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1. Introduction
2. Analogie avec la théorie réelle

Les analogues unidimensionnels des fonctions harmoniques sont les fonctions affines
h(xz) = Az + p, satisfaisant donc ZQTZ = 0. Ces fonctions affines essentiellement triviales
permettent d’ailleurs de définir la notion de fonction convexe.
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En effet, une fonction u: [a,b] — R définie sur un intervalle [a,b] C R est convexe
si, pour tout intervalle [c,d] C [a,b] et pour toute fonction affine h(z), les inégalités aux
extrémités :

u(c) < h(e) et u(d) < h(d)
impliquent I’inégalité :
u(z) < h(z)

pour fout x € [c, d]. Cette condition peut étre comparée (exercice) a une condition classique
concernant la corde entre deux points quelconque du graphe de .

Les fonctions sous-harmoniques que nous allons étudier sont les analogues bidimension-
nels des fonctions convexes. Elles ne sont pas nécessairement partout continues, et on doit
se contenter de leur semi-continuité, concept général indépendant qui fera d’abord 1’ objet
d’un paragraphe préliminaire.
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3. Fonctions semi-continues

Soit (X, d) un espace métrique, par exemple X = R" muni de la distance euclidienne,
ou plus généralement X = un ouvert 2 C R™, ou encore X = un ouvert O de (X, d).
Certaines des notions générales qui suivent ont aussi un sens dans les espaces topologiques
quelconques. Les fonctions réelles considérées seront autorisées a prendre la valeur —oo,
mais pas +00.
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Définition 3.1. Une fonction u a valeurs réelles :
—o0 < u < +o0,

définie au voisinage d’un point z( € X, est dite semi-continue supérieurement en ce point
si:

limsup u(z) < wu(zo),
T — T0

a savoir plus précisément si, pour tout € > 0, il existe un § = d(¢) > 0 tel que :
u(r) < u(xo) +¢ lorsque  u(xy) # —o0,

u(r) < —1 lorsque  u(xy) = —00.

d(z,x9) < 0
Il importe de noter qu’avec cette définition, la fonction identiquement égale a :
— 00
est semi-continue supérieurement. Bien entendu, ce concept se globalise.
Définition 3.2. Une fonction :
u: X — {—oo}UR
est dite semi-continue supérieurement lorsqu’elle I’est en tout point.

Les trois volets de la caractérisation suivante s’avéreront utiles dans les démonstrations
ultérieures.

Proposition 3.3. Les propriétés suivantes sont équivalentes :
(i) u est semi-continue supérieurement, a savoir :

limsupu(z) < u(xg) (Vo € X);
T — X0

(ii) pour toute valeur uy € R, I’ensemble de sous-niveau :
{zeX: ulz) < u}
est ouvert ;
(iii) le sur-graphe de u :
{(z,u) € X x [—00,00[: u > u(z)}
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est un sous-ensemble ouvert de X x [—00, 00].
Démonstration. (i) = (ii). Soit zy € X avec u(zy) < ug. L’hypothese que :

limsupu(z) < u(xg)
T — X0

interprétée avec € := %(zo) > 0 donne § = d(¢) > 0 tel que :

d(x,zg) < 0 — u(x) < ulzo) + %@60)
= uy — uo—g(xo)
< Up,

ce qui montre que la boule ouverte de rayon > 0 centrée en x, est contenue dans 1’en-
semble de sous-niveau {u(x) < ug}. Ce dernier est donc bien ouvert.

(ii) = (iii). Soit zy € X, et soit (zo, u(zo)) le point correspondant du graphe de u. Soit
(20, up) un point quelconque du sur-graphe de w, a savoir :

uy > u(xo).
Par hypothese, I’ensemble :
{zeX: ux) < u(mo)—i-%(%)} > g

est ouvert, et x lui appartient clairement. Donc il existe § > 0 tel :

d(z,z0) <9 — u(x) < u(zo) + %@0)

u

w(ao)+ 02 ) g

uz)py >

Y=

Géométriquement, fout le graphe de la fonction u restreinte a la d-boule ouverte en x, est
en-dessous de ce plafond.

Alors par inégalité triangulaire, 1’ouvert-rectangle centré en (z, ug) et posé sur ce pla-
fond :

{(I,U): d(x,x0) <6, |u—1upl < %(xo)}

est entierement contenu dans le sur-graphe, ce qui montre que ce dernier est bel et bien
ouvert.

(iii) = (i). Soit (xg, ug) un point quelconque du sur-graphe, i.e. avec uy > u(xy). Sachant
que ce dernier est ouvert, il existe 6 > 0 et il existe ¢ > 0 tels que :

{(z,u): d(z,z0) <6, |u—wug| <e} C sur-graphe = {(z,u): u> u(z)}.
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En particulier, le segment horizontal :
{(z,u0): |z —x0| <8} C sur-graphe.
Par définition du sur-graphe, ceci garantit que le graphe se trouve localement en-dessous :
u(z) < wg (¥ |z—0| < 8).
Grace a cette inégalité de contrdle, il vient :

limsup u(x) < wo,
T —r X0

et comme uo > u(xg) pouvait étre choisi arbitrairement proche de u(z), on atteint (i) ! [

La notion duale de fonction semi-continue inférieurement, moins utilisée dans ce qui
suivra, se devine en changeant lim sup en liminf, ou en remplagant « par —u.

Corollaire 3.4. Pour une fonction u: X — |—00, 00|, les trois caractérisations suivantes
de la semi-continuité inférieure sont équivalentes :
(i) en tout point xo € X :

u(zg) < grllggu(:t),

(i) pour tout ug € R, I’ensemble de surniveau :
{z € X: u(x) > uo}
est ouvert;
(iii) /e sous-graphe de u :
{(z,u) € Xx] —o00,00]: u<u(z)}
est un sous-ensemble ouvert de X x| — 00, 00]. O

On se convainc aisément qu’une fonction est continue en un point lorsque, et seulement
lorsqu’elle y est a la fois semi-continue inférieurement, et semi-continue supérieurement.

Nous ferons aussi usage fréquent de 1’énoncé de compacité élémentaire suivant, valable
pour le maximum, mais pas en général pour I’infimum.

Proposition 3.5. Si une fonction uv: X — [—00, 00| est semi-continue supérieurement,
alors pour tout sous-ensemble compact K C X, il existe une constante N < oo telle que :

sup u(z) < Ng.
reK
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De plus, u atteint son supremum sur K :
sup u(x) = u(:z:K) (Qax € K).
zeK

Démonstration. Pour des entiers n > 1, les ensembles :

O, == {z € X: u(z) <n}

sont ouverts et ces O,, forment un recouvrement de X, puisque u(x) < oo pour toutx € X.
Par Borel-Lebesgue, du recouvrement ouvert du compact :
K = U (0,nK),
1<n

on peut extraire un sous-recouvrement fini U; < , < n» €t alors :

sup u(z) < Ng < oo.

reK

Ensuite, les ensembles ouverts :
{z € X: u(z) <supu(z)— 1L (n>1)
zeK

ne peuvent recouvrir K, sinon, encore par Borel-Lebesgue, un nombre fini d’entre eux le
recouvriraient, ce qui contredirait la définition de supy u. Donc on a bien supy v = u(z )
pour au moins un rx € K. U

Voici enfin un dernier énoncé, plus cofiteux en effort neuronal pour I’exercitation estu-
diantine — voir aussi I’Exercice 6 qui le complémente.

Théoreme 3.6. Si u: X — [—00,00[ est une fonction semi-continue supérieurement
bornée :
u <M< oo

définie sur un espace métrique (X, d), alors il existe une suite décroissante :
G122 P2 2 2Py = Ppy1 = 2 U

de fonctions continues ¢,, € €°(X,R) qui convergent ponctuellement vers :
u(z) = lim ¢,(x) (Vz € X).
n—oo

De plus, si ;@ > 0 est une mesure de Borel positive finie a support compact dans X,

alors :
lim /ukd,u:/ud,u.
k—oo X X

Démonstration. Lorsque u = — oo, il suffit de prendre ¢,, := — n.
Nous pouvons donc supposer qu’en au moins un point o € X, on a u(yg) > — oo.
Pour n > 1 entier, définissons alors les fonctions ¢,,: X — R qui vont réaliser notre
objectif par :

Pn(z) = sup (u(y) — nd(x,y)) (z€X).

En faisant y = ¥, nous voyons que ¢, (z) > —oo pour tout x € X. De plus, en faisant
y=2x:

oOn(z) = u(x).
On se convainc aisément que cette suite de fonctions est décroissante et qu’elle tend ponc-
tuellement vers u. D’ailleurs, ces fonctions ¢,, sont mieux que continues, elles sont lipschit-
ziennes (avec une constante de Lipschitz qui explose) :
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Lemme 3.7. Pour tous x,x' € X, ona:
|6(2) — 6u(2)| < nd(z,2').

Démonstration. Par symétrie, on peut supposer que ¢, (x) < ¢,(z’). Soit alors ' € X qui
réalise ‘presque’ le deuxieéme supremum :

On(2') = u(y) —nd(a',y') - €,
a une erreur arbitrairement petite ¢’ > 0. Bien entendu :
On(x) 2 uly') —nd(z,y).
Mais alors par soustraction et par inégalité triangulaire :
0 < —6n(e) + (@) < —uly), +nd(e,y) +uly), —nd(@,y) -
= n[d(z,y) —d(,y)] — ¢
< nd(z, ) + €. O
Ensuite, en notant la boule ouverte de centre x et de rayon r» > 0 :
B, (z) == {y € X: d(z,y) <r},
on peut majorer :

Pn(z) = sup (u(y) —nd(z,y))

yeX

= max< sup (-), sup ())
yeB-(2) yeX\B; ()

< max( sup u(y), sup (u(y) —nr) )
yEB,.(z) yeX\B,(z)

Vo
— —o0 lorsque n — co
puisque u <M < 00

Par conséquent :
lim ¢n(z) < sup u(y).

n—o0 yGBT (:E)

En faisant tendre r — 0, la semi-continuité de « donne :
lim ¢,(x) < u(x),
n—0o0

et comme I’inégalité inverse était satisfaite, les ¢,, convergent bien ponctuellement vers .
La derniere affirmation est une conséquence du Théoreme de convergence monotone en
théorie de la mesure et de I’intégration. U

Un des intéréts de la semi-continuité supérieure est la stabilité suivante.

Proposition 3.8. L’infimum :

u = inf u
acA @

d’une famille quelconque de fonctions semi-continues supérieurement u,: X —>
[—00, 00) est toujours semi-continu supérieurement.
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Démonstration. En effet, pour tout 3 € A fixé, ona:
lim sup ( inf ua(x)> < limsup (ug(z))
z—ozy \aEA T — T0
< ug(zo).

Mais alors, en prenant I’infimum a droite sur tous les 5 € A :

lim sup < inf ua(x)> < Biren‘Aug(xg),

T—xg €A

ce qui démontre bien que la fonction u = infu,, est semi-continue supérieurement. U

En général, lorsqu’on part d’une famille infinie dénombrable de fonctions (u,,),en qui
sont continues, la fonction infw,, perd la continuité : seule la semi-continuité supérieure est
préservée, et ceci justifie I'intérét de ce concept.

Lemme 3.9. La somme et le maximum :
up + -+ uxg et max(ul,...,uK)

d’un nombre fini de fonctions semi-continues supérieurement uy, . . . , ux SOnt encore semi-
continus supérieurement.

Démonstration. Par une récurrence évidente, il suffit de traiter le cas K = 2. Soient donc
et v deux fonctions semi-continues supérieurement en un point 2o € X. Pour leur somme
u + v, il existe une suite de points (z,,)>°, tendant vers z, qui réalise :
limsup (u+v)(z) = Im (u(z,) + v(z,))
n—00

Tr—xTQ

< limsup u(z) + limsup v(x)
T—T0 T—T0

< (u+v) (@),

ce qui aboutit avec peu d’efforts.
De méme, pour une suite (x,,)>° ; bien choisie :

limsup (max (u(z), v(x))) = lim (max(u,v))(w,)
T —x0 nro0 ~- o
u(zrn) ou v(zy)

< max (Iimsupu(xn), Iimsupv(xn))

n—oo n—o0

< max <Iimsupu(m)7 Iimsupv(m))

T —r X0 Tr—r X0
< max (u(xg), v(:vo)),
ces nombreuses inégalités finissant par étre concluantes ! U
Toutefois, étant donné une famille infinie de fonctions semi-continues supérieurement :
(ua)aeA X — [—o0,00],
la fonction :

u(z) = zggua(x)
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n’est pas nécessairement semi-continue supérieurement, méme lorsque les u,, sont conti-
nues et lorsque u(z) < oo en tout point z. Il suffit en effet de penser a la suite croissante
de fonctions :

0,1] 2 ¢t — Vit € [0,1]

qui converge vers la fonction non semi-continue supérieurement en 0 :

, 0 lorsque ¢t =0,
— 1 lorsque 0 <t < 1.

4. Définition des fonctions sous-harmoniques

Dans son essence différentielle, une fonction u est sous-harmonique lorsque son lapla-
cien Au > 0 est positif, vision proche de I’harmonicité Au = 0.

Toutefois, ce n’est pas cette maniere de voir qui est la plus générale. Comme cela trans-
paraitra ultérieurement, 1’intérét majeur des fonctions sous-harmoniques est leur grande
flexibilité, laquelle serait trop contrainte par I’hypothése que u € ¢ soit d’emblée diffé-
rentiable. A posteriori, I'inégalité Au > 0 sera effectivement toujours satisfaite, pourvu
qu’elle soit interprétée au sens des distributions.

En fait, une analogie profonde avec les fonctions convexes sur R peut servir de guide
précieux a la compréhension. Par exemple, une fonction ¢ € €*(R, R) est convexe si et
seulement si ¢ > 0. Toutefois, ce n’est pas ainsi que la convexité est définie dans le cadre
le plus général possible, c’est au moyen de 1’inégalité de sous-moyenne :

Y(As+ (1=X)t) < Ap(s) + (1= N)(t) (Ys€R, VEER, YOKAL),

qui exprime que le graphe de 1) se situe toujours en-dessous de ses cordes. Notons que
cette définition de la convexité admet des fonctions non lisses, par exemple la fonction
Y(t) := |t|, qui est convexe.

Nous allons maintenant transférer cette inégalité aux fonctions définies sur des domaines
bidimensionnels 2 C C = R%

Mais I’analogie intuitive entre les fonctions convexes et les fonctions sous-harmoniques
ne sera pas un parallele exact. Nous pourrions requérir dans leur définition que les fonctions
sous-harmoniques soient continues, mais ce serait se priver de la flexibilité précieuse que
représentent les nombreux passages a la limite dénombrables que les applications théo-
riques feront surgir comme nécessaires, notamment lorsqu’on aura a prendre I’'infimum
d’une famille de fonctions. Rappelons-nous que la Proposition 3.8 énongait une stabilité de
ce type pour la semi-continuité supérieure. C’est en partie en vertu de cette proposition que
nous exigerons des fonctions sous-harmoniques la seule ‘tenue correcte minimale’ qu’est
la semi-continuité inférieure.

Nous pouvons maintenant présenter deux définitions initiales.

Rappelons les notations pour les disques ouverts et les cercles de C, centrés en un point
zg € Cetderayonr > 0:

D, (20) := {z €C: |z — 2| <7} et Si(z0) == {2 €C: |z — 2| =r},

les disques fermés étant leur réunion :

]DT<Z()) = DT(Z()) U ST<Z()).
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A nouveau, les fonctions considérées seront autorisées a prendre la valeur —oo, mais
pas la valeur +o00. La premiere formulation explique et justifie la terminologie « sous-
harmonique ».

Définition 4.1. Une fonction définie sur un domaine 2 C C :

u:  — [—o0, 0]
est dite sous-harmonique si :
(i) elle est semi-continue supérieurement ;
(ii) en tout point zg € €, il existe 0 < rq < dist(zg, C\Q2) tel que pour tout disque D,.(z)
centré en 2, de rayon 0 < r < 7y, et pour toute fonction h harmonique dans D,.(z) continue
sur D,.(2o), elle satisfait :

< h.

Dy(20)

— u

Ulg, () S h Sr(20)

Une telle fonction h est parfois appelée majorant harmonique de la fonction w, la majo-
ration se transférant du bord vers I'intérieur. Etre sous-harmonique, c’est alors tout sim-
plement étre « en-dessous » des fonctions harmoniques.

Toutefois, ce n’est pas par cette définition que nous allons commencer ce cours, mais
par une autre, plus concreéte et plus intuitive, et nous démontrerons ultérieurement que les
deux définitions sont équivalentes. Soit a nouveau {2 C C un domaine.

Définition 4.2. Une fonction u: 2 — [—00, 00| est dite sous-harmonique si :
(i) elle est semi-continue supérieurement ;

(ii) elle satisfait la propriété locale de la sous-moyenne, a savoir, en tout point z, € €,
il existe 0 < 79 < dist(z0, C\2) tel que pour tout disque D, (zy) centré en z, de rayon
0 < r < rg, elle satisfait :

1 2w )
4.3) u(zg) < — / u(zo +r 6“9) do.
2 Jo

Autrement dit, u est inférieure en tout point a ses moyennes sur des petits cercles centrés.
Observons que u = —oo est sous-harmonique. L’ ensemble des fonctions sous-harmoniques
dans € sera noté :

SH(92).

Cette définition appelle plusieurs commentaires visant a I’éclairer.

Premiérement, une fonction définie dans un ouvert U C C est sous-harmonique si elle
I’est dans chaque composante connexe de U.

Deuxiémement, en décomposant v = u™

ut = 4 max (0, u(z)) =0 et u(x) == —min (u(z), 0) > 0,

la théorie de I’intégration nous dit que I’intégrale sur le cercle S,.(zy) doit étre interprétée
comme :
1 2m ) 1 2m ] 1 2m ]
u(zo +7 e’g) o = — ut (2o +7 ew) g — — / u™ (20 + e’ do.
2m Jo 2m Jo

Gréce a la Proposition 3.5, ut est bornée sur le compact S, (zg), donc son intégrale est
certainement positive finie ! A ’inverse, ’intégrale de ™ peut étre finie ou infinie, car u
est autorisée a prendre la valeur — co. Mais dans tous les cas, la valeur de I’intégrale de u
est un nombre appartenant a [—oo, co[. Plus tard, nous verrons que si cette intégrale vaut

— U avec:

27 Jo
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— 00 pour un seul rayon 0 < r < rg, d’olt u(zy) = — oo aussi par (4.3), alors u = — o0
partout dans ).

Troisiemement, 1’inégalité de sous-moyenne (4.3) est proprement locale : on ne de-
mande sa validité que pour des rayons r, > 0 assez petits qui dépendent a priori du point 2.
Elle implique (exercice) que si (wq)ac est un recouvrement ouvert de €2, alors u est sous-
harmonique dans €2 si et seulement si toutes ses restrictions u|,,, sont sous-harmoniques.
Nous verrons ultérieurement que la sous-harmonicité locale implique une inégalité de sous-
moyenne globale, a savoir que (4.3) est satisfaite pour fout 0 < r < dist (zq, 0f2).

Lemme 4.4. Une fonction sous-harmonique u € SH(2) atteint sa limite supérieure en tout
point zy € ) :
u(zo) = limsupu(z).

z—> 20
z# 20

Démonstration. Comme u est semi-continue supérieurement :
limsupu(z) < wu(zo),
z— ZO
z# 2(

mais il y a plus, comme elle satisfait I’'inégalité de sous-moyenne en zy, il existe 7y > 0 tel
que, pour tout 0 < r < 7y :

1 2w )
u(zp) < %/0 u(zo 4 re”) do.

Par 1’absurde, si on avait :

limsupu(z) =: ug < u(2o),
z—20
z# 20

alors il existerait 0 < r; < r( assez petit pour que :

sup  u(2) < w4 Hlw
Dry (20)\{z0}
u(20)+uo
2 ?

et on aboutirait alors a un jeu contradictoire d’inégalités :
1 2

u(zo+re’)dd < ulzo)tuo gy (z). O

u(zg) < 5

2r Jy
Définition 4.5. Une fonction v: 2 — | — 00, o] est dite sur-harmonique lorsque — v est
sous-harmonique.

Observons (exercice d’assimilation) qu’une fonction est harmonique si et seulement si
elle est a la fois sous-harmonique et sur-harmonique.
Le premier exemple canonique de fonction sous-harmonique est le suivant.

Proposition 4.6. Si [ € 0(X2) est holomorphe dans un domaine Q) C C, alors log | f| est
sous-harmonique dans €.

Démonstration. Si f = 0, on obtient — co € SH({2).

On peut donc supposer f Z 0. Sur Q\{f = 0}, la fonction log |f| est continue, et
puisqu’elle prend la valeur — oo en les points discrets ot f = 0, elle est gratuitement
semi-continue supérieurement sur la totalité de ).
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Au voisinage de tout point 2o € Q\{f = 0}, la fonction :

log |f| = % (Iogf + Iog?)
est harmonique, donc elle y satisfait I’ (in)égalité de la moyenne locale.
En un point z ol f(29) = 0, I'inégalité (4.3) est trivialement satisfaite. O

D’autres exemples de fonctions sous-harmoniques peuvent tre engendrés en appliquant
des procédés élementaires, qui sont conséquences immédiates de la Définition 4.2 (cf. aussi
le Lemme 3.9).

Proposition 4.7. Soient u et v deux fonctions sous-harmoniques définies dans un domaine
Q c C. Alors :

(i) max(u,v) est sous-harmonique dans € ;

(i) au + B v est sous-harmonique dans ) pour tous réels o, 3 > 0. U

Ainsi, les fonctions sous-harmoniques peuvent tres bien ne pas €tre lisses. L'Exercice 8
montre qu’elles peuvent méme étre discontinues.

5. Principe du maximum

Nous avons déja constaté que la propriété locale de la moyenne caractérise les fonctions
harmoniques, et qu’alors, elles satisfont aussi la propriété globale de la moyenne :

1 27 i
h € Harm(Q) = Yz € Q, Y0 < 7 < dist(z0,09Q), h(z) = %/ h(zo+r ™) df.
0

Afin de généraliser la globalisation de la propriété de sous-moyenne locale que satisfont
les fonctions sous-harmoniques, nous aurons besoin d’un nouveau principe du maximum,
lui aussi tres puissant.

Théoréme 5.1. [Principe du maximum] Si une fonction v € SH(Q2) sous-harmonique
dans un domaine ) C C atteint son maximum global en un point intérieur :

U(Zmax) = Teas)z( u(z) (3 2max €Q),
alors u = u(zmax) est constante.

Contrairement aux fonctions harmoniques, aucun énoncé concernant le minimum global
ne peut avoir lieu, comme le montre la fonction u(z) := max(0, Re z) sous-harmonique
dans C. Et méme, cette fonction max(0, Re z) montre aussi que I’existence de maxima
locaux n’implique pas non plus la constance.

Il y a bien un principe du minimum global, mais ce sont seulement les fonctions sur-
harmoniques qui le satisfont, par un corollaire direct.

Démonstration. Supposons donc I’existence d’un tel 2z, € €2 en lequel u est maximale,
posons :

Umax = u<zmax)>
et décomposons 2 en les deux sous-ensembles disjoints :

E = {z € Q: u(z) < umax} et F = {z €O u(z) = umax}.
Comme u est semi-continue supérieurement, [ est ouvert.

Assertion 5.2. L’ensemble F est lui aussi ouvert.
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Preuve. Soit un point z € F'. Sur des cercles de rayon 0 < s < r assez petit, on a :

1 27 )
Umax = u(2) < %/o u(z+se”) dt.

Mais si on avait u(z + se€'*) < Umax pour un angle ,, alors par semi-continuité supérieure
u(z + se') serait toujours < wuma pour ¢t dans un voisinage de t,, et alors 1’intégrale-
moyenne a droite serait elle aussi < upmax, € qui est impossible.

Donc on a u(z + se“) = Umax SUT tous ces cercles, ce qui établit I’ouverture de F' en
Z. ]

Comme F' # (), la connexité de Q = E' U F force Q2 = F. O

Convention 5.3. Le point a I’infini co € 0 appartient au bord de tout domaine non borné
N CCyx=CU{o0}.

Théoréme 5.4. [Principe du maximum au bord] Si une fonction v € SH(Q2) sous-
harmonique dans un domaine ) C C satisfait pour tout point ( € 02 :

limsupu(z) < 0,
z—C

alors uw < 0 dans (.
Démonstration. Prolongeons tout d’abord u a 0f par :
u(C) = limsupu(z) (V¢e89),
z=¢
y compris, donc, en ( = oo lorsque 2 est non-borné. On se convainc alors aisément que la

fonction ainsi prolongée u est semi-continue supérieurement dans Q = Q U 92. De plus
par hypothese :

(5.5) u‘ o0 SO
Or puisque €2 est compact — il fallait pour cela compactifier €2 lorsqu’il est non-borné
en lui ajoutant oo —, la Proposition 3.5 garantit que ce prolongement v atteint son maxi-
mum :
Umax = U(Zmax) = max U(Z),
z€X)

en un certain point 2,y € €.

o Lorsque zmax € 0€), on a u(2zmax) < 0 par (5.5), puis u(2) < u(zmax) < 0 pour tout
A Q.

e Lorsque zmax € €2, le Théoréme 5.1 donne u = ., constante dans {2, donc son prolon-
gement au bord est tout aussi constant, et enfin (5.5) donne u = Uy < 0. ]

6. Principe de Phragmén-Lindel6f sous-harmonique

Dans les domaines 2 C C non-bornés, on aimerait avoir un principe du maximum
en ne connaissant le comportement de v qu’aux points du bord situés a distance finie, a
I’exclusion de oo € 0f2. Ceci est possible en demandant que u ne croisse pas trop vite
a ’infini. Voici un résultat tres général, dont se déduiront plusieurs théoremes classique
d’Analyse Complexe a une variable.
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Théoréme 6.1. [Principe général de Phragmén-Lindelof] Soir u € SH(2) une fonction
sous-harmonique dans un domaine non-borné €2 C C satisfaisant :

(6.2) limsupu(z) < 0, V(€ 0Q\{oo}.

z—C

S’il existe une fonction sur-harmonique a valeurs finies :

v: Q — | =00, 0
telle que :
(6.3) liminfu(z) > 0 et limsup u(z) <0,
Z—00 zZ— 00 U(Z)

alors u < 0 partout dans S).

L’illustration principale de (6.3) est une fonction v € Harm(S2) harmonique satisfaisant :

Démonstration. Supposons pour commencer que v > 0 dans {2, ce qui est un cas spécial
significatif. Pour £ > 0, introduisons :

Ue = U — EV.

Comme — v est sous-harmonique, u. est sous-harmonique dans €.

Assertion 6.4. En tout point du bord ( € 05}, y compris en ( = 0o, ona :
limsup u.(z) < 0.

z—C
Preuve. En un point fini { € 0Q\{oo}, il suffit d’additionner 1’hypothese (6.2) avec :
limsup ( —ev(z)) < 0.

z—C
En le point ( = oo, on a bien :
lim sup (u — 51)) = limsup v (% — 5) < 0,
zZ—> 0 zZ—> 00
puisque le facteur v > 0 ne change pas le signe négatif de I’hypothese (6.3). U

Alors les hypotheses du Théoréeme 5.4 sont satisfaites, donc u. < 0 partout dans 2 et
. >
enfin v < 0 dans € en faisant ¢ — 0.

Traitons a présent le cas d’une fonction v générale. Pour 7 > 0, introduisons 1’en-

semble :

E, = {z€Q: u(z) > n},
dont on veut montrer qu’il est vide. Puisque {u < n} est ouvert, F, est fermé dans (2. De
plus, par (6.2), aucun point de 9\ {oo} ne peut étre limite de points de F;,. Autrement dit,
F,, ne touche pas le bord fini de €2, mais peut tout a fait s’en aller vers I'infini comme le fait
Q.

Comme la fonction sur-harmonique v est semi-continue inférieurement, la version op-
posée de la Proposition 3.5 montre qu’elle est bornée inférieurement sur tout compact. Or
a I’infini par hypothése liminf._,o, v(z) > 0, donc méme lorsque [, est non borné, v|r, est
bornée inférieurement.
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Apres addition éventuelle a v d’une constante ¢ > 0, on peut supposer que :

UFW>O.

Affirmation 6.5. Pour toute constante ¢ > 0, le remplacement v(z) — v(2) + ¢ n’altére
pas les deux hypotheses (6.3).

Preuve. Premierement, on a toujours liminf,_, (v(z) + c) > (0. Deuxi¢émement, si on dé-
compose :

Q= {u<0}U{u> 0},

alors on a gratuitement puisque v > 0 au voisinage de oo :

ze{u<0}

et donc la deuxieme hypothese (6.3) concerne seulement la limite supérieure pour les z €
{u > 0} proches de co. Mais alors comme v(z) > 0 dans un voisinage de oo, on a:

1 1

< z oo
v(z)+c¢  wv(z) S
et donc en multipliant par u(z) > 0, on obtient I’inégalité :
limsup (2) < limsup uz) < 0,
Audy v e R v)
ce qu’il fallait vérifier. U

Apres addition d’une telle constante, introduisons maintenant 1I’ensemble ouvert :
Vii={z€Q: v(z) >0}
D F,.

Assertion 6.6. Onau —n < 0surV.
Preuve. Nous allons appliquer a la fonction z — u(z) —n définie sur V' la version spéciale
du théoreme démontrée au début, ou nous avons supposé la fonction v > 0, ce qui est
dorénavant vrai sur chaque composante connexe de notre nouvel ouvert V' = {v > 0};
comme liminf,_,,v(z) > 0, toutes les composantes connexes de V' sont non-bornées.

Il faut vérifier les hypotheses (6.2) et (6.3).
En tout point ¢ € 0V \{oo}, nous pouvons estimer en distinguant deux cas :

{O —n <0 lorsque ¢ € 92N oV \{oo},
uw(C)—n lorsque ¢ € QN IV \{oo}.
Orcomme V DO F,, = {u >n},ona:

QNnoV c {u<n},

et donc dans le premier, comme dans le deuxiéme cas :

limsup (u(z) —n)

z—C

lim smép (u(z) —m) < 0 (V¢oV\{oo}).
z—

Ceci confirme (6.2).
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Quant a (6.3), c’est plus simple et cela s’améliore un peu :

Iimsupm = limsup uz) - — il < 0.
2o U(2) oo U(2)  liminfo(z)
zZ— 00
Donc le cas spécial déja démontré s’applique, et donne w — 7 < O sur V. U

Comme F,, C V, on obtient donc v < 7 sur F,, = {u > n}, donc en fait u = 7 sur F}, !
Mais sur 2\ F;,, on a par définition u < 7, et au final on a partout :

u(z) < (Vz€Q).
En faisant n N 0, on conclut que v < 0 dans €. O

Corollaire 6.7. Si une fonction u est sous-harmonique dans un domaine non-borné ) ; C
et satisfait en tout point du bord fini :

limsupu(z) < 0 (V¢ e\ {oo}),

z—=C

ainsi que :

. u(z)
limsup < 0,
200 log 2|

alors u < 0 partout dans €.

Démonstration. 11 suffit de choisir sur le bord un point quelconque a distance finie (, €
0 # () et d’appliquer le théoréme qui préceéde avec la fonction v(z) := log |z — (o] (sur-
)harmonique dans 2. O

Corollaire 6.8. [Théoreme de Liouville raffiné] Si une fonction u sous-harmonique sur
C tout entier satisfait :
u(z
lim sup (2)

~
z— 00 |Og |Z|
alors u est constante sur C. En particulier, toute fonction sous-harmonique sur C qui est
bornée supérieurement doit étre constante.

Y

Démonstration. Lorsque u© = — oo, il n’y a rien a vérifier. Nous pouvons donc supposer
qu’il existe ¢y € C tel que u((y) > — oo. Or une application du corollaire qui précede a la
fonction u — u((p) vue sur C\{(p} donne u < u((p) sur C\{(o}, puis u < u({p) partout.
Alors u qui atteint un maximum global en (, doit étre constante, d’apres le Théoreme 5.1.

g

Pour des domaines ayant une forme spécifique, des hypotheses précises sur la croissance
a I'infini suffisent. Du Théoréeme tres général 6.1, nous pouvons maintenant déduire deux
formulations classiques du principe de Phragmén-Lindelof.

Théoreme 6.9. [Phragmén-Lindelof sur une bande] Pour v > 0 réel, soit la bande
ouverte :

= : T
B, = {z e C: ‘Rez‘ < 27}.
Si une fonction u sous-harmonique dans B., a une croissance a l’infini majorée par :

u(z +iy) < AelVl (z+iy € By),
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pour des constantes A < 0o et a < 7, et si en tout point du bord fini elle satisfait :

limsupu(z) < 0 (V¢ 0B\ {o0}),
z—=C

alors u < 0 partout dans B.,.
La fonction :

u(z) := Re (cos(yz)) = cos(yx)cosh(yy)
montre que le résultat n’est plus vrai lorsque o = 7.

Démonstration. Choisissons un nombre intermédiaire o < (3 < 7, et introduisons la fonc-
tion harmonique v: S, — R définie par :

v(z) := Re (cos(fz)) = cos(8x)cosh(Sy).

A linfini, on a :
liminfo(z) > liminf cos(g—:{r) cosh(By) = oo,

zZ—» 00 \y| — 00
ainsi que :
_ u(z) , Aeclyl
limsup —= < limsup i =0
200 U(2) lyl o0 c08(577) cosh(B y)
Alors le résultat découle du Théoreme 6.1. O

Corollaire 6.10. [Théoreme des trois droites] Soit u une fonction sous-harmonique sur
la bande verticale B = {0 < Re z < 1} ayant une croissance a linfini majorée par :
u(x +iy) < Ael,
pour des constantes A < oo et « < 7. Si :
{ M lorsque Re( = 0,

l <
im sup u(2) M, lorsque Re( =1,

2 ¢
alors pour tout v + 1y € B :
u(x+1iy) < My (1l —2z)+ M .
Démonstration. Introduisons la fonction u: B — [—00, 0o définie par :
u(z) = u(z) —Re (Mo (1 — 2) + M, z).

Alors une application d’une version translatée du Théoréme 6.9 avec v = 7 donne u < 0
sur B. g

Théoréme 6.11. [Phragmén-Lindel6f sur un secteur] Pour v > % soit le secteur angu-
laire :

S, = {2 € C\{0}: |argz| < %}
Si une fonction u sous-harmonique dans S, ayant une croissance a l’infini majorée par :
u(z) < A+ Bz
pour des constantes A, B < 0o et v < v, et si en tout point du bord fini :

limsupu(z) < 0 (V¢ €88, \{o0}),
z—C

alors u < 0 partout dans S.,.
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Démonstration. Choisissons un nombre intermédiaire o < [ < -, et définissons une fonc-
tion harmonique v: S, —> R par :

v(z) := Re(z’) = rPcos(f1t) (z=ret €55).
A linfini, on a :
o S Tminf 8 Bry _
I;rmgv(z) > liminf 7 cos(M) 00,
ainsi que :
u(z A+ Bre
Iimsupﬁ < limsup B = 0.
z— 00 U(Z) r—oo T COS(E)
A nouveau, le résultat découle donc du Théoreme 6.1. |

La fonction u(z) := Re (27) montre qu’il n’y a pas extension au cas-limite o« = .

7. Criteres pour la sous-harmonicité

Maintenant que le principe du maximum a été soigneusement présenté, nous pouvons
entamer les aspects les plus centraux de la théorie des fonctions sous-harmoniques, notam-
ment la globalisation de I’'inégalité locale (4.3) de sous-moyenne.

Un rappel préliminaire s’impose, issu du chapitre consacré aux fonctions harmoniques.

Sur un disque ouvert A = D,(2y) de rayon r > 0 centré en un point z, € C, dont le

bord A est paramétré comme :

_ i0
(=2z+re (0<6<2n),

lorsqu’une fonction intégrable ¢ € L'(OA,R) est donnée, son prolongement harmonique

au disque A a, en un point quelconque z = 2o + se € A avec 0 < s < r, une valeur
fournie par la formule suivante de type convolution avec le noyau de Poisson :

1 € — 20f* — [z — x| dg
Pag)(2) == 5— u(C) —
(Pa9)) = 55z oy e=20 = =P "9
1 2 ,’,,2 o 82 "
= — —_— ) db
27r/0 |C—Z|QU(ZO+T6 )
1 [2n r2 _ g2 ;
= ) do.
21 Jo 12 —2rscos(f —t) + s2 u(z +re”)
Alors les fonctions sous-harmoniques obéissent a une inégalité absolument fondamen-
tale qui fait intervenir le prolongement harmonique de leurs restrictions a des cercles.

Théoreéme 7.1. Pour une fonction semi-continue supérieurement :
u:  — [—o0,00]
définie sur un domaine () C C, les conditions suivantes sont équivalentes :

(i) wu est sous-harmonique dans € ;
(ii) pour tout zy € ), tout 0 < r < dist(zg, 0), tout point z € D,(z9) =: A, ona:

u(z) < PA(“‘@A)<Z>7
a savoir plus précisément, pour tout 0 < s < r, tout 0 <t < 2m ona:

1 2 r2 _ 82

o Jo  r2—2rscos( —t) + 2

u(zo + s eit) < u(zo +r ew) do;
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(iii) pour tout sous-domaine relativement compact w € (), et toute fonction harmonique
h € Harm(w) satisfaisant :
limsup (u — h)(z) < 0 (V¢ Edw),

z—C
on a u < h partout dans w.

Démonstration. (i) = (iii). Etant donné w et h € Harm(w), la fonction u — h est sous-
harmonique dans w (exercice) car (indication) —h satisfait I’égalité de la moyenne, donc le
Principe du Maximum 5.4 s’applique.

(iii) = (ii). Soit un disque fermé A := D,(zy) C Q. Grace au Théoréme 3.6, il existe
une suite décroissante de fonctions continues ¢,, > ¢,1 > u définies sur le cercle 0A
qui tendent ponctuellement vers u|sa. Leurs prolongements de Poisson P (¢,,) sont alors
harmoniques dans A. De plus, comme les ¢,, sont continues, un théoréme classique vu dans
le chapitre sur les fonctions harmoniques assure qu’en tout point { € 0A :

lim (PA¢n) (Z) = gbn(C)
z—C
Conséquemment et par semi-continuité supérieure de v :

limsup (u— Pagn)(z) < u(C) — ¢n(C)

z—(€0A

Grace a I’hypothese (iii), nous déduisons que u < Pa¢,, dans A.
Enfin, PA(-) étant un opérateur intégral, le Théoréme de convergence monotone —
soustraire une constante pour se ramener a des fonctions toutes < 0 — conclut :

u(z) < lim_ Pa(¢,)(2) = Pa (rbll_r)nOo gbn) (2) = PA(“’@A)(2>'

(ii) = (i). Poser s = 0 offre I’'inégalité de sous-moyenne de la Définition 4.2 initiale,
satisfaite dorénava_nt non seulement pour 0 < r < 7y assez petit, mais encore pour fous les
rayons 7 tels que D, (zy) C €. O

Ceci mérite bien de mettre en exergue un bon petit

Corollaire 7.2. [Inégalité de sous-moyenne globale] Si une fonction wu est sous-
harmonique dans un ouvert Q0 C C, alors en tout point zy € S0 et pour tout rayon
0 < r <dist(z0,00), ona:

u(zy) < —/27r u(zo +1e) do,

u(2o) — // u(z,y) dedy.
Tr Dy (20)

Démonstration. La premiere inégalité coincide avec (ii) du théoreme précédent pour s = 0.
La deuxieme inégalité en découle alors par intégration :

r 2
/ sds 2w u(z) / sds/ u(zo + se”) db,
0

suivie d’une réorganisation visuelle. U

Corollaire 7.3. Si f: Q — Q' = f(Q) est un biholomorphisme entre deux ouverts Q2 C C
et QY C C, alors :
u' € SH(QY) = wuo f € SH(Q).
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Démonstration. Le critere (iii) de sous-harmonicité est invariant, puisque nous savons déja
que I’harmonicité est invariante ! U

Ainsi, il est possible d’étendre la définition de la sous-harmonicité aux domaines de la
sphere de Riemann C., = C U {00}, et, plus généralement, aux ouverts quelconques des
surfaces de Riemann arbitraires.

Une autre application donne la caractérisation concrete des fonctions de classe 62 qui
sont sous-harmoniques, comme cela a été annoncée en début de chapitre.

Théoréme 7.4. Sur un domaine Q2 C C, une fonction u € €*(2,R) est sous-harmonique
si et seulement si :
Au > 0.

Démonstration. Supposons d’abord que Au > 0 sur ). Soit w € {2 un sous-domaine
relativement compact, et soit une fonction harmonique h € Harm(f) telle que, en tout
point du bord ¢ € Jw :

limsup (u— h)(z) < 0.

z—C
Grace a la caractérisation (iii) de la sous-harmonicité, il suffit de faire voir que v < h dans
w.
Pour ¢ > 0, introduisons a cette fin la fonction :

ve(2) =

u(z) — h(z) +elz)? lorsque z € w,
gz? lorsque z € dw.

Comme v, est semi-continue supérieurement sur w (exercice mental), elle y atteint, par la
Proposition 3.5, son maximum en au moins un point zy € .
Mais 2 ne peut pas appartenir a I’intérieur w, a cause de :

Av, = Au—0+4+4¢e > 0 (surw),

car cette positivité implique que la dérivée seconde en tout point zp = xg + 2y € w, soit

de la fonction x — v.(z, yo), soit de la fonction y — v.(xg, y), est > 0, ce qui rend au

moins I’une de ces fonctions paraboliquement croissante, et contredit la maximalité en z.
Donc le maximum de v, est atteint en un point 2y € dw, ce qui donne :

(u—h)(z) < max e|z|? (Vzew).
z€0w

En faisant ¢ — 0, nous obtenons bien u < h dans w.

Réciproquement, supposons que u € SH({2) est sous-harmonique. Dans un voisinage
d’un point 2z, € §2 avec € > 0 tres petit, développons alors u au second ordre taylorien :

; 0 o0 .
u(Zo +¢e 619) = u(zo0) + a—lZL<ZO) ce + a—;(zo) ce
0*u . o%u 92 '
2 (=" 2i6 i —2i6 2
+é (822 (20)6 +28285<Z0)+ 72 (20)6 ) + ¢ 0(1)_

Intégrons ensuite par rapport a 6 pour prendre la valeur moyenne de cela :

1 21 ] 2
o |, u(zo+ee’)dd = u(z)+e°2 azauz(zo) +e%0(1).
L’inégalité de sous-moyenne (4.3) nécessite alors que %(zo) > 0. O
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Le résultat suivant illustre parfaitement la flexibilité des fonctions sous-harmoniques.

S

Théoreme 7.5. [de recollement] Soit u une fonction sous-harmonique dans un domaine
Q) C C, et v une fonction sous-harmonique dans un sous-ouvert w C ) satisfaisant, en tout
point C de Uinterface Ow N €} :

limsup v(z) < u(Q).

wdz—(
Alors la fonction :
_ max(u, v) sur w,
u =
u sur Q\w,

est sous-harmonique dans ).

Démonstration. La condition a I’interface garantit que u est semi-continue supérieurement
dans €.

Ensuite, la Proposition 4.7 dit que max(u, v) satisfait I’inégalité de sous-moyenne locale
en tout point de w. Donc u est sous-harmonique dans Q\Ow.

Enfin, en un point ¢ € dw N Q, sur des cercles S,.(¢) de rayons 0 < r < dist(¢, C\2),
on a aussi :

~ 1 2m . 1 2w _ '
U(C) = U(C) < % /0 U(C +7r 619) do g % /0 U(C e ele) de’
simplement parce que v < u partout. 0

8. Théoremes de convergence

Le premier résultat de convergence, pour les suites décroissantes, est simple, mais im-
portant. Il explique en partie pourquoi il est naturel de demander que les fonctions sous-
harmoniques soient seulement semi-continues supérieurement : en effet, c’est la seule pro-
priété qui est conservée lorsqu’on prend des limites décroissantes de fonctions continues,
tandis que I'inégalité de sous-moyenne, elle, va s’avérer facilement préservée dans la dé-
monstration.

Théoréme 8.1. Soir (u,)> | une suite de fonctions sous-harmoniques dans un domaine
Q) C C qui est décroissante :

Alors la fonction-limite :

est sous-harmonique dans ).
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Démonstration. Pour toute constante ¢ € R, I’ensemble réunion dénombrable d’ouverts :
{zeQ:ulx)<c} = U {u, <c}
n>1

est ouvert, donc u est semi-continue supérieurement.

Ensuite, si D,.(z9) C €2, alors pour toutn > 1 :

1 [ :
un(20) < — / un(zo +7r 626) do.
2 Jo
Grace au théoreme de convergence monotone, lorsque n — oo, on déduit que w satisfait
I’inégalité de sous-moyenne (globale), donc u sous-harmonique. U
Il ne faut pas (du tout!) s’imaginer qu’il pourrait exister un énoncé analogue pour les
suites croissantes de fonctions sous-harmoniques. Par exemple, la suite u,(z) := % log | 2|
sur le disque unité D a pour limite une fonction :
0 lorsque 0 < |z| < 1,
u(z) ==
— 00 en z =0,

qui n’est méme pas semi-continue supérieurement en 0 !

Le résultat suivant généralise la Proposition 4.7 (i) pour un supremum pris sur un espace
non forcément fini ou discret.

Théoreme 8.2. Soit T un espace topologique compact, soit 0 C C un domaine, et soit
v: Q X T — [—o0, 00| une fonction satisfaisant :

e v est semi-continue supérieurement sur ) x T';
o 2 — v(z,t) est sous-harmonique dans ), pour tout t € T fixé.
Alors la fonction :
u(z) = super v(2,1)
est sous-harmonique dans .

Démonstration. Soit z € () et soit ¢ € R telle que u(z) < c¢. Ainsi, pour tout ¢ € T, on a
v(z,t) < ¢, et comme v est semi-continue supérieurement, il existe un voisinage V, de ¢ et
un rayon r; > 0 tels que :

v <c sur D, (z) xV, (VteT).

Par compacité de 7', il y a un sous-recouvrement fini :
Vi, U---UV,, DT
Avec le rayon strictement positif :
5 = min(rtl, e ,rtK) > 0,

on a donc u < ¢ sur Dg(z), ce qui établit la semi-continuité supérieure de .
Ensuite, soit un disque fermé D,.(zy) C 2. Alors pour toutt € T, on a:

1 2 A 1 o ‘

v(z0,t) < %/U v(zo—l—re“g, t) df < Py i u(ZO+Tez6) do.
Il suffit de prendre le supremum sur ¢ € 7' pour conclure que u satisfait I’inégalité de
sous-moyenne. 0

Le résultat suivant généralise la Proposition 4.7 (ii) pour une combinaison linéaire a
coefficients positifs prise sur un espace non forcément fini ou discret.
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Théoreme 8.3. Soit (., 1) un espace mesuré de mesure j(.#) < oo finie, soit 2 C C un
domaine, et soitv: Q) X M — [—o00, 00| une fonction satisfaisant :

e v est mesurable sur Q) X M ;

e z — v(z,m) est sous-harmonique dans Q, pour tout m € M fixé;

® 2 — SUp,,c.n V(z, m) est bornée supérieurement sur les compacts de .
Alors la fonction :

u(z) = / v(z,m) du(m)
M
est sous-harmonique dans ).

Démonstration. 1l suffit de montrer que u est sous-harmonique dans tout sous-domaine
relativement compact w € ).

Par la troisiéme hypothese, sup,,c , v(z, m) est bornée supérieurement sur @, donc apres
soustraction €ventuelle d’une constante, on peut supposer que v < 0 sur w x .#. Ceci
légitimera 1’utilisation du lemme de Fatou et du théoreme de Fubini-Tonelli dans ce qui va
suivre.

Si zp € w, etsi (z,)22, est une suite arbitraire de points de w telle que z, — zo, Fatou
puis la semi-continuité supérieure de z — v(z, m) donnent :

limsupu(z,) = limsup ///[ v(zp, m) du(m) < / lim sup v(z,, m) du(m)

n— 0o n — 00 W n—00

< /ﬂ v(z0,m) du(m) = ulz),

ce qui est la semi-continuité supérieure de v en 2y € w.
Ensuite, pour tout disque D, (%) C w, Fubini-Tonelli puis la sous-harmonicité de z —
v(z, m) donnent :
1 [ 1

27
u(zo+re?)dd = — (/ v(z0 +1e", m) du(m)) do
271' 0 i

_ /ﬁ (% /0 T (ot e, m) d9) dp(m)

> //// v(zg,m) du(m) = u(zo),

ce qui est I’inégalité de sous-moyenne pour u en 2. U

27 Jo

9. Intégrabilité des fonctions sous-harmoniques

D’apres la Proposition 3.5, les fonctions sous-harmoniques sont bornées supérieurement
sur les compacts. Un phénomene extrémement important est qu’elles ne peuvent pas étre
« trop infinies inférieurement», au sens de la mesure. Rappelons 1’expression de la mesure
de Lebesgue comme 2-forme différentielle :

d\ = dx Ndy = %dz/\dz.

Théoréme 9.1. [SH C L. ] Toute fonction sous-harmonique u % —oo dans un domaine

Q) C C est localement intégrable au sens de Lebesgue :

/ |u]d)\ < 0 (VK CQ compact).
K
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Démonstration. Par un argument direct de compacité, il suffit de montrer que pour tout
2o € Q, il existe r > 0 avec D, (29) C Q tel que :

/ lu(z,y)|de Ndy < oo.
D (20)

A cet effet, décomposons 2 = F U F en les deux sous-ensembles disjoints :
E:={z%eQ: Ir>0, S, 1l < 0o},
et:
F = {zeQ: Vr>0, J ooy [0l = 00}
L’ objectif est d’établir que £ = ().

Assertion 9.2. F est ouvert.

e e

Preuve. Cette affirmation est tout a fait naturelle en théorie de I’intégration : soit zy € E et
soit 7y > 0 tel que fDro(zo) |u| < oo. Soit z; € Dy, (20) et soit :

r o= 7“0—|2’1—Zo| > O,

comme sur la partie gauche de la figure. Alors puisque D, (z1) C D, (z) (avec point de
tangence), on majore trivialement :

/ lu| d\ < / lul d\ < oc.
Dy, (21) Drg (20)

Ainsi, z; € E pour tout z; € D, (z) lorsque zy € E. O

1

Assertion 9.3. [ est aussi ouvert et de plus :

U‘F = —OQ.

L’ ouverture de F', « non-évidente », est le point-clé, et elle utilise réellement la sous-
harmonicité de u.

Preuve. Soit zy € F, et soit un rayon o > 0 tel que @3”)(20) C €2, comme sur la partie
droite de la figure. Puisque zy € F':

/ lu| d\ = o0.
DTQ(ZO)
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Ensuite, soit z; € D, (zo), et soit :
r1 = To+ |21 — 20| < 27p.
Par inégalité triangulaire, on a :
D,y (20) C Dy (21) C D3 (20) € Q,

le cercle S, (z1) étant d’ailleurs tangent au cercle S, (2(). Bien entendu :

/ lu| d\ = o0.
DT‘1(21)

Maintenant, la Proposition 3.5 garantit que u = u™ — u~ avec ut = max(0,u) > 0
et u~ = —min(u,0) > 0, est bornée supérieurement sur D, (21 ), & savoir u™t ’est, donc
0< f ut < o0, et par conséquent, on a en fait :

/ ud\ = — oo.
Dry (21)

Rappelons que u satisfait I’inégalité de sous-moyenne globale :

1 2w )
u(z1) < —/ u(21 —I—se“) dt (VO<s<r).
2w J,
Multiplions cela par 27s et intégrons de s =0a s = ry :
mriu(z) < / ud\ = —oo.
Dﬁ (21)
Cette inégalité étant valable quel que soit le choix initial de z; € D, (z0), nous déduisons :
Ulp, () = 0

Ceci montre bien que F est ouvert, et que de plus u|p = — occ. U

L’ouvert connexe ) = E'U F’ est réunion disjointe de deux ouverts, donc ou bien {2 = F
(I’objectif annoncé), ou bien {2 = F', mais dans ce dernier cas, 1’assertion qui précede a de
surcroit montré que u|p = ulg = u = — 00, ce qui était exclu a I’avance par une hypothése
du théoréme. U

De SH(Q2) C L (), nous allons déduire que les fonctions sous-harmoniques non

loc
identiquement égales a — oo sont intégrables sur tout cercle.

Corollaire 9.4. Dans un domaine Q0 C C, si u € SH(Q)\{—oc}, alors pour tout z, € Q) et
tout 0 < r < dist(z,0%), on a :
1 27 )
—00 < — u(zo+7e”)do < oo.
2m Jo
Démonstration. L’inégalité supérieure provenant du fait que v est bornée supérieurement
sur tout compact, c’est I’inégalité inférieure qui compte. Apres soustraction éventuelle
d’une constante, on peut donc supposer que u < 0 sur D,.(z5) C Q.
D’apres le Théoreme 7.1 (ii), pour tout 0 < s < rettout 0 < ¢ < 2, le prolongement
harmonique de la restriction de u au cercle .S, (zp) majore w :

1 2 r2 _ 82

o Jo  r2—2rscos( —t) + 2

u(zo + s eit) < u(zo +r ew) do.
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Effectuons alors une majoration de type Harnack pour le noyau (exercice) :
r? — s? r—s
'(_1%

(~1
r2 —2rscos(f —t) + s? (=1) r+s

ce qui donne :
2m

r-s 1 u(zo + re) do.

r+s o 0
Maintenant, si I’intégrale du membre de droite était égale a — oo, ceci impliquerait :

u(zo +s eit) <

Ulp, () = — O
puis, grace au Théoreme 9.1 fondamental qui précede, u = — oo dans 2, ce qui n’est pas !
Donc on a bien :
L[ .
—00 < — u(zo—l—re’e)d@ < 0,
21 Jo
pour tout disque fermé D, (zy) C €. U

Une autre conséquence de ce théoreme fondamental est que les fonctions sous-
harmoniques ne peuvent pas étre égales a — oo sur des ensembles trop substantiels.

Définition 9.5. Le lieu polaire d’une fonction u € SH({2) est :
{z€Q: u(z) = —o0}.

Corollaire 9.6. Si une fonction u Z — oo est sous-harmonique dans un domaine €} C C,
alors son lieu polaire est de mesure de Lebesgue égale a (.

Démonstration. Soit (K;)32, une suite croissante K; C Kjy; de compacts qui remplit

{2 = U K. On a grace au Théoreme 9.1 :

/ uldr < oo i,
K;
donc par un théoreme élémentaire de théorie de I’intégration :

0 = mesure ({u = — oo} N Kj) (Vj=1),
et enfin on obtient la nullité de la mesure de {u = — oo} comme réunion dénombrable
d’ensembles de mesure nulle. U

10. Lieux polaires des fonctions sous-harmoniques

Bien entendu, lorsque u = log | f| pour une fonction holomorphe f € &(£2) non identi-
quement nulle, le lieu polaire {u = — oo} = {f = 0} est discret, dénombrable.

Toutefois, cet exemple n’est pas représentatif de la vraie généralité des fonctions sous-
harmoniques. En fait, il en existe qui sont égales a — oo sur des sous-ensembles (non-
ouverts) non dénombrables, comme nous allons le voir.

En guise de préliminaire, quelques rappels s’imposent sur les ensembles parfaits et sur
les théoremes catégoriques de Baire. Soit (X, d) un espace métrique complet muni d’une
distance d, par exemple R avec N > 1, muni de la distance euclidienne.

Pour z € X et r > 0, soient les boules ouvertes et fermées :

B.(z) == {y e X: d(z,y) <r} et Bi(z) == {y € X: d(z,y) <r}.
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Définition 10.1. Un sous-ensemble P C X est dit parfait lorsqu’il satisfait I’'une des condi-
tions équivalentes suivantes :

e pour tout point p € P,onap € P\{p}, a savoir, aucun point de p n’est isolé dans P ;

e pour tout point p € P, il existe une suite (p,)°2, de points p,, € P tous distincts de p
telle que p,, — p;
e ’ensemble dérivé de P :

P={peX: 3y, Pn€P, pn#p, pn —p} =P

coincide avec lui-méme.

En particulier, tout ensemble parfait est fermé. Le cas de la dimension N = 2 dans
I’énoncé suivant nous sera utile.

Théoreme 10.2. Tout sous-ensemble parfait non vide P C RN est de cardinal non dénom-
brable.

Démonstration. Si on avait Card P < oo, son ensemble dérivé P’ = () serait vide (exercice
mental), ce qui n’est pas. Donc Card P = oo.

En raisonnant par I’absurde, supposons donc que Card P = Card N* soit infini dénom-
brable. Via une bijection entre N* et P, énumérons alors tous les points de P sous forme
d’une suite :

P = {Jfl,.IQ,.Tg,... }

Pour commencer, soit B € R" une boule ouverte non vide relativement compacte conte-
nant 1. Comme P est parfait, x1 n’est pas isolé, donc il existe un point :

1 € PN DB,
tel que :
Y1 # 1.
Choisissons alors un cube ouvert C'; C B centré en y; de coté assez petit pour que :
I g 61.

Ensuite et a nouveau parce que P est parfait, y; € P n’est pas isolé, donc il existe un
point :
Yo € PNndcC;.
tel que :
Yo # Y1 et de plus : Yo F# To.
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On choisit alors un cube ouvert non vide C5 centré en y, de coté assez petit pour que :

T2, ¢ 62-

On se convainc alors (exercice) qu’il est possible de construire par induction une suite
infinie de points (y,, ), distincts deux a deux et une suite de cubes ouverts (C},)° ; centrés
en les y,, satisfaisant, pour toutn > 1:

(@ Cpi1 C Oy C B
(i) y, € PNCys

(i) =1, ..., 20, Y1, Y1 € Ch.
Ainsi les sous-ensembles fermés de R :

K, =C,NnP (n>1)
sont compacts, puisque tous contenus dans B € RY, et emboités :
K, C K, (Vn>1).

Un théoreme classique de topologie métrique assure alors que I’intersection infinie :

() K. #0
n=1

est un sous-ensemble non vide de P.
Mais comme par construction on a arrangé pour tout n > 1 que :

T,...,0n € CoNP = K,,

aucun pointde P = {x1,...,z,, ...} ne peut rester dans N,, K, ce qui est la contradiction
conclusive montrant que P est non dénombrable. U

Bien entendu, ce théoréme est tout aussi vrai dans un espace métrique complet (X, d)
quelconque.

Définition 10.3. Dans un espace métrique (X, d), un sous-ensemble D C X est dit dense
lorsque tout point de X lui est adhérent :

D= X.
Observation 10.4. On a équivalence entre :
o D C X estdense;

e DN B,(x) # 0 pour tout x € X et toutr > 0;
e D N U # 0 pour tout ouvert non vide U C X.

Démonstration. La vérification complete est laissée en exercice ; s’inspirer du raisonne-
ment de I’Observation 10.7. U

Définition 10.5. Dans un espace métrique (X, d), un sous-ensemble A C X est dit nulle
part dense lorsque I’intérieur de son adhérence est vide :

Int (Z) = 0.
Lemme 10.6. Pour tout ouvert O C X, ona:
X\O = Int(X\0).
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Démonstration. Tout d’abord, O D O donne X\O C X\O, d’oti en prenant les intérieurs :
X\O c mt(X\0).
Pour I’inclusion inverse, un énoncé €lémentaire sera utile.

Observation 10.7. Soit U C X un ouvert non vide, et soit G C X un sous-ensemble

quelconque. Alors : o
UNnG =0 = UnG = 0.

Démonstration. En effet, tout point g, € G\G est limite g, = lim g,, d’une suite conver-
gente de points g, € G. Si on avait g, € U, alors a partir d’un certain rang n > N > 1,
tous les g,, proches de g, devraient se trouver dans 1’ouvert U, mais g, € UNG = () est
impossible. U

Soit z € Int (X\O) quelconque, c’est-a-dire qu’il existe r > 0 tel que la boule ouverte :
B,(x) c X\O,

donc B,(x) N O = (). L’observation qui préceéde donne B,(z) N O = (). En particulier, le
centre z € X\O, et ceci établit I’inclusion inverse :

Int(X\0) c X\O
conclusive. O

Lemme 10.8. Un ouvert O C X d’un espace métrique (X,d) est dense dans X si et
seulement si le fermé complémentaire F := X \O est d’intérieur vide.

Démonstration. 11 s’agit de montrer que :

0=X < Int(X\0) =9,
ou, de maniere équivalente, d’établir la contraposée :

0SC X < Imt(X\0) #0,

qui est un corollaire (visuel) du Lemme 10.6. ]
Lemme 10.9. Erant donné un nombre fini K > 2 d’ouvert denses Oq,...,O¢ dans un
espace métrique (X, d), leur intersection :

O:1N---NOg

est encore un ouvert dense de X.

Démonstration. Pour de simples raisons logiques, le cas K = 2 implique trivialement le
cas général K > 2. Traitons donc le cas K = 2.

Soit x € X un point quelconque, et soit B,.(x) une boule centrée en = de rayon r > 0
arbitrairement petit. Il s’agit de trouver, dans cette boule, au moins un point :

Yo € 02 N 01 N BT(ZL‘)
Mais O; est dense, donc il existe y; € O; N B,.(z). Qui plus est, O; est ouvert, donc il
existe une boule :
le(yl) C OlﬂBr(x) (3s1>0).
Mais O, est dense, donc il existe :
yo € O2N By, (1),

et alors un tel y, fait parfaitement 1’ affaire ! U
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Bien entendu, quand on passe 4 un nombre infini dénombrable d’ouverts denses O, =
X, k > 1, I'intersection Ny Oy, cesse en général d’étre ouverte. Mais le célebre Théoréme
de Baire dont la démonstration est si élémentaire et dont les applications a I’ Analyse et a la
Topologie sont si fantastiques, montre qu’on conserve la densité.

Théoréme 10.10. [de Baire] Dans un espace métrique complet (X, d) :

(i) route intersection infinie dénombrable N>1 Oy d’ouverts O, C X denses O, = X est
encore dense :

ﬂ Ok = X;
k=1

(ii) toute réunion infinie dénombrable Uy~ Fi. de sous-ensembles fermés F, C X d’inté-
rieur IntF;, = () vide est encore d’intérieur vide :

Int U Fk = @

k>1
Démonstration. Eu égard au Lemme 10.8 et a la correspondance :
Fk = X\Ok < Ok = ‘X\F;C (k>1),

les deux énoncés (i) et (ii) sont équivalents entre eux.

Focalisons-nous donc sur (i). Soit U C X un ouvert non vide quelconque. Le but est de
montrer que :

0 #UnN <k@1 Ok).

Comme O; est dense, il existe 2; € UNO4, et comme cette intersection est ouverte, elle
contient une certaine boule ouverte centrée en x :

U 001 D Bgrl(xl),

de rayon 2r; avec 0 < ry < % ; 1c1, 271 est une marge de sécurité qui sera utile plus tard.

Ensuite, comme O, est dense, il existe 5 € B,,(x1) N Oy — noter qu’on passe a une
sous-boule —, et comme cette intersection est ouverte, elle contient une boule ouverte
centrée en I :

Brl ($1) N 02 D) BQTZ (1‘2)
de rayon 275, avec 0 < ry < 2%, quitte a rapetisser le rayon. Par construction :
UnO;Nn0Oy, D BQTQ(ZL‘Q).
Affirmation 10.11. 1] existe une suite infinie (vy)72, de points x;, € X et des rayons
O0<r,< 2% tels que :
B, () NOkp1 D Bapyyy (Thg1) (Vk>1).

Preuve. Par récurrence, supposons zy, et ', déja construits. Comme Oy, est dense, il existe
Tr+1 € By, (x) N Okyq, et comme cette intersection est ouverte, elle contient une boule
ouverte centrée en xy, :

B'I‘k (‘rk) m Ok+1 D B2'I’k+1 (I‘k—‘rl)J

de rayon 27y 1, avec 0 < 741 < 57 U

—_
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Il découle de cette construction gigogne que :
UNnOyN---NOx D By (k) (Vk>1).
Le doublage des rayons comme marge de sécurité sert maintenant a garantir que les
boules fermées :
Erkﬂ (Tr11) C By, (Tr11) C By(xr) C B, (2) (k>1)

sont emboitées les unes dans les autres. D’apres un théoreme classique de topologie mé-
trique, comme X est complet, leur intersection infinie :

ﬂ Erk(xk> = {p}

k>1

est non vide, constituée d’ailleurs d’un point unique. Or comme :

Uno,n---n0x D B, (x1) (Vk>1),
il vient :
Un(0:) > = OB (@),
ce qui montre bien que cette intersection est non vide. U

Voici une conséquence tres souvent utilisée de ce résultat.

Théoreme 10.12. [de Baire bis] Si un espace métrique complet (X, d) non vide s’écrit
comme réunion dénombrable de fermés :

X =JF

k>1
alors I'un au moins Fy, de ces fermés posssede un intérieur non vide :
0 # IntFy, (Fke>1).
Qui plus est, la réunion des intérieurs de ces fermés :
Ut = X
k>1
est dense dans X.

Démonstration. Soit U C X un ouvert non vide quelconque. Sa fermeture U est alors un
espace métrique complet.
Introduisons les ouverts relatifs de U :

Oy := U\F, (k>1).
L’hypotheése Uy F, = X se traduit en passant aux complémentaires par :
m Ok = (Z) (dans U).
k>1

Or ces Oy, peuvent-ils étre fous denses ? Ah que non ! Car le Théoreme 10.10 impliquerait
la non-vacuité de leur intersection.

L’un, au moins, disons Oy, de ces ouverts, n’est donc pas dense dans U, c’est-a-dire
qu’il existe un ouvert non vide V C U tel que :

Or, NV = 0.
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Mais comme U est ouvert, on a de plus U NV # (). Nous pouvons donc trouver un point
x € VN U et une boule de rayon r > 0 centrée en x tels que :

B.(x) c UnV,
d’ou :
BT(ZL‘) N Ok* = @
Nous avons donc trouvé une boule ouverte entierement contenue dans le fermé :
Fre = U\Ox.,

lequel est donc d’intérieur non vide !
De plus, comme I’ouvert de départ U était arbitraire, nous avons montré que la réunion
des intérieurs des F; rencontre tout U, donc que cette réunion est dense. O

Voici enfin I’énoncé promis qui révele une complexité intéressante des fonctions sous-
harmoniques.

Théoreme 10.13. Soit K C C un sous-ensemble compact qui est parfait, a savoir sans
point isolé, soit (z,)> | une suite dénombrable dense de points z, € K, et soit (a,)>,
une suite de nombres a,, > 0 tels que ), a,, < oco. Alors la fonction v: C — [—00, 00|
définie par :

u(z) = Z anlog |z — 2| (z€C)
n=1
satisfait :
(i) u est sous-harmonique dans C et u Z — 00
(ii) u = — oo sur un sous-ensemble dense non dénombrable de K ;

(iii) w est non continue en presque tout point de K.

Démonstration. (i). Avec les notations du Théoreme 8.3, sur I’espace .# := N* muni de la
mesure p({n}) := a, pour n > 1 telle que u(.#) < oo, introduisons la fonction :
v: CxN' — [—00,00],
(z,n) — log |z — z,].
Alors d’apres ledit théoreme, la fonction :
/ v(z,n)du(n) = Z aploglz — z,| =: u(z)
* n=1

est sous-harmonique dans C tout entier. De plus, il est clair (exercice mental) que u(z) >
— oo pour tout z € C\ K, d’ott u # — oo.

(ii). Examinons donc I’ensemble polaire :

{u = —o0}.

Nous venons de dire que {u = — oo} C K. De plus, chaque élément z,, € K de la suite
dense appartient 2 {u = — oo}, a cause du terme a,, log |z, — 2,| = — oo, donc on a la
densité :

{u=—-o00} = K.
Ensuite, son complémentaire dans K :
(10.14) K\{u oo} ]L;Jl {zeK:uz)>-j},
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s’écrit comme réunion dénombrable de sous-ensembles fermés, car u est sous-harmonique,
et d’intérieur vide dans K, car la collection {z,}>2, C {u = — oo} est dense dans K
(exercice mental).

Notons que K, muni de la topologie euclidienne induite de celle de C = R?, est un
espace métrique complet, et puisque K est parfait, le Théoreme 10.2 assure qu’il est de
cardinal non dénombrable.

Affirmation 10.15. L’ensemble polaire {u = — oo} est non-dénombrable.

Preuve. Sinon, s’il était dénombrable, il serait (trivialement) réunion dénombrable de fer-
més (singletons) d’intérieur vide, et alors en revenant a (10.14) :

K = {u:—OO}U<ng {zeK: u(z)}—j}),

I’espace métrique complet /' lui-méme serait réunion dénombrable de fermés d’intérieur
vide, en contradiction flagrante avec le Théoreme 10.12 de Baire bis. U

Donc {u = — oo} est bien non-dénombrable.

(iii). II est instantané que la fonction u est non-continue en tout point de :

{u=—oco}\{u=—oc}.
Or nous avons vu que :
{u=—-o0} = K,

et comme le Corollaire 9.6 nous a informé qu’un ensemble polaire tel que {u = — oo} est
toujours de mesure de Lebesgue égale a 0, nous concluons bien que w est non-continue en
presque tout point de K. U

11. Convexité et sous-harmonicité

Comme nous 1’avons déja notifié, il existe des analogies profondes entre les fonctions
convexes sur R et les fonctions sous-harmoniques sur C.

Rappelons qu’une fonction ¢): R — R est convexe si, pour tout 0 < iy, ..., ux < 1
avec 1 = 1 + - -+ + ug, pour tous tq, ..., tx € R, elle satisfait I’inégalité :
Ot + 4 pte) < () 4+ + () (k>2).

Les fonctions convexes sont continues (exercice de révision). Pour application aux fonc-
tions sous-harmoniques, nous aurons besoin d’une version continue classique de cette in-
égalité discrete.

Théoreme 11.1. [Inégalité de Jensen réelle] Soient deux nombres réels — oo < a < b <
o0, et soit Y: |a,b| — R une fonction convexe. Soit aussi (.4 , 1) un espace mesuré de
mesure () =1, et soit f: .M — ]a,b| une fonction Lebesgue-intégrable. Alors :

w(/% fdu> < //{wofdu.

Démonstration. Abrégeons :
c = / fdu.
M
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Puisque a < f(m) < b pour tout m € .4 et puisque pu(.#) = 1, il est clair que a < ¢ < b.
Comme la fonction 1) est convexe, pour tout couple de points :

a <t <c<ty<h,

avec la combinaison linéaire a coefficients (strictement) positifs :

boe, ety o+ st
c = = =1),
th— 1 1 th— 1 2 H1l1 + H2il2 (p1+p2=1)
ona:
to — ¢ c—
Y(c) < Y(t) + = P(ta).
to — t1 ty — t1

Mais apres réorganisation, ceci devient (exercice) :

Y(c) —P(t) < Y(tz) —Y(c)

C—tl = tQ_C

puis, en prenant supremum et infimum :

sup Y(c) —P(t) < inf ¢(t2)—¢(0).

ti€lac €T h beled] g —c

Par conséquent, pour un nombre réel quelconque sup(-) < M < inf(-) coincé entre ce
supremum et cet infimum — et dorénavant fixé —, et pour tous a < t; < ¢ < ty < b, on

' w(e) —b(ty) W(ts) — d(c)

C—tl tQ_C

7
=
7

)
d’ou découle, apres réorganisation, 1’inégalité uniforme (exercice) :

P(t) = Y(e) + M (t—c) (V€ Jab)-

Or maintenant, tout est presque fini : en insérant ¢ := f(m) et en intégrant par rapport a
i, 1l vient :

//{w(ﬂm /w ) dpu(m +M/ m) — ¢) dyu(m)

c) +0,

o)

ce qui est I’inégalité qui était ardemment désirée. U

Ceci nous permet d’engendrer par composition une grande quantité de fonctions sous-
harmoniques nouvelles.

Théoréme 11.2. Soient deux nombres réels —oo < a < b < oo, soit u: Q — [a,b]
une fonction sous-harmonique dans un ouvert Q) C C, et soit 1: |a,b] — R une fonction
convexe croissante. Alors :

You

est sous-harmonique dans Q, oi (a) := lim_, Y(t).

Noter que u est a valeurs dans [a, b, mais que v est définie seulement sur |a, b[, ce qui
se produit réellement lorsque a = — oo.
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Démonstration. Pour commencer, soit (a,)52; une suite de réels a,, € |a,b[ qui tend en
décroissant vers a,, | a. Pour tout n > 1, la fonction :

Up = max(u,an)
est sous-harmonique.

Lemme 11.3. Soient deux réels —oco0 < ¢ < d < oo, soit un ouvert ) C C, soit
v: Q — e, d[ une fonction semi-continue supérieurement, soit x: |c,d| — R une fonc-
tion continue croissante. Alors :

X ov
est semi-continue supérieurement.

Démonstration. En tout point zy € 2, on a par hypothese :

limsupv(z) < wv(2o).
Z—r 20

Autrement dit :

Vo >0 V(zp)ol, — 25, IN>1 (n}N — v(zn)gv(zo)—l—é).

n=1
Mais la croissance de x préserve cette inégalité :

X(v(z)) < x(v(20) +9),

et comme X est de plus continue, lorsque 0 — 0, le membre de droite tend vers x(v(zp)).
4

Griace a ce lemme, comme toute fonction convexe est continue, les ¢ o u,, sont semi-
continues supérieurement. Notons qu’il était d’une certaine facon nécessaire de tronquer u
en u,, pour travailler avec des fonctions a valeurs dans |a, b|.

Ensuite, pour tout disque D,(z) C 2, I'inégalité de sous-moyenne (globale) satisfaite
par u,, composée avec 1 croissante donne :

2m
Y ou,(z9) < w< ! / un(z0+rei9)d9>
0

o
< i/%;bou (20 + 7€) do
~X 27_[. 0 n 7

la second inégalité provenant de 1’inégalité de Jensen réelle 11.1 appliquée a la mesure de
probabilité % sur le cercle unité.

Ceci montre que ) o u,, est sous-harmonique, pour tout n > 1.

Enfin, comme 1) o u,, | 1 o u tend en décroissant vers v o u, le Théoréme 8.1 acheéve de
montrer que ¥ o u € SH(Q). O

Corollaire 11.4. Si une fonction u est sous-harmonique dans un domaine 2 C C, alors
exp u [’est aussi. ]

Corollaire 11.5. Pour toute fonction holomorphe f € O(2), f # 0, et pour tout exposant
réel o > 0,ona:
|f|* € SH(Q).

Démonstration. La fonction sous-harmonique u := «log | f| a pour exponentielle | f|*. O
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A T’opposé d’une fonction convexe (croissante), la fonction logarithme est concave.
Néanmoins, voici un énoncé qui garantit que le logarithme d’une fonction est sous-
harmonique.

Théoreme 11.6. Si u: Q — [0, 00| est une fonction définie sur un domaine Q2 C C, alors
on a équivalence entre :

(i) log u est sous-harmonique dans <) ;
(i) u ‘eq } est sous-harmonique dans ), pour tout polynéme complexe q € C|z|.

Démonstration. Silogu est sous-harmonique, alors log u + Re ¢ I’est aussi, puis en prenant
I’exponentielle, u |e‘1| aussi grace au Corollaire pénultieme.

Réciproquement, supposons (ii). Avec ¢ = 0, on voit que u est sous-harmonique, donc
en particulier semi-continue supérieurement. Le Lemme 11.3 donne que logu est encore
semi-continue supérieurement.

Pour établir que log u satisfait 1’inégalité de sous-moyenne, soit un disque A = D,.(zy) C
Q2. Le Théoreme 3.6 fournit une suite de fonctions continues ¢,,: dA — R qui tendent en
décroissant vers log » sur le bord :

on | log u‘ "N
Le Théoreme de Stone-Weierstrass montre par ailleurs que pour tout n > 1, il existe un
polynéme g, € C|z] tel que :
0 < Reg, — ¢, < = (surdA).
Alors de u < e?", nous déduisons en tout point { € OA :

limsup u(2) |e=| < limsup e |em9n(?)]
z—( z—(
e®n(Q) —Rean(C)

<
< 1L

Mais comme u |e~9"| est supposée sous-harmonique, le Principe du Maximum 5.4 au
bord donne a I’intérieur :
u(z) |e’q"(z)| <1 (Vz€A).

Alors en prenant les logarithmes au point central z; et en utilisant 1’harmonicité de

Re ¢, (2) :
27

1 .
logu(zp) < Reqn(z0) = o Reqn(zo—l-reza) do
0
1 2 ” 1
— n ) do + —.
o /. ) (zo—i-?“e ) + -

Il ne reste plus qu’a faire n — oo et a appliquer le théoreme de convergence monotone
pour obtenir I'inégalité :
2

logu(zp) < log u(zo + 7€) db),

2m Jo
de sous-moyenne ainsi satisfaite par log u. ]

Lorsqu’une fonction est radiale, i.e. ne dépend que de la distance a I’origine, la sous-
harmonicité revient a la convexité réelle standard.
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Théoreme 11.7. Soit v: Dg(0) — [— o0, o[, R > 0, une fonction radiale, v(z) =
v(|z|), avec v £ — oco. Alors on a équivalence entre :

(i) v est sous-harmonique dans Dg(0) ;
(ii)) » — v(r) est une fonction convexe croissante de logr pour 0 < r < R, qui est
continue a l'origine v(0) = lim_ > _v(r).

r—0

Démonstration. Dans le sens (ii) = (i), il suffit d’appliquer le Théoreme 11.2 aux fonc-
tions u(z) := log |z| et ¥ (t) := v(e).
Réciproquement, soit v radiale sous-harmonique dans Dg(0). Pour deux rayons inter-
médiaires :
0<1r <rm< R,
le principe du maximum appliqué a v sur D, (0) et la radialité de v donnent :

v(r;)) < sup v = v(rg),
D, (0)

ce qui montre que v est croissante sur [0, R|.
Pour ce qui est de la continuité en 0, cette croissance implique :

liminfo(r) = v(0
minfo(r) > 0(0),
tandis que la semi-continuité supérieure n’est autre que :

limsupv(r) < v(0),
r—0

donc v est continue en 0 !

Il reste a faire voir que v(r) est une fonction convexe de logr. Comme v # — oo est
radiale, son intégrale sur tout cercle centré a 1’origine est constante. Alors le Corollaire 9.4
garantit que :

—o0 < v(r) (V0<r<R).
Ensuite, soient deux rayons intermédiaires :
0<rm <ry <R
Par résolution linéaire, il existe deux constantes réelles «, 5 uniques telles que :
a+ Blogry = v(ry),
a+ Blogry = v(re),

et il n’est pas nécessaire d’écrire les formules explicites de Cramér pour « et 3. Alors le
principe du maximum appliqué a la fonction v(z) — o — flog |z| qui s’annule sur les deux
composantes du bord de I’anneau {7 < |z| < ro} donne :

v(r) < a+ flogr (V r1 <r<r2).

Fixons maintenant un rayon r avec r; < r < 79. Si 0 < A < 1 est 'unique réel qui
réalise la combinaison barycentrique — a nouveau, la formule explicite n’est pas néces-
saire — :

logr = (1 — \)logry + Alogra,
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un remplacement et une réorganisation :
v(r) < a+flogr
= (1=X) (a+Blogri) + A (a+ Blogrs)
= (1=XNwv(r) + Av(rg)
conduisent a une inégalité qui montre que log r — v(log ) est bel est bien convexe! [

Terminons cette section par I’étude de diverses invariants qui permettent de quantifier la
croissance des fonctions sous-harmoniques.

Définition 11.8. Soit u # — oo une fonction sous-harmonique dans un disque Ag(0) de
rayon R > 0 centré a I’origine. Pour tout rayon 0 < r < R, soient :

M,(r) = sup u(z),

|z|=r
1 2 ]
Cu(r) = o /. u(re) df,
1 i0
Bu(r) = - o) u(se”) sdsdb.

D’apres la Proposition 3.5, le Théoreme 9.1 et le Corollaire 9.4, nous savons déja que
ces trois quantités sont bornées supérieurement :

M,(r) < oo, Cu(r) < oo, B,(r) < oo.

De plus, C,(r) et B,(r) sont visiblement reliées entre elles par la relation :
2 T

(11.9) Bu(r) = —2/ Cyu(s) sds.
= Jo

Théoreme 11.10. Les trois propriétés suivantes sont satisfaites :
(i) M,(r), Cu(r), By(r) sont des fonctions convexes croissantes de log ;

(ii) pourtout0 <r < R,ona:
w(0) < Bu(r) < Culr) < My(r);

(iii) enr =0
u(0) = IiLnOMu(r) = |iLnOCu(r) = lim B,(r).

r—0

Démonstration. (i). Pour tout 0 < r < R, nous pouvons écrire :

M, (r) = vp(r) avec vm(z) == sup u(ze”),
0€[0,2n|
1 2m )
Cu(r) = ve(r) avec vo(z) == — u(ze") do,
2m Jo
1 2m 1 )
B.(r) = vp(r) avec vp(z) = —/ u(zse”) sdsdo.
T™Jo Jo

Affirmation 11.11. Ces trois fonctions vy, ve, vg sont sous-harmoniques dans Dg(0).

Démonstration. Pour vy, appliquer le Théoreme 8.2, tandis que pour v¢, v, c’est le Théo-
reme 8.3 qui s’applique. U
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Manifestement, ces trois fonctions vy, v, v sont radiales ! Or nous venons de démon-
trer par le Théoréme 11.7 que leur sous-harmonicité équivaut a (i) !

(ii). La derniere inégalité C,(r) < M, (r) est claire.
Ensuite, grace a (i) qui vient d’étre établi,onapour0 < s <r < R:

u(0) < Culs) < Cu(r).
Multiplions alors ces inégalités par % etintégrons de s = 0 a s = r, ce qui donne :
2 21
u(0) < — / Cu(s)sds < Cy(r).
™ Jo
En combinant cela a 1’équation (11.9), nous obtenons bien :
u(0) < Byu(r) < Cyu(r).
(iii). Grace aux inégalités (ii) qui viennent d’&tre démontrées, il suffirait d’avoir :
limsup M,(r) < u(0),
r—0

mais ceci est gratuit par semi-continuité supérieure de v en 0!

12. Régularisation des fonctions sous-harmoniques

Bien que les fonctions sous-harmoniques soient parfois loin d’étre régulieres, elles
peuvent néanmoins étre approximées a volonté par des fonctions sous-harmoniques %>,
grace a I’opération standard — et magique ! — de convolution.

Notation 12.1. Etant donné un ouvert 2 C C, pour tout > 0, on note :
Q, = {z € ) dist (z,@Q) > T}.

Soit maintenant u: {2 — [— 00, oo une fonction localement intégrable au sens de Le-
besgue, par exemple une fonction sous-harmonique, puisqu’on sait d’apres le Théoreme 9.1
que :

SH(Q) C L. ().
Soit aussi :
p: C— R
une fonction continue avec supp ¢ C D,.(0), pour un r > 0.
Définition 12.2. La convolution entre u et ¢ est la fonction :
ux¢p: Q. — R

définie par I’intégrale :
ux P(z) = / u(z — w) p(w) dA(w) (z€ Q).
C

On considere donc :
1 0
L loc * (gc :
On vérifie (exercice de révision) que * est associatif (utiliser Fubini-Tonelli). Le chan-

gement de variable w’ := z — w transforme :

wk(z) = / u(w) 6z — w) dA(w) = ¢ % u(2),
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ce qui est la commutativité du produit de convolution. Grace a cette seconde représentation,
on se convainc (révisions !) que u * ¢(z) est indéfiniment différentiable lorsque ¢ € €>°,
avec des dérivées partielles obtenues en dérivant sous le signe d’intégration :

L (uxo)(z) = /(C u(w) 9L0% ¢(z — w) dA(w) (4,4, €N).

Théoreme 12.3. [de régularisation] Soit u Z — 0o une fonction sous-harmonique dans
un ouvert ) C C, soit x: C — R une fonction satisfaisant :

= € ;
o x =20y
o x(2) = x(|2]);
e suppx C D =D (0);
° f(C Xd\=1;
et pour r > 0, soient les fonctions renormalisées €>° se concentrant en 0 lorsque r =50
Xr(2) = T%X(f) (z€0).
Alors les convolées :
(U * Xr)r>0
forment une famille de fonctions €>° sous-harmoniques dans 2, qui tendent vers u :
w(z) = lim wx* x,(2) (VzeQ)
r—=50
en décroissant :
u(z) < uxyxs(z) < ux*x,(2) (0<s<r;z€Q).

Un exemple d’une telle fonction y (révision!) est :

o
ce 1-il:P lorsque |z|

x(z) =

= NI

<
0 lorsque |z| >

9

ou la constante ¢ := est choisie pour normaliser [ y = 1.

1
T e 1/(=a1z1)

Démonstration. Le Théoreme 9.1 a fait voir que u € L}, (Q) D SH(2), ce qui garantit que
le produit de convolution u * Y, a un sens. De plus, comme Y, est 4 et a support dans
{|z| <r},onauxy, € €>(,).

Ensuite, le Théoreme 8.3, appliqué avec :
(%7 M) = (Cv Xr d)‘)a

et avec v(z, m) := u(z — m), montre sans effort que u * y,. est sous-harmonique.
Maintenant, fixons zo € 2. Pour 0 < r < dist (2, 0f2), en passant aux coordonnées
polaires, on peut développer le produit de convolution comme :

27 r
u* xr(20) = /0 /0 u(zo — se™) L x (&) sdsdt.

Effectuons alors le changement de variable ¢ := 2, posons v(z) := u(zp— z), et souvenons-
nous de la Définition 11.8 avec :

2T
Cy(qr) = %/0 v(qre“) dt,
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pour ré-écrire ce qui précede comme :

u* xr(20) = QW/O Co(qr) x(q) g dg.

Grace au Théoreme 11.10 (iii), C, (g ) décroit vers v(0) lorsque | 0. Ainsi, par le
théoréme de convergence monotone, u * X, (zo) décroit vers :

1
2n [ wO)x@ads = ulz) [ xdh = utzo)
0 C
ce qu’il fallait. O

Corollaire 12.4. Soit u une fonction sous-harmonique dans un ouvert ) C C, et soit w € ()
un sous-domaine relativement compact. Alors il existe une suite décroissante de fonctions :

(un)oo € ¢ (w)NSH(w)

n=1
satisfaisant :
im u, = u < -+ < ug < Uy < Uy (dans w).
n—oo
Démonstration. Quand u = — oo dans w, il suffit de prendre u,, := — oco.

Sinon, on choisit r > 0 assez petit pour que w C €2, et il suffit de prendre les convolées :

Up 1= U Xz (n>1),
w

en application du théoreme qui précede. U

Comme autre application, voici un résultat qui généralise le Corollaire 7.3 a des fonc-
tions holomorphes pas forcément inversibles.

Théoreme 12.5. Si f: 2 — ) est une application holomorphe entre deux ouverts ) C C
et QY C C, alors :

u' € SH(Y) = wuof € SH(N).

Démonstration. Soit w € €2 un sous-domaine relativement compact. Il suffit de faire voir
que u’ o f est sous-harmonique dans w.

Posons w’ := f(w). Choisissons une suite (u/,)>°; de fonctions sous-harmoniques &>
dans W’ telles que u/, | u' sur w'. La caractérisation de la sous-harmonicité lisse donnée par
le Théoreme 7.4 dit que Awu/, > 0 dans w’, et ce, pour tout n > 1.

Ensuite, un calcul direct utilisant I’holomorphie de f donne (exercice) :

A(u; o f) = ((A u;) o f) }% 2 (dansw).

Donc on a A(u, o f) > 0 dans w, et en réappliquant (dans 1’autre sens) le Théoreme 7.4, il
vient que u,, o f est sous-harmonique dans w.

Pour conclure que u' o f est sous-harmonique, il suffit de faire tendre n — oo, cf. le
Théoreme 8.1. U

Enfin, pour terminer cette section, le Théoreme 12.3 de régularisation permet d’obtenir
un principe d’identité pour les fonctions sous-harmoniques qui s’avere parfois utile.

Théoreme 12.6. [Principe d’identité faible] Si deux fonctions u et v sous-harmoniques
dans un ouvert Q) C C sont presque partout égales, alors u = v partout.
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Démonstration. Supposons d’abord que u et v sont bornées inférieurement sur (2. En
convolant avec une famille de fonctions ,, comme ci-dessus, on obtient I’identité :

U* Xy = Uk Xy

valable dans (2, et en faisant 7 — 0, on déduit grace au Théoreme 12.3 que u = v partout
dans (2.
Le cas général suit aisément en applicant cela aux deux suites de fonctions :

Uy ‘= Max (u, —n) et Up = max (v, —n),
puis en faisant n — oo. U

Un dernier commentaire. Pour les fonctions sous-harmoniques, on ne peut pas espérer
avoir un principe d’identité aussi fort que pour les fonctions harmoniques : égalité dans un
sous-ouvert () # w C 2 implique égalité partout dans le domaine 2. En effet :

u(z) := max (Rez, 0) et v(z) =0

coincident sur w := {Rez < 0} C C = ().

A un niveau élevé de compréhension interne de la théorie, ce sont justement leurs ‘dé-
fauts’ d’unicité et de rigidité qui rendent les fonctions sous-harmoniques si utiles et si
puissantes.

13. Formule de Jensen complexe

Pour effecter une variation thématique, nous allons maintenant présenter la formule de
Jensen, qui permet de redémontrer différemment 1’inégalité de sous-moyenne globale du
Corollaire 7.2. Commencons par quelques rappels standard.

Lorsqu’une fonction ¢: 0 — R définie dans un domaine 2 C C est de classe €™, en
introduisant 1’opérateur de différentiation standard :

dp d¢
dp = —d —d
L * oy v
on a (exercice) :
dp dp
dp = —dz+ —dz
Y 52 "~ * 5z %

en termes des opérateurs :

0z

De maniere abrégée :

d=0+0,
et on vérifie la relation d’anticommutation (exercice) :
000 = —000,

ainsi que les relations d’annulation (exercice) :
0=0d00d =000,
dues au fait que dz A dz = 0 et que dz A dz = 0.
Introduisons maintenant aussi 1’opérateur :
1 _
&= —(9-9),

 ur

a—Sodz = (1 8—80—1 %> (dx—l—i dy) et 0p = (9_(de = <1 8—90—1—1 %> (dx—i dy).
Y Y
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le facteur de normalisation étant justifié par diverses nécessités contextuelles, voir infra le
commentaire de la Formule de Jensen 13.5. On vérifie que cet opérateur d° est réel, au sens
ou d°p est encore une fonction a valeurs réelles lorsque ¢ 1’est (exercice) :

2rdp = i(g—a)go = a—idy— 8godx

0 dy
Lemme 13.1. Lorsque ¢: Q — R est de classe au moins €2, on a :
. i = i 0% _ 1 (0% 0%
dd‘p = ;88@ = ;azﬁde/\dZ = — (w—i- 3 2)dx/\dy
Démonstration. En effet :
dd°p = 2i(a+a)(— 0+0) ¢
— (- 99, +00—-00+00,) ¢
2m
= 16590
I
= —8 dz
(52)
i Py
7 0207 dzndz
1 (9% 0%
= —(@-F 9 2)d A dy,
ce qui conclut. U

Définition 13.2. Pour ¢ € ¢?(Q, R), la notation dd°p > 0, respectivement > 0, signifie la

positivité de son laplacien :
82 ) 82 ) 82
= >0 > 0).

9202 (8:62 * 0y? ) (>0)

Maintenant, le passage des coordonnées cartésiennes aux coordonnées polaires :

xr = rcosfb, y = rsinf (r+£0,0<0<2r),

transfere, d’apres 1’Exercice 2, les dérivations fondamentales de la maniere suivante :

9 e d 108 9 _ n92+1 99
or ~ Ve " 5e oy~ Mgt ay

Si on note en indice les dérivées partielles pour les contracter, il vient alors :
i(0—0)¢p = ¢,dy — p,dx = (cosf, — 22 py) (sin dr + rcos 0 df) —
— (sin 0.+ COSG gpg) (cos Odr —rsinf d@)
= (— %cpg) dr + (rgor) de.

On obtient donc la formule utile :

e 1 1 0p Op
W‘zw( sag T 87“d9>
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laquelle, appliquée a la fonction ¢ = logr = log|z|, donne :

1
(13.3) dlog|z| = — db.
2m

Lemme 13.4. Pour toutes fonctions @, € €(Q,C), ona :
dp NdY = —d°p Adi.
Démonstration. En utilisant dz A\ dz = dz A dz = 0, on développe et on recontracte :
2irdo Ndp = (8¢ + Op) A (01 — V)

= dp NOY_ — dp A OY +5¢A8¢—5¢A5¢0

= — (890 —590) A (81& +5¢)

= —2imdp A di,
calcul qui aurait pu étre laissé en exercice. U

Théoreme 13.5. [Formule de Jensen complexe] Soit  une fonction de classe €? sur un
voisinage ouvert d’un disque fermé D,.(zy) C C de rayon r > 0 centré en un point z, € C.
Alors pour tout rayon 0 < s <r,ona:

1 27 . 1 2 . T d ) —
— o(z0+7re?)d) — — o(z0+se?)d) = / e / 18&0
21 0 27 0 s 1% D, (20) m

T dp .
= / — / dd .
s P Dy (z0)
Lisons et expliquons cette formule.

A droite, on intégre la 2-forme différentielle % d0¢ sur des disques de rayons croissants
s < p < r, et on integre ensuite les résultats obtenus par rapport a la mesure %. Le facteur
i dans £ 00 est inévitable, et la deuxieéme ligne ci-dessus explique en partie pourquoi on
K K
a inscrit le facteur de normalisation ﬁ dans la définition de d°(-).

Démonstration. Apres une translation, on peut supposer que z, = 0. Eu égard a I’équa-
tion (13.3), le théoreme de Stokes transforme le terme de gauche de la formule a démontrer
en I'intégrale d’une 2-forme sur un anneau :

/lz_r ©(2) dlog || _/ o(2)dg|z| = /S<|Z<r d (QD(Z) d° log M)

|z|=s
= / de(z) A dlog |z| +/ ©(z) ddloglz]
s<|z|<r - °

s<|z|<r

le second morceau s’annulant car, sur C* qui contient I’anneau en question, en écrivant
log |z] = % log (zE) , on constate I’harmonicité (exercice) :

0 = 0dlog |z| = T dd°log|z].
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Ensuite, en appliquant le Lemme 13.4 spécialement préparé a 1’avance, il vient :
[ eedigld - [ eladald = [ dwglilad
|z|=r |z|=s s<|z|<r

"d
_ / dp / iy
s P Jlzl=p
"d
SETR
s P Jp,(0)

en réappliquant a la fin le Théoreme de Stokes pour atterrir en douceur a la destination
désirée ! |

Cette formule de Jensen complexe fournit une démonstration particulierement éclairante
de I’inégalité de sous-moyenne satisfaite par les fonctions sous-harmoniques lisses.

Corollaire 13.6. [Inégalité de sous-moyenne globale] Dans un ouvert Q2 C C, si une fonc-
tion u € €*(Q, R) satisfait Au > 0, alors pour tout zy € Q et tout 0 < r < dist (29, ),
ona:

1 2m ]
u(z) < %/0 u(zo + re”) db,

et plus généralement, pour tous 0 < s < r < dist (2, 00) :

1 21 27

u(za + s ew) df < u(zo +r ew) de.

21 Jo 21 Jo

Démonstration. La formule de Jensen semble n’avoir été créée par Dieu que pour établir
cette croissance des moyennes sur des disques concentriques, puisqu’en effet la différence :

21 21 r
L u(zo +re) do — S u(zo+se’)do = / dp / dd‘u
s P JDy(z0)

2 0 2m J,
r dp .
Yo
s 1Y D,(z0)

est une intégrale avec poids logarithmique de I’intégrale d’aire d’une fonction positive !  [J

Voici un énoncé qui aura des répercussions dans la théorie des fonctions de plusieurs
variables complexes.

Théoreme 13.7. Si u: Q — [— 00, 00| est une fonction semi-continue supérieurement
dans un domaine €} C C, on a équivalence entre :

(i) u est sous-harmonique ;
(ii) pour tout disque D, (zy) C Q, et pour tout polynéme p € C[z] :

(u(zo +7r ew) < Rep(zo +7r eie) (v 0<0<2n)> —> u(z9) < Rep(zo)-
Démonstration. (i) = (ii). Supposons u € SH() et soit un disque D, (z) C Q. Comme
Re p est harmonique, la fonction © — Re p est sous-harmonique. Or elle satisfait :

(u—Rep)(¢) <0 (V¢ €Dy (20)),
donc le Principe du Maximum 5.4 assure que

(u—Rep)(z) <0 (V2 €Dr(20)),
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eten z = zp, c’est justement (ii) !
(ii) = (i). L’ objectif est d’établir que u satisfait ’inégalité de sous-moyenne :

1 27 )
u(2o) - /0 u(zo +re”).

Pour abréger, notons A := D,(2). Le Théoréme 3.6 fournit une suite de fonctions
continues (u,)%; € €°(9A,R) qui tendent en décroissant :

N

U < Upp1 S Up (n>1)
vers :
u‘@A = n“l;noo Un, (sur 9A).

Au moyen de I’opérateur de Poisson P, (-), introduisons leurs prolongements harmo-
niques :

(Paun)(2) (z€ A),
continus jusqu’au bord :
im (Paun)(z) = u,(C) (V C€DA).

z—(
A une constante prés que I’on fixe égale a 0, ces fonctions harmoniques Pau,, possédent
une unique conjuguée harmonique, disons h,, € Harm(A), de telle sorte que :
fn = PAun +Zhn S ﬁ(A)

est holomorphe.

Fixons temporairement un entier n > 1 quelconque, et prenons un € > 0 arbitrairement
petit. Par continuité au bord uniforme du prolongement harmonique, il existe 0 < r. < 7
assez proche de r tel que pour tout . < s < r,ona:

(Patn) o+ 56%) —2 < un(ao+re?) < (Paun) (s s6) +2
= Re fn(Zo + 86”) +e,

uniformément quel que soit 0 < ¢ < 27. Fixons a présent un s avec 7. < s < 1.
Maintenant, puisque la fonction holomorphe f,, € &(A) peut étre développée au point
central z; en série entiere :

. 1d
Zk_ Zk %0) (Z_Zo)k7

k=0

qui converge normalement sur les compacts de A = ID,(z;), notamment sur D,(z)) €
D, (z0), en tronquant cette série a un ordre suffisamment élevé, on obtient un polynéme
¢n(2) avec bien sir :
n(20) = fn(20)
tel que :
max_|fu(2) = au(2)] < €,

|z—z0|<s
d’ou:
Re f(20 + se”) < Req,(20+s€e”) +e,
puis en revenant a ce qui précede — noter le petit jeu dérangeant entre r et s — :

u(zo +1re’) < un(z0+7e’) < Regn(2o+se”) +2e.
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Afin de neutraliser ce petit jeu perturbateur, avec les variables :
w= 29+ se’ et 2 = z9+re?,
d’ou:
w = 2o+ (2 — 20),

en introduisant le nouveau polyndme :

Pu(2) == (Zo + 2 (z - Zo))7
satisfaisant donc :

ity _ it

pn(zo—i-re ) = qn(zo—i-se ) (VO<t < 2m),

ainsi que :
pn(ZO) = Qn(Z(J) = fn(ZU)7

cette derniere inégalité se ré-écrit comme :

u(z) < Repn(z) +2¢ (V 2 € ODy(20)).
L’hypothese (ii) s’applique alors pour donner :
u(z0) < Repn(z0) + 2e.

Mais comme Re p,,(z) est une fonction harmonique, elle satisfait 1’égalité de la moyenne :

2T

Nous pouvons donc remplacer et estimer :
27

1 [ A
Re pn(z0) = —/ Repn(zo +7“e’9) do.
0

u(zp) < Rep, (20 +re”) df +2¢

2 J,
2

_ it
=5 ) Re gy (20 + se”) dt +2¢

1 2

L it
o |, Re fn(z0 + se™) dt + 3¢

1 27

= 3 i (PAun)(zo—kseit)dt—F?)a?

1 27

< un(z0+reit)dt+4€

27 Jo

Or € > 0 était arbitraire, donc :

1 27 )
u(zg) < %/o un(zo —1—7’6”9) do.

Pour terminer, il ne reste plus qu’a faire n — oo pour obtenir grace au théoréme de
convergence monotone :

1 2

u(z9) < u(zo + re”) db,

27 Jo

ce qui est I’inégalité de sous-moyenne visée. U
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14. Théoreme de Hartogs sous-harmonique

Soit un ouvert 2 C C. L’espace des fonctions sous-harmoniques dans €2 est noté :
SH(92).

La motivation du théoréme suivant est un théoreme exceptionnel de la théorie des fonctions
de plusieurs variables complexes, que nous verrons ultérieurement.

Théoréme 14.1. [Hartogs sous-harmonique] Soit (v;)32, une suite de fonctions sous-

harmoniques v; € SH(S) uniformément bornées supérieurement sur les compacts de €2 :
VK € Q@ dMg<oo wv; < Mg Vj=>1
On suppose qu’il existe une constante C' < oo telle que :
Iimsupvj(z) <O (VzeQ).
j—o00
Alors pour tout compact K € ) et pour tout € > 0, il existe un entier jo = jo(K,¢) assez

grand pour que :
J=Jjo = vi(2) < C+He (VzeK).

Ici, pour comprendre 1’énoncé, les constantes M dont on suppose I’existence au début
peuvent fort bien étre tres supérieures > C' a la constante C' des limites ‘sup’, mais a
pres, le théoreme dit que C' + € majorera uniformément sur les compacts les termes assez
grands de la suite.

Démonstration. Soit donc un compact /' € (2. On peut trouver un sous-domaine le conte-
nant :
K e Q e,

lui-mé&me compactement contenu dans €2, a savoir O C Q. Par hypothese :

Uj‘K < Vilg < Mﬁ' < 00,

et donc, en remplacant €2 par €', que 1’on notera de nouveau €2, on peut supposer des le
départ que :
v; < Mg < o0 (Vi>1).
Au-dela, en remplagant v; par v; — Mg que I’on notera de nouveau v;, on peut aussi sup-
poser que :
v; <0 (Viz1).
Soit maintenant r > ( assez petit pour que le sous-ouvert :
Qs = {z c0: dist(z, (C\Q) > 31“}
O K
contienne le compact. Comme les fonctions v; sont sous-harmoniques, le Corollaire 7.2

montre qu’elles satisfont I’inégalité bidimensionnelle de la moyenne sur tous les disques
de rayon r centrés en les points de K :

mrivi(z) < / v;(C) d¢ N dn (z€ K, j>1),
|¢—2|<r

ot ( = & + in et d€ A dn est la mesure de Lebesgue sur R2. C’est 2 ce moment-1a qu’on
utilise le :
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Lemme de Fatou en version Limite Supérieure. Sur un sous-ensemble mesurable F C
R”, soit une suite (f;)32, de fonctions mesurables négatives :

i <0

intégrables pour la mesure de Lebesgue sur R" restreinte a E. Alors on a :
lim sup / fi < / limsup f;. U
J— 00 E E j—oo

Comme la limite supérieure des v; est par hypothese < C, on obtient donc :

j— 00

mrivi(z) < Iimsup/ vi(Q)déE Ndy < TCr? (z€ K, j>1).
I¢—2l<r
Pour z € K fixé, il existe donc jo(z) > 1 assez grand pour que I’on ait :
Jj = jolz) = / vi(Q)dE Ndn < W(C+§) r2,
|¢—2l<r

Alors pour tout autre point w proche de z satisfaisant |z — w| < § < r, on a inclusion des
disques :

Drys(w) D Dy(2),
et comme v; < 0, on obtient :

7 (r+6)?vj(w) < /C— s v;(C)déENdn < /|c— ; v;(C) déndn < F(C—i-%) r?,

sous- utiliser
harmonicité v; <0

et ce, uniformément pour :
Vw € Ds(z) Vj = jolz)

Si maintenant 0 < § < r est tres petit, I’inégalité qui s’en déduit entre les deux ex-
trémes :

- (C + %) r?
(r + 5)2
< C+e (YweDs(2), Vi > jo(2)),

vj(w

permet de conclure en utilisant le lemme de recouvrement dit de Borel-Lebesgue du com-
pact K par un nombre fini de tels disques ouverts :

ID)(;l(zl) U---u ]D)(;n(zn) D) K,
en choisissant bien sr :

Jo = max(jo(zl),...,jo(zn)),

ce qui conclut. U
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15. Exercices

Exercice 1. Trouver un exemple de suite de fonctions continues f,, € €°([0,1],Ry), n € N, croissante
fn < fng1 dont la limite ponctuelle f := lim f,, existe en tout point € [0, 1], mais qui n’est pas semi-
continue supérieurement sur un certain sous-ensemble dense de [0, 1].

Exercice 2. Dans le plan complexe C, un point z = 2 + iy = r 'Y distinct de I’origine (r # 0) se représente
au moyen soit des coordonnées cartésiennes (z,y), soit des coordonnées polaires (r,6), avec 0 < 6 < 2.
Etablir les formules de transfert de dérivations :

rngcﬁ-%yg E:COSQQ—lsmﬂg
or Ox oy’ Ox or r 00’
0 0 0 7] 0o 1 0
o - Yooy oy "ot

Indication: Etant donné une fonction F = F(x,y), dériver F(x,y) = F(rcosf, rsinf).

Exercice 3. Avec les notations qui précedent, établir le transfert suivant entre opérateurs du second ordre :

2 . . 9?
2% cos?6 2cosfsind sin?f o7
1 ( 0?1 @) = —sinfcosf cos?0 — sin?0  sinf cosl
7‘1 87"820 r 00 ) 28 9 sin 0 0 2 aggy
sin —25sin 6 cos cos
rZ (892 +r3r) yZ

Exercice 4. Démontrer qu’une fonction u: U — [—o00,00[ définie sur un espace topologique X (pas
forcément métrique) satisfaisant :
limsupu(z) < u(xo)

T — X0

pour tout zp € X est bornée supérieurement sur tout sous-ensemble compact K C X.

Exercice 5. Soit E un sous-ensemble d’un espace métrique (X, d). Montrer que la fonction caractéristique
1z de E est semi-continue supérieurement si et seulement si E est fermé dans X.

Exercice 6. L’ objectif est de démontrer que le Théoreme 3.6 reste vrai sans I’hypothese que la fonction u est
bornée supérieurement.

Sur un espace métrique (X, d), soit donc u: X — [—00, 00| une fonction semi-continue supérieure-
ment. Pour n > 0 entier, on introduit les sous-ensembles :

F, = {m € X: u(x) > n},
ainsi que les fonctions :
Yn(z) == max (0, 1 —ndist (z, F},)) (z € X).
(a) Montrer que ) -, ¥, converge uniformément sur les compacts de X vers une fonction ¢: X — R
satisfaisant v > u sur X.
(b) En considérant la fonction bornée supérieurement u — 1, déduire le résultat souhaité.

Exercice 7. L objectif est de démontrer qu’une fonction semi-continue supérieurement sur un espace mé-
trique complet est en fait continue en tout point d’un sous-ensemble dense.

Soient deux espaces topologiques métriques (X, d) et (X', d’), et soit une application arbitraire f: X —
X'.Enun point € X, I’oscillation de f est définie comme :

we(x) == lim ( sup  d'(f(y), f(z)))
=50 * y,z€B,(x)

(a) Vérifier que f est continue en un point z € X lorsque, et seulement lorsque, 0 = wy(x).
(b) Montrer, pour ¢ > 0 quelconque, que les ensembles {z: ws(x) < ¢} sont ouverts dans X.
(c) Montrer que I’ensemble des points en lesquels f est continue est un G5 de X, a savoir une intersection
dénombrable de certains ouverts de X, que 1’on précisera.
(d) On suppose dorénavant que (X, d) est complet et que f est limite ponctuelle d’une suite d’applications

fn: X — X' continues. Montrer, pour ¢ > 0 quelconque, que I’ensemble {z: wy(z) < c} est dense dans
X.
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(e) En appliquant le Théoréme de Baire, montrer que I’ensemble des points en lesquels f est continue forme
un G5 dense de X.

(f) Conclure dans ce contexte que la semi-continuité supérieure implique la continuité sur un G dense.
Exercice 8. Utiliser I'inégalité de Cauchy-Schwarz pour montrer que si une fonction h est harmonique dans
un domaine Q C C, alors h? est encore harmonique dans €.

Exercice 9. (a) Etant donné ¢ € C, calculer pour tout > 0 :

2 log|c| lorsque r < [c],

logr lorsque r > |(].

log |re” — (| dt = {

27 Jo

(b) Utiliser cela pour montrer que la fonction :

u(z) = Z 7 log |z — 5
n>1

est sous-harmonique dans C.
(c) Vérifier que u n’est pas continue en z = 0.
Exercice 10. Soient uq, ..., ug des fonctions sous-harmoniques dans un domaine 2 C C. On suppose que

leur somme u; + - - - + ug atteint un maximum en un certain point de 2. Montrer que toutes les fonctions
U1, ..., Uug sont alors harmoniques.

Exercice 11. Soit u une fonction sous-harmonique dans le disque unité D C C qui y est < 0. Pour tout
¢ € OD, établir le Lemme de Hopf :
(r¢)

Iimsupqii < 0.
—-r

r—s1
£ —» 0. Indication: Appliquer le principe du maximum a la fonction u(z) + clog |z| sur I’ensemble {3 <
|z| < 1} pour une constante appropriée c.

Exercice 12. Soit D C C le disque unité, et soit f: D — ID une fonction holomorphe satisfaisant, lorsque
z—1:

f(z) = z+o(|1 — 2%).
(a) On introduit ¢(z) := 12 ainsi que :

11—z
u(z) = Re(¢(2) — &(f(2))).
Montrer, pour tout ¢ € OD\{1}, que :

limsupu(z) < 0.
z—C

(b) Montrer que u(z) = o(|1 — z|) lorsque z — 1.
(c) En utilisant le principe du maximum, montrer que u < 0, puis, grace a I’Exercice 11, que u = 0.
(d) Conclure que f(2) = z.
(e) Donner un exemple montrant que cette conclusion échouerait si on supposait seulement que f(z) =
z+O(|1 — 2[3).
Exercice 13. Soit u une fonction sous-harmonique sur le disque unité D satisfaisant :

u(z) < —log|lmz| (z€D).
Montrer que :
5

2

u(z) < —log (z€D).

Indication: Appliquer le principe du maximum a la fonction :

2 2
u(z) + Iog|T T ’,
définie sur D,.(0), out 0 < r < 1, et faire r — 1.
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Exercice 14. Soit ¢ une fonction semi-continue supérieurement dans un domaine €2 C C satisfaisant, en tout
point zp € Q olt u(zp) > —o0:

1 1 27 )
0 < i — (= 9) qg — )
ITj%p r2 (27r/o u(zo +ret) U(ZO)>

Montrer que u est sous-harmonique dans (2. Indication: Pour ¢ > 0, introduire u. := u + ¢|z|>. Imiter
les arguments successifs qui ont conduit au Corollaire 7.2 pour établir que u. satisfait ’inégalité de sous-
moyenne.

Exercice 15. (a) Montrer que si une fonction u(z) est sous-harmonique dans un voisinage de 0 € C, alors
u(2"*) Iest aussi pour tout entier k > 1.

(b) Montrer que si f est holomorphe dans un voisinage d’un point zy € C, et si f(z) — f(2¢) s’annule & un
ordre précisément égal a un entier £ > 1 en z, alors il existe une application holomorphe injective g définie
dans un voisinage de z telle que :

F(z) = f(z0) = (9(2))"

(¢) Montrer que si f:  — Q' est une application holomorphe entre deux ouverts 2 C C et Q' C C, alors :
u € SH(Y) = wuof € SH(Q),

ce qui généralise le Corollaire 7.3.
Exercice 16. Soit 2 C C un sous-ensemble ouvert quelconque. Montrer que la fonction :

z — —logdist (2, 09)
est sous-harmonique dans €.
Exercice 17. Soit u une fonction sous-harmonique dans un domaine {2 C C. L’objectif est de démontrer que
si u vaut — oo sur un segment de droite ouvert L C 2 de longueur > 0, alors u = — oo dans 2.
(a) On choisit un disque ouvert A centré en un point de L de rayon assez petit pour que L N A soit un
diametre de A, le découpant en deux demi-disques ouverts A~ et A*. Montrer que la fonction :

— 00 lorsque z € A™ U L,
(2) = { u(z) lorsque 2 € AT,

est sous-harmonique dans A.
(b) Montrer que v = — oo dans A, et conclure.

Exercice 18. Est-il possible qu’une fonction sous-harmonique dans un domaine 2 C C soit non-continue en
tout point de €2 ? Indication: Penser a un exercice qui précede.

Exercice 19. Soit u: D — R une fonction définie sur le disque unité D C C telle que x — u(r +iy) et
y — u(z + i y) sont convexes.

(a) Montrer que u est sous-harmonique.

(b) Trouver un contre-exemple a la réciproque.

Exercice 20. Soit — 0o < a < b < 00, s0it 2 — ]a, b[ une fonction harmonique dans un domaine 2 C C, et
soit ¢: Ja, b| — R une fonction convexe (pas forcément croissante). Montrer que v o h est sous-harmonique
dans €.

Exercice 21. Soit u: 2 — [0, o[ une fonction définie dans un domaine 2 C C. Montre que log u est
sous-harmonique dans {2 si et seulement si u® est sous-harmonique dans €2 pour tout « > 0. Indication: Pour
u®—1

le ‘si’, utiliser le fait que “—— décrofit vers log u lorsque a | 0.

Exercice 22. Montrer que si log u et log v sont sous-harmoniques dans Q2 C C, alors log(u + v) I’est aussi.
Exercice 23. (a) Montrer que toute fonction convexe sur R qui est bornée supérieurement est nécessairement
constante.

(b) Re-démontrer le Théoreme de Liouville pour les fonctions sous-harmoniques (Corollaire 6.8).
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Exercice 24. Avec les notations de la Définition 11.8, montrer que ’on a :

B,(r) = C’u(ﬁ) (Y 0<rR).

Indication: Ecrire C, (r) sous la forme ¢ (log ), avec ¢ convexe, et appliquer Iinégalité de Jensen réelle 11.1
alarelation 11.9, i.e. a B,(r) = 5 [; Cu(s)sds.

Exercice 25. Montrer que si logu est sous-harmonique dans un disque Dg(0) avec R > 0, alors les trois
fonctions :

log M., (), log Cu(r), log B (r)
sont des fonctions convexes de log r. Indication: S’inspirer des démonstrations des Théorémes 11.6 et 11.10.

Exercice 26. Soient (a;)32 et (b;)52, deux suites infinies de nombres a;, b; > 0. Pour k > 0, on introduit :
C = Z Qa; bk_j.
0<j<k
(a) En utilisant I’'inégalité de Cauchy-Schwarz, montrer que :

o0 2 o0 o0
f e (59 (50)

k=0 j=0

(b) Soient f et g deux fonctions holomorphes dans un disque Dz(0) de rayon R > 0 muni de la mesure de
Lebesgue d\. Montrer, pour tout 0 < 7 < R, que :

1 2 12 1 o i0y |2 1 /27r i0y |2
< J— —_— .
2 Jy w)lf\\g\ dA < <2ﬂ_]£ |f(re®)|”df o7 J, |g(re®)|” db

r

(c) Siu > 0etv > 0sont deux fonctions sur Dz (0), R > 0, telles que log u et log v sont sous-harmoniques,
montrer que :

Buy(r) < Cu(r) Cy(r) (V0<r<R).
Indication: Adapter les idées de la démonstration du Théoreme 11.6.
(d) Donner une interprétation géométrique de cette derniere inégalité dans le cas v = v = |f’], ou
f: Dgr(0) = Q est un biholomorphisme.

Exercice 27. Soit un domaine 2 C C, et soit u: 2 — [— 00, 0o[ une fonction mesurable qui est bornée
inférieurement et supérieurement sur tout compact X € €2, et qui satisfait I’inégalité locale de sous-moyenne.
On ne suppose pas que u est semi-continue supérieurement.

(a) Avec une fonction x comme dans le Théoreme 12.3, montrer pour tout » > 0 que u * X, est sous-
harmonique dans €2,..

(b) On introduit la régularisée semi-continue supérieure de w :
u*(z) = lim ( sup u(w)) (2€9).
r—0 weD,.(z)
Vérifier que u* est semi-continue supérieurement dans 2.

(c) Montrer que :

lim ux*x, = u*.
r—0

(d) Pour r, s > 0, montrer que I’on a sur §2,. :
(u*XT) *Xs = (U*Xs) * Xr-
(e) Déduire que u * x,. décroit avec () S et quel’ona:
wxxp = Uk X,
ceci sur €2,., pour tout r > 0.

(f) Montrer que u* est sous-harmonique dans €2, et que u* = wu presque partout.

(g) En tronquant pourn > 1:
U, = max (u, —n),
montrer que ces conclusions restent vraies sans supposer que u soit bornée inférieurement sur les compacts.



15. Exercices 53

Exercice 28. Soit u une fonction sous-harmonique dans un domaine 2 C C, et soit v une fonction semi-
continue supérieurement dans €2 telle que :

u < v
presque partout. Montrer qu’on a en fait u < v partout.

Exercice 29. EE



