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1. Introduction

Dans le chapitre précédent, nous avons présenté les concepts de base pour la topologie
sur C, nous avons défini les fonctions holomorphes et nous avons montré comment les
intégrer le long de courbes ‘Kplm. Le premier résultat remarquable de la Théorie de Cauchy
exhibe des connexions profondes entre ces notions.

En effet, le Théoréme de Cauchy énonce que si une fonction f € ¢'(€2) est holomorphe
dans un ouvert 2 C C, et si v C (2 est une courbe fermée simple dont la région intérieure
~int C §2 est contenue dans 2, alors :

/vf(z)dz = 0.

De trés nombreux résultats découleront de cette formule, et notamment la clé de volte
de tout I’édifice, le Théoreme des résidus — véritable magie de 1’holomorphie! — qui
va nous inviter a sa péche interstellaire miraculeuse, nous, glaneurs de belles singularités
résiduelles. ..

Un théoreme célebre de Jordan stipule en effet que le complémentaire C\ consiste
en exactement deux composantes connexes ouvertes it €t Ve, avec la décomposition dis-
jointe :

C = Yint U 7 U Yext,
celle qu’on nomme intérieure étant la seule dont I’adhérence dans C est compacte. Le
théoreme de Cauchy suppose donc, et c’est important, que cette adhérence compacte est
entierement contenue dans le domaine de définition :

Yine Uy C €

Toutefois, puisque la visualisation intuitive instantanée du théoreme de Jordan est en
décalage complet avec sa démonstration mathématique rigoureuse complete, laquelle est
passablement longue et difficile, nous en admettrons 1’énoncé, et ne le démontrerons que
dans un chapitre spécialement dédié. En tout cas, pour toutes les courbes auxquelles nous
aurons affaire dans ce chapitre, la détermination de I'intérieur et de 1’extérieur de v ne
poseront aucun probleme.

Une version initiale élémentaire de ce théoreme de Cauchy suppose que la fonction pos-
sede une primitive dans €2, au sens ou cela a été défini dans le chapitre précédent. En fait,

nous démontrerons que pour des contours élémentaires y dont I’intérieur 7;,, est contenu
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dans €2, les fonctions holomorphes ont des primitives, et alors le théoreme de Cauchy de-
viendra tout aussi translucide que la formule fondamentale du calcul intégral réel :

/ @) ds = g(1) - g(0).

Dans la Nature (mathématique !), le contour essentiellement le plus simple possible est
celui qui borde un triangle fermé 7" C 2 C C. L’existence de primitives pour les fonctions
holomorphes découlera du Théoréeme de Goursat, lequel énonce que pour toute fonction
holomorphe f € €/(2), on a I’annulation :

0= f(2)dz.
aT
Il est absolument remarquable que ce sous-cas du théoreme de Cauchy est le germe de
tous les autres résultats plus avancés de la théorie de Cauchy. En placant des triangles
orientés blottis les uns a coté des autres, nous allons en déduire, a la maniére de carreleurs,
I’existence de primitives dans un voisinage de ., ainsi qu’ une démonstration directe du
théoreme fondamental de Cauchy susmentionné.

Toutes ces idées séduisantes vont nous conduire par la main au résultat central de ce
chapitre, la Formule intégrale de Cauchy. Sa version prototypique énonce que si une fonc-
tion f € €(Q) est holomorphe dans un ouvert 2 C C, alors pour tout disque fermé A C (2,
on retrouve les valeurs de la fonction en chaque point intérieur z € A par I’intégration :

L[ S©

f(z) = 2im Jon C— 2

Ensuite, des différentiations successives de cette identité nous fourniront une collection
infinie de formules intégrales, dont découlera un théoreme absolument fantastique montrant
que les fonctions holomorphes sont indéfiniment différentiables — alors qu’elles n’étaient
supposées qu’une seule fois C-différentiables en tout point, méme pas ¢! au départ! Ah
oui certes, pour les fonctions de variable réelle, I’énoncé analogue est radicalement faux !

Pourquoi, alors, tout est si vrai, si beau, et si bon, dans le monde holomorphe ? Parce que
la Magie, c’est, en Mathématique, 1’Unité : tout, dans la théorie des fonctions holomorphes,
s’entrelace : Analyse, Géométrie, Topologie, Algebre, Calcul !

2. Théoreme de Goursat

A la fin du chapitre précédent, nous avons démontré que si une fonction holomorphe f
dans un ouvert {2 C C y admet une primitive F', a savoir une fonction F’ telle que F’ = f,

alors :
0= [ f)a,
.
pour toute courbe fermée v C 2.
Réciproquement, si de telles annulations sont toujours satisfaites, une primitive existe
pour f, car il suffit en effet de fixer un point z, € €2, et de définir :

E@%zlwﬁ/ﬂdw,

cette intégrale étant prise le long de n’importe quelle courbe 4™ par morceaux o: zyg — 2
allant de 2 a z contenue dans €2, puisque la valeur ne dépend alors pas de la courbe !
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Effectivement, la différence entre deux valeurs :

Fo,(2) — Fy(2) = /01: . f(z)dz — /0_2: . f(z)dz

= /0102_ f(2)dz
= f(z)dz

courbe
fermée

=0,

s’annule par hypothese !

Notre point de départ sera le théoréme suivant, dans lequel on ne suppose pas 1’exis-
tence d’une primitive, mais ou 1’on se restreint d’abord a des figures géométriques simples.
Classiquement, on note ¢'(£2) I’algebre des fonctions holomorphes dans un ouvert 2 C C.

Théoréme 2.1. [de Goursat] Si 2 C C est un sous-ensemble ouvert, et siT =T C Q est
un triangle euclidien fermé 2-dimensionnel entierement contenu dans ) dont le bord 0T
est constitué de trois segments orientés, alors :

0=/ f(z)dz
T

pour toute fonction holomorphe f € O(f2).
Constamment, nous choisirons 1’orientation trigonométrique directe.

Démonstration. Appelons T, := T notre triangle. Lorsqu’il est aplati, I’énoncé est tri-
vial — pourquoi ? Lorsqu’il n’est pas aplati, nous allons le disséquer indéfiniment — oui,
sans pitié !

Notons dy le diametre de T} et py son périmetre. Relions les trois milieux de ses trois
cOtés.
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Quatre triangles en similitude apparaissent — notons-les 7' 1, 7' 2, T} 3, T} 4. Orientons-
les dans le sens trigonométrique direct. Deux c6tés adjacents appartenant a deux triangles
distincts sont orientés de maniere opposée.

Par conséquent, des annihilations d’intégrales sur paires de segments orientés inverses
permettent d’écrire (exercice) :

- f(z)dz = /anl f(z) dz+/8TL2 f(z) dz—l—/aleg f(2) dz—i—/aTL4 f(z)dz,

ce qu’on peut abréger en :

Iy = 5L+ Lo+ Lizg+ 14

Affirmation 2.2. [l existe un indice 1 < i < 4 tel que :

flz)dz| < 4 f(z)dz|.
0Ty oT1;
Preuve. Sinon, si on avait pour tous ¢ = 1,2,3,4 :
1
- ‘ (z)dz| > f(z)dz|,
4 0Ty 8T1,7;

une inégalité triangulaire a 4 termes conduirait a 1’absurdité :

1
4- 1 }]0‘ > ‘]1,1‘ + ‘]1,2‘ + ‘]1,3‘ + ‘]1,4‘
[Inégalité triangulaire] > ‘IO|. tl

Sélectionnons un triangle 71 ; qui satisfait cette inégalité, puis renommons-le 77. Puis-
qu’il est homothétique de rapport % a partir de 7}, son diametre d; et son périmetre p;
valent :

di = %do et D1 = %Po-

Itérons ce procédé en décomposant 77 en quatre triangles 15 1, 15 2, 15 3, 15 4, sélection-
nons I'un d’entre eux, redécomposons-le, resélectionnons, et ainsi de suite. Nous construi-
sons ainsi une suite infinie de triangles fermés emboités les uns dans les autres :

v >17y D ---D1T, D -+

de diametres et de périmetres tendant vers 0 comme :

dn = and[] et Pn = 2%1907
de telle sorte qu’ils satisfont les inégalités :
f(z)dz| < 4" f(z)dz|.
9Ty T,
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Alors d’apres un théoreme connu de topologie, cette suite de compacts emboités 7;, .1 C
T, C C de diametres tendant vers O converge vers un unique point du plan :

20 ‘= ﬂ Tn
n=0
Maintenant — enfin vient I’hypothése principale ! —, comme f est holomorphe en z,

nous pouvons écrire :

f(z) = f(Zo) + f’(zo) (Z - Zo) + @D(Z) (Z - Zo),

avec une fonction-reste satisfaisant )(z) — 0 lorsque z — 2. Or comme les premiers
termes affines f(zo) + f'(z0) (2 — z0) possédent la primitive holomorphe évidente :

2
f(20) (Z - Zo) + % f'(20) (Z - Zo) ;

un énoncé vu au chapitre précédent et rappelé dans I'introduction nous offre, pour tout

n > 0, ’annulation de leur intégrale sur 07,,, donc il ne reste plus que :

f(z2)dz =040+ (2) (z—zo) dz (n>0).
Ty, Ty

Dans ces intégrales, z, appartient au triangle fermé 7;, et z se promene sur son bord

oT,,,d’ ou :
1
|Z—Zo‘ < dn = ﬁdo
Comme le diametre de 7;, tend vers zéro :
en = sup |¥(z)| — 0.
ZETn n—00

Toutes ces estimations nous permettent enfin d’exprimer la synthése terminale sous la
forme d’un calcul vertical conclusif :

f(z)dz| < 4" f(z)dz
9Ty 0Ty
= 4" (2) (2 — 20) d=
OTy
- redp
= &p do Po — 0. |
n—oo
E— ==
T
oo D S
T \
— —

Corollaire 2.3. Si une fonction f € O(S2) est holomorphe dans un ouvert Q@ C C qui
contient un rectangle fermé R = R C §Q, alors :

0= f(2)dz.
OR
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Preuve. C’est immédiat, puisque nous pouvons découper en deux triangles ce rectangle le
long d’une de ses diagonales, et constater que :

f(z)dz = f(z)dz+ f(z)dz = 0+40. O

OR oTy 0T

3. Existence locale de primitives et théoremes de Cauchy dans des disques

Une premiere conséquence du théoreme de Goursat est 1’existence de primitives dans la
situation géométrique la plus simple possible.

Théoréme 3.1. [Cauchy 1] Une fonction f € O(A) holomorphe dans un disque ouvert
A C Cy posséde toujours une primitive holomorphe F € O(A) avec F' = f.

Démonstration. Aprés une translation, nous pouvons supposer que ce disque A > 0 est
centré a I’origine.

z+h z+h z+h

Pour z € A quelconque, en notant [0, z] le segment fermé allant de 0 a z, lequel est
visiblement contenu dans A, intégrons :

F(z) = f(¢) dg,
0.2

pour définir de maniere inambigué une fonction F': A — C, et vérifions que F' est C-
différentiable en tout point, de dérivée ' = f.
Avec h € C assez petit pour que z + h € A, exprimons donc la différence :

F(z+h) - F(z) = /[ L J0d= [ o

Mais n’y aurait-il pas un triangle a la Goursat pour simplifier tout cela ?

Oui, car par convexité de A, le troisiéme segment [z, z + h| est contenu dans A, tout
aussi bien que le triangle fermé de sommets 0, z, z + h, et alors grace a Goursat (exercice
visuel) :

F(z+h) — /f

ou I’on a, pour désalourdir, abrégé v := [z, z + h].
Or puisque f € 0(Q2) est C-différentiable, donc continue, nous pouvons écrire :

f(Q) = f(2) +¥(0),
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avec une fonction-reste ¢)(¢) — 0 lorsque ( — z. Ainsi :

F(z+h) - F(2) = / f()dc + / $(Q) d¢
- f(Z)/7 1d<+Lw<c>d<
— fe)h+ / $(Q) dC.

et comme la fonction constante 1 possede la primitive holomorphe évidente (, un théoreme

vu au chapitre qui précéde montre que la premiere intégrale vaut h.
Mais alors en majorant le deuxieme terme par :

[ vac| < swp (o] 1,
¥ cey
nous concluons sans effort :

F(z+h)— F(z)
h

lim
h—0

= f(2) + Jim sup ()|
= f(2) =

Ce Théoreme 3.1 implique donc que les fonctions holomorphes dans un ouvert quel-
conque 2 C C possedent toujours des primitives locales, c’est-a-dire définies dans des
disques A C €. La suite des événements mathématiques va montrer que ce théoréme est
non seulement vrai pour des disques, mais aussi pour beaucoup de régions ayant d’autres
formes, et c’est 1a que Géométrie et Topologie vont s’inviter sans prévenir chez Dame Ana-
lyse.

Théoréme 3.2. [Cauchy 2] Si une fonction f € O(A) est holomorphe dans un disque
ouvert A C C, alors :

0= / f(¢)d¢,
.
pour toute courbe fermée v C A.

Preuve. Puisque f posséde une primitive F' € O(A), avec v: [0,1] —  satisfaisant
~7(0) = (1), un théoreme du chapitre qui précéde — mobilisation mentale ! — s’applique
directement :

[ 1©dc = Fl) - FG0) = o 0
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Théoréme 3.3. [Cauchy 3] Si une fonction f € O(Q) est holomorphe dans un ouvert
Q D C' U A contenant un cercle C ainsi que son disque intérieur A, alors :

0= [ #odc.

c

Preuve. Puisqu’il existe un disque ouvert intercalé :
CUA=ACA cQ,

le théoreme précédent s’applique immédiatement a la courbe v := C' — trop facile! [

4. Contours élémentaires

Au-dela des cercles, nous commencons a avoir I’intuition que pour des fonctions holo-
morphes f € €(Q2) définies dans des voisinages ouverts de contours élémentaires fermés
simples I :

Q D T'UTln,

lesquels bordent un ouvert borné [';,; d’apres le théoréme de Jordan (admis temporaire-
ment), on doit encore avoir :

0=£ﬂ0a

Mais attention ! Il est important de supposer que :
e I est une courbe fermée simple (au moins 6" par morceaux);
e OO I'UTn:

car sinon, I’intégrale en question peut étre non nulle, a cause de singularités éventuelles de
f dans T'j:.

Exemple 4.1. En revenant a un exemple discuté a la fin du chapitre précédent, soit la
fonction f(z) := <, holomorphe dans C\{0}, soit le disque unité D := {z € C: |z| < 1}
a bord le cercle unité oD := {|z| = 1}. Ici évidemment, [0D]. = D, mais f n’est pas
holomorphe dans un voisinage ouvert de D = D U dD, et d’ailleurs, son intégrale sur oI
ne vaut pas z€ro :

2m 1 ] 1
o;ézm:/ —.z’e“’de:/ —dz = f(2)dz. O
o €’ ap 2 oD

Ainsi, dans le théoreme de Cauchy, il est crucial que I';,; ne contienne aucune singu-
larité de f. A ’avance, énoncons-en une version trés générale, que nous ne démontrerons
que dans un chapitre spécialement dédié. Rappelons que I’image d’un compact par une ap-
plication continue est toujours un compact, donc une courbe de la forme I' = 2 ([0, 1]) avec
z: [0,1] — C continue, est toujours compacte.
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Théoréme 4.2. [Jordan, Cauchy 4] Si I' C C est une courbe fermée simple €., alors :

pm’

C\I' = T'int U Texx consiste en exactement deux composantes connexes ouvertes ;

[t = Tt UL = compact = fermé-borné;

[Nt = e UL = non compact.

De plus, pour toute fonction f € O(Q)) holomorphe dans un ouvert Q O T U T qui
contient I’adhérence de la composante relativement compacte I, on a :

0 = /F F(Q) dc.

Contentons-nous, ici, de vérifier ce théoreme pour des contours élémentaires, « peu com-
pliqués » sur le plan géométrique.

Définition 4.3. Un ouvert 2 C C est dit étoilé en 1’'un de ses points zg € €2 si, pour tout
point z € (2, le segment [z, z] C € est contenu en lui. On dira que €2 est étoilé s’il est
étoilé en au moins un point.

Dans ce cas, la topologie est assez simple. Donnons trois exemples d’ouverts étoilés,
qui sont en fait convexes.

N 7 A

Définition 4.4. Un ouvert {2 C C est dit convexe si, pour tous z1, 2z, € (2, le segment
[21, 22] C ) est contenu en lui.

On vérifie (exercice) qu’un ouvert convexe est étoilé en chacun de ses points.
Théoreme 4.5. [Cauchy étoilé] Dans un ouvert étoilé 2 C C, les deux propriétés suivantes
sont vraies.

(1) Toute fonction holomorphe [ € € ()) posséde une primitive holomorphe F' € O(X),
c’est-a-dire avec F' = f.
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(2) Pour toute courbe fermée v C Q) qui est €%, ona :

0= / £(0)de i o).

En particulier, si I' C €2 est un contour fermé simple ‘Kplm avec [,y C , alors 0 =

Jo f(Q)dC.

Démonstration. Soit 2, € ) un point en lequel €2 est étoilé. En un point quelconque z € 2,
définissons en intégrant sur un segment :

F(z) = [ ]f(()dé,

cette intégrale ayant un sens, puisque [zo, z] C 2. Fixons z € 2, prenons r > ( assez petit
pour que D,.(z) C €, et regardons les quotients différentiels :

F(z+h)— F(z)
h Y
pour z + h € D,(2), c’est-a-dire pour |h| < r.

D, (2)
z+h

Comme 2 est étoilé, [2g, z + h| C 2, et méme, le triangle fermé tout entier de sommets
20, 2, 2 + h est contenu dans 2 (exercice mental). Le théoréme de Goursat donne alors :

F(z+h)—F(z) _ 1
/ - /[ RLGLE

et ensuite, le méme argument que dans la démonstration du Théoréme 3.1 montre I’exis-
tence de :

. F(z+h)-F(z)
am h =)

Enfin, nous avons déja vu que I’existence d’une primitive donnait gratuitement (2). [

Le plan complexe épointé C\{0} n’est étoilé en aucun de ses points, sinon, s’il I’était,
le Théoreme 4.5 (2) précédent, appliqué a la fonction f(¢) := % intégrée sur le cercle unité
2(t) := e*™, contredirait 'Exemple 4.1.

Mieux encore, il est préférable de se convaincre visuellement que ni C\{0}, ni D\{0}
ne sont étoilés. Pour les rendre étoilés, il faut en fait retrancher (beaucoup) plus qu’un seul
point.
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2+

D\{0}

o0

Exemple 4.6. Soit A C C un disque ouvert non vide, soit un diametre :

[z_, ZJJ C A,
avec z_, z, € OA, et soit un point quelconque :
w € |z, 2.
Alors I’ouvert :
Q= A\ [w, Zy [,
est étoilé (exercice visuel) en chaque point :
20 € }z_, w [,

et n’est étoilé en aucun autre point (exercice supplémentaire).

Dans la suite, nous aurons besoin d’une version-clé du théoreme de Cauchy :

0= [ O
Ls.e

pour une sorte d’« épaississement» d’un tel segment [w, z [ C A, le long d’un contour

I's. qui ressemble a la section d’un trou de serrure, que nous allons commencer a définir

comme suit.

Soit donc A C C un disque ouvert non vide, soit un point quelconque w € A distinct
du centre, et soit le diametre unique |z_, 2z, [ > w de A avec z_, z; € JA; quand w est le
centre de A, on choisit un diametre quelconque de A.

Soient aussi deux nombres réels :

0 < 0 < e < rayon(A).

K
Z4 Zt
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Comme sur la figure, soit D.(w) le disque ouvert de rayon € > 0 centré en w, et soit le
tunnel ou canal de largeur étroite 2 § autour du segment [w, z, [. Nous construisons ainsi un
certain ouvert €25 . qui est 'intérieur de Jordan évident de son bord :

F&,s = 69557

lequel consiste en une courbe fermée simple ‘Kplm. Pour la suite, il ne sera pas nécessaire de
préciser explicitement une paramétrisation de cette courbe I's5 ., donc nous nous en dispen-
serons.

Ensuite, soit 2 D . un ouvert quelconque, non dessiné. Comme sur la figure, nous
pouvons « épaissir légerement » I’ouvert {25 en un sur-ouvert {5 . toujours contenu dans
Q:

QD Qo D Qs D Qe D Vs,
associé, par exemple, a des quantités toujours tres petites :
0<d <6d < & <e < rayon(A),

avec ¢’ & § trés proche de 9, et avec ' & ¢ également.

Z+ Slé/,i/

zZ—

Théoreme 4.7. [Cauchy 5, Trou de Serrure, Clé du Ciel] Pour toute fonction holomorphe
f € 0(Q) dans un ouvert Q O Qs., ona:

0= /8 RIS

En premicere lecture, il est conseillé d’admettre cet énoncé, et de passer directement a la
Section 5 suivante.

Démonstration. 11 suffit de trouver une primitive holomorphe ' = f dans Qy . D 0.
Ainsi, choisissons un léger épaississement {25 .- de {25 .. Prenons un point :

20 € |z, w]\D:(w),

proche du milieu de ce segment. A cause du disque excisé autour de w, I’ouvert {25 . n’est
pas étoilé en z;, mais soyons astucieux !
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Soit le sous-disque fermé D./(w) C D.(w). En partant de 2, tragons les deux demi-
droites qui lui sont tangentes, et pointons les deux points de tangence :

uy € D (w) et uy € D (w),

ainsi que les deux points d’intersection avec le bord de 1’ouvert trou de serrure épaissi, qui
sont situés au-dela :

Ve et uh € 00

Les deux segments ouverts correspondants sont alors contenus dans cet ouvert :
/ / !/ /
j|u17 U1|: C 95’,6/ Ct :IU/Q’ U2[ C 95/,8/‘
Prenons aussi deux points :
/! / / /
z1 € ]ul,vl[ et Z9 € ]uQ, vg[,

proches des milieux de ces segments. Visiblement, ces deux segments décomposent {2 ./
en trois composantes connexes ouvertes :

96 > 2o, Qll S 21, Q/2 S Zo,

a savoir :
Qper = QU QU QY U Juy, vy U Jug, vy
Maintenant, définissons les valeurs de la primitive recherchée F' de f en tous les points

z € g o, donc en particulier, en tous les points z € I's. C Qs - du contour d’intégration
qui nous intéresse, comme suit.

e Pour z € Q) U Jul, vi[ U Jub, v}], intégrons simplement le long d’un segment droit :
F(z) = - ere
20,2

Observons que pour z € |u}, v} [ oupour z € |ul, vy, le segment sur lequel on integre passe
par le point u} & s . ou par le point u, ¢ (s ., mais en ces points, f est quand méme
définie, puisque 2 D Qs s, par hypotheése. Observons aussi que () est, intentionnellement,
étoilé en z.

e Pour 2z € ()], passons d’abord par z; :
P = [ odcr [ rod
[20,21] [21,2]
Observons que pour tout z € €}, le segment |z, z] C €2} est contenu dans 2], puisque z

n’a pas été choisi trop proche du disque D, (w).

e Symétriquement, pour z € 25, passons d’abord par 25 :
P = [ fodc [ pod
[20,22] [22,2]

Ainsi, F' est définie partout dans {2 .-, uniquement et sans ambiguité.
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Assertion 4.8. En tout point z € Qg o1, on a pour tous h € C assez petits avec [z, z + h] C
Qy P

F(z+h) - F(z) = /[ RIS

Démonstration. Quand z € Q, pour tout h € C suffisamment petit, i.e. pour |h| < r avec
r > 0 petit, on a z + h € ), et méme, tout le triangle fermé de sommets 2, z, z + h est
contenu dans Y, donc le Théoreme 2.1 de Goursat donne bien :

Feth)-F@) = [ f@dc- [ jod= [ s@de
[20,2+h] [20,7] [z,2+h]
Quand z € Q] — et symétriquement aussi quand z € ), —, pour |h| < r avec r > 0
assez petit, d’out z + h € 2] encore, on calcule :
Feth)-Fe) = [ f@dc+ [ - [ f@ac - [ rodc
[20,21] [z1,2+h] [20,21] o [z1,2]
[Goursat!] = / f(o dCa
[z,24h]
puisque le triangle de sommets zy, 2, z + h est toujours contenu dans ) U {z;}.
Mais que se passe-t-il lorsque z € |u),v][ — et symétriquement aussi lorsque z €
]u/27 Ué[ —7?

Visiblement, z + h peut se trouver de ’un, ou de I’autre coté de la « frontiere rouge »
(mexicaine ?).
e Premier cas : si z + h € Q) U Juj, v] avec |h| < r petit, alors le triangle fermé de
sommets 2, 2, z + h est encore contenu dans {25 .~ C {2 ou f est holomorphe, donc :

F(z+h) - F(z) = /[ RIS R IGES

[ZO ,Z]

[Goursat ] = /[Z7z+h] f(¢) d¢.
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e Deuxieme cas : si z + h € ] avec |h| < r petit, alors on calcule :

F(z+h) - F(z) = /[ FOdcH /[ RIS R IGE
Y S / fode— [ fode
[20,2] R [z,21] [z1,2+h] (20,2] 5
e / £(0)de
[2,21] [21,2+h]
oursat! = dc,
[Goursat ] /[Z’M] f(¢)d¢

parce que le triangle fermé de sommets z, 21, z + h est toujours contenu dans €] U |u, v]]
ou f est holomorphe. O

Grace a cette formule intégrale pour la différence, nous concluons comme précédem-
ment que :

}Ilim)F<Z+h})L_F(Z) ~ 12, 0

Avant d’appliquer ce Théoreme 4.7, illustrons la méthode de calcul d’intégrales com-
plexes dans quelques cas spectaculaires.

5. Exemples de calculs d’intégrales réelles par la méthode complexe

Commengons par démontrer la formule sympathique :

0
s o2 o
e ™ S / e T o 2im€x dw,

[e.9]

valable pour tout nombre réel ¢ € R. Ceci nous fournira une nouvelle démonstration du
fait remarquable, déja vu dans le cours d’ Analyse de Fourier, que la fonction gaussienne
e ™" est égale a sa transformée de Fourier.

Pour ¢ = 0, cette formule est précisément 1’intégrale connue :

i 2
= / e ™ dux,
—00
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qui se démontre fort astucieusement en en prenant le carré et en passant aux coordonnées

polaires :
0o 2 0o oo
(/ e dx) = (/ e~ d:c) (/ e dy)

_ / / @) q dy
Pl

= / / e ™ rdrdf
o Jo

= / 2m e ™" rdr
0

o0
B {_ 67rr2]
0

=1
Pour fixer les idées, supposons maintenant que £ > 0, et introduisons la fonction de
variable complexe :

)
f(z) =™,
qui est holomorphe entiere, c’est-a-dire holomorphe dans le plan complexe C tout entier.
A
—R+13€ R+
—R 0 R

En particulier, pour tout R > 0, cette fonction est holomorphe dans le voisinage ouvert
C du rectangle fermé ayant pour quatre sommets — R, R, R + ¢&, — R + ¢ £. Notons g
son bord, orienté dans le sens trigonométrique direct. Le Théoreme 4.5 de Cauchy étoilé

donne :
[/R f( )

Des quatre morceaux en lesquels se découpe cette intégrale, le premier est simplement :

R 2
/ e ™ dx,
—R

et il converge donc vers 1 lorsque R — o0.
Le deuxieéme morceau est I’intégrale sur le segment vertical a droite :

3 13 )
[R = / f(R + @y) Zdy — / 6_7T(R2+22 Ry—y?) 7 dy
0 0

Or par chance cette intégrale tend vers 0 lorsque R — oo, puisque nous pouvons I’estimer
(exercice visuel) par :
_ 2 2
L] < gemm™ine,
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sachant que &, ici, est fixé. De maniere similaire, I’intégrale sur le segment vertical a gauche
tend aussi vers 0 lorsque R — o0.
Enfin, I’intégrale sur le segment horizontal surélevé ressemble fort a celle qui nous in-

téresse :
R S\ 2 2 R 2 ;
/ 677r(3v+25) dr = _€7r£ / e~ ef2z7r§:r dr.
R

—R

Finalement, en prenant donc la limite pour R — oo dans I’identité de Cauchy écrite
plus haut, nous obtenons :

0=1+0—¢" / e~ TR g 0,

—00

ce qui est la formule annoncée dans le cas ou £ > 0 — évidemment, le cas £ < 0 se traite
de la méme maniere avec des rectangles situés en-dessous de 1’axe des abscisses.

Cette technique de déplacement et de création de contours qui tendent en partie vers
I’infini possede de tres nombreuses applications. Observons que nous avons surélevé, dans
le plan complexe, le lieu d’intégration réelle | — oo, 0ol utilisé ensuite le théoréeme de
Cauchy, et fait voir que certaines contributions s’évanouissaient.

Les plus beaux exercices d’Analyse Complexe font découvrir de multiples exemples
d’intégrales qu’il semble impossible de calculer en recherchant des changements de va-
riables astucieux, mais qui deviennent simples et transparentes quand on s’autorise a
prendre son envol vers I’imaginaire.

Voici alors un autre exemple, classique :

oo 1_
=
0 x 2

Pour atteindre cette formule, introduisons la fonction de variable complexe holomorphe

sur C\{0} :

et intégrons-la sur le bord d’un grand demi-disque posé a plat sur 1’axe des abscisses, tout
en le perforant un peu en son centre afin d’éviter la singularité z = 0 de f(z). Notons donc
c- le petit demi-cercle de rayon € > 0 orienté négativement, ainsi que C; celui de grand
rayon R > 0 orienté positivement.
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Dans ce contexte, une adaptation du Théoreme 4.7 de Cauchy discuté dans les précé-
dents paragraphes offre alors aussi ’annulation de I’intégrale de f le long de ce contour :

—€ 1 — T 1 — 1z R]_— 1T 1— 12
o:/ —2€dx+/ —26dz+/ —fder/ .
_R i e z c T o z

Commencgons ici, via I’estimée :

2

R

1_6iz
2

z

par observer que la derniere intégrale, majorée en module par R% R, s’évanouit lorsque
R — oo. Par conséquent :

. T © 1 _ T 1 — 12
[T [
—c0 T c T e z

Ensuite par développement limité, nous avons :

f(2) =~ +g(2),

avec une fonction-reste g(z) lisse, donc bornée pres de 1’origine. Paramétrons ensuite c_
par z = ee? avec 0 décroissant de 7 vers 0, prenons la différentielle dz = ciedo,

calculons :
1— iz 0o _ . ) 0 ' 4
/ S 4 :/ —?iee’9d9+/ g(ce®)ice”do
oo 22 . cel -

= -1+ 0(e) — T
g —

et revenons a I’identité abandonnée en chemin plus haut :

0 ] 00 ]
1_ 1T 1_ 1
R A e
_ x 0 T

o0

Un exercice visuel (ou un calcul a la sauvette, autorisé€ !) convainc que cette somme d’inté-
grales est en fait réelle et vaut :
> 1—cosx
———dr = 7.

2
0o T

Par parité de la fonction réelle intégrée ici, nous atteignons la formule annoncée.

6. Formule de représentation intégrale de Cauchy

Les formules de représentation intégrale jouent un rdle important en mathématiques,
car elles permettent de retrouver les valeurs d’une fonction sur un grand ensemble, souvent
ouvert, a partir de la seule connaissance de ses valeurs sur un plus petit ensemble, en gé-
néral le bord de I’ouvert. Dans le cours d’ Analyse de Fourier, nous avons vu que le noyau
de Poisson sur le cercle unité était un bon noyau qui approxime 1’identité pour la convolu-
tion. Ce noyau de Poisson est aussi intimement 1i€ aux fonctions holomorphes, comme le
montrent I’Exercice 17 et I’Exercice 18.
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O

Théoréme 6.1. [Formule de Cauchy 6] Soit f € () une fonction holomorphe dans
un ouvert 2 C C. Alors pour tout disque fermé A C ) qui est contenu dans [’ouvert, les
valeurs de f dans A s’expriment par 'intégrale suivante sur le cercle-bord C' := 0A :

f(z) = L/ &dC (VzeA).

_2Z7T CC—Z

La fonction-poids ¢ — é qui dépend du point z en lequel on souhaite retrouver la
valeur de f, est souvent appelée noyau de Cauchy.

Le Théoreme 4.7 un peu « technique» a été préparé a I’avance pour obtenir cette for-
mule.

Démonstration. Fixons z € A et introduisons, pour 0 < § < & petits, le contour suivant
I'5 ., en forme de trou de serrure.

26

~

Ici, ¢ est la largeur d’un couloir tracé en direction de z, et € est le rayon d’un cercle
centré en z. Puisque la fonction { — % est holomorphe en-dehors du point ( = z, la
formule Cauchy discutée dans la Section 4 — voir le Théoreme 4.7 spécialement préparé
a cette fin — donne 1’annulation :
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Maintenant, faisons 6 — 0, ce qui écrase le couloir jusqu’a ce que ses deux murs
coincident, et en utilisant la continuité de - C) , nous voyons que la somme des intégrales
sur les deux murs égaux s’annule puisque I’ orlentatlon est opposée, et donc il ne reste plus

que :
i [ 1O
0= / 2%

_ [ Q[ SO
_/C’C_ch CEC_ dC’

ou c. est le tout petit cercle de centre z et de rayon € > (, orienté positivement.
Ensuite, écrivons :

f(Q) = F(Q) = f(2) + f(2),

et prenons — juste pour le plaisir des yeux ! — la limite de tout cela lorsque ¢ — 0 :

e

Or comme f est holomorphe au point z, ce quotient différentiel, qui possede donc une
limite, reste nécessairement borné :

‘f(C)—f(@
(=2

donc la deuxieéme intégrale au centre tend vers 0 lorsque ¢ — 0, simplement parce qu’elle
est majorée par M 27 € :

’/f( f(z dC‘ }dd

<M (IM < 00),

—Z

= Mlongueur (ce) = M2rme.

Pour terminer la démonstration, il ne reste plus qu’a calculer la troisiéme intégrale. A
cette fin, paramétrons le petit cercle c. par { = z+ee avec 0 < t < 27, d ot d¢ = iee™ dt,
ce qui offre la formule annoncée :

B f(C) Qwigeit
o_/CC_ng 0— f()e_m/o —

:/ 1) d¢ — f(z)i2m. |
c(—2
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Cette formule de Cauchy dans un disque fermé se généralise aisément au cas d’un rec-
tangle fermé R C (2, avec des points z a I'intérieur R du rectangle en intégrant sur le bord
OR du rectangle, car il suffit de percer un trou de serrure similaire dans le rectangle :

16 =5 |

27 Jop C— 2
Eu égard au Théoreme 4.2 non encore démontré, énongons le résultat analogue qui
constitue la forme la plus générale du théoreme de représentation intégrale de Cauchy.

Théoreme 6.2. [Jordan, Cauchy] Si ' C C est une courbe fermée simple %plm, et si
Q D e UT est un ouvert la contenant ainsi que son intérieur de Jordan, alors pour toute
fonction holomorphe f € O(X)), on a en tout point intérieur :

1 [ f(Q)
f(z) = 5—

C 2im Jr (-2

dC (VZEF;M),

tandis que pour les points extérieurs :

L[ ©

S 2im Jr (=2

¢ (V2€Q\ (T'UTi)).

Ce dernier cas ou z & T est en fait un corollaire direct dudit Théoreme 4.2, puis-

qu’alors la fonction ( — % est holomorphe dans un certain voisinage ouvert w O i

assez ‘resserré’ pour que z ¢ w. Nous démontrerons ce résultat ultérieurement.
Corollaire 6.3. Pour tout disque fermé ou rectangle fermé contenu dans un ouvert du plan
complexe A, R C Q2 C C, et pour tout point extérieur z € Q\A, R, ona :

L[S Q)

2% Jogr C—2 20w Jop C— 2

dc. O

7. Analyticité des fonctions holomorphes et principe d’unicité

Comme conséquence de la formule intégrale de Cauchy, nous parvenons a une des ca-
ractéristiques les plus frappantes des fonctions holomorphes, a savoir qu’elle sont indé-
finiment dérivables, alors que leur définition requérait seulement une dérivée (complexe)
d’ordre 1, sans méme demander la continuité de la dérivée, d’ailleurs.

Théoreme 7.1. [de régularité, Cauchy 7] Les fonctions holomorphes f € O () dans un
ouvert 2 C C possédent toujours une infinité de dérivées complexes. De plus, pour tout
disque fermé \ C ) contenu dans I’ouvert de bord le cercle C' := O, on a en tout point
intérieur z € A :

n! f(Q)

fM(z) = ———d( (VneN).

 2im Jo (¢ —2)mH
Rappelons que nous orientons toujours les courbes — telles que le cercle C'ici — dans

le sens trigonométrique direct, c’est-a-dire que I’intérieur A de la courbe C' doit se situer
du c6té de la main gauche quand on se promene le long de C'.

Démonstration. Pour n = 0, c’est la formule de Cauchy que nous venons d’établir.
Avec n > 1 quelconque, supposons donc par récurrence que la formule est vraie pour
une dérivée complexe d’ordre (n — 1) :

J"0() =

LRSI
C

2im (C—2)n
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Pour h € C* petit, nous devons alors estimer le quotient différentiel infinitésimal de
f™=1(2) et montrer qu’il posséde une limite lorsque h — 0.
Avec A = C—z;—h et B = C% en utilisant la factorisation élémentaire :

An_Bn — (A—B) [An_l—I—An_QB—I—-'-—f—ABn_Q—f—Bn_l},
nous pouvons calculer en éliminant / au dénominateur :
fO V(G 4+h)— fO () (n—1)! 1 1 1
h s R (== =
(n—1)! 1 1 1 1 1
e R [ [ W = e T = L

0< k< n—1

Alors le point crucial est que % au dénominateur disparait dans la simplication :
1 1 1 }_1C—Z—C+Z+h 1 h,
hl¢—z—h (—=z h(C=z2=n) (=2  h((—2z—h)((=2)

ce qui conduit a I’intégration d’une fonction qui dépend maintenant continiment du para-
metre h :

fO V(4 h)— fO () (n—1) 1 1 1
n = o /cf<<)(c—z—h>(<—z>< D TS (c—z>k>d<’

0< k<n—1

et donc, lorsque h — 0, nous obtenons bien grace au théoréeme de continuité des intégrales
a parametre :

. fOD(z 4 h) — fD(2) (n—=1)! 1 n
flLILno h  n /C 1) (C—2)? ((C — z)”—l) d
o[ IO -

Dans la suite, nous appellerons les formules de représentation que nous venons d’obtenir
formules intégrales de Cauchy.

Corollaire 7.2. Si f € 0() est une fonction holomorphe dans un ouvert Q) C C, alors
toutes ses C-dérivées successives :

o ™ e 09)
sont aussi holomorphes dans (). U

La conséquence la plus frappante de la formule intégrale de Cauchy est I’équivalence
entre le fait d’étre holomorphe, et le fait d’étre localement développable en série entiere
convergente, équivalence promise dans le chapitre qui précede.

Théoréme 7.3. [d’analyticité, Cauchy 8] Si f € () est une fonction holomorphe dans
un ouvert Q) C C, alors en tout point zy € ) et pour tout rayon r > 0 tel que :

]Dr<20) C Q,

la fonction f possede un développement en série infinie de Taylor entiére :
— " (20) n
f(z) = Z; T(Z—ZO) )

qui converge en tout point z € D, (2).
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Si donc nous introduisons la distance de z, au complémentaire C €2 := C\2 de I’ouvert :
dist (29, CQ) = inf {|zp — w|: w € C\Q},
la convergence a lieu quel que soit :

0 < r < dist (zo, UQ),

d’ot en faisant tendre r — dist (zo, CQ2), on déduit que la convergence a lieu dans le plus
grand disque ouvert centré en 2, et contenu dans ).

Démonstration. Fixons z € D,.(z), et rappelons que C,.(zp) désigne le cercle de centre 2
de rayon r > (. La formule intégrale de Cauchy donne :
1 f(©)
f(z) = 5=

2T J e (z0) (—z

dc.

L’idée est d’écrire pour | — zg| =7

1 1
(=2 (—2—(—2)
1 1
- z—20 "
e
Comme |z — 2| < r est fixe et comme | — zy| = r est constant, on a une majoration
uniforme :
Z— 20
<1 (V¢ € Cr(20)),
¢ — Zo

qui nous permet de développer en série convergeant normalement :

Z — 20
1_ z=z20 Z C—2) "

¢—=0 n=0

donc uniformément, quel que soit { € C..(zo). En revenant alors a la formule de Cauchy,
cette convergence controlée nous autorise a intervertir intégration et sommation infinie :

6= 5 [, 25 (5 (22))«
-2 <\2%/Cr(zo) %dc) (== =)',

n=0

J/

-

reconnaitre %

. L ()
tout en reconnaissant la formule du Théoreme 7.1 pour f—$20) U

Observons que puisque nous avons déja démontré qu une série entiere y . a, 2" est
indéfiniment dérivable, ce théoreme confirme le fait qu'une fonction holomorphe est indé-
finiment dérivable.

Dans le chapitre précédent, nous avons formulé et démontré le Principe du prolongement
analytique ainsi que le Principe d’unicité pour les fonctions localement développables en
série entiere convergente, et ces résultats s’appliquent dorénavant a toutes les fonctions
holomorphes. Par souci de complétude théorique, reformulons-les.
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Théoreme 7.4. [Principes d’unicité] Dans un ouvert connexe 2 C C, si une fonction
holomorphe [ € O () satisfait I’'une des trois conditions suivantes :

o il existe zy € Q en lequel f™(zy) = 0 pour toutn € N;
o il existe 2y € () au voisinage duquel f =0;

e il existe une suite (w, )2, de points distincts deux a deux convergeant vers un point
Weo = lim, 00 w, € Q dans I’ouvert en lesquels f(w,) = 0 pour tout v € N;

alors f = 0 est identiquement nulle dans ).

Souvent, ce principe d’unicité est appliqué a la différence f = g — h de deux fonctions
holomorphes.

Démonstration. Redémontrons seulement le premier cas, d’une maniere légerement diffé-
rente.
Grace au Théoreme 7.3 d’analyticité, pour tout rayon r avec 0 < r < dist (zo, C Q), on
a en tout point z avec |z — zp| < r une représentation :
z—2)"

Fe) =3 f) |

Y

n!
qui montre que f = 0 dans D,.(z), et donc, I’ensemble :

W = {weQ: ilexiste w > w ouvertavec f| =0}

est non vide. Pour conclure, il nous faudrait avoir %# = (.
En tout cas, # est clairement ouvert (exercice mental).

Assertion 7.5. Cet ensemble W' est aussi fermé, relativement dans €.

Démonstration. Etant donné une suite (w, )2, quelconque de points w, € # C Q qui
converge vers un point lim, ., w, =: ws € ) dans I’ouvert, 1’objectif est de faire voir que
Weo €W .

Avec ¢ > ( satisfaisant :

4e < dist (woo, EQ),

prenons un v > 1 assez grand pour que |w, — Wy | < &, fixons ce point, et notons-le :

w, =: w, € W

Premiérement, nous avons Dy (w,) C €2, car pour z € Dy (w,) quelconque, 1’inégalité
|z — w,| < 2¢ entraine :

|2 — Weo| < |2 —wi| +|ws —we| < 264¢ < 4e.
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Par conséquent, le Théoreme 7.3 d’analyticité s’applique et donne, puisque f = 0 au voi-
sinage de w,, I’annulation :

oo

fz) =) f"w.),

n=0

(z —w,)"
— =0 (V2 € Dae (ws)).
n!

Deuxiemement, ce disque d’annulation contient un voisinage de w.., a savoir plus pré-
cisément on a Dy, (w,) D D.(ws), car |z — ws| < € entraine :

|2 — wi| < |2 = Woo| + [Weo —wi| < |2 —woo| +€ < e+e.
Donc f(z) = 0 dans le voisinage ouvert D, (wy,), ce qui montre bien w., € #'. O

En conclusion, le sous-ensemble non vide #" C (2, ouvert et fermé, ne peut que coinci-
der avec {2, puisque ce dernier a été supposé connexe. U

Corollaire 7.6. Dans un ouvert non vide connexe Q2 C C, I'anneau 0 (X2) des fonctions
holomorphes est integre.

Démonstration. En effet, si deux fonctions f, g € 0() satisfont f g = 0 et si I’'une d’entre
elle, disons g(zp) # 0, ne s’annule pas en un point z, € €2, alors par continuité, il existe
un disque ouvert non vide D,.(z5) C 2 en restriction auquel g # 0, donc f
ensuite, grace au principe d’unicité, f = 0 partout dans ). U

Dy (z0) = 0, et

8. Inégalités de Cauchy et principes du maximum

Pour 2, € C et pour un rayon R > 0, rappelons que nous notons les disques ouverts et
fermés de centre 2, et de rayon R comme suit :

De(z0) = {2 € C: |z — 2| <R},

Di(20) == {z € C: |z — z| <R}.
Nous noterons aussi le cercle de rayon R > 0 centré en zj :

Cr(20) := {z € C: |z — 20| =R}.

Théoreme 8.1. [Inégalités de Cauchy 9] Si f € 0()) est une fonction holomorphe dans
un ouvert ) C C, alors en tout point zy € (), et pour tout rayon R > 0 tel que :

ER(ZO) C Q,
on a les inégalités :
n!
|f(n)(20)’ < - sup ’f(Z)’ (Yn>0).

|z—z0|=R
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Ici, 'intérét est souvent de faire R le plus grand possible de maniere a rendre le majorant
a droite le plus petit possible, et donc, de faire « gonfler » les disques fermés centrés en z,
jusqu’a ce qu’ils « touchent » le bord de (2.

Démonstration. 11 suffit d’appliquer la formule intégrale de Cauchy pour f(™(z) et de

majorer :
(n) — TL_‘ L
|f (ZO)’ | 2in /(:‘R(zo) (C - Zo)n+1 “

n! | [*" f(zo+Re?)
_ [ [ RE ) e g

or | Jy  (Ref)ntl Le

sup | f(z0 + Re™)|

o M oger RO
S oon RH! "

n!
= — sup [f(z)]- 0

R™ L eCr(z0)

Théoréme 8.2. [Liouville] Si f € 0(C) est holomorphe entiére définie sur I’intégralité du
plan complexe et si elle est bornée :

IM < 0 |f(z)] <™ (¥2€C),
alors f = constante.

Démonstration. 11 suffit de faire voir que f’ = 0, car sur C qui est étoilé, une formule vue
plus haut :

f(z) = f(0) + f'(€), d¢

fera voir que f(z) = f(0) est constante.
En tout point 2, € C, pour tout rayon R > 0, les inégalités de Cauchy donnent sans
effort :

P < o s |f(2)
< — — 0. U

Une autre application merveilleuse de la théorie des fonctions holomorphes est une
preuve extrémement simple du théoréme fondamental de 1’algebre.

Théoréme 8.3. [D’Alembert-Gauss] Tout polynéme non constant P(z) = a,z" +
Up_12" P4+ a1z + ag avec n > 1 et a, # 0 a coefficients complexes a; € C possede
toujours au moins une racine zy € C avec P(z) = 0.

Démonstration. Par 1’absurde, supposons que P(z) # 0 en tout point z € C. Alors la

fonction # est holomorphe entiere sur C.
2)
1

L’idée est de constater que Ze] est alors aussi bornée, car le Théoreme 8.2 de Liouville

vu a I’instant la forcera a étre constante, ce qui sera tres faux (contradictoire), car deg P =
n > 1.
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Tout d’abord, quel que soit R > 0, il existe une constante ¢ = ¢(R) > 0 telle que sur le
disque compact Dy ot P ne s’annule pas :

|P(z)| 2 ¢>0 (V]2 <R).
Ensuite, en dehors de ce disque, c’est-a-dire pour |z| > R, factorisons :
Ap—1 Qo
P(z) = 2" (an—i— . +'--+Z—n>,
et minorons :
|1 |ag
P > n( ___...__>
PG > el (janl =75 B
|an—1] |aol
> (Jonl =S == )
. n |6Ln|
[Si R > 1 est grand] = R e
Enfin, synthétisons une majoration conclusive sur la réunion D, U C\ER :
1 1 2
— K - —) < o0. O
Py S M <c’ R |an|) >

Théoréme 8.4. Tout polynome P(z) = ap2" + ap 12" 1 + -+ + a1z + ag a coefficients
a; € C, a, # 0, de degré n > 1 admet exactement n racines complexes oy, ..., q, € C,
comptées avec multiplicité, et se factorise comme :

P(z) =a,(z—a1) (2 — an).

Preuve. Grace au théoreme qui précede, P possede au moins une racine dans C, disons
a; € C. Comme soustraire par 0 = P(«) ne change rien, écrivons, factorisons, et réorga-
nisons :

P(z) = P(z) — P(a1)
=a, (2" —a}) +tap (" —al )+ 4 a (2 — o) +ag—ag,
= (z—a) [an " ) Fan (TP ) +---+a1]

= (z— ) [an PN (a4 o) 2Pt (apa T+ apal A al)}

= (2 — 1) Q(2),
avec un nouveau polyndme Q(z) € C[z] a coefficients complexes et de degré n— 1, puisque

a, # 0.
Une récurrence élémentaire sur le degré n des polyndmes offre a la fin, pour un certain
nombre complexe b € C, une factorisation de type conclusif :

P(z) = (z—a1) - (2 — an_1) [an 2 + ]
=: an(z—al)---(z—an_l)(z—an). O
Revenons maintenant aux inégalités de Cauchy, afin de généraliser le Théoreme 8.1 a
des situations plus sophistiquées que des disques.

Tout d’abord, un exercice de topologie générale convainc de la véracité du critere sui-
vant.
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: )

Q

Critere de compacité 8.5. Un sous-ensemble K C €2 d’un ouvert () C C est compact si et
seulement si :

® K est borné dans C;

@ K est fermé dans (), i.e. tous les points-limites de suites de Cauchy d’éléments de K qui
convergent dans ) appartiennent encore a K ;

® dist (K,C\Q) = dist (K, 89) > 0. 0

Soit donc K C 2 un compact contenu dans un ouvert {2 C C. La distance a K d’un
point quelconque w € C est :

dist (w,K) = ;2}‘( w

et puisque K est compact, en raisonnant avec une suite minimisante puis convergente apres
extraction de sous-suite, cette distance est atteinte en au moins un point z,, € K, c’est-a-
dire :
dist (w,K) = |w — zw‘.
Ensuite, pour € > 0, introduisons le e-épaississement de K :
= {w € C: dist (w, K) }
={weC: 3z€K, \w—z| e} O K.
Pour € > 0 assez petit, on est certain grace au critere qui précede que K. C (2.
La version générale des inégalités de Cauchy s’applique a des compacts quelconques,

et elle permet de controler toutes les dérivées des fonctions holomorphes par leur norme du
supremum — sans aucune dérivée | — sur un compact 1égerement plus grand.

Théoreme 8.6. Soit K C L C ) une paire emboitée de sous-ensembles compacts d’un
ouvert ) C C, avec :

K C IntL.

Alors pour tout entier n > 0, il existe une constante positive C' = C 1,,, < 00 telle que :

r;g?(\f(”)(z)] < CTeaz(!f(w)] vV feo Q).

Démonstration. Choisissons € > () assez petit pour que :

KCK.CL,
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d’oll € = ek 1. Alors en un point quelconque z € K et pour toute f € O(€2), le Théo-
reme 8.1 donne un controle sur le cercle correspondant :
n n!
[f™()| < 5 max | f(w)]

E" |w—z|=¢

n!
o )

N

< Ck ., max ‘f(w
weL

et il suffit de prendre a gauche le maximum sur z € K pour conclure. U

Par ailleurs, les inégalités originales de Cauchy dans un disque fournies par le Théo-
reme 8.1 admettent une version beaucoup plus précise qui prend la forme d’une égalité.

Théoréme 8.7. Si Di(29) C Q est un disque fermé de rayon R > 0 centré en un point
20 € Q d’un ouvert Q) C C, alors :
1 2

S [l e = o [T st ket wreow)
0

En effet, tous les termes a gauche étant positifs, chacun d’entre eux est inférieur ou égal
a leur somme infinie, d’ou on re-déduit le Théoreme 8.1 :

1., . N . 2 L[ N (2
‘mf() < mz_o‘%f( )(zo) mo o i ‘f(zo—l—Ree)] do
< r;wea@’f(zo—f—Rew)F (Yn>0).

Démonstration. Comme Dy (z) C 2, le Théoréme 7.3 assure que le rayon de convergence
de la série de Taylor infinie de f en z, est > R, donc cette série converge normalement sur
le cercle de rayon R :

f(Zo+R€ Z f(n R" inG'

Lorsqu’on prend le module au carré de cela, on a encore convergence normale, ce qui
permet d’écrire :

£z + RO = (Z L) me> (i %WR%—M)

m=0

1 1 _—
= Z Z - ZO) f(m)( )R R™ elne e—zme'
n! m!

n=0 m=0

Pour intégrer tout ce beau monde, utilisons (exercice) :

2m —
1 Sin-m)6 gy _ 1 lorsque n = m,
2 0  lorsque n # m,
ce qui élimine énormément de prétendants et nous conduit en douceur a la conclusion :
1 [ i 12 N R T TR m yom
% ‘f(ZO‘I’Re )l do = me (Zo)fn(ZO)R R" - 1. |
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Voici une autre conséquence remarquable des inégalités de Cauchy : si le module | f]|
d’une fonction holomorphe admet un maximum global, ou méme local, en un point inté-
rieur d’un ouvert connexe {2, alors elle est partout constante.

Théoréme 8.8. [Principe du maximum, 1] Soit f € 0(2) avec 2 C C ouvert connexe.
S’il existe un point a € Q et r > 0 avec D,.(a) C Q tels que :

[f(@)| > [f()] (v>€Dy(a),
alors f = f(a) est constante dans .

Démonstration. En revenant au paragraphe qui suit le Théoréme 8.7 mais en conservant
deux termes a gauche au lieu d’un, pour tout entier n > 1 fixé, nous construisons un jeu
d’inégalités oppressantes :

2 1 n 2 2n = 1 m 2 2m 1 2 0\ |2
‘f(a)| +‘mf( )(a)‘ re" < Z‘%f( )(a)‘ rem = - i ‘f(a—l—re )‘ do
< i0Y |2
< rgeaﬂé<|f(a+re )|
2
< max |f(z
\z—a\ér‘ ( )|
[Hypothése ] < ‘f(a) |2
qui forcent I’annulation £ (a) = 0 de toutes ces dérivées, donc le Principe d’unicité 7.4
appliqué a f — f(a) conclut. O

Puisque les fonctions holomorphes f € ¢(f2) sont définies dans un espace 2-
dimensionnel réel et prennent aussi leurs valeurs dans un espace 2-dimensionnel, et puisque
242 = 4 (certes!), il n’est pas vraiment aisé de représenter ou de visualiser leurs graphes :

Graphe(f) := {(z, f(z)) e R* x R*: z € Q}.

C’est pourquoi on se contente souvent de représenter le graphe de leurs modules, vu dans
un demi-espace 3-dimensionnel :

Graphe(|f]) = {(z,|f(2)]) e R* xRy : z € Q},

et l1a par chance, tout semble devenir visualisable.

e
[S2 0N

—
N0 o e

o

Si donc nous appelons paysage analytique de f le graphe de |f| dans ’espace a trois
dimensions — comme s’il était constitué de montagnes et de vallées photographiables —,
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alors le principe du maximum affirme qu’il n’y a aucun sommet intérieur, et donc, que les
points les plus hauts sont a rechercher au bord.

Une conséquence plus importante des inégalités de Cauchy demande donc d’examiner
le comportement au bord des fonctions holomorphes. L’ ouvert n’étant pas forcément borné,
on doit tenir compte aussi de ce qui se passe quand on s’évade vers I’infini.

Théoréme 8.9. [Principe du Maximum, 2] Si une fonction f € O(Q)) holomorphe dans
un ouvert connexe () C C satisfait, pour une constante finie ) < M < oo, les inégalités en

tout point ¢ € 0Q = Q\Q du bord :

lim sup |f(z)‘ < M,
58

ainsi que l’inégalité a ’infini :
limsup | f(2)] < M,

z€Q
|z] = oo

alors la méme inégalité est satisfaite partout dans ) :

sg%|f(z)} < M.

Quand €2 C C est borné, c’est-a-dire contenu dans un disque assez grand, la deuxieme
condition a I’infini n’est évidemment pas requise. Inversement, quand 2 = C, d’ot 092 = (),
c’est la premiere condition qui saute !

Par ailleurs, I’hypothese concernant la limite supérieure quand |z| — oo est essentielle,
comme le montre I’exemple f(z) = e* sur 2 := {Rez > 0} avec |f(iy)| = |e¥| = 1 sur
0Q = {x = 0}, tandis que f(x) = e* — oo est non bornée sur R* C Q.

Démonstration. Donnons-nous M’ > M arbitrairement proche de M, et introduisons 1’en-
semble :

Ky = {z€Q: |f(z)] =M}
Comme f est continue, K est relativement fermé dans (). Les deux hypotheses garan-

tissent aussi (exercice) que K,y posséde une fermeture dans C ne rencontrant pas Q\(2, et
qu’il est borné dans C. Le Critere de compacité 8.5 assure alors que K est un compact.

Assertion 8.10. En fait, K,y = ().

Preuve. Si Ky # () était non vide, la borne supérieure de | f| sur K serait atteinte en un
certain point a € K,y de ce compact :

[f(2)] < [f(a) (Vz€Ky),

mais par ailleurs, comme |f(a)| > M’, on aurait en tout autre point z € Q\ K par défini-
tion :
7

1f(z)] < M < |f(a)

et donc I’inégalité serait satisfaite partout :

1f(2)] < |f(a)| (VzeQ).

Par conséquent, | f| atteindrait son maximum sur {2 au point intérieur a € 2, donc f = f(a)
serait constante dans 2 & cause du Principe du Maximum 8.8, et comme |f(a)| > M/, cela
contredirait I’hypothése que | f| est < M au bord et a Iinfini. U
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Puisque Q\ K = 2, nous avons donc :
|f(z)] <™ (V2€Q),
et comme M’ > M pouvait étre choisi arbitrairement proche de M, ¢’est terminé ! U

Ce théoreme général admet une variante simplifiée mais plus utile dans de nombreuses
circonstances.

Théoréme 8.11. [Principe du Maximum, 3] Sur la fermeture Q = Q U 0Q d’un ouvert
connexe borné (2 C C, si une fonction continue :

feo)n CKO(Q U 89),
est holomorphe a ’intérieur, alors :
‘f(z)! < sup [f(Q)] < o0 (VzeQ).
¢eon
Autrement dit, sur le compact Q = QU IR, le maximum du module est toujours atteint
au bord.

Démonstration. S’il existait un point z € () en lequel :

(8.12) |f(z)| > sup |f(C)
cean

Y

le maximum du module de f, atteint sur le compact Q = QU 9N, le serait alors en un
certain point a € €2 devant satisfaire :

[f(@)| > [f(2)] > Cseuar;]!f(C)I,

donc a € ) devrait étre a I'intérieur, ce qui forcerait f a étre constante a cause du Théo-
reme 8.8, en contradiction affligeante avec (8.12). ]

9. Théoreme de Morera et convergence uniforme sur des compacts

Une application directe de ce qui précede offre une réciproque particulierement utile du
théoreme de Cauchy.

Théoréme 9.1. [de Morera] Si une fonction f € €°(A) continue dans un disque ouvert
non vide A C C satisfait, pour tout triangle fermé plein T =T C A :

0= [ f2)a

or
alors f € O(A) est holomorphe.

Démonstration. Notons 2 le centre de A. Une répétition de la preuve du Théoreme 3.1 de
Cauchy convainc que la fonction :

F(2) ::/[ ]f(g)dg (z€A)

est C-dérivable (holomorphe), de dérivée F’ = f.
Maintenant, grace au Théoreme 7.1 de régularité et a son Corollaire 7.2, F' est indéfini-
ment C-dérivable, donc ' = (F') existe, i.e. f € O(A). d
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Prochain théoreme « magique » : Si une suite de fonctions holomorphes converge uni-
formément sur (tous) les compacts d’un ouvert, alors la fonction-limite est non seulement
continue — théoréme classique —, mais aussi holomorphe, donc lisse. On dirait de la pres-
tidigitation !

Contraste déroutant avec la théorie des fonctions de variables réelles ! Par exemple, le
cours d’Analyse de Fourier a fait voir que la fonction de Weierstrass :

Z a" cos (27Tb” SL’)
n=0

avec 0 < a < letab > 1, est continue mais n’est dérivable en aucun point : dans le
monde réel la convergence uniforme n’assure nullement la dérivabilité, mais dans le monde
imaginaire, si !

Théoreme 9.2. [Cauchy 10] Dans un ouvert Q@ C C, soit une suite {f,}°, de fonc-
tions holomorphes f, € O(S)) qui converge en tout point vers une certaine fonction-limite
f: Q — C, uniformément sur chaque compact de ) :

0= JLmoo rznea[?( |fn(2’) — f(Z)l (V K C Qcompact).

Alors la fonction-limite f € O()) est holomorphe.

Démonstration. L’idée, splendide, consiste a déduire cela du Théoreme 9.1 de Morera.

Soit A un disque ouvert non vide quelconque avec A C (). Pour vérifier que f est
holomorphe dans A, soit T = T C A un triangle fermé quelconque. Comme les f, €
O(A) y sont holomorphes, Goursat offre :

fa(2)dz =0 (Vn>1).
or

Comme f, — f uniformément sur le compact T C A C €2, donc sur 97", nous avons le
n—oo

droit d’intervertir lim [ f,, = [ lim f,,, ce qui nous donne :

f(z)dz = 0,
oT

et comme cela est vrai pour fous les triangles fermés pleins contenus dans A, Morera nous

garantit que f € O(A). Enfin, f € 0(Q), car I’holomorphie est une condition locale, et en

tout point zy € €2, on peut centrer un disque A > z; avec A C Q. U

Maintenant, qu’en est-il de la suite des fonctions dérivées { f,}>°, ? Dans le monde
réel, tout le monde sait que la convergence uniforme n’entraine presque jamais celle des
fonctions dérivées. Et dans le monde holomorphe ?

En fait, étant donné une série entiere f(z) = > -, a, 2 ayant un rayon de convergence
R > 0, nous avons déja vu dans le chapitre précédent que la série dérivée terme a terme
Yooty (v +1) ayiq 2” possede le méme rayon de convergence R > 0, et par conséquent, les
sommes partielles :

fn(2) = Z a, 2" de dérivées fi(z) = Z (v+1)ay41 2",

ov<n or<n—1
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satisfont simultanément la convergence uniforme sur tout sous-disque fermé D, C Dy avec
0<r<R:

0 = lim max|f.(2) = f(z)| = lim max|fi(z) — f'(2)|.

n—oo |z|<r n—oo ‘z|<'r
Le théoreéme suivant montre que ceci reste vrai dans la situation la plus générale possible.

Théoréme 9.3. [Cauchy 11] Dans un ouvert Q@ C C, si une suite {f,}2, de fonctions
holomorphes f, € O()) converge, uniformément sur chaque compact de ), vers une
fonction-limite f: Q0 — C — holomorphe d’apres le Théoreme 9.2 —, alors il en va
de méme pour la suite { f] }°° | de ses dérivées :

0 = lim max |f,’L(z) — f’(Z)‘ (V K C Q compact).
n—oo z€K

Le méme Théoreme 9.2 refait voir que f' € 0(£2), ce que ’on savait déja.

Démonstration. Soit donc K C €2 un compact quelconque. Pour § > 0 assez petit, 1’en-
semble :

Ks = {Z € Q: dist(z, K) < 5}
est aussi compact, avec (exercice de topologie) :

K cIntKs; ¢ Ks C Q.

La version générale des inégalités de Cauchy du Théoréme 8.6 appliquée a une seule dé-
rivée de la suite { f, — f}°°, et au compact élargi L := Kj, fournit alors une constante
positive C' = Cx s < 0o qui contrdle la convergence uniforme sur K :
/
max — z)| < C max — f)(w
max (2~ £)(2)] < € max|(fu — F)(w)
— 0. U
n— oo
Evidemment, ce que nous venons de faire pour une seule dérivée fonctionne pour les
dérivées de tous ordres, soit en itérant (sans retenue !) I’énoncé par pure logique directe, soit
en nous souvenant que le Théoreme 8.6 était profilé pour des dérivées d’ordre quelconque.

Théoreme 9.4. Sous les mémes hypothéses :

0 = lim max ‘fT(L”)(z) — f(“)(z)‘ (Vk>1, VK CQcompact). [
n—oo z€K
En pratique, on utilise ces théoremes de convergence uniforme pour construire certaines
fonctions holomorphes nouvelles qui jouissent de propriétés intéressantes, tres souvent dé-
finies commes séries infinies :

f(z) =) fal2),

de fonctions holomorphes f,, € () dans une région donnée 2 C C. La plupart du
temps, il est assez facile de vérifier qu’il y a convergence uniforme, et donc, les théoremes
qui précedent garantissent que cette somme infinie est elle-méme holomorphe, et qu’on
peut la dériver terme a terme indéfiniment — ce qui est fort pratique !

Par exemple, de nombreuses fonctions spéciales sont définies sous forme de série infinie
d’une variable réelle = ; on remplace alors = par une variable complexe z, et on recherche les
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lieux ou il y a convergence (uniforme). Spécifiquement, nous étudierons dans un chapitre
ultérieur la célebre fonction z€ta de Riemann :

)=y

n=0

Une variante des séries de fonctions holomorphes, tout aussi fréquente et utile, consiste
en les fonctions qui sont définies par des intégrales sur un segment réel du type :

1= [ Pl s)ds

ou encore, des limites de telles intégrales. Ici, la fonction F’ est supposée holomorphe en son
premier argument, et continue en son second. Pour simplifier, I'intégrale est prise au sens
de Riemann sur I’intervalle borné [a, b]. Le probleme est d’établir que f est holomorphe.
Par exemple, nous étudierons dans un prochain chapitre la fonction Gamma d’Euler, définie
pour z € C avec Rez > 0 par:

['(2) ::/ e tt* 1l dt.
0

Dans le théoréme qui suit, nous imposons une condition suffisante sur F' qui est souvent
vérifiée en pratique, et qui implique facilement que f est holomorphe. Apres un changement
affine de variable réelle, nous pouvons supposer que a = 0 et b = 1.

Théoreme 9.5. Soit F' = F(z, s) une fonction définie pour (z,s) € Q x [0,1], on Q@ C C
est un ouvert, qui satisfait les deux propriétés suivantes :

o F(z,s) est holomorphe en z pour tout s € [0, 1] fixé;

e [ est continue sur € x [0, 1].

Alors la fonction définie dans ) par :

1
f(z) = / F(z,s)ds,
0
est holomorphe dans §.

La continuité supposée est une continuité par rapport aux trois variables (x,y, s) avec
r+iy € Qetse0,1].

Démonstration. Pour obtenir ce résultat fondamental, il suffit de montrer que f est holo-
morphe dans tout disque ouvert A avec A C €2, et grice au Théoreme 9.1 de Morera, il
suffit méme de faire voir que pour tout triangle fermé 7'=T C A,ona:

1
0:?/ / F(z,s)dsdz.
ar Jo

Ici, un simple échange de 1’ordre d’intégration conduirait au résultat, puisque F' est ho-
lomorphe en z, donc satisfait la condition de Morera. Le théoréme de type Fubini dans
la théorie de I'intégration de Riemann justifie d’ailleurs immédiatement cela (exercice de
révision).
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Toutefois, nous pouvons contourner 1’emploi du théoreme de Fubini, en approximant
I’intégrale par des sommes de Riemann :

fa(2) == — Z F(Z, %) (n>1).
k=1

Ici, toutes ces sommes finies f, € €/(§2) de fonctions holomorphes %F(Z, %) sont holo-

morphes.

Affirmation 9.6. Sur tout disque fermé N C ), les f, convergent uniformément vers
1

f(2) = Jo F(z5)ds.

Preuve. La fonction F étant continue sur le compact A x [0, 1], elle y est uniformément

continue, ce qui entraine (exercice) :

Ve>0 3d6=46() >0 (|51—32| <0 = m:Q(‘F(z,sl)—F(z,SQ)‘ <5>.
zEA
Maintenant, en choisissant n > % assez grand, nous pouvons effectuer une estimation

uniforme valable pour tout z € A qui prouve 1’affirmation :

-t = 3 [ (P8 - Pen) s

n k

< ; /(k_n ‘F(z,%) —F(z,s))ds
"ok

< Z /M eds
k=1 7" %

= e&. O

Ainsi, on a convergence uniforme f, — f sur le disque fermé A C (), et le Théo-
n—oo
réme 9.2 conclut que f € O(A). O

10. Principe de symétrie de Schwarz

En Analyse réelle, il se produit de nombreuses circonstances ou 1’on désire étendre a
un domaine plus grand des fonctions initialement définies dans une certaine région bien
visible. Des techniques diverses existent afin de produire de telles extensions, notamment
pour des fonctions qui sont continues ou qui jouissent de propriétés de différentiabilité
variées. Bien entendu, les difficultés s’accroissent avec les exigences de lissité, mais tant
qu’on reste dans I’univers des fonctions non développables en série entiere, 1’existence e.g.
de fonctions-plateau — vues dans le cours d’ Analyse de Fourier — permet de jouer avec
elles presque comme avec de la pate a modeler.

A TI’inverse, la situation est trés différente pour les fonctions holomorphes, car non seule-
ment ces fonctions sont indéfiniment différentiables dans leur région initiale de définition,
mais aussi, elles sont localement développables en série entiere convergente, ce qui est une
rigidité additionnelle vraiment caractéristique et limitante. Par exemple, il existe des fonc-
tions holomorphes dans un disque ouvert qui sont continues dans la fermeture de ce disque,
mais qu’il est impossible de prolonger holomorphiquement au-dela du cercle-bord, comme
le montre 1’Exercice 29.
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Une autre contrainte a respecter quand on cherche a prolonger des fonctions holo-
morphes est le principe d’identité : une fonction holomorphe devient identiquement nulle
si elle vaut zéro sur un sous-ouvert non vide, ou méme sur un segment réel non réduit a un
point. Ainsi, les fonctions-plateau, nulles en-dehors d’un compact, sont a proscrire !

Nonobstant ces obstacles, cette section présente un phénomene de prolongement assez
simple et tres utile dans les applications a la théorie des applications conformes : le Principe
de réflexion de Schwarz. Sa démonstration consiste en deux parties : définir le prolonge-
ment, puis vérifier qu’il est holomorphe. Commengons par le second point.

Soit 2 C C un ouvert qui est symétrique par conjugaison complexe, a savoir qui satis-
fait :

zeQ <«—= 7zZe.

O+

Soit Q* la partie de €2 située au-dessus de I’axe réel, et soit 2~ celle en-dessous. Aussi,
soit [ := Q2 N R, de telle sorte que :

Q uUIuQt = Q.
On suppose implicitement que I # (), sinon, le théoréme suivant n’a pas d’intérét.

Théoréme 10.1. [Principe de symétrie] Si [~ € O(Q ) et fT € O(Q") sont deux fonc-
tions holomorphes qui se prolongent continitment a I :

fmee’(Q ul) et ffee’(Qrul),

avec des valeurs coincidantes :

[ (x) = fH(x) (Vzel),
alors la fonction continue définie dans <) tout entier par :
f(2) lorsque z € Q7
f(z) =L f(2) = [T(2) lorsque z € I,
fH(z) lorsque z € QF,

est holomorphe dans .

Démonstration. Effectivement, on vérifie (exercice) que f est continue dans ).

Pour établir 1’holomorphie, faisons appel au Théoréme 9.1 Morera. Soit A un disque
centré en un point de / avec A C 2. Soit 7" = T" C A un triangle plein fermé contenu dans
le disque.
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Quand 7T n’intersecte pas I, d’ou T C 2~ ouT C Q7, on a gratuitement :

0=/ fz)dz

oT

puisque [ est supposée holomorphe dans 2~ U Q.

Ensuite, supposons premierement qu’un cdté ou un sommet de 7' rencontre /, tandis que
le reste se trouve entierement, disons, dans le demi-plan supérieur :

T cTUuQ™.

Dans ce cas, le triangle 7. := T + i< poussé vers le haut d’une hauteur ‘infinitésimale’
¢ > 0 est entierement contenu dans la zone ot f = fT est holomorphe, donc on a :

0= [ f(2)dz,

oT:

et en faisant tendre ¢ — 0, la continuité de f donne bien 0 = Jop f(2)dz. Le cas ol
T C IUQ™ estsimilaire.

O+

Ty InT

T>

Enfin, supposons deuxiemement que le triangle 7' en question intersecte / en son inté-
rieur. Une découpe de 7T en trois triangles 77, 15, T3 par le couteau / N 7' nous ramene a la
situation que nous venons de traiter. U

Nous pouvons maintenant énoncer le

Théoreme 10.2. [Principe de réflexion de Schwarz] Si () C C est un ouvert invariant
par conjugaison complexe z — % tel que Uintersection I := QN R # () soit non vide, et
si:

Q" ::Qﬁ{lmz<0}7 ot ::Qﬂ{lmz>0},
alors toute fonction holomorphe définie au-dessus et continue jusqu’a I :
ffeoQHn (50(1 N Q+),
et qui prend des valeurs réelles sur I :

ff(z) e R (Veel),
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admet un prolongement holomorphe f € O(Q)) unique a I’ouvert Q@ = Q= U I U QT, dont
les valeurs sont définies en-dessous par :

f(2) == f+(2) (VzeQ7).
Démonstration. Au voisinage d’un point z, € €2~ disons dans un disque D,(zy) de rayon
r > 0 assez petit pour que D,.(z9) C Q, les valeurs Z pour z € D,(zy) appartiennent au
symétrique de ce disque, donc sont contenues dans 2% ol f* est holomorphe :

1@ =Y an(F-7)"
=0

3

avec a, := & (7)™ (%) et un rayon de convergence > r. Une simple conjugaison :

o0

fPE) =D (z2—2)",

n

— qui n’altere en rien le rayon de convergence ! — montre clairement le caractere holo-
morphe de f~ dans D,.(zg), donc partout dans .

Ensuite, en un point zy € I, puisque f*(z) € R pour x € I proche de x, la continuité
de f* sur I U Q" garantit, pour la fonction f~ ainsi définie, que [~ (o + h) — [T (o)
quand h € C avec Imh < 0 tend vers 0, donc le prolongement f est continu partout dans
Q-uUIuQt.

Enfin, en notant que f~(x) = f*(z) pour tout z € I, le Principe de symétrie 10.1,
spécialement concocté a I’avance, conclut en beauté 1I’argumentation. U

11. Théoreme d’approximation de Weierstrass complexe dans un disque

Sur un intervalle compact [a,b] C R avec —0o < a < b < o0, le célebre Théoreme de
Weierstrass stipule que toute fonction continue f € ¢° ([a, b], R) peut étre approximée a
volonté en norme uniforme par de simples polynémes :

Ve>0 3P =P(z)eRz] telque max |f(z)— P(z)] <e.

z€(a,b]
Question 11.1. Existe-t-il un résultat similaire en Analyse Complexe ?

Attention : tout devient 2-dimensionnel !

Nous allons regarder un compact quelconque K C C, éventuellement d’intérieur non
vide, et des fonctions qui sont holomorphes dans un voisinage ouvert {2 O K, éventuelle-
ment trés «resserré » autour de /. Dans ces circonstances, a-t-on :

VfeO(Q) VYe>0 3IP(z)=P.(z)€C[z] telque max|f(z)— P(z)] < ¢e?

zeK

Cela serait un résultat remarquable, car les polyndmes sont des objets globaux, définis pour
tout z € C.
Commengons par examiner le cas simple ot {2 = Dy (z) est un disque ouvert de rayon :

0 <R K o0,

centré en un certain point fixé z; € C. Le cas R = oo correspond a {2 = C.
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Théoreme 11.2. Les fonctions holomorphes dans un disque Dy = Dy(2y) de rayon 0 <
R < oo sont approximables uniformément sur les compacts K C Dy par des polynomes :

VfedDy) Ve>0 3IP(z)=P.(z)eClz] telque rrgg‘f(z)—P(z)‘ < e

Démonstration. Apres translation, on se ramene a zp = 0. En vertu d’un théoréme vu dans
le chapitre qui précede, toute fonction holomorphe f € & (DR) a une série de Taylor en
tout point w € Dy qui converge au moins dans le plus grand disque centré en w qui est
contenu dans Dy. Au point w = 0, ce plus grand disque coincide avec Dy, et donc en vertu
de ce résultat, la fonction f est représentée par une série entiére » .~ a, 2™ qui converge
dans Dy.

Soit donc une série entiere f(z) =~ a, 2" a coefficients complexes a,, € C, dont
le rayon de convergence R satisfait :

0 < R K 0.
D’apres le chapitre qui précede, le rayon de convergence de >~ a,, 2" est défini par :
1 :
— = limsup {/|ay|.
R n—oo

Par conséquent, la définition de la limite supérieure fournit, pour tout 4 > 0, un entier
N(§) > 1tel que:

1
n = N(0) — Vla,| < E+6.

Maintenant, soit un compact KX C Dy contenu dans le disque ouvert Dy centré en 1’ori-
gine de C. D’apres un théoréeme topologique qui a déja été vu, la distance entre K et le
complémentaire fermé C\Dy est strictement positive, et si on prend 0 < r < R satisfai-
sant :

0 < R—r < dist (K, C\Dy),
alors on assure que :
K c D,.

Choisissons maintenant 9 > 0 assez petit pour que :

q = (%—1-5)7“ < 1.

L’inégalité triangulaire suivie de la sommation d’une série géométrique offre pour tout
ze K:

) )
> 0| < 3 faop
n=N n=N

[re K = |z| <]

N
~—
m| =

+
(o)
~—
3

-
3

N
A
z
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Soit maintenant € > 0 arbitrairement petit. Toujours avec K C D, C Dy, et avec 6 assez
petit pour que (1 + §) r = ¢ < 1, choisissons N(¢) > 1 et N(g) > 1 assez grands pour
qu’on ait :

n>N0) = e < <§+6)n,
1

N —
I—q
ce qui est possible car ¢ — 0 quand N — oco. En prenant :

N > N(e) — q < s,

N := max(N(d), N(¢)),

si on découpe alors la série qui représente f(z) en deux morceaux :

N—1 oo
f(z) = Z anz”—i—z an, 2",
n=0 n=N

———
=: P(z)

dont le premier est visiblement un polyndome de degré < N—1, on atteint ’inégalité conclu-
sive :

—P = n n
msFe) - PO = mgg| 3 ans
1
<N ——
ST,
< e l

12. Théoreme de Runge rationnel

Approfondissons maintenant les réflexions de la Section 11 précédente. Soit donc K C
C un compact, et soit {2 O K un ouvert. On ne suppose pas que C\ K est connexe : seule
la Section 13 suivante fera cette hypothese topologique significative.

Tout d’abord, si K = {z € C:|z| = 1} est le cercle unité, nous affirmons que la

fonction f(z) := 1 définie dans un anneau 2 := {1 < |z| < r} avec r > 1 ne satisfait pas

Tz

la propriété d’approximation polynomiale :

1
- —P(z)’ < e

Ve>0 3FP(z)eClz] telque max
z

zeEK

En effet, observons que I’intégrale bien connue suivante est non nulle :

1 27 1 )
/ —dz:/ —.eielad0:2i7r,
K 7 o ¢

tandis que, pour tout polyndme P(z) € C[z] qui est holomorphe dans I’ouvert C qui
contient I’intérieur de Jordan ID (disque unité) de K = C (cercle unité), le premier théoreme

de Cauchy donne :
0= / P(z)dz.
K
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Maintenant, soit 0 < ¢ < 1 quelconque. S’il existait un polyndme P(z) satisfaisant la
propriété d’approximation en question, alors par un jeu taquin d’inégalités taquines :

/K (é - P(z)) dz
<A’1

- _P(2)
<glpw

z
= e€2m,

2m = |2in| =

2]

on en déduirait 27 < € 27 qui équivaudrait a I’absurdité fatale 1 < . Moralité :

Observation 12.1. Quand K a un, voire plusieurs, « trous », les fonctions holomorphes au
voisinage de K ne sont en général pas approximables sur K par des polynémes.

Dans la Section 13 suivante, nous verrons qu’il existe un théoréme positif d’approxima-
tion polynomiale quand C\ K est connexe. Pour I’instant, continuons a nous interroger sur
le cas ou le compact K C C est quelconque.

La fonction i a un pole en z = 0, a I'intérieur (hors) de K = C'. En tout cas, ce contre-
exemple % suggere d’utiliser pour I’approximation uniforme non pas des polyndmes, mais
des fractions rationnelles a poles hors de K.

Théoreme 12.2. [de Runge rationnel] Pour tout compact K C C et pour tout voisinage
ouvert () O K, les fonctions holomorphes dans §) peuvent étre approximées a volonté sur
K par des fractions rationnelles sans poles sur K, c’est-a-dire :

Vieo) Ve>0 3P eClz] 3JQ €Clz avec Q‘K#O
P(z)
Q(z)

Démonstration. Dans un chapitre qui précede, on a vu que pour K C ) compact contenu
dans un ouvert, on a toujours :

X

tel ‘ -
els que  max f(2)

dist (K, (C\Q) > 0.
Avecunréel 0 < a < %, on pose alors et on fixe définitivement :
6 := adist (K, C\Q) > 0.
On considere le réseau d-renormaliséde Z x Z C R x R = C, a savoir :
(Z+iZ)6 = {(k+il)6: k,leL},
et on regarde tous les carrés pleins fermés de coté 6 que ce réseau découpe :
e = {z+iyeC: kd<az<(k+1)5, 65<y<(L+1)0} (k,LET),

dont la réunion pave le plan tout entier de maniere presque disjointe :

C=JU e

kEZ (€L

Leur intérieur, défini par des inégalités strictes, sera noté Il ¢, et leur bord, consistant en 4
segments de longueur § (> 0) paralleles aux axes Oz et Oy, sera noté Ol , = Ol .
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N —— e \____—/ //
— 1
Maintenant, on note II;,...,II, avec J > 1 entier la collection de fous les Il , qui
intersectent K # (). Enfin, on note vy, ...,y avec H > 1 entier les segments de longueur

0 qui appartiennent au bord d’un unique carré II;, sans appartenir a deux bords de deux
carrés adjacents. Autrement dit, on supprime tous les bords adjacents, comme sur la figure.
Quitte a réajuster légerement le coté o > 0 de la grille, ou a translater 1égerement K, on
peut supposer que K contient au moins un point qui n’est pas sur la grille, c’est-a-dire au
moins un point a I’intérieur d’un carré.

Sur la figure, le compact K est en foncé, avec des bords anguleux. Le complémentaire
C\ K contient trois composantes connexes. L’ouvert 2 O K est d’une forme analogue,
mais son bord est représenté de maniere courbée et lisse. La grille est bien visible. Les traits
trés épais représentent les segments 7y, . . ., yy. Les carrés I1; qui intersectent et recouvrent
K ne sont pas explicitement représentés.

Si un point z € ﬁj N K est donné, alors pour tout autre point w € I;, puisqu’il est bien
connu que le diametre d’un carré de c6té 6 > 0 vaut V26, il vient :

|z—w‘ < diamﬁj < V2.

Par hypothese, chaque II; possede au moins un point en commun avec le compact K,
disons z; € II; N K. Or nous venons de voir que :

T, € Dsylz).

Mais grice a I’hypothése v/2a < 1, tout se situe & distance strictement inférieure 2 la
distance au complémentaire C\(2 de 1’ouvert :

V26 = V2adist (K, C\Q)
< dist (K, C\Q),
donc chaque disque fermé D v25(%;) C €2 est contenu dans 1’ouvert, puis par inclusion
ﬁj C ), etenfin :
Umca

1<j<s

Evidemment, puisque chaque segment -y, est c6té d’un (unique) ﬁj, il en découle sans

effort :
U v, C €.

1<h<H

Assertion 12.3. Pour tout 1 < h < H,ona~y, N K = ().
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Preuve. Si, au contraire, v, N K > z contenait un point du compact, comme chaque seg-
ment de longueur  dans le réseau est toujours bord commun entre deux carrés distincts
adjacents :
Yo = rmyen) O Hegny ey

ces deux carrés adjacents intersecteraient alors tous deux K a cause du point z qu’ils ont en
commun, mais alors, cela impliquerait que les deux carrés en question appartiendraient a la
collection I1;, . . ., I1;, et donc que 7, serait adjacent & deux carrés distincts de cette collec-
tion, et justement, on a supprimé a [’avance tous ces bords adjacents — contradiction! [J

Ensuite, pour un carré ﬁj avec 1 < j < J quelconque, la formule de Cauchy donne :

1 f(©) d f(z) lorsque z € II;,
2im Jon; C— 2 ¢ = 0 lorsque z € C\II;,

sachant qu’au niveau de ce cours, nous ne sommes pas en mesure de présenter ce qui se
passe lorsque z € O11;.
Soit maintenant £ > () assez petit pour que le compact :
K. = {z € C: dist(z,K) < 8},
qui contient I’ouvert &, contenant K défini par :
0. = {dist(z,K) <e} D K,

satisfasse encore :

0=~y NK, (1<h<H),
donc soit encore recouvert par la méme collection de carrés fermés :

K. c U-- UIL.

Ici, K. et O sont introduits pour des raisons techniques, utiles a la fin de la démonstration
du Lemme 12.5.

Lemme 12.4. Pour tout z € K. qui n’appartient a aucun bord des carrés ﬁj (il existe au
moins un tel point z), on a :

£(z) = Z 1 f(©)

= 2im Jon, ¢ — 2

dc.

Notons que I'intégrale peut étre calculée parce que J1I; C €2 d’apres ce qui précede.

Preuve. Puisque la réunion de ces carrés recouvre :
K.c |J 1,
1<y
si un point z est dans K. mais dans aucun bord, il appartient alors a un unique carré ouvert
i) avec u < j(z) < 71,dou grace a u’on vi VOoIr :
11y avec un certain indice 1 < < J, d’ou grice a ce qu’on vient de voir

i) = = [ 19y

2 anj(z) C— z

tandis que pour fout autre indice j' # j(z) :

_ 1 f(<)
= 2—/ %
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En sommant bétement tout cela, la conclusion tombe comme une prune pulpeuse, flasque,
juteuse :

1
f<Z>+(J_1).Oo:%/8Hj(Z) d<+ Z 2277/11 C_Z

1<]/<J
3’ #3(2)

o« ! £(0)
- Za—/ s .

Ensuite, revenons a des points z € K, y compris sur les bords des carrés I1;.

Lemme 12.5. On a, pour tout z € K, la formule de représentation :

(€)
Z 2im |, C—de'

Démonstration. Tout d’abord, lorsque z € K, en supposant toujours que 2 n’appartienne
a aucun bord 8ﬁ1, ce OT1,, dans la formule que nous venons de démontrer, toutes les inté-
grales sur des bords de deux carrés adjacents s’annulent par paires, puisque les orientations
des segments d’intégration sont opposées, et il ne reste alors plus que les intégrales sur les

bords non-adjacents, que nous avions notés vy, ..., Yy :
J
1 f(©)
= — d
10 =3 57 o
= Z ) dc. (Vz € K. \ (8T, U---UATT).
2w ), C—=z

Ensuite, dans cette somme ﬁme, chaque intégrale s’effectue sur un segment compact
~r C €2 qui n’a aucune intersection avec K., donc se situe a distance strictement positive
de K., et par conséquent, I’ 1ntegrande ) de ces intégrales f a parametre z € K est
continu par rapport a :

<Z7C> € Ke X Yh,
donc un théoreme vu en cours d’Intégration (de Riemann) garantit la continuité par rapport
az € K. de ces intégrales [ .

Par conséquent, la formule reste vraie par continuité en faisant tendre des points z € 0.
non situés sur la réunion des bords des ﬁj vers les points quelconques de K qui ont le
malheur de rotir sur la grille de coté 9. U

Soit maintenant v: [0,1] — Q\K une courbe de classe ¢, par exemple v = 7,
pour un indice 1 < ~ < H. Par convention, on identifie I’application +y et sa courbe-image
7([0,1]) C Q\K. On introduit :

F(

zeK).
" r C—z (er)

Lemme 12.6. Pour tout € > 0, il existe P(z) € C[z] et Q(2) € C[z] avec Q|,. # 0 tels
que :
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Démonstration. Pour g € ‘50([0, 1], (C), les sommes de Riemann, associées a la subdivi-
sion équitable (mais non commerciale) par segments de longueur % de I’intervalle compact
0, 1], convergent vers I’intégrale (de Riemann) de ¢ :

i S o) = [

0<k<n—1

JO(®) Y
tdt
21 227r/ —z () dt,

ce qui conduit a examiner la fonction de ¢ € [0, 1] dépendant du parametre z € K :

Ensuite, par définition :

o) o L 100 o
2im y(t) — 2
Sur le compact K x [0,1] 3 (z,t), cette fonction est continue, puisque v([0, 1]) N K = 0.
Grace au théoreme de Heine-Borel, elle y est donc uniformément continue.
Or la continuité uniforme implique en particulier (exercice mental), pour tout ¢ > 0,
I’existence de 6(¢) > 0 tel que :

It — ta] < O(e) — ’}{(z,tl)-— H(z,t)

<e VzeK,

ce, uniformément sur .
Alors des que n > 1 est choisi assez grand pour que % < 0(¢g), la somme de Riemann
associée a I'intégrale considérée :
1
= / H(z,t)dt
0

peut étre soumise a un traitement de choc qui établit a grands coups d’inégalités triangu-
laires sa proximité a son intégrale—mére :

-1 k+1 k+1

zt)dt—[vn H(z7§>dt‘

1
g/adt
0

H(z,1) H( k)‘dt
= £.

n—1

—;H@S&

el

‘?T 3|

//\

TV
<e

Pour conclure, il suffit de prendre conscience que cette somme de Riemann :

n—1 n—1 )
IR SRR {C RN
_ _

pble en z:'y(;)

est une somme finie de fractions rationnelles simples a coefficients complexes, donc peut

sd dé lafi Piz) d 1
etre ecnte apres Ire LlCthIl au meme enommateur SOous 1a 1orme Q( ) avec deux pO yIlOl’IlCS
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P,Q € Clz]. Comme les pdles 7(%),7(%), e ,7(”771) se situent tous sur -y, on a bien

Q‘ x 7 0 avec le dénominateur commun :

1': 1 . B

Q7 (O -)0E o) (Y )

Nous pouvons enfin effectuer la synthese mathématique de tout ce qui précede, et dé-
tailler rigoureusement tous les arguments manquants qui terminent la démonstration du
Théoreme 12.2 de Runge rationnel.

D’apres ce qui précede, a chaque courbe v = 7y, ...,y qui survit lorsqu’on élimine
les frontieres communes entre les ﬁj recouvrant /, on peut associer la transformée de
Cauchy :

F,(z) = i %d{ (1<h<n),

et puisque nous avons démontré par construction que :
f(z) = By (2) + -+ By (2),

il suffirait, pour conclure, de montrer que chacune de ces fonctions F,, (z) possede la pro-
priété d’approximation a volonté — mais nous venons de le faire il y a un instant !

Afin d’€tre parfaitement rigoureux et complet, comme cela est exigé par Dame Mathé-
matique, il faut partir, pour tout 1 < h < H, avec ¢ astucieusement remplacé a I’avance par
<, de tous les résultats d’approximation :

Ph(Z)
Qn(2)

puis définir :

Pi(2) <€

El z) X )
(2) Qh(z) T

€ FracC|z] avec Qh‘K # 0 tel que max F,

Q1(2) - Qu(z) = Q(z) jamais nul sur K,
P1_(Z)+ Py(z . P(z)
- Q(2)’

~ | —

) T Quz

somme qui est une fraction rationnelle — car les fraction rationnelles, c’est comme les
genes, cela ne peut se mélanger qu’en produisant aussi des genes —, puis effectuer une
majoration classique par inégalités triangulaires :

PO g gy PO G
f(z) Qz) = |F(2) + + F,(2) O1(2) On(2)
g AR 10
- F’Yl( ) Q1<Z) + _'_F’YH( ) QH<Z>
CPE| ey B
< F’Yl( ) Q1<Z) + + F%-x( ) QH(Z)
< fL.4E
H
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13. Théoreme de Runge polynomial

En partant d’une approximation rationnelle | f(z) — %‘ < ¢ comme dans le Théo-

reme 12.2 dont nous venons d’achever la démonstration, nous allons mettre au point un
procédé final qui consiste a « pousser vers 1’infini » les poles de %, procédé qui ne pourra
étre accompli que sous ’hypothese que C\ K soit connexe. Nous ‘transformerons’ ainsi
une fraction rationnelle en un polyndme.

Théoreéme 13.1. [de Runge polynomial] Soit K' C C un compact dont le complémentaire
C\ K est connexe. Alors pour tout ouvert Q O K, les fonctions holomorphes dans Q) sont
approximables uniformément sur K par des polynémes :

Vfelo) Ve>0 3IP(z)=PF.(z)€Clz] telque mea&(‘f(z)—P(z)‘ga

Ce résultat est remarquable, car les fonctions polynomiales sont holomorphes globa-
lement, définies sur C tout entier, tandis que les f € &(2) ne sont définies que dans un
voisinage ouvert de K.

Démonstration. Comme toute fonction rationnelle ayant pour unique pdle un point donné
zg € C peut s’écrire comme polyndome en la fonction-type ﬁ a coefficients dans C|z], il
suffit d’établir le lemme suivant pour conclure la démonstration de ce Théoreme 13.1.

Lemme 13.2. Si un compact K C C a un complémentaire C\ K connexe, alors pour tout
point zo € K, la fonction rationnelle ﬁ peut étre approximée uniformément sur K par

des polynomes de C|z].

Démonstration. Soit un rayon R > 1 assez grand pour que K C Dg(0). Choisissons un
point hors de ce grand disque ouvert z; € C\Dy, et développons :

1 1 1 z
Z—Zl__Z_ll—z _Z_n_ﬂ’

ou cette série converge uniformément pour tout z € K, comme on s’en convainc en utilisant
le fait (exercice de rappel) qu’il existe un rayon 0 < 7 < R strictement inférieur tel que
K c D,(0).

Grace a cette convergence, les sommes partielles ZLO, avec N > 0 entier quelconque,

de cette série géométrique sont alors des polyndmes qui approximent uniformément —
z2—2z1

sur K. Ensuite, cela implique que toute puissance ﬁ peut aussi €tre approximée uni-
formément sur K par des polyndmes.

Il suffit maintenant d’établir que la fraction ﬁ peut étre approximée uniformément
sur K par des polyndomes en ﬁ avec certains z; € C\Dy.

A cette fin, utilisons 1’hypothése que C\ K est connexe, et prenons une courbe conti-
nue v: [0,1] — C\K partant de z, = ~(0) et aboutissant a (1) = z;. Comme
v =7([0,1]) € C\K est un compact disjoint de K, le nombre réel :

p = %dist(%K) >0

est strictement positif.
Choisissons alors une suite de points {wo, Wi, ... ,wL} sur y avec zp = wi et w, = 21
assez nombreux pour que :
‘wé_wﬁ-&-l‘ <p (0<e<L-1)



14. Approximation polynomiale sur des ouverts a complémentaire connexe 49

Assertion 13.3. Pour toute paire de points w,w' € ~y situés a distance :
‘w - w’| < p,
. . 1 A . . P
la fraction rationnelle z — —— peut étre approximée uniformément sur K par des poly-

1
z—w'"

nomes en z —

Preuve. En effet, avec 2 € K, nous pouvons développer :
1 1 1
zZ—w z—w 1 — ¥

z—w'

x n
Dl
z—w z—w' )’

n=0

et comme cette somme converge uniformément pour z € K grace a :

!

w—w' p 1
z—w |  dist(y,K) 2
de simples approximations par des sommes partielles Zz:o fonctionnent. U

Ce résultat nous permet donc de voyager de z, vers z; en effectuant un nombre fini
d’arréts « approximatifs » aux point-auberges {wy }o<s<., €t pas a pas, de conclure a dos de
cheval que —— peut étre approximée uniformément sur K par des polyndmes en —.

zZ—2z0

z—z1"

Ceci conclut la démonstration du Lemme 13.2, et simultanément aussi, celle du Théo-
reme 13.1. O

14. Approximation polynomiale sur des ouverts a complémentaire connexe

Le Théoreme 13.1 vient de faire voir que les compacts K C C dont le complémentaire
C\ K est connexe permettent aux fonctions qui sont holomorphes dans leur voisinage d’étre
approximées a volonté par des polyndomes. L’énoncé est vrai quel que soit I'ouvert 2 D K,
méme lorsque €2 n’est qu’un « épaississement infinitésimal » de K.

En faisant «tendre » 0 — K, on pourrait alors s’imaginer que la connexité de C\ K
est essentiellement équivalente a la connexité de C\ (2.

Soit donc un ouvert 2 C C dont le complémentaire C\(2 est connexe. Nous allons voir
que certains compacts bien choisis L C {2 ont eux aussi un complémentaire C\ L connexe.
Commencgons par un préliminaire.

Lemme 14.1. Etant donné deux ouverts 0y, Oy C C non vides disjoints, quels que soient
21 € O) et zy € Oy, il est impossible que le segment |z, 25 soit contenu dans leur réunion :

[21,22] gZ ﬁl U ﬁg.

Démonstration. Sinon, si [z1, 23] C 01U 05, alors le segment d’intérieur non vide [z, 25] =
I, U I, est réunion des deux ouverts (relatifs) non vides :

Il = ﬁl N [Zl, 22] et [2 = ﬁg N [21,22],
ce qui contredit la connexité de [z1, 2o]. O

Proposition 14.2. Soit 2 C C un ouvert borné dont le complémentaire C\) est connexe.
Alors pour tout § > 0, le sous-ensemble compact de ) :

Ls = {z € Q: dist (z, (C\Q) > 5}
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a un complémentaire (C\L5 qui est lui aussi connexe.

En particulier, il y a une homologie entre le fait que le fermé C\(2 =: F, consiste une
unique composante connexe F, qui s’échappe vers I'infini, et le fait que I’ouvert C\ K =:
O, est lui aussi connexe allant vers 1’ infini.

Démonstration. Supposons par I’absurde que C\ L; est réunion de deux ouverts non vides
disjoints :

C\Ls; = 01U 0>, 0= 0,N0,.
Comme Ls C ,onaC\Q C C\L;, d’ou :
(14.3) C\Q C 0, U 0.
Introduisons alors les deux ensembles :
F, = 01N ((C\Q) et Fy == O0,N ((C\Q)

Puisqu’on a alors C\Q2 = F} U Fy, afin d’atteindre une contradiction, nous allons montrer
que F} et F5 sont non vides, disjoints, fermés.

Assertion 14.4. I, # () et Fy # .

Preuve. Sinon F; = () — le cas F, = () étant symétrique —, et cherchons une contradic-
tion. Autrement dit, &, C €2, d’ou via (14.3) :

C\Q C 6.

Prenons un point quelconque w € &, donc w € C\ Ls. Alors par définition de Ls, on a
dist (w, C\Q) < 4, donc il existe un point z € C\Q avec |w — z| < 4. Ensuite, tout point
¢ € [z, w] sur le segment satisfait :

I — 2| < Jw—2z| <9,
donc dist (¢, C\Q) < 4, et ainsi ¢ & Lg, ¢’est-a-dire :
[z,w] C C\Ls.
Nous sommes alors parvenus a une situation :
ow € 0,
ez ¢ C\Q C 0,
e [z,w] C C\Ls = 01U O,
que nous savons déja impossible, grace au Lemme 14.1, ce qui est I’absurdité recherchée.
O
Assertion 14.5. F et F’ sont disjoints.
Preuve. Comme 0 N Oy = (), il est clair que F; N Fy = () aussi. O

Assertion 14.6. [ et F), sont fermés.

Preuve. Pour voir que F est fermé (idem par symétrie pour F5), soit une suite de Cauchy
quelconque {z,}°° ; de points z, € F} qui converge vers un point z,, € C.
Comme F; C O, ona z, € 0;. Comme F; C C\Q qui est fermé, ce point-limite
satisfait :
Zoo € C\C2
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Comme C\2 est a distance finie 6 > 0 de Lg, on en déduit que :
Zoo & Ls, donc z,, € O, U Os.

Ensuite, il est impossible que z,, € O, car par ouverture de 05, les z, pour n grand
appartiendraient aussi a 05, mais on vient de voir que tous les z, € 0. Ainsi :

2o € ﬁl,
etenfin z, € 01 NC\Q2 = F}. O

En conclusion, on a représenté le complémentaire fermé C\$2 = F; U F» comme réunion
disjointe de deux fermés non vides, en contradiction avec I’hypothese qu’il est connexe.
0

Pour terminer, voici une application importante du Théoreme 13.1 de Runge polynomial
qui s’avérera utile dans les chapitres subséquents.

Théoreme 14.7. Dans tout ouvert borné ) C C dont le complémentaire C\) est connexe,
on a la propriété d’approximation uniforme des fonctions holomorphes par des polynomes
sur les compacts :

VfeO(Q) VK C Qcompact Ve >0 3FP(z) e Clz] telque ma}z(‘f(z)—P(z)’ < e
zE

De plus, pour toute courbe (Kplm fermée v C Q, ona:

0= / F(¢) dc.

Nous allons démontrer cette derniere propriété sans construire de primitive pour les
fonctions f € €(£2). Ce n’est qu’a un stade beaucoup plus avancé de la théorie que nous
serons en mesure d’établir que dans les ouverts bornés 2 C C a complémentaire C\()
connexe, toutes les fonctions holomorphes ont des primitives.

Démonstration. Clairement, puisque dist (K, C\) > 0, il existe § > 0 assez petit pour
que :
K c Ly = {Z € Q: dist (z, C\Q) > 5}.

Nous venons de dire que C\ L; est connexe. Donc le Théoreme 13.1 s’applique, et fournit,
pour tout £ > 0, un polyndme P(z) tel que :

max|f(z) = P(2)] < max|f(z) = P(2)]
< e

Ensuite, soit v C €2, fermée, %j[ Alors il existe 0 > 0 tel que v C Ls. Avec € = % ou
n > 1 est un entier quelconque, il existe une suite {Pn(§ ) }:;1 de polynomes satisfaisant :

max |£(Q) = Pa(O)] < max[£(Q) = P(0)|
<L
d’ou par intégration :

‘/ (f(Q) = PulQ)) d¢| < %Iongueur(y),



52 Frangois DE MARCAY, Département de Mathématiques d’Orsay, Université Paris-Saclay, France

Mais comme les P,(¢) € ¢/(C) sont holomorphes dans 1’ouvert étoilé C, le Théoreme 4.5
de Cauchy étoilé donne :

0 - / P(¢)d¢ n3),

et enfin :

(14.8) ‘ l £(¢) d<’ < ‘ /7 (£(¢) = Pu(0)) dc‘+
1

l P.(Q) dc‘

< —longueur(y) — 0. O
n

n— oo

15. Exercices

. . P (o] . R . P
Exercice 1. En interprétant fo comme limg_ o fo , trouver la valeur des intégrales de Fresnel :

/OO sin (2%) do = /OO cos (2°) dz = 2\/\/72

0 0

/

INE

Y

0 R

- . . 2 A . g2
Indication: Intégrer la fonction e* sur le contour représenté, en utilisant ffooo e dx = /7.

1 T o [O° sinz . PSR - S I 1 00 giT_q
Exercice 2. Montrer que 5 = fo o du. Indication: Ecrire I'intégrale comme ; I-

une intégration complexe sur le bord d’un certain demi-disque édenté.

dzx et effectuer
oo xr

Exercice 3. Pour deux réels a > 0 et b, calculer les deux intégrales :
/ e " cos (bx) dx et / e “sin (bx) dz.
0 0

. . . a2 b2 . . c s . .
Indication: Intégrer e~*V%" %% sur le bord d’un secteur angulaire approprié d’angle w satisfaisant cosw =
a

Exercice 4. Montrer qu’on a pour tout £ € C (pas seulement pour £ réel) la formule :
6—71'§2 — /OO e—Tr.’t2 €2i7r§x dx
— 00

Exercice 5. Pour chacun des 5 ouverts suivants, déterminer s’il est étoilé (ou non) par rapport a I’'un de ses
points :
C\R_, C\[2,5], C\(RU{-i}), C\(Ry UiRy), C\{|z| < 1}.

Exercice 6. (a) Pour r, s > 0 réels, on considere le rectangle :
R = {zG(C: —r<x<r, —s<y<s},

parcouru dans le sens trigonométrique. Calculer les deux intégrales :

e [
8RZ7 8RZ2.
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(b) Pour confirmer que Re z n’est pas holomorphe, calculer, sur le bord du carré O de c6tés 0, 1, 1 42, ¢ :

/ Re z dz.
oo

Exercice 7. Pour un ouvert connexe 2 C C, montrer que I’ensemble :
E = {z€Q: Qestétoilé enz}
est convexe.

Exercice 8. Soit 2 O D un ouvert de C contenant le disque unité fermé D = {|z| < 1} de bord le cercle
unité C' = {|z| = 1}, paramétré par § — €%,

(a) Pour toute fonction holomorphe f € £/(12), calculer les deux intégrales :

1\ f(z) ' 1\ f(z)
/C<2+z+;> . dz, /C (27272> . dz.

(b) En déduire que :

2w
2/ cos? & f(e?) do = 2 £(0) + f(0).
0

™

(¢) De maniere similaire, déterminer la valeur de :

2 /% sin? ¢ f(ew) do
5 .
0

™

Exercice 9. Dans un ouvert 2 C C, soit une fonction holomorphe f qui est continiiment différentiable, i.e.
(z,y) —> %(z, y)et(x,y) — %(:1:7 y) sont continues — ce qui n’est pas demandé dans la définition de
1’holomorphie. Soit aussi 7' = T C 2 un triangle fermé non aplati.

(a) Pour deux fonctions réelles P, Q € €1 (2, R), montrer que I’intégrale suivante sur le bord du triangle est
égale a une intégrale dans I'intérieur :

/{)T (deJery) = /T <g§+g§2>dxdy.

Indication: Etudier d’abord ce cas spécial du théoréme général de Riemann-Green en supposant Q = 0 :

[0 = [ (-25)en

et en supposant le domaine G ot I’on integre de la forme « sandwich entre deux graphes » :
Gi= {(,y) R a<a<b f(2) <y<fila)},
avec —00 < a < b < 00, avec deux fonctions f_, f, continues ‘fplm définies sur [a, b] satisfaisant f_ < f
sur Ja, b[.
(b) Ré-obtenir le théoreme de Goursat :
0= f(z)dz,
aT

avec cette hypothése supplémentaire que f € (€2, C).

Exercice 10. Soit A C C un disque ouvert non vide. Montrer que pour tout z € A,ona:

o d¢
227r-/8A<_Z.

Indication: Supposer A = ID,.(0) avec r > 0 centré a I’origine, puis, pour 0 < ¢ < 1 réel, étudier la fonction :

27 . 160
o(t) ::/ e .
0

ret —tz
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Exercice 11. Soit 7 = T C € C C un triangle fermé contenu dans un ouvert du plan complexe, et soit
f:Q — C une fonction qui est C-différentiable excepté en unique point z, € 7'. Montrer que si f est
bornée au voisinage de z,, alors le théoréme de Goursat est encore vrai :

0= f(z)d=.
aT
Exercice 12. Soit un ouvert Q C C, soit zp € 2, soit 7 > 0 avec A := D,.(z9) C €, soit z € A a I'intérieur,
et soit f € 0().
Avec 0 < ¢ < € < rayon(A), soit le contour «trou de serrure» I'5 . = 0% . évitant z qui a été utilisé
dans la démonstration du Théoréme 6.1.

(a) Montrer que :
1O-16)

0 =
Ts.e ¢—=z

.

w est holomorphe dans C\{z} et continue dans C, puis montrer qu’elle

Indication: Vérifier que { —
a une primitive dans C.

(b) Soit le grand cercle C' := QA et soit le petit cercle ¢ := {¢ € C: |¢ — z| = &}, tous deux orientés dans
le sens trigonométrique. Montrer que :

I Y

(¢) En utilisant le résultat de I’Exercice 10, démontrer la formule de représentation intégrale de Cauchy :

i~ L[ S©

Exercice 13. Soit une fonction holomorphe f: D — C définie dans le disque unité D = {|z| < 1}.

dg (VzeA).

(a) Montrer que le diametre de son image :

diam /(D) = sup_[f() — f(w)

z,weD
est minoré par :
2[f/(0)] < diam f(D).
Indication: Pour 0 < r < 1 arbitrairement proche de 1, utiliser, aprés 1’avoir justifiée, la formule :
1 / £(0) = F(=Q)
I¢l=r

L ¢2

(b) Montrer que I’inégalité est une égalité précisément lorsque f(z) = az + b est affine.

2£'(0) = dg.

Exercice 14. Si f € 0() est une fonction holomorphe dans la bande ouverte 2 := {x +v=1y: —1<
y < 1} qui satisfait, pour deux constantes C' > Oetx € R :

|f(2)] < C(1+12)" (VzeQ),
montrer que pour tout entier n 2> 0, il existe une constante C,, > 0 telle que :
|f(n)(x)‘ < G, (1+|x|)ﬁ’ (Yz €R).

Exercice 15. Soit 2 C C un ouvert borné, et soit ¢: 2 — ) une fonction holomorphe a valeurs dans €2
lui-méme. S’il existe un point zy € §2 en lequel :

©(z0) = 20 et ¢'(20) = 1,

montrer que ¢(z) = z est I'identité. Indication: Se ramener a zy = 0, écrire ¢(z) = z + a, 2" + O(z" 1),
composer un nombre k£ > 1 arbitraire de fois :

e = po---oy,

vérifier que ©°F(2) = z + ka, 2™ + O(2"*1), et appliquer les inégalités de Cauchy.
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Exercice 16. Un théoréme de Weierstrass énonce qu’une fonction continue sur [0, 1] peut &tre uniformément
approximée a volonté par des polyndmes réels. Montrer que les fonctions continues sur le disque unité fermé
D ne sont pas toutes uniformément approximables par des polyndmes holomorphes P(z) € C|z].

Exercice 17. Soit f une fonction holomorphe dans un voisinage ouvert d’un disque fermé Dy = Dy (0) centré
al’origine de rayon R > 0.
(a) Montrer que pour tout rayon intermédiaire 0 < r < R, pour tout |z| < r, on a la représentation intégrale :

1 27 ; iy
fz) = %/o f(re?) Re(:;@_gd

f(()

Indication: En prenant w := sur le cercle de rayon R vaut 0, puis utiliser

la formule de Cauchy.
(b) Vérifier,pour 0 < s <rety € R, que:

Re (" e + s r? —s?
e . = .
rew —s r2 — 2rscosy + s2
Exercice 18. Soit u: D — R une fonction réelle définie dans le disque unité ouvert D = {|z| < 1} qui est
de classe 2. On dit que u est harmonique si elle est annulée par I’opérateur de Laplace :

0%u 8%u
&CQ( )+87y2(x’y) =0 (V (z,y) €D).

Rf observer que I’intégrale de
z

Au(z,y) =

(a) Montrer qu’il existe une fonction holomorphe f € /(D) telle que :
Ref =

Indication: Si f existe, vérifier que 1’on doit avoir f’(2) = 2 2%. Montrer alors que la fonction g(z) := 2 9%
est holomorphe, puis en trouver une primitive F’(z) = g(z), et enfin, montrer que Re F' — u = constante.
(b) Montrer que la partie imaginaire de f est déterminée de maniére unique, a 1’addition preés d’une constante
(réelle).

(c) Dans C\{0}, montrer que la fonction log | z| est harmonique, mais n’est la partie réelle d’aucune fonction
holomorphe.

(d) En utilisant I’Exercice 17, en déduire la formule intégraLe de Poisson, qui s’énonce comme suit. Si une
fonction €2 sur le disque unité fermé v € Harm(D) N €%(D) est harmonique dans le disque unité ouvert,
alors sa valeur en un point intérieur quelconque z = 7 e € D avec 0 < 7 < 1 est donnée par I’intégrale de

convolution :
1

27
= P.(0— ) dop,
u(z) 5 /0 (0 — @) u(e) de
avec le noyau de Poisson :
1—r?

—_ R).
1—2rcosy + r? re®

Pr(v) =
Exercice 19. Si une fonction f € ¢(C) holomorphe entiére a la propriété qu’en tout point zy € C, son

développement en série enticre :
— S (20) n
) = Z ! (z = 20)
n=0

posséde au moins un coefficient nul f("#0) (z,) = 0, montrer que f est un polyndme. Indication: Employer un
argument de dénombrabilité.

Exercice 20. Soit Y~  a, 2" une série entiere A coefficients a,, € C dont le rayon de convergence R > 0
est strictement positif. Son étoile de Mittag- Lefﬁer est le plus grand ouvert Q2 3 0 étoilé en 0 tel qu’il existe
une fonction holomorphe f: Q@ — C avec £ (0) = a,, pour toutn > 0.
Déterminer I’étoile de Mittag-Leffler des tr01s séries entieres suivantes :
o0

SEE Y

n=0 n=0
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Exercice 21. Soit f une fonction continue sur le disque unité fermé ID qui est holomorphe dans ID et prend la
valeur 0 en tout point du demi-cercle unité supérieur :

OtD := {2 €dD: |2[=1, Imz >0}.

Montrer que f est identiquement nulle dans D. Indication: Construire une fonction qui est holomorphe dans
un voisinage ouvert de {|z| =1, Imz > 0}.

Exercice 22. Soit f € ¢/(Dy) une fonction holomorphe dans le disque ouvert Dy = D (0). Pour 0 < r < R,
on introduit :

My(r) == sup |f(z)|

|z|=r
(a) Montrer que r — M (r) est une fonction continue et croissante sur [0, R|.
(b) Montrer qu’elle est strictement croissante si et seulement si f n’est pas constante.
Exercice 23. Soit f € ¢(C) une fonction holomorphe enti¢re telle qu’il existe des constantes réelles
A,B,a = O avec:
|f(z)] < A+Bz[* (Vz€C).
Montrer que f est un polynome.

Exercice 24. (a) Montrer que I’application :
z

V1=

établit un difféomorphisme % °° du disque unité D sur C.

Z

(b) Montrer qu’il n’existe pas de biholomorphisme de D sur C, a savoir un difféomorphisme holomorphe
dont I’inverse est aussi holomorphe.

Exercice 25. Soit D D un ouvert de C contenant le disque unité fermé, et soit une fonction holomorphe
f e 0(Q).Si f(0) =1 tandis que | f(z)| > 1 pour tout |z| = 1, montrer que f s’annule en au moins un point
de D.

Exercice 26. Soit f € ¢/(£2) une fonction holomorphe entiere non bornée. Montrer que son image f(C) C C
est un sous-ensemble dense de C. Indication: S’il existe un disque ouvert Dy, (wp) de rayon sy > 0 centré en
un point wy € C ne rencontrant pas f(C), regarder la fonction 1/(f(z) — wy).

Exercice 27. Soit Q :=] —1,1[ x | — 1, 1] le carré unité ouvert dans C. On note ses 4 cotés orientés :
7 o= {1} x [-1,1], v2 = [1,-1] x {1}, v3 = {1} x [1,-1], va = [-1,1] x {-1}.
On suppose que f € 0(2) N E° (ﬁ) vérifie, pour des constantes 0 < ¢; < 0o :

FO] < e (VCem, V1<i<a).
Montrer que :
|f(0)] < Vereaezea.
Indication: Introduire g(z) := f(2) f(iz) f(—=2) f(—i 2).
Exercice 28. Pour une fonction holomorphe entitre f € ¢(C), a savoir une série entiere f(z) =

(m)(0) P . . .
ZZO:O i —— 2" de rayon de convergence infini, on introduit comme dans I’Exercice 22 :

My(r) := ‘rgi>;|f(z)| (reRy).

(a) Montrer que r — M (r) est une fonction croissante.
(b) Soit P = P(z) € CJ[z] un polyndéme de degré n > 1, et soit Q le polynéme réciproque défini par
Q(z) := 2" P(L). Montrer que :

Mq(r) == ™ Mp(1) (Vr>0).

(c) Montrer que la fonction r — -1 Mp(r) est décroissante.
T

(d) Pour toute paire de rayons 0 < 7 < R, établir I’inégalité de Bernstein-Walsh :

R n
max [P(2)] < (7)) max Qe



15. Exercices 57

Exercice 29. Une fonction f € ¢(D) holomorphe dans le disque unité D = {z € C: |z| < 1} est dite pro-
longeable holomorphiquement en un point ¢ € O du cercle-bord unité s’il existe une fonction holomorphe
ge <o (]D)E(C )) définie dans un disque de rayon € > 0 telle que :

9lpap.o = flonm.cr

(a) Montrer que si une série entiére f(z) = Y.~ a,z" aun rayon de convergence R > 0, alors il existe au
moins un point (, € D(0) en lequel f n’est pas prolongeable holomorphiquement :

Ve>0 A ge 0D:(¢) g

Indication: Raisonner par 1’absurde, et utiliser la compacité de ODx.

De(0)NDe (C2) fDR(O)ﬁDe(C*)'

(b) Vérifier que le rayon de convergence de la série lacunaire :

f(z) = Z 22
n=0

vaut 1.

(c) Montrer que f(z) n’est prolongeable holomorphiquement en aucun point du bord ¢ € OD. Indication:

Pour des angles de la forme 6 := 2;,}’ oup > letk > 1 sont entiers, montrer que :

0 i252
=t )|

(d) Pour un parametre réel quelconque 0 < o < oo, montrer plus généralement que la fonction holomorphe :

o0

1
flz) = o (121 < 1),

n=0
n’est prolongeable holomorphiquement en aucun point ( € JD. Indication: Le cours d’ Analyse de Fourier a
fait voir que la fonction de variable réelle :

o0

1 e
g(0) = Z 271612 2

n=0

est continue, mais n’admet de dérivée en aucun point 6, € R.

Exercice 30. On note d(n) le nombre de diviseurs d’un entier n > 1. Soit la série entiére :
oo
flz) = d(n)z".
n=1

(a) Vérifier que son rayon de convergence vaut 1.
(b) Montrer I’identité :

n

nz::ld(z)z" = nz::l liz"'

(c) Montrer, pour z = r réel avec 0 < 7 < 1 proche de 1, qu’il y a une minoration :

0] > x5 e (=)

au moyen d’une certaine constante 0 < ¢ < 00.

(d) Plus généralement, pour z = r € @ avec0 <71 <1 proche de 1 et avec p, ¢ > 1 entiers, montrer qu’il

y a une minoration :
27T

J2mp 1 1
1) = e log (1)

au moyen d’une certaine constante 0 < ¢, 4 < 00.

(e) Montrer que f n’est prolongeable holomorphiquement (cf. I’Exercice 29) en aucun point du bord ¢ € 9D
du disque unité.



