes. Au final, apres exécu-
tion de toutes les divisions euclidiennes requises, le polynome pgcd entre deux polyndomes
donnés A, B € Q|x] :

pgcd(4, B) € Qla],
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sera connu a un facteur rationnel non nul pres.

Bien entendu, ce qui est vrai ici pour Q[x] est vrai aussi pour tout anneau de polyndmes
K|[z] a coefficients dans un corps commutatif .

Mais comment s’y prendre si I’on désire travailler, plus généralement, avec 1’anneau des
polyndmes a coefficients dans un anneau euclidien .27 qui n’est pas forcément un corps ?

Il suffit — certes un peu artificiellement — de demander I’existence de formes nor-
males au sens précis qui suit.

Définition 5.3. Un anneau euclidien est dit normal si tout élément a € o/ posseéde une
forme normale unique :

Normal(a) € o

qui differe de a simplement par une unité :
a = u - Normal(a) (we™),

la forme normale d’un produit quelconque entre deux €éléments a,b € o7 étant égale au
produit des formes normales :

Normal(ab) = Normal(a) Normal(b),
deux éléments a € &7 et a’ € </ ayant la méme forme normale :
Normal(a) = Normal(a’)
lorsque, et seulement lorsque, ils different d’une unité :
/

a = ua (u€ o).

Il est avisé d’introduire une notation pour 1’unité dont un élément a € <7 et sa forme
normale different :

a
Unit = —_—
nite(a) Normal(a)

Dans un anneau euclidien normal, pgcd et ppcm entre deux éléments quelconques sont
alors définis de maniere unique, simplement en prenant les formes normales.

Exercice 2. Justifer I’affirmation qui précede.

Exercice 3. (a) Sur &/ = 7Z, déterminer la forme normale naturelle d’un entier.
(b) Faire de méme sur &7 = K[z], ol K est un corps.

(c) En utilisant la normalisation de (a), traiter 1’algorithme d’Euclide qui permet de calculer le pgcd entre
deux entiers relatifs quelconques a, b € Z.

6. Algorithme d’Euclide étendu

Soit (7, d) un anneau commutatif unitaire euclidien normal. L’idée pour raffiner I’al-
gorithme d’Euclide, simple et déja comprise plus haut, consiste, lorsqu’on divise itérative-
ment, a normaliser les restes a chaque étape. En tout cas, sans remplacer les restes intermé-
diaires par leurs formes normales, en partant de deux éléments a,b € o/ avec 6(b) < d(a)
que I’on renomme :

ro:=a et ry:=b,
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rappelons que I’algorithme de divisions successives jusqu’a épuisement se représente
comme suit :

ro = q171 + 7o,

rL=(Q2T2 + T3,
Tic1 = q; T + Tig1,

Te—o = qe—1Te—1 +[7¢],
Te—1 = qe|Te|+ 0,
le dernier reste non nul valant :
r¢ = pged(rg, 1) = pged(a, b).

Maintenant, si I’on souhaite faire voir que les restes intermédiaires doivent €tre norma-
lisés, on les représentera sous la forme :

PiTi avec pi = Unite(pi 7"@-),
r; = Normal(p; r;),
et en supposant pour simplifier que I’on a déja normalisé€ au départ :
ro := Normal(a), po := Unite(a), a = poTo,
r1 := Normal(b), p1 = Unite(b), b=pir,

de telle sorte les nouveaux restes intermédiaires avec spécification de normalisation s’écri-
ront :

P2T2, P3T3, «..... y PeTy,
on obtiendra la représentation synoptique :

ro = q171+ pPaTa,

1= Q272+ P373,
Tic1 = ;T + Pit1 Tit1,

Te—2 = qe-17e-1 +[peTe],
re—1 = qe[T¢]+ 0.

De plus, il s’avere dans certaines applications arithmétiques du calcul de pged que tous
les résultats intermédiaires possedent une utilité. Si donc 1’on part de deux éléments quel-
conques a,b € </ d’un anneau euclidien normal <7, une organisation systématique (voir
ce qui va suivre) des calculs donnera au final 1’identité de Bézout :

sga+tyb = pged(a,b),
mais a chaque étape intermédiaire, on devra aussi écrire :

s;a+t;b=mr (0<i<0). (%)
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En fait, il est aisé d’expliquer comment construire par récurrence de tels éléments s;, t;.
Pour 7 = 0 et pour 2 = 1, on a tout d’abord :

1
—-a+0-b=ry=:spa-+tyb,
Po

1
O-a+—-b=1r = sya+1tb,
P1

ce qui donne sans difficulté des couples (so, to) et (s1,?;) qui conviennent.
En raisonnant par récurrence, supposons pour un certain entier 7 avec 1 < ¢ < £ — 1, on
ait déja obtenu aux deux niveaux zeti — 1 :

Sic1a+ti1b = 1y,
s;a + tib =1

Alors en partant de I’identité de division euclidienne dans laquelle nait le (i + 1)-éme reste
(normalisé) :

Tic1 = @i T + Pit1 Tit1,
en réécrivant cette identité et en y insérant les deux identités admises par récurrence :

Pi1Ti41 = Ti—1 — ;75
= S;_1a+ ti—l b— qi(sia + ti b)
= (sic1 — g si) a+ (tioy — qiti) b,

d’ou apres division par I'unité p; 1 :

i—1— i Si licn — qiti
- (M) - (1_Q> ;
Pi+1 Pi+1

=! Siy1a+tip1 b,

ce qui donne les relations de récurrence :

L Sic1— i Si ot =t s
Siy1 1= o et lit1 == o
i+1 i+1

Nous pouvons maintenant formuler 1’énoncé des instructions avant de démontrer
b
qu’elles sont correctes.

Algorithme: Division euclidienne étendue avec mémorisations s
e Entrées : Deux éléments a, b € &/ d’'un anneau euclidien normal.

e Sorties : Un entier d’arrét ¢ € N, une collection d’éléments p;,r;, s;,t; € o/ pour
0 <i<(+1,etdes quotients ¢; € & pour 0 < i < ¢, calculés comme suit.
e Algorithme :
» po < Unite(a), 719 — Normal(a), so<«—1/py, to<— 0.
» p; < Unite(b), r; «— Normal(b), s1 <— 0, ty <— 1/p1.
> i1
tant que r; # 0 faire
gi +— quotient(r;_ divisé parr;)
pit1 <— Unite(Reste(r;_; divisé parr;))
Tip1 < NormaI(Reste(ri_l divisé par 7‘,))
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Siy1 < (Sifl — 4 Si)/loiJrl
tivr < (tic1 — @i ti) [ pia
14—+ 1
> (—i—1
» Retourner ¢, p;,r;,s;,t; pour 0 <i <+ 1,etqg pourl <i </

Démonstration. On commence donc par normaliser @ et b en introduisant :

ro 1= - Normal(a) = Normal(ry),
Po
b

ry := — = Normal(b) = Normal(r).
P1

Comme cela vient d’étre implicitement décrit dans la formulation de cet algorithme
d’Euclide étendu, les calculs fournissent les relations suivantes entre les quantités r;, s;, ¢; :

p2aTo = To— q171, P2 S2 = So — q1 S1, paty = to— q1ty,
Pig1 Tit1 = Tic1 — G T4y Pit1 Si+1 = Si—1 — ¢ Si, Pix1tiv1 = tic1 — qi ty,
0 =11 —qry, Pr+1Se+1 = Se—1 — qe Se, Pes1ter1 = te1 — qety,

la premiere colonne ayant déja été vue, tandis que la seconde et la troisieéme, en partant de :

1 -
So = 20 ty 1= O,
- |
s1 =0, ty = o,

définissent par induction les quantités :

S2,...,8011 et t2,...,te+1,

dont la nature s’éclaircira dans un instant, cf. I’équation (x) ci-dessus.

Sachant que les deux multiplicateurs de Bézout s; et ¢; se transforment simultanément
a chaque étape de 1’algorithme, il est naturel de raisonner en termes de matrices 2 X 2, et
plus précisément, il est naturel d’introduire la matrice :

1
(s to\ _ (5 O
RO T (81 tl ) - ( 0 E ’

accompagnée des ¢ matrices :

0 1
Qi = (L _L) (1<ige),

Pi+1 Pi+1

[y

et enfin, d’introduire aussi les ¢ produits de matrices :

Ri == Qi Q1 Ry (1<igy).
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Lemme x. Pour tout entier intermédiaire i avec 0 < i < f,ona:

me(5)= ()

et de plus, ces matrices R; valent :

Ro=( 5t
Si+1 tit1

avec la convention que py,1 = 1 et que ry11 = 0.

Démonstration. En effet, pour 7 = 0, on a tout d’abord bien :

(i) = (5 8) ()
(5 1)) -

Apres cela, en supposant par récurrence que 1’on a déja au niveau 7 :

a T;
QleRO(b> = (Ti-i—l)’

il suffit de multiplier cette équation par la matrice (;,; pour atteindre le niveau ¢ + 1 :
a T
Qit1Qi - Q1 Ro - (b) = Qit1- (r~ )
i+1

( ) : ) < . )
- 1 _ Gt )
Pi+2 Pi+2 Tit1

Ti41

a
)
b
p1

i Qi41Ti41
Pit2 Pi+2

_ Tit1
Tit2

Ensuite, si, a un certain niveau ¢ avec 0 < ¢ < /¢, la matrice R; posséde bien I’expression
annoncée (ce qui est d’emblée le cas pour ¢ = 0), alors au niveau 7 + 1, puisque :

RiJrl = Qi+1 Ri7

on déduit I’expression :

S; tl 0 1 S; tl
Qit1 - ) ) = 1 i ) )
Si+1 iyl pit2 Pit2 Si+1 i1

Si+1 tiv1
= S$i—Qi+1Si+1  ti—Qiti1tit1

Pi+2 Pi+2

| Sit1 tisa
- bl
Siv2  liyo

ce qui termine la démonstration. U
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L’ égalité matricielle de ce lemme s’écrit donc :

S; tl a - T;
Siv1 tipa b ) \rig )’

et elle donne, pour tout 0 < ¢ < ¢ + 1, les identités de Bézout intermédiaires :

‘sia—i-tib =

Au niveau ¢ = ¢ + 1, puisque le dernier reste ry,; = 0 est nul, on a donc :
Se+1a+te1 b = 0,

et au niveau ¢ = / juste avant, on a 1’identité de Bézout :

SgCL—f—tgb =Ty ‘

puis que nous pouvons maintenant démontrer effectivement que :

r¢ = pged(a,b).
Lemme x. Avec les mémes notations, toujours pour i = 0,1,... ¢, les cinqg propriétés
suivantes sont satifaites :
(i) pged(a, b) = pged(ri, riv1) = 7e;
.o —-1)
() sitit1 — tisiy1 = ,00("'Pz'+1

(iii) pged(r;, t;) = pged(a, t;) ;

et pged(s;, i) = 1;

(iv)

a = (=1)po---pisr(tixr 7 — tiTis1),

b = (—1)“1 Po - Pit1 (S¢+1 TP — S ’f’z'+1)-
Démonstration. Pour (i), soit i € {0,...,¢}. Grice au lemme qui précede vu au niveau ¢,
ona:

(5) 5 (1) - eean ()

“aan ().

Cette identité montre que r, est une combinaison linéaire de r; et de r; 1, donc le pgcd
normalisé entre 7; et ;1 divise 7.
D’un autre c6té, puisque le déterminant :

det Q,L = -1

Pi+1

est une unité dans .27, la matrice (); est inversible, d’inverse :

-1 _ 4 Pi+1
Qi - (1 0 )

ce qui nous permet d’inverser aisément I’identité que nous venons d’obtenir :

(1) - (i)

Ceci montre que 7; et ;41 sont tous les deux divisibles par 7.
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Enfin, puisque 7, est normal, et puisque le pgcd est défini de maniere unique en passant
a la forme normale, il en découle que :

re = pged(ri, Tiv1),
ce qui, au niveau ¢ = 0, donne :
pged(a, b) = pged(ro, 1) = re.
Ensuite, (ii) se vérifie en calculant des produits de déterminants :

) — detR, = detQi---dethdet(SO t“)
S1 tl

S t;
Sitit1 — t; sip1 = det ( "
Si+1 Uit

(=1
i1 P2p1P0]
ce qui implique (exercice mental) que :

pged(s;, ;) =1

Maintenant pour (iii), observons que les deux pgcd incorporent ¢;. Pour montrer qu’il
sont égaux, il suffit donc (exercice mental) de faire voir que pour tout diviseur d de ¢; :

dla <= d|r;.
Soit donc d un diviseur quelconque de ;.
Si d | a, alors aussi d divise s;a + t; b = 1.
Inversement, si d divise r;, alors aussi d divise r;—t; b = s;a. Mais comme pged(s;, t;) =
1, tout diviseur d de t; est premier avec s;, et donc si d divise s; a, c’est que d doit diviser a.
Pour (iv), puisque qu’il découle de (ii) (exercice visuel) que la matrice R; est inversible

d’inverse :
1 _ 1y . tiv1 —t
Ri = ( 1) £o Pi+1 (—Si+1 s;

on peut récrire I’identité du lemme qui précede sous la forme :

a _ p-1 T
(5) == ()
. t: — ¢t 7.
— (—1 7 e i+1 7 7
( ) Po Pit (_SH—I S; ) (Ti—i-l)

A tiv1mi — tiTie
= (—1) ceepy +1 1 1+
(=1 po- - pina (—Si+17”i+1+8i7“i+1>

ce qui conclut la démonstration U

L’explication démonstrative de 1’ Algorithme de division euclidienne étendue est ache-
vée. U



