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1. Introduction

2. Analogie avec la théorie réelle

Les analogues unidimensionnels des fonctions harmoniques sont les fonctions affines
h(x) = λx + µ, satisfaisant donc d2h

dx2 = 0. Ces fonctions affines essentiellement triviales
permettent d’ailleurs de définir la notion de fonction convexe.
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En effet, une fonction u : [a, b] −→ R définie sur un intervalle [a, b] ⊂ R est convexe
si, pour tout intervalle [c, d] ⊂ [a, b] et pour toute fonction affine h(x), les inégalités aux
extrémités :

u(c) 6 h(c) et u(d) 6 h(d)

impliquent l’inégalité :
u(x) 6 h(x)

pour tout x ∈ [c, d]. Cette condition peut être comparée (exercice) à une condition classique
concernant la corde entre deux points quelconque du graphe de u.

Les fonctions sous-harmoniques que nous allons étudier sont les analogues bidimension-
nels des fonctions convexes. Elles ne sont pas nécessairement partout continues, et on doit
se contenter de leur semi-continuité, concept général indépendant qui fera d’abord l’objet
d’un paragraphe préliminaire.
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3. Fonctions semi-continues

Soit (X, d) un espace métrique, par exemple X = Rn muni de la distance euclidienne,
ou plus généralement X = un ouvert Ω ⊂ Rn, ou encore X = un ouvert O de (X, d).
Certaines des notions générales qui suivent ont aussi un sens dans les espaces topologiques
quelconques. Les fonctions réelles considérées seront autorisées à prendre la valeur −∞,
mais pas +∞.
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u
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lim sup
x6=x0

Définition 3.1. Une fonction u à valeurs réelles :

−∞ 6 u < +∞,
définie au voisinage d’un point x0 ∈ X , est dite semi-continue supérieurement en ce point
si :

lim sup
x→x0

u(x) 6 u(x0),

à savoir plus précisément si, pour tout ε > 0, il existe un δ = δ(ε) > 0 tel que :

d(x, x0) 6 δ =⇒

{
u(x) 6 u(x0) + ε lorsque u(x0) 6= −∞,
u(x) 6 − 1

ε
lorsque u(x0) = −∞.

Il importe de noter qu’avec cette définition, la fonction identiquement égale à :

−∞
est semi-continue supérieurement. Bien entendu, ce concept se globalise.

Définition 3.2. Une fonction :

u : X −→ {−∞} ∪ R
est dite semi-continue supérieurement lorsqu’elle l’est en tout point.

Les trois volets de la caractérisation suivante s’avéreront utiles dans les démonstrations
ultérieures.

Proposition 3.3. Les propriétés suivantes sont équivalentes :
(i) u est semi-continue supérieurement, à savoir :

lim sup
x→x0

u(x) 6 u(x0) (∀x0 ∈X);

(ii) pour toute valeur u0 ∈ R, l’ensemble de sous-niveau :{
x ∈ X : u(x) < u0

}
est ouvert ;
(iii) le sur-graphe de u : {

(x, u) ∈ X × [−∞,∞[ : u > u(x)
}
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est un sous-ensemble ouvert de X × [−∞,∞[.

Démonstration. (i) =⇒ (ii). Soit x0 ∈ X avec u(x0) < u0. L’hypothèse que :

lim sup
x→x0

u(x) 6 u(x0)

interprétée avec ε := u0−u(x0)
2

> 0 donne δ = δ(ε) > 0 tel que :

d(x, x0) 6 δ =⇒ u(x) 6 u(x0) +
u0−u(x0)

2

= u0 − u0−u(x0)
2

< u0,

ce qui montre que la boule ouverte de rayon δ > 0 centrée en x0 est contenue dans l’en-
semble de sous-niveau {u(x) < u0}. Ce dernier est donc bien ouvert.
(ii) =⇒ (iii). Soit x0 ∈ X , et soit (x0, u(x0)) le point correspondant du graphe de u. Soit
(x0, u0) un point quelconque du sur-graphe de u, à savoir :

u0 > u(x0).

Par hypothèse, l’ensemble :{
x ∈ X : u(x) < u(x0) +

u0−u(x0)
2

}
3 x0

est ouvert, et x0 lui appartient clairement. Donc il existe δ > 0 tel :

d(x, x0) < δ =⇒ u(x) < u(x0) +
u0−u(x0)

2
.

u
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2

Géométriquement, tout le graphe de la fonction u restreinte à la δ-boule ouverte en x0 est
en-dessous de ce plafond.

Alors par inégalité triangulaire, l’ouvert-rectangle centré en (x0, u0) et posé sur ce pla-
fond : {

(x, u) : d(x, x0) < δ, |u− u0| < u0−u(x0)
2

}
est entièrement contenu dans le sur-graphe, ce qui montre que ce dernier est bel et bien
ouvert.
(iii) =⇒ (i). Soit (x0, u0) un point quelconque du sur-graphe, i.e. avec u0 > u(x0). Sachant
que ce dernier est ouvert, il existe δ > 0 et il existe ε > 0 tels que :{

(x, u) : d(x, x0) < δ, |u− u0| < ε
}
⊂ sur-graphe = {(x, u) : u > u(x)}.
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En particulier, le segment horizontal :{
(x, u0) : |x− x0| < δ

}
⊂ sur-graphe.

Par définition du sur-graphe, ceci garantit que le graphe se trouve localement en-dessous :

u(x) < u0 (∀ |x−x0|<δ).

Grâce à cette inégalité de contrôle, il vient :

lim sup
x→x0

u(x) < u0,

et comme u0 > u(x0) pouvait être choisi arbitrairement proche de u(x0), on atteint (i) ! �
La notion duale de fonction semi-continue inférieurement, moins utilisée dans ce qui

suivra, se devine en changeant lim sup en lim inf, ou en remplaçant u par −u.

Corollaire 3.4. Pour une fonction u : X −→ ]−∞,∞], les trois caractérisations suivantes
de la semi-continuité inférieure sont équivalentes :
(i) en tout point x0 ∈ X :

u(x0) 6 lim inf
x→x0

u(x);

(ii) pour tout u0 ∈ R, l’ensemble de surniveau :{
x ∈ X : u(x) > u0

}
est ouvert ;
(iii) le sous-graphe de u :{

(x, u) ∈ X×]−∞,∞] : u < u(x)
}

est un sous-ensemble ouvert de X×]−∞,∞]. �
On se convainc aisément qu’une fonction est continue en un point lorsque, et seulement

lorsqu’elle y est à la fois semi-continue inférieurement, et semi-continue supérieurement.
Nous ferons aussi usage fréquent de l’énoncé de compacité élémentaire suivant, valable

pour le maximum, mais pas en général pour l’infimum.

Proposition 3.5. Si une fonction u : X −→ [−∞,∞[ est semi-continue supérieurement,
alors pour tout sous-ensemble compactK ⊂ X , il existe une constante NK <∞ telle que :

sup
x∈K

u(x) 6 NK .
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De plus, u atteint son supremum sur K :

sup
x∈K

u(x) = u
(
xK

)
(∃xK ∈K).

Démonstration. Pour des entiers n > 1, les ensembles :

On :=
{
x ∈ X : u(x) < n

}
sont ouverts et ces On forment un recouvrement deX , puisque u(x) <∞ pour tout x ∈ X .
Par Borel-Lebesgue, du recouvrement ouvert du compact :

K = ∪
16n

(
On ∩K

)
,

on peut extraire un sous-recouvrement fini ∪16n6 NK
, et alors :

sup
x∈K

u(x) 6 NK < ∞.

Ensuite, les ensembles ouverts :{
x ∈ X : u(x) < sup

x∈K
u(x)− 1

n

}
(n> 1)

ne peuvent recouvrir K, sinon, encore par Borel-Lebesgue, un nombre fini d’entre eux le
recouvriraient, ce qui contredirait la définition de supK u. Donc on a bien supK u = u(xK)
pour au moins un xK ∈ K. �

Voici enfin un dernier énoncé, plus coûteux en effort neuronal pour l’exercitation estu-
diantine — voir aussi l’Exercice 6 qui le complémente.

Théorème 3.6. Si u : X −→ [−∞,∞[ est une fonction semi-continue supérieurement
bornée :

u 6 M < ∞
définie sur un espace métrique (X, d), alors il existe une suite décroissante :

φ1 > φ2 > · · · > φn > φn+1 > · · · > u

de fonctions continues φn ∈ C 0(X,R) qui convergent ponctuellement vers :

u(x) = lim
n→∞

φn(x) (∀x∈X).

De plus, si µ > 0 est une mesure de Borel positive finie à support compact dans X ,
alors :

lim
k→∞

∫
X

uk dµ =

∫
X

u dµ.

Démonstration. Lorsque u ≡ −∞, il suffit de prendre φn :≡ −n.
Nous pouvons donc supposer qu’en au moins un point y0 ∈ X , on a u(y0) > −∞.
Pour n > 1 entier, définissons alors les fonctions φn : X −→ R qui vont réaliser notre

objectif par :
φn(x) := sup

y∈X

(
u(y)− n d(x, y)

)
(x∈X).

En faisant y = y0, nous voyons que φn(x) > −∞ pour tout x ∈ X . De plus, en faisant
y = x :

φn(x) > u(x).

On se convainc aisément que cette suite de fonctions est décroissante et qu’elle tend ponc-
tuellement vers u. D’ailleurs, ces fonctions φn sont mieux que continues, elles sont lipschit-
ziennes (avec une constante de Lipschitz qui explose) :
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Lemme 3.7. Pour tous x, x′ ∈ X , on a :∣∣φn(x)− φn(x
′)
∣∣ 6 n d(x, x′).

Démonstration. Par symétrie, on peut supposer que φn(x) 6 φn(x
′). Soit alors y′ ∈ X qui

réalise ‘presque’ le deuxième supremum :

φn(x
′) = u(y′)− n d(x′, y′)− ε′,

à une erreur arbitrairement petite ε′ > 0. Bien entendu :

φn(x) > u(y′)− n d(x, y′).

Mais alors par soustraction et par inégalité triangulaire :

0 6 −φn(x) + φn(x
′) 6 −u(y′)

◦
+ n d(x, y′) + u(y′)

◦
− n d(x′, y′)− ε′

= n
[
d(x, y′)− d(x′, y′)

]
− ε′

6 n d(x, x′) + ε′. �

Ensuite, en notant la boule ouverte de centre x et de rayon r > 0 :

Br(x) :=
{
y ∈ X : d(x, y) < r

}
,

on peut majorer :

φn(x) = sup
y∈X

(
u(y)− n d(x, y)

)
= max

(
sup

y∈Br(x)

(·), sup
y∈X\Br(x)

(·)
)

6 max
(

sup
y∈Br(x)

u(y), sup
y∈X\Br(x)

(
u(y)− n r

)
︸ ︷︷ ︸

−→−∞ lorsque n→∞
puisque u6 M <∞

)
.

Par conséquent :
lim

n→∞
φn(x) 6 sup

y∈Br(x)

u(y).

En faisant tendre r −→ 0, la semi-continuité de u donne :

lim
n→∞

φn(x) 6 u(x),

et comme l’inégalité inverse était satisfaite, les φn convergent bien ponctuellement vers u.
La dernière affirmation est une conséquence du Théorème de convergence monotone en

théorie de la mesure et de l’intégration. �

Un des intérêts de la semi-continuité supérieure est la stabilité suivante.

Proposition 3.8. L’infimum :
u := inf

α∈A
uα

d’une famille quelconque de fonctions semi-continues supérieurement uα : X −→
[−∞,∞) est toujours semi-continu supérieurement.
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Démonstration. En effet, pour tout β ∈ A fixé, on a :

lim sup
x→x0

(
inf
α∈A

uα(x)
)

6 lim sup
x→x0

(
uβ(x)

)
6 uβ(x0).

Mais alors, en prenant l’infimum à droite sur tous les β ∈ A :

lim sup
x→x0

(
inf
α∈A

uα(x)
)

6 inf
β∈A

uβ(x0),

ce qui démontre bien que la fonction u = inf uα est semi-continue supérieurement. �

En général, lorsqu’on part d’une famille infinie dénombrable de fonctions (un)n∈N qui
sont continues, la fonction inf un perd la continuité : seule la semi-continuité supérieure est
préservée, et ceci justifie l’intérêt de ce concept.

Lemme 3.9. La somme et le maximum :

u1 + · · ·+ uK et max
(
u1, . . . , uK

)
d’un nombre fini de fonctions semi-continues supérieurement u1, . . . , uK sont encore semi-
continus supérieurement.

Démonstration. Par une récurrence évidente, il suffit de traiter le cas K = 2. Soient donc u
et v deux fonctions semi-continues supérieurement en un point x0 ∈ X . Pour leur somme
u+ v, il existe une suite de points (xn)∞n=1 tendant vers x0 qui réalise :

lim sup
x→x0

(u+ v)(x) = lim
n→∞

(
u(xn) + v(xn)

)
6 lim sup

x→x0

u(x) + lim sup
x→x0

v(x)

6 (u+ v)(x0),

ce qui aboutit avec peu d’efforts.
De même, pour une suite (xn)

∞
n=1 bien choisie :

lim sup
x→x0

(
max (u(x), v(x))

)
= lim

n→∞

(
max(u, v)

)
(xn)︸ ︷︷ ︸

u(xn) ou v(xn)

6 max
(

lim sup
n→∞

u(xn), lim sup
n→∞

v(xn)
)

6 max
(

lim sup
x→x0

u(x), lim sup
x→x0

v(x)
)

6 max
(
u(x0), v(x0)

)
,

ces nombreuses inégalités finissant par être concluantes ! �

Toutefois, étant donné une famille infinie de fonctions semi-continues supérieurement :(
uα

)
α∈A : X −→ [−∞,∞[,

la fonction :
u(x) := sup

α∈A
uα(x)
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n’est pas nécessairement semi-continue supérieurement, même lorsque les uα sont conti-
nues et lorsque u(x) < ∞ en tout point x. Il suffit en effet de penser à la suite croissante
de fonctions :

[0, 1] 3 t 7−→ n
√
t ∈ [0, 1]

qui converge vers la fonction non semi-continue supérieurement en 0 :

t 7−→
{
0 lorsque t = 0,

1 lorsque 0 < t 6 1.

4. Définition des fonctions sous-harmoniques

Dans son essence différentielle, une fonction u est sous-harmonique lorsque son lapla-
cien ∆u > 0 est positif, vision proche de l’harmonicité ∆u = 0.

Toutefois, ce n’est pas cette manière de voir qui est la plus générale. Comme cela trans-
paraîtra ultérieurement, l’intérêt majeur des fonctions sous-harmoniques est leur grande
flexibilité, laquelle serait trop contrainte par l’hypothèse que u ∈ C 2 soit d’emblée diffé-
rentiable. A posteriori, l’inégalité ∆u > 0 sera effectivement toujours satisfaite, pourvu
qu’elle soit interprétée au sens des distributions.

En fait, une analogie profonde avec les fonctions convexes sur R peut servir de guide
précieux à la compréhension. Par exemple, une fonction ψ ∈ C 2(R,R) est convexe si et
seulement si ψ′′ > 0. Toutefois, ce n’est pas ainsi que la convexité est définie dans le cadre
le plus général possible, c’est au moyen de l’inégalité de sous-moyenne :

ψ
(
λ s+ (1− λ) t

)
6 λψ(s) + (1− λ)ψ(t) (∀ s∈R, ∀ t∈R, ∀ 06λ6 1),

qui exprime que le graphe de ψ se situe toujours en-dessous de ses cordes. Notons que
cette définition de la convexité admet des fonctions non lisses, par exemple la fonction
ψ(t) := |t|, qui est convexe.

Nous allons maintenant transférer cette inégalité aux fonctions définies sur des domaines
bidimensionnels Ω ⊂ C ∼= R2.

Mais l’analogie intuitive entre les fonctions convexes et les fonctions sous-harmoniques
ne sera pas un parallèle exact. Nous pourrions requérir dans leur définition que les fonctions
sous-harmoniques soient continues, mais ce serait se priver de la flexibilité précieuse que
représentent les nombreux passages à la limite dénombrables que les applications théo-
riques feront surgir comme nécessaires, notamment lorsqu’on aura à prendre l’infimum
d’une famille de fonctions. Rappelons-nous que la Proposition 3.8 énonçait une stabilité de
ce type pour la semi-continuité supérieure. C’est en partie en vertu de cette proposition que
nous exigerons des fonctions sous-harmoniques la seule ‘tenue correcte minimale’ qu’est
la semi-continuité inférieure.

Nous pouvons maintenant présenter deux définitions initiales.
Rappelons les notations pour les disques ouverts et les cercles de C, centrés en un point

z0 ∈ C et de rayon r > 0 :

Dr(z0) :=
{
z ∈ C : |z − z0| < r

}
et Sr(z0) :=

{
z ∈ C : |z − z0| = r

}
,

les disques fermés étant leur réunion :

Dr(z0) = Dr(z0) ∪ Sr(z0).
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À nouveau, les fonctions considérées seront autorisées à prendre la valeur −∞, mais
pas la valeur +∞. La première formulation explique et justifie la terminologie « sous-
harmonique ».

Définition 4.1. Une fonction définie sur un domaine Ω ⊂ C :

u : Ω −→ [−∞, ∞[

est dite sous-harmonique si :
(i) elle est semi-continue supérieurement ;
(ii) en tout point z0 ∈ Ω, il existe 0 < r0 < dist(z0,C\Ω) tel que pour tout disque Dr(z0)
centré en z0 de rayon 0 6 r 6 r0, et pour toute fonction h harmonique dans Dr(z0) continue
sur Dr(z0), elle satisfait :

u
∣∣
Sr(z0)

6 h
∣∣
Sr(z0)

=⇒ u
∣∣
Dr(z0)

6 h.

Une telle fonction h est parfois appelée majorant harmonique de la fonction u, la majo-
ration se transférant du bord vers l’intérieur. Être sous-harmonique, c’est alors tout sim-
plement être « en-dessous » des fonctions harmoniques.

Toutefois, ce n’est pas par cette définition que nous allons commencer ce cours, mais
par une autre, plus concrète et plus intuitive, et nous démontrerons ultérieurement que les
deux définitions sont équivalentes. Soit à nouveau Ω ⊂ C un domaine.

Définition 4.2. Une fonction u : Ω −→ [−∞,∞[ est dite sous-harmonique si :
(i) elle est semi-continue supérieurement ;
(ii) elle satisfait la propriété locale de la sous-moyenne, à savoir, en tout point z0 ∈ Ω,
il existe 0 < r0 < dist(z0,C\Ω) tel que pour tout disque Dr(z0) centré en z0 de rayon
0 6 r 6 r0, elle satisfait :

u(z0) 6 1

2π

∫ 2π

0

u
(
z0 + r eiθ

)
dθ.(4.3)

Autrement dit, u est inférieure en tout point à ses moyennes sur des petits cercles centrés.
Observons que u ≡ −∞ est sous-harmonique. L’ensemble des fonctions sous-harmoniques
dans Ω sera noté :

SH(Ω).

Cette définition appelle plusieurs commentaires visant à l’éclairer.
Premièrement, une fonction définie dans un ouvert U ⊂ C est sous-harmonique si elle

l’est dans chaque composante connexe de U.
Deuxièmement, en décomposant u = u+ − u− avec :

u+ := +max
(
0, u(x)

)
> 0 et u−(x) := −min

(
u(x), 0

)
> 0,

la théorie de l’intégration nous dit que l’intégrale sur le cercle Sr(z0) doit être interprétée
comme :
1

2π

∫ 2π

0

u
(
z0 + r eiθ

)
dθ :=

1

2π

∫ 2π

0

u+
(
z0 + r eiθ

)
dθ − 1

2π

∫ 2π

0

u−
(
z0 + r eiθ

)
dθ.

Grâce à la Proposition 3.5, u+ est bornée sur le compact Sr(z0), donc son intégrale est
certainement positive finie ! À l’inverse, l’intégrale de u− peut être finie ou infinie, car u
est autorisée à prendre la valeur −∞. Mais dans tous les cas, la valeur de l’intégrale de u
est un nombre appartenant à [−∞,∞[. Plus tard, nous verrons que si cette intégrale vaut



10 François DE MARÇAY, Département de Mathématiques d’Orsay, Université Paris-Sud

−∞ pour un seul rayon 0 < r 6 r0, d’où u(z0) = −∞ aussi par (4.3), alors u ≡ −∞
partout dans Ω.

Troisièmement, l’inégalité de sous-moyenne (4.3) est proprement locale : on ne de-
mande sa validité que pour des rayons r0 > 0 assez petits qui dépendent a priori du point z0.
Elle implique (exercice) que si (ωα)α∈A est un recouvrement ouvert de Ω, alors u est sous-
harmonique dans Ω si et seulement si toutes ses restrictions u|ωα sont sous-harmoniques.
Nous verrons ultérieurement que la sous-harmonicité locale implique une inégalité de sous-
moyenne globale, à savoir que (4.3) est satisfaite pour tout 0 6 r < dist (z0, ∂Ω).

Lemme 4.4. Une fonction sous-harmonique u ∈ SH(Ω) atteint sa limite supérieure en tout
point z0 ∈ Ω :

u(z0) = lim sup
z −→ z0
z 6= z0

u(z).

Démonstration. Comme u est semi-continue supérieurement :

lim sup
z −→ z0
z 6= z0

u(z) 6 u(z0),

mais il y a plus, comme elle satisfait l’inégalité de sous-moyenne en z0, il existe r0 > 0 tel
que, pour tout 0 < r 6 r0 :

u(z0) 6 1

2π

∫ 2π

0

u
(
z0 + r eiθ

)
dθ.

Par l’absurde, si on avait :

lim sup
z −→ z0
z 6= z0

u(z) =: u0 < u(z0),

alors il existerait 0 < r1 6 r0 assez petit pour que :

sup
Dr1 (z0)\{z0}

u(z) 6 u0 +
u(z0)−u0

2

= u(z0)+u0

2
,

et on aboutirait alors à un jeu contradictoire d’inégalités :

u(z0) 6 1

2π

∫ 2π

0

u
(
z0 + r eiθ

)
dθ 6 u(z0)+u0

2
< u(z0). �

Définition 4.5. Une fonction v : Ω −→ ]−∞,∞] est dite sur-harmonique lorsque − v est
sous-harmonique.

Observons (exercice d’assimilation) qu’une fonction est harmonique si et seulement si
elle est à la fois sous-harmonique et sur-harmonique.

Le premier exemple canonique de fonction sous-harmonique est le suivant.

Proposition 4.6. Si f ∈ O(Ω) est holomorphe dans un domaine Ω ⊂ C, alors log |f | est
sous-harmonique dans Ω.

Démonstration. Si f ≡ 0, on obtient −∞ ∈ SH(Ω).
On peut donc supposer f 6≡ 0. Sur Ω\{f = 0}, la fonction log |f | est continue, et

puisqu’elle prend la valeur −∞ en les points discrets où f = 0, elle est gratuitement
semi-continue supérieurement sur la totalité de Ω.
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Au voisinage de tout point z0 ∈ Ω\{f = 0}, la fonction :

log |f | = 1
2

(
log f + log f

)
est harmonique, donc elle y satisfait l’(in)égalité de la moyenne locale.

En un point z0 où f(z0) = 0, l’inégalité (4.3) est trivialement satisfaite. �
D’autres exemples de fonctions sous-harmoniques peuvent être engendrés en appliquant

des procédés élementaires, qui sont conséquences immédiates de la Définition 4.2 (cf. aussi
le Lemme 3.9).

Proposition 4.7. Soient u et v deux fonctions sous-harmoniques définies dans un domaine
Ω ⊂ C. Alors :
(i) max(u, v) est sous-harmonique dans Ω ;
(ii) αu+ β v est sous-harmonique dans Ω pour tous réels α, β > 0. �

Ainsi, les fonctions sous-harmoniques peuvent très bien ne pas être lisses. L’Exercice 8
montre qu’elles peuvent même être discontinues.

5. Principe du maximum

Nous avons déjà constaté que la propriété locale de la moyenne caractérise les fonctions
harmoniques, et qu’alors, elles satisfont aussi la propriété globale de la moyenne :

h ∈ Harm(Ω) =⇒ ∀ z0 ∈ Ω, ∀ 0 6 r < dist(z0, ∂Ω), h(z0) =
1

2π

∫ 2π

0

h
(
z0+r e

iθ
)
dθ.

Afin de généraliser la globalisation de la propriété de sous-moyenne locale que satisfont
les fonctions sous-harmoniques, nous aurons besoin d’un nouveau principe du maximum,
lui aussi très puissant.

Théorème 5.1. [Principe du maximum] Si une fonction u ∈ SH(Ω) sous-harmonique
dans un domaine Ω ⊂ C atteint son maximum global en un point intérieur :

u(zmax) = max
z∈Ω

u(z) (∃ zmax ∈Ω),

alors u ≡ u(zmax) est constante.

Contrairement aux fonctions harmoniques, aucun énoncé concernant le minimum global
ne peut avoir lieu, comme le montre la fonction u(z) := max(0, Re z) sous-harmonique
dans C. Et même, cette fonction max(0, Re z) montre aussi que l’existence de maxima
locaux n’implique pas non plus la constance.

Il y a bien un principe du minimum global, mais ce sont seulement les fonctions sur-
harmoniques qui le satisfont, par un corollaire direct.

Démonstration. Supposons donc l’existence d’un tel zmax ∈ Ω en lequel u est maximale,
posons :

umax := u(zmax),

et décomposons Ω en les deux sous-ensembles disjoints :

E :=
{
z ∈ Ω: u(z) < umax

}
et F :=

{
z ∈ Ω: u(z) = umax

}
.

Comme u est semi-continue supérieurement, E est ouvert.

Assertion 5.2. L’ensemble F est lui aussi ouvert.
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Preuve. Soit un point z ∈ F . Sur des cercles de rayon 0 < s 6 r assez petit, on a :

umax = u(z) 6 1

2π

∫ 2π

0

u
(
z + s eit

)
dt.

Mais si on avait u(z + seit∗) < umax pour un angle t∗, alors par semi-continuité supérieure
u(z + seit) serait toujours < umax pour t dans un voisinage de t∗, et alors l’intégrale-
moyenne à droite serait elle aussi < umax, ce qui est impossible.

Donc on a u(z + seit) ≡ umax sur tous ces cercles, ce qui établit l’ouverture de F en
z. �

Comme F 6= ∅, la connexité de Ω = E ∪ F force Ω = F . �

Convention 5.3. Le point à l’infini∞ ∈ ∂Ω appartient au bord de tout domaine non borné
Ω ⊂ C∞ = C ∪ {∞}.

Théorème 5.4. [Principe du maximum au bord] Si une fonction u ∈ SH(Ω) sous-
harmonique dans un domaine Ω ⊂ C satisfait pour tout point ζ ∈ ∂Ω :

lim sup
z→ ζ

u(z) 6 0,

alors u 6 0 dans Ω.

Démonstration. Prolongeons tout d’abord u à ∂Ω par :

u(ζ) := lim sup
z→ ζ

u(z) (∀ ζ ∈ ∂Ω),

y compris, donc, en ζ =∞ lorsque Ω est non-borné. On se convainc alors aisément que la
fonction ainsi prolongée u est semi-continue supérieurement dans Ω = Ω ∪ ∂Ω. De plus
par hypothèse :

u
∣∣
∂Ω

6 0.(5.5)

Or puisque Ω est compact — il fallait pour cela compactifier Ω lorsqu’il est non-borné
en lui ajoutant∞ —, la Proposition 3.5 garantit que ce prolongement u atteint son maxi-
mum :

umax := u(zmax) = max
z∈Ω

u(z),

en un certain point zmax ∈ Ω.
• Lorsque zmax ∈ ∂Ω, on a u(zmax) 6 0 par (5.5), puis u(z) 6 u(zmax) 6 0 pour tout
z ∈ Ω.
• Lorsque zmax ∈ Ω, le Théorème 5.1 donne u ≡ umax constante dans Ω, donc son prolon-
gement au bord est tout aussi constant, et enfin (5.5) donne u ≡ umax 6 0. �

6. Principe de Phragmén-Lindelöf sous-harmonique

Dans les domaines Ω ⊂ C non-bornés, on aimerait avoir un principe du maximum
en ne connaissant le comportement de u qu’aux points du bord situés à distance finie, à
l’exclusion de ∞ ∈ ∂Ω. Ceci est possible en demandant que u ne croisse pas trop vite
à l’infini. Voici un résultat très général, dont se déduiront plusieurs théorèmes classique
d’Analyse Complexe à une variable.
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Théorème 6.1. [Principe général de Phragmén-Lindelöf] Soit u ∈ SH(Ω) une fonction
sous-harmonique dans un domaine non-borné Ω ⊂ C satisfaisant :

lim sup
z→ ζ

u(z) 6 0, ∀ ζ ∈ ∂Ω \{∞}.(6.2)

S’il existe une fonction sur-harmonique à valeurs finies :

v : Ω −→ ]−∞, ∞[

telle que :

lim inf
z→∞

v(z) > 0 et lim sup
z→∞

u(z)

v(z)
6 0,(6.3)

alors u 6 0 partout dans Ω.

L’illustration principale de (6.3) est une fonction v ∈ Harm(Ω) harmonique satisfaisant :

∞ = lim
z→∞

v(z) = lim
z→∞

u(z) tandis que : 0 = lim
z→∞

u(z)

v(z)
.

Démonstration. Supposons pour commencer que v > 0 dans Ω, ce qui est un cas spécial
significatif. Pour ε > 0, introduisons :

uε := u− ε v.
Comme − v est sous-harmonique, uε est sous-harmonique dans Ω.

Assertion 6.4. En tout point du bord ζ ∈ ∂Ω, y compris en ζ =∞, on a :

lim sup
z→ ζ

uε(z) 6 0.

Preuve. En un point fini ζ ∈ ∂Ω\{∞}, il suffit d’additionner l’hypothèse (6.2) avec :

lim sup
z→ ζ

(
− ε v(z)

)
6 0.

En le point ζ =∞, on a bien :

lim sup
z→∞

(
u− ε v

)
= lim sup

z→∞
v
(
u
v
− ε

)
6 0,

puisque le facteur v > 0 ne change pas le signe négatif de l’hypothèse (6.3). �
Alors les hypothèses du Théorème 5.4 sont satisfaites, donc uε 6 0 partout dans Ω et

enfin u 6 0 dans Ω en faisant ε >−→ 0.
Traitons à présent le cas d’une fonction v générale. Pour η > 0, introduisons l’en-

semble :
Fη :=

{
z ∈ Ω: u(z) > η

}
,

dont on veut montrer qu’il est vide. Puisque {u < η} est ouvert, Fη est fermé dans Ω. De
plus, par (6.2), aucun point de ∂Ω\{∞} ne peut être limite de points de Fη. Autrement dit,
Fη ne touche pas le bord fini de Ω, mais peut tout à fait s’en aller vers l’infini comme le fait
Ω.

Comme la fonction sur-harmonique v est semi-continue inférieurement, la version op-
posée de la Proposition 3.5 montre qu’elle est bornée inférieurement sur tout compact. Or
à l’infini par hypothèse lim infz→∞ v(z) > 0, donc même lorsque Fη est non borné, v|Fη est
bornée inférieurement.
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Après addition éventuelle à v d’une constante c > 0, on peut supposer que :

v
∣∣
Fη

> 0.

Affirmation 6.5. Pour toute constante c > 0, le remplacement v(z) 7−→ v(z) + c n’altère
pas les deux hypothèses (6.3).

Preuve. Premièrement, on a toujours lim infz→∞
(
v(z) + c

)
> 0. Deuxièmement, si on dé-

compose :
Ω = {u 6 0} ∪ {u > 0},

alors on a gratuitement puisque v > 0 au voisinage de∞ :

lim sup
z→∞

z∈{u60}

u(z)

v(z)
6 0,

et donc la deuxième hypothèse (6.3) concerne seulement la limite supérieure pour les z ∈
{u > 0} proches de∞. Mais alors comme v(z) > 0 dans un voisinage de∞, on a :

1

v(z) + c
<

1

v(z)
(z→∞),

et donc en multipliant par u(z) > 0, on obtient l’inégalité :

lim sup
z→∞

z∈{u>0}

u(z)

v(z) + c
6 lim sup

z→∞
z∈{u>0}

u(z)

v(z)
6 0,

ce qu’il fallait vérifier. �

Après addition d’une telle constante, introduisons maintenant l’ensemble ouvert :

V :=
{
z ∈ Ω: v(z) > 0

}
⊃ Fη.

Assertion 6.6. On a u− η 6 0 sur V .

Preuve. Nous allons appliquer à la fonction z 7−→ u(z)−η définie sur V la version spéciale
du théorème démontrée au début, où nous avons supposé la fonction v > 0, ce qui est
dorénavant vrai sur chaque composante connexe de notre nouvel ouvert V = {v > 0} ;
comme lim infz→∞v(z) > 0, toutes les composantes connexes de V sont non-bornées.

Il faut vérifier les hypothèses (6.2) et (6.3).
En tout point ζ ∈ ∂V \{∞}, nous pouvons estimer en distinguant deux cas :

lim sup
z→ ζ

(
u(z)− η

)
6

{
0− η < 0 lorsque ζ ∈ ∂Ω ∩ ∂V \{∞},
u(ζ)− η lorsque ζ ∈ Ω ∩ ∂V \{∞}.

Or comme V ⊃ Fη = {u > η}, on a :

Ω ∩ ∂V ⊂ {u 6 η},

et donc dans le premier, comme dans le deuxième cas :

lim sup
z→ ζ

(
u(z)− η

)
6 0 (∀ ζ ∂V \{∞}).

Ceci confirme (6.2).
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Quant à (6.3), c’est plus simple et cela s’améliore un peu :

lim sup
z→∞

u(z)− η
v(z)

= lim sup
z→∞

u(z)

v(z)
− η

lim inf
z→∞

v(z)
< 0.

Donc le cas spécial déjà démontré s’applique, et donne u− η 6 0 sur V . �

Comme Fη ⊂ V , on obtient donc u 6 η sur Fη = {u > η}, donc en fait u ≡ η sur Fη !
Mais sur Ω\Fη, on a par définition u < η, et au final on a partout :

u(z) 6 η (∀ z ∈Ω).

En faisant η >−→ 0, on conclut que u 6 0 dans Ω. �

Corollaire 6.7. Si une fonction u est sous-harmonique dans un domaine non-borné Ω $ C
et satisfait en tout point du bord fini :

lim sup
z→ ζ

u(z) 6 0 (∀ ζ ∈ ∂Ω\{∞}),

ainsi que :

lim sup
z→∞

u(z)

log |z|
6 0,

alors u 6 0 partout dans Ω.

Démonstration. Il suffit de choisir sur le bord un point quelconque à distance finie ζ0 ∈
∂Ω 6= ∅ et d’appliquer le théorème qui précède avec la fonction v(z) := log |z − ζ0| (sur-
)harmonique dans Ω. �

Corollaire 6.8. [Théorème de Liouville raffiné] Si une fonction u sous-harmonique sur
C tout entier satisfait :

lim sup
z→∞

u(z)

log |z|
6 0,

alors u est constante sur C. En particulier, toute fonction sous-harmonique sur C qui est
bornée supérieurement doit être constante.

Démonstration. Lorsque u ≡ −∞, il n’y a rien à vérifier. Nous pouvons donc supposer
qu’il existe ζ0 ∈ C tel que u(ζ0) > −∞. Or une application du corollaire qui précède à la
fonction u − u(ζ0) vue sur C\{ζ0} donne u 6 u(ζ0) sur C\{ζ0}, puis u 6 u(ζ0) partout.
Alors u qui atteint un maximum global en ζ0 doit être constante, d’après le Théorème 5.1.

�

Pour des domaines ayant une forme spécifique, des hypothèses précises sur la croissance
à l’infini suffisent. Du Théorème très général 6.1, nous pouvons maintenant déduire deux
formulations classiques du principe de Phragmén-Lindelöf.

Théorème 6.9. [Phragmén-Lindelöf sur une bande] Pour γ > 0 réel, soit la bande
ouverte :

Bγ :=
{
z ∈ C :

∣∣Re z
∣∣ < π

2 γ

}
.

Si une fonction u sous-harmonique dans Bγ a une croissance à l’infini majorée par :

u(x+ i y) 6 Aeα|y| (x+i y ∈Bγ),
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pour des constantes A <∞ et α < γ, et si en tout point du bord fini elle satisfait :

lim sup
z→ ζ

u(z) 6 0 (∀ ζ ∈ ∂Bγ\{∞}),

alors u 6 0 partout dans Bγ .

La fonction :
u(z) := Re

(
cos(γ z)

)
= cos(γ x) cosh(γ y)

montre que le résultat n’est plus vrai lorsque α = γ.

Démonstration. Choisissons un nombre intermédiaire α < β < γ, et introduisons la fonc-
tion harmonique v : Sγ −→ R définie par :

v(z) := Re
(
cos(β z)

)
= cos(β x) cosh(β y).

À l’infini, on a :
lim inf
z→∞

v(z) > lim inf
|y|→∞

cos
(
β π
2 γ

)
cosh(β y) = ∞,

ainsi que :

lim sup
z→∞

u(z)

v(z)
6 lim sup

|y|→∞

Aeα|y|

cos(β π
2 γ

) cosh(β y)
= 0.

Alors le résultat découle du Théorème 6.1. �
Corollaire 6.10. [Théorème des trois droites] Soit u une fonction sous-harmonique sur
la bande verticale B = {0 < Re z < 1} ayant une croissance à l’infini majorée par :

u(x+ i y) 6 Aeα|y|,

pour des constantes A <∞ et α < π. Si :

lim sup
z→ ζ

u(z) 6
{
M0 lorsque Re ζ = 0,

M1 lorsque Re ζ = 1,

alors pour tout x+ i y ∈ B :

u(x+ i y) 6 M0 (1− x) +M1 x.

Démonstration. Introduisons la fonction ũ : B −→ [−∞,∞[ définie par :

ũ(z) := u(z)− Re
(
M0 (1− z) +M1 z

)
.

Alors une application d’une version translatée du Théorème 6.9 avec γ = π donne ũ 6 0
sur B. �
Théorème 6.11. [Phragmén-Lindelöf sur un secteur] Pour γ > 1

2
, soit le secteur angu-

laire :
Sγ :=

{
z ∈ C\{0} : |arg z| < π

2 γ

}
.

Si une fonction u sous-harmonique dans Sγ ayant une croissance à l’infini majorée par :

u(z) 6 A+B |z|α,
pour des constantes A,B <∞ et α < γ, et si en tout point du bord fini :

lim sup
z→ ζ

u(z) 6 0 (∀ ζ ∈ ∂Sγ\{∞}),

alors u 6 0 partout dans Sγ .
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Démonstration. Choisissons un nombre intermédiaire α < β < γ, et définissons une fonc-
tion harmonique v : Sγ −→ R par :

v(z) := Re (zβ) = rβ cos(β t) (z= reit ∈Sγ).

À l’infini, on a :
lim inf
z→∞

v(z) > lim inf
r→∞

rβ cos
(
β π
2 γ

)
= ∞,

ainsi que :

lim sup
z→∞

u(z)

v(z)
6 lim sup

r→∞

A+B rα

rβ cos(β π
2 γ

)
= 0.

À nouveau, le résultat découle donc du Théorème 6.1. �
La fonction u(z) := Re (zγ) montre qu’il n’y a pas extension au cas-limite α = γ.

7. Critères pour la sous-harmonicité

Maintenant que le principe du maximum a été soigneusement présenté, nous pouvons
entamer les aspects les plus centraux de la théorie des fonctions sous-harmoniques, notam-
ment la globalisation de l’inégalité locale (4.3) de sous-moyenne.

Un rappel préliminaire s’impose, issu du chapitre consacré aux fonctions harmoniques.
Sur un disque ouvert ∆ = Dr(z0) de rayon r > 0 centré en un point z0 ∈ C, dont le

bord ∂∆ est paramétré comme :
ζ = z0 + r eiθ (06 θ < 2π),

lorsqu’une fonction intégrable φ ∈ L1(∂∆,R) est donnée, son prolongement harmonique
au disque ∆ a, en un point quelconque z = z0 + s eit ∈ ∆ avec 0 6 s < r, une valeur
fournie par la formule suivante de type convolution avec le noyau de Poisson :(

P∆φ
)
(z) :=

1

2iπ

∫
∂∆

|ζ − z0|2 − |z − z0|2

|(ζ − z0)− (z − z0)|2
u(ζ)

dζ

ζ

=
1

2π

∫ 2π

0

r2 − s2

|ζ − z|2
u
(
z0 + r eiθ

)
dθ

=
1

2π

∫ 2π

0

r2 − s2

r2 − 2rs cos(θ − t) + s2
u
(
z0 + r eiθ

)
dθ.

Alors les fonctions sous-harmoniques obéissent à une inégalité absolument fondamen-
tale qui fait intervenir le prolongement harmonique de leurs restrictions à des cercles.

Théorème 7.1. Pour une fonction semi-continue supérieurement :

u : Ω −→ [−∞,∞[

définie sur un domaine Ω ⊂ C, les conditions suivantes sont équivalentes :
(i) u est sous-harmonique dans Ω ;
(ii) pour tout z0 ∈ Ω, tout 0 < r < dist(z0, ∂Ω), tout point z ∈ Dr(z0) =: ∆, on a :

u(z) 6 P∆

(
u
∣∣
∂∆

)
(z),

à savoir plus précisément, pour tout 0 6 s < r, tout 0 6 t < 2π, on a :

u
(
z0 + s eit

)
6 1

2π

∫ 2π

0

r2 − s2

r2 − 2rs cos(θ − t) + s2
u
(
z0 + r eiθ

)
dθ;
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(iii) pour tout sous-domaine relativement compact ω b Ω, et toute fonction harmonique
h ∈ Harm(ω) satisfaisant :

lim sup
z→ ζ

(
u− h

)
(z) 6 0 (∀ ζ ∈ ∂ω),

on a u 6 h partout dans ω.

Démonstration. (i) =⇒ (iii). Étant donné ω et h ∈ Harm(ω), la fonction u − h est sous-
harmonique dans ω (exercice) car (indication) −h satisfait l’égalité de la moyenne, donc le
Principe du Maximum 5.4 s’applique.
(iii) =⇒ (ii). Soit un disque fermé ∆ := Dr(z0) ⊂ Ω. Grâce au Théorème 3.6, il existe
une suite décroissante de fonctions continues φn > φn+1 > u définies sur le cercle ∂∆
qui tendent ponctuellement vers u|∂∆. Leurs prolongements de Poisson P∆(φn) sont alors
harmoniques dans ∆. De plus, comme les φn sont continues, un théorème classique vu dans
le chapitre sur les fonctions harmoniques assure qu’en tout point ζ ∈ ∂∆ :

lim
z→ ζ

(
P∆φn

)
(z) = φn(ζ).

Conséquemment et par semi-continuité supérieure de u :

lim sup
z→ ζ ∈ ∂∆

(
u− P∆φn

)
(z) 6 u(ζ)− φn(ζ) 6 0.

Grâce à l’hypothèse (iii), nous déduisons que u 6 P∆φn dans ∆.
Enfin, P∆(·) étant un opérateur intégral, le Théorème de convergence monotone —

soustraire une constante pour se ramener à des fonctions toutes 6 0 — conclut :

u(z) 6 lim
n→∞

P∆

(
φn

)
(z) = P∆

(
lim

n→∞
φn

)
(z) = P∆

(
u
∣∣
∂∆

)
(z).

(ii) =⇒ (i). Poser s = 0 offre l’inégalité de sous-moyenne de la Définition 4.2 initiale,
satisfaite dorénavant non seulement pour 0 6 r 6 r0 assez petit, mais encore pour tous les
rayons r tels que Dr(z0) ⊂ Ω. �

Ceci mérite bien de mettre en exergue un bon petit

Corollaire 7.2. [Inégalité de sous-moyenne globale] Si une fonction u est sous-
harmonique dans un ouvert Ω ⊂ C, alors en tout point z0 ∈ Ω et pour tout rayon
0 6 r < dist(z0, ∂Ω), on a :

u(z0) 6 1

2π

∫ 2π

0

u
(
z0 + r eiθ

)
dθ,

u(z0) 6 1

π r2

∫ ∫
Dr(z0)

u(x, y) dxdy.

Démonstration. La première inégalité coïncide avec (ii) du théorème précédent pour s = 0.
La deuxième inégalité en découle alors par intégration :∫ r

0

s ds 2π u(z0) 6
∫ r

0

s ds

∫ 2π

0

u
(
z0 + s eiθ

)
dθ,

suivie d’une réorganisation visuelle. �
Corollaire 7.3. Si f : Ω ∼−→ Ω′ = f(Ω) est un biholomorphisme entre deux ouverts Ω ⊂ C
et Ω′ ⊂ C, alors :

u′ ∈ SH(Ω′) =⇒ u ◦ f ∈ SH(Ω).



7. Critères pour la sous-harmonicité 19

Démonstration. Le critère (iii) de sous-harmonicité est invariant, puisque nous savons déjà
que l’harmonicité est invariante ! �

Ainsi, il est possible d’étendre la définition de la sous-harmonicité aux domaines de la
sphère de Riemann C∞ = C ∪ {∞}, et, plus généralement, aux ouverts quelconques des
surfaces de Riemann arbitraires.

Une autre application donne la caractérisation concrète des fonctions de classe C 2 qui
sont sous-harmoniques, comme cela a été annoncée en début de chapitre.

Théorème 7.4. Sur un domaine Ω ⊂ C, une fonction u ∈ C 2(Ω,R) est sous-harmonique
si et seulement si :

∆u > 0.

Démonstration. Supposons d’abord que ∆u > 0 sur Ω. Soit ω b Ω un sous-domaine
relativement compact, et soit une fonction harmonique h ∈ Harm(Ω) telle que, en tout
point du bord ζ ∈ ∂ω :

lim sup
z→ ζ

(
u− h

)
(z) 6 0.

Grâce à la caractérisation (iii) de la sous-harmonicité, il suffit de faire voir que u 6 h dans
ω.

Pour ε > 0, introduisons à cette fin la fonction :

vε(z) :=

{
u(z)− h(z) + ε |z|2 lorsque z ∈ ω,
ε |z|2 lorsque z ∈ ∂ω.

Comme vε est semi-continue supérieurement sur ω (exercice mental), elle y atteint, par la
Proposition 3.5, son maximum en au moins un point z0 ∈ ω.

Mais z0 ne peut pas appartenir à l’intérieur ω, à cause de :

∆vε = ∆u− 0 + 4 ε > 0 (surω),

car cette positivité implique que la dérivée seconde en tout point z0 = x0 + i y0 ∈ ω, soit
de la fonction x 7−→ vε(x, y0), soit de la fonction y 7−→ vε(x0, y), est > 0, ce qui rend au
moins l’une de ces fonctions paraboliquement croissante, et contredit la maximalité en z0.

Donc le maximum de vε est atteint en un point z0 ∈ ∂ω, ce qui donne :(
u− h

)
(z) 6 max

z∈∂ω
ε |z|2 (∀ z ∈ω).

En faisant ε >−→ 0, nous obtenons bien u 6 h dans ω.
Réciproquement, supposons que u ∈ SH(Ω) est sous-harmonique. Dans un voisinage

d’un point z0 ∈ Ω avec ε > 0 très petit, développons alors u au second ordre taylorien :

u
(
z0 + ε eiθ

)
= u(z0) +

∂u

∂z
(z0) ε e

iθ +
∂u

∂z
(z0) ε e

−iθ +

+ ε2
(
∂2u

∂z2
(z0) e

2iθ + 2
∂2u

∂z∂z
(z0) +

∂2u

∂z2
(z0) e

−2iθ

)
+ ε2 o(1).

Intégrons ensuite par rapport à θ pour prendre la valeur moyenne de cela :

1

2π

∫ 2π

0

u
(
z0 + ε eiθ

)
dθ = u(z0) + ε2 2

∂2u

∂z∂z
(z0) + ε2 o(1).

L’inégalité de sous-moyenne (4.3) nécessite alors que ∂2u
∂z∂z

(z0) > 0. �
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Le résultat suivant illustre parfaitement la flexibilité des fonctions sous-harmoniques.

u

Ω

ω

max(u, v)

ζ

Théorème 7.5. [de recollement] Soit u une fonction sous-harmonique dans un domaine
Ω ⊂ C, et v une fonction sous-harmonique dans un sous-ouvert ω ⊂ Ω satisfaisant, en tout
point ζ de l’interface ∂ω ∩ Ω :

lim sup
ω 3 z→ ζ

v(z) 6 u(ζ).

Alors la fonction :

ũ :=

{
max(u, v) sur ω,

u sur Ω\ω,
est sous-harmonique dans Ω.

Démonstration. La condition à l’interface garantit que ũ est semi-continue supérieurement
dans Ω.

Ensuite, la Proposition 4.7 dit que max(u, v) satisfait l’inégalité de sous-moyenne locale
en tout point de ω. Donc ũ est sous-harmonique dans Ω\∂ω.

Enfin, en un point ζ ∈ ∂ω ∩ Ω, sur des cercles Sr(ζ) de rayons 0 6 r < dist(ζ,C\Ω),
on a aussi :

ũ(ζ) = u(ζ) 6 1

2π

∫ 2π

0

u
(
ζ + r eiθ

)
dθ 6 1

2π

∫ 2π

0

ũ
(
ζ + r eiθ

)
dθ,

simplement parce que u 6 ũ partout. �

8. Théorèmes de convergence

Le premier résultat de convergence, pour les suites décroissantes, est simple, mais im-
portant. Il explique en partie pourquoi il est naturel de demander que les fonctions sous-
harmoniques soient seulement semi-continues supérieurement : en effet, c’est la seule pro-
priété qui est conservée lorsqu’on prend des limites décroissantes de fonctions continues,
tandis que l’inégalité de sous-moyenne, elle, va s’avérer facilement préservée dans la dé-
monstration.

Théorème 8.1. Soit (un)∞n=1 une suite de fonctions sous-harmoniques dans un domaine
Ω ⊂ C qui est décroissante :

u1 > u2 > u3 > · · · .
Alors la fonction-limite :

u := lim
n→∞

u

est sous-harmonique dans Ω.
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Démonstration. Pour toute constante c ∈ R, l’ensemble réunion dénombrable d’ouverts :{
z ∈ Ω: u(z) < c

}
= ∪

n>1
{un < c}

est ouvert, donc u est semi-continue supérieurement.
Ensuite, si Dr(z0) ⊂ Ω, alors pour tout n > 1 :

un(z0) 6 1

2π

∫ 2π

0

un
(
z0 + r eiθ

)
dθ.

Grâce au théorème de convergence monotone, lorsque n → ∞, on déduit que u satisfait
l’inégalité de sous-moyenne (globale), donc u sous-harmonique. �

Il ne faut pas (du tout !) s’imaginer qu’il pourrait exister un énoncé analogue pour les
suites croissantes de fonctions sous-harmoniques. Par exemple, la suite un(z) := 1

n
log |z|

sur le disque unité D a pour limite une fonction :

u(z) :=

{
0 lorsque 0 < |z| < 1,

− ∞ en z = 0,

qui n’est même pas semi-continue supérieurement en 0 !
Le résultat suivant généralise la Proposition 4.7 (i) pour un supremum pris sur un espace

non forcément fini ou discret.

Théorème 8.2. Soit T un espace topologique compact, soit Ω ⊂ C un domaine, et soit
v : Ω× T −→ [−∞,∞[ une fonction satisfaisant :
• v est semi-continue supérieurement sur Ω× T ;
• z 7−→ v(z, t) est sous-harmonique dans Ω, pour tout t ∈ T fixé.
Alors la fonction :

u(z) := supt∈T v(z, t)

est sous-harmonique dans Ω.

Démonstration. Soit z ∈ Ω et soit c ∈ R telle que u(z) < c. Ainsi, pour tout t ∈ T , on a
v(z, t) < c, et comme v est semi-continue supérieurement, il existe un voisinage Vt de t et
un rayon rt > 0 tels que :

v < c sur Drt(z)× Vt (∀ t∈T ).

Par compacité de T , il y a un sous-recouvrement fini :

Vt1 ∪ · · · ∪ VtK ⊃ T.

Avec le rayon strictement positif :

s := min
(
rt1 , . . . , rtK

)
> 0,

on a donc u < c sur Ds(z), ce qui établit la semi-continuité supérieure de u.
Ensuite, soit un disque fermé Dr(z0) ⊂ Ω. Alors pour tout t ∈ T , on a :

v(z0, t) 6 1

2π

∫ 2π

0

v
(
z0 + r eiθ, t

)
dθ 6 1

2π

∫ 2π

0

u
(
z0 + r eiθ

)
dθ.

Il suffit de prendre le supremum sur t ∈ T pour conclure que u satisfait l’inégalité de
sous-moyenne. �

Le résultat suivant généralise la Proposition 4.7 (ii) pour une combinaison linéaire à
coefficients positifs prise sur un espace non forcément fini ou discret.
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Théorème 8.3. Soit (M , µ) un espace mesuré de mesure µ(M ) <∞ finie, soit Ω ⊂ C un
domaine, et soit v : Ω×M −→ [−∞,∞[ une fonction satisfaisant :
• v est mesurable sur Ω×M ;
• z 7−→ v(z,m) est sous-harmonique dans Ω, pour tout m ∈M fixé ;
• z 7−→ supm∈M v(z,m) est bornée supérieurement sur les compacts de Ω.
Alors la fonction :

u(z) :=

∫
M

v(z,m) dµ(m)

est sous-harmonique dans Ω.

Démonstration. Il suffit de montrer que u est sous-harmonique dans tout sous-domaine
relativement compact ω b Ω.

Par la troisième hypothèse, supm∈M v(z,m) est bornée supérieurement sur ω, donc après
soustraction éventuelle d’une constante, on peut supposer que v 6 0 sur ω ×M . Ceci
légitimera l’utilisation du lemme de Fatou et du théorème de Fubini-Tonelli dans ce qui va
suivre.

Si z0 ∈ ω, et si (zn)∞n=1 est une suite arbitraire de points de ω telle que zn −→ z0, Fatou
puis la semi-continuité supérieure de z 7−→ v(z,m) donnent :

lim sup
n→∞

u(zn) = lim sup
n→∞

∫
M

v(zn,m) dµ(m) 6
∫

M

lim sup
n→∞

v(zn,m) dµ(m)

6
∫

M

v(z0,m) dµ(m) = u(z0),

ce qui est la semi-continuité supérieure de u en z0 ∈ ω.
Ensuite, pour tout disque Dr(z0) ⊂ ω, Fubini-Tonelli puis la sous-harmonicité de z 7−→

v(z,m) donnent :

1

2π

∫ 2π

0

u
(
z0 + r eiθ

)
dθ =

1

2π

∫ 2π

0

(∫
M

v
(
z0 + r eiθ, m

)
dµ(m)

)
dθ

=

∫
M

(
1

2π

∫ 2π

0

v
(
z0 + r eiθ, m

)
dθ

)
dµ(m)

>
∫

M

v(z0,m) dµ(m) = u(z0),

ce qui est l’inégalité de sous-moyenne pour u en z0. �

9. Intégrabilité des fonctions sous-harmoniques

D’après la Proposition 3.5, les fonctions sous-harmoniques sont bornées supérieurement
sur les compacts. Un phénomène extrêmement important est qu’elles ne peuvent pas être
« trop infinies inférieurement », au sens de la mesure. Rappelons l’expression de la mesure
de Lebesgue comme 2-forme différentielle :

dλ = dx ∧ dy = i
2
dz ∧ dz.

Théorème 9.1. [SH ⊂ L1
loc] Toute fonction sous-harmonique u 6≡ −∞ dans un domaine

Ω ⊂ C est localement intégrable au sens de Lebesgue :∫
K

|u| dλ < ∞ (∀K ⊂Ω compact).
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Démonstration. Par un argument direct de compacité, il suffit de montrer que pour tout
z0 ∈ Ω, il existe r > 0 avec Dr(z0) ⊂ Ω tel que :∫

Dr(z0)

|u(x, y)| dx ∧ dy < ∞.

À cet effet, décomposons Ω = E ∪ F en les deux sous-ensembles disjoints :

E :=
{
z0 ∈ Ω: ∃ r > 0,

∫
Dr(z0)

|u| <∞
}
,

et :
F :=

{
z0 ∈ Ω: ∀ r > 0,

∫
Dr(z0)

|u| =∞
}
.

L’objectif est d’établir que E = Ω.

Assertion 9.2. E est ouvert.

r0

z0

z1
r1

r1

z1

r0

3r0
|z1−z0|
z0

Preuve. Cette affirmation est tout à fait naturelle en théorie de l’intégration : soit z0 ∈ E et
soit r0 > 0 tel que

∫
Dr0 (z0)

|u| <∞. Soit z1 ∈ Dr0(z0) et soit :

r1 := r0 − |z1 − z0| > 0,

comme sur la partie gauche de la figure. Alors puisque Dr1(z1) ⊂ Dr0(z0) (avec point de
tangence), on majore trivialement :∫

Dr1 (z1)

|u| dλ 6
∫
Dr0(z0)

|u| dλ < ∞.

Ainsi, z1 ∈ E pour tout z1 ∈ Dr0(z0) lorsque z0 ∈ E. �
Assertion 9.3. F est aussi ouvert et de plus :

u
∣∣
F
≡ −∞.

L’ouverture de F , « non-évidente », est le point-clé, et elle utilise réellement la sous-
harmonicité de u.

Preuve. Soit z0 ∈ F , et soit un rayon r0 > 0 tel que D3r0(z0) ⊂ Ω, comme sur la partie
droite de la figure. Puisque z0 ∈ F :∫

Dr0 (z0)

|u| dλ = ∞.
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Ensuite, soit z1 ∈ Dr0(z0), et soit :

r1 := r0 + |z1 − z0| < 2 r0.

Par inégalité triangulaire, on a :

Dr0(z0) ⊂ Dr1(z1) ⊂ D3r0(z0) b Ω,

le cercle Sr1(z1) étant d’ailleurs tangent au cercle Sr0(z0). Bien entendu :∫
Dr1 (z1)

|u| dλ = ∞.

Maintenant, la Proposition 3.5 garantit que u = u+ − u− avec u+ = max(0, u) > 0
et u− = −min(u, 0) > 0, est bornée supérieurement sur Dr1(z1), à savoir u+ l’est, donc
0 6

∫
u+ <∞, et par conséquent, on a en fait :∫

Dr1 (z1)

u dλ = −∞.

Rappelons que u satisfait l’inégalité de sous-moyenne globale :

u(z1) 6 1

2π

∫ 2π

0

u
(
z1 + s eit

)
dt (∀ 06 s6 r1).

Multiplions cela par 2πs et intégrons de s = 0 à s = r1 :

π r21 u(z1) 6
∫
Dr1 (z1)

u dλ = −∞.

Cette inégalité étant valable quel que soit le choix initial de z1 ∈ Dr0(z0), nous déduisons :

u
∣∣
Dr0(z0)

≡ −∞

Ceci montre bien que F est ouvert, et que de plus u|F ≡ −∞. �
L’ouvert connexe Ω = E∪F est réunion disjointe de deux ouverts, donc ou bien Ω = E

(l’objectif annoncé), ou bien Ω = F , mais dans ce dernier cas, l’assertion qui précède a de
surcroît montré que u|F = u|Ω = u ≡ −∞, ce qui était exclu à l’avance par une hypothèse
du théorème. �

De SH(Ω) ⊂ L1
loc(Ω), nous allons déduire que les fonctions sous-harmoniques non

identiquement égales à −∞ sont intégrables sur tout cercle.

Corollaire 9.4. Dans un domaine Ω ⊂ C, si u ∈ SH(Ω)\{−∞}, alors pour tout z0 ∈ Ω et
tout 0 6 r < dist(z0, ∂Ω), on a :

−∞ <
1

2π

∫ 2π

0

u
(
z0 + r eiθ

)
dθ < ∞.

Démonstration. L’inégalité supérieure provenant du fait que u est bornée supérieurement
sur tout compact, c’est l’inégalité inférieure qui compte. Après soustraction éventuelle
d’une constante, on peut donc supposer que u 6 0 sur Dr(z0) ⊂ Ω.

D’après le Théorème 7.1 (ii), pour tout 0 6 s < r et tout 0 6 t < 2π, le prolongement
harmonique de la restriction de u au cercle Sr(z0) majore u :

u
(
z0 + s eit

)
6 1

2π

∫ 2π

0

r2 − s2

r2 − 2rs cos(θ − t) + s2
u
(
z0 + r eiθ

)
dθ.
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Effectuons alors une majoration de type Harnack pour le noyau (exercice) :

r2 − s2

r2 − 2rs cos(θ − t) + s2
· (−1) 6 r − s

r + s
· (−1),

ce qui donne :

u
(
z0 + s eit

)
6 r − s

r + s

1

2π

∫ 2π

0

u
(
z0 + r eiθ

)
dθ.

Maintenant, si l’intégrale du membre de droite était égale à −∞, ceci impliquerait :

u
∣∣
Dr(z0)

≡ −∞,

puis, grâce au Théorème 9.1 fondamental qui précède, u ≡ −∞ dans Ω, ce qui n’est pas !
Donc on a bien :

−∞ <
1

2π

∫ 2π

0

u
(
z0 + r eiθ

)
dθ 6 0,

pour tout disque fermé Dr(z0) ⊂ Ω. �
Une autre conséquence de ce théorème fondamental est que les fonctions sous-

harmoniques ne peuvent pas être égales à −∞ sur des ensembles trop substantiels.

Définition 9.5. Le lieu polaire d’une fonction u ∈ SH(Ω) est :{
z ∈ Ω: u(z) = −∞

}
.

Corollaire 9.6. Si une fonction u 6≡ −∞ est sous-harmonique dans un domaine Ω ⊂ C,
alors son lieu polaire est de mesure de Lebesgue égale à 0.

Démonstration. Soit (Kj)
∞
j=1 une suite croissante Kj ⊂ Kj+1 de compacts qui remplit

Ω = ∪Kj . On a grâce au Théorème 9.1 :∫
Kj

|u| dλ < ∞ (∀ j > 1),

donc par un théorème élémentaire de théorie de l’intégration :

0 = mesure
(
{u = −∞} ∩Kj

)
(∀ j > 1),

et enfin on obtient la nullité de la mesure de {u = −∞} comme réunion dénombrable
d’ensembles de mesure nulle. �

10. Lieux polaires des fonctions sous-harmoniques

Bien entendu, lorsque u = log |f | pour une fonction holomorphe f ∈ O(Ω) non identi-
quement nulle, le lieu polaire {u = −∞} = {f = 0} est discret, dénombrable.

Toutefois, cet exemple n’est pas représentatif de la vraie généralité des fonctions sous-
harmoniques. En fait, il en existe qui sont égales à −∞ sur des sous-ensembles (non-
ouverts) non dénombrables, comme nous allons le voir.

En guise de préliminaire, quelques rappels s’imposent sur les ensembles parfaits et sur
les théorèmes catégoriques de Baire. Soit (X, d) un espace métrique complet muni d’une
distance d, par exemple RN avec N > 1, muni de la distance euclidienne.

Pour x ∈ X et r > 0, soient les boules ouvertes et fermées :

Br(x) :=
{
y ∈ X : d(x, y) < r

}
et Br(x) :=

{
y ∈ X : d(x, y) 6 r

}
.
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Définition 10.1. Un sous-ensemble P ⊂ X est dit parfait lorsqu’il satisfait l’une des condi-
tions équivalentes suivantes :

• pour tout point p ∈ P , on a p ∈ P\{p}, à savoir, aucun point de p n’est isolé dans P ;
• pour tout point p ∈ P , il existe une suite (pn)

∞
n=1 de points pn ∈ P tous distincts de p

telle que pn −→ p ;
• l’ensemble dérivé de P :

P ′ :=
{
p′ ∈ X : ∃ (pn)∞n=1, pn ∈ P, pn 6= p′, pn −→ p′

}
= P

coïncide avec lui-même.

En particulier, tout ensemble parfait est fermé. Le cas de la dimension N = 2 dans
l’énoncé suivant nous sera utile.

Théorème 10.2. Tout sous-ensemble parfait non vide P ⊂ RN est de cardinal non dénom-
brable.

Démonstration. Si on avait CardP <∞, son ensemble dérivé P ′ = ∅ serait vide (exercice
mental), ce qui n’est pas. Donc CardP =∞.

En raisonnant par l’absurde, supposons donc que CardP = CardN∗ soit infini dénom-
brable. Via une bijection entre N∗ et P , énumérons alors tous les points de P sous forme
d’une suite :

P =
{
x1, x2, x3, . . .

}
.

x1

RN B

C1

C2

y1

y2

y3x3

x2

Pour commencer, soitB b RN une boule ouverte non vide relativement compacte conte-
nant x1. Comme P est parfait, x1 n’est pas isolé, donc il existe un point :

y1 ∈ P ∩B,
tel que :

y1 6= x1.

Choisissons alors un cube ouvert C1 ⊂ B centré en y1 de côté assez petit pour que :

x1 6∈ C1.

Ensuite et à nouveau parce que P est parfait, y1 ∈ P n’est pas isolé, donc il existe un
point :

y2 ∈ P ∩ C1.

tel que :
y2 6= y1 et de plus : y2 6= x2.
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On choisit alors un cube ouvert non vide C2 centré en y2 de côté assez petit pour que :

x2, y1 6∈ C2.

On se convainc alors (exercice) qu’il est possible de construire par induction une suite
infinie de points (yn)∞n=1 distincts deux à deux et une suite de cubes ouverts (Cn)

∞
n=1 centrés

en les yn satisfaisant, pour tout n > 1 :
(i) Cn+1 ⊂ Cn ⊂ B ;
(ii) yn ∈ P ∩ Cn ;
(iii) x1, . . . , xn, y1, . . . , yn−1 6∈ Cn.

Ainsi les sous-ensembles fermés de RN :

Kn := Cn ∩ P (n> 1)

sont compacts, puisque tous contenus dans B b RN, et emboîtés :

Kn ⊂ Kn+1 (∀n> 1).

Un théorème classique de topologie métrique assure alors que l’intersection infinie :
∞⋂
n=1

Kn 6= ∅

est un sous-ensemble non vide de P .
Mais comme par construction on a arrangé pour tout n > 1 que :

x1, . . . , xn 6∈ Cn ∩ P = Kn,

aucun point de P = {x1, . . . , xn, . . .} ne peut rester dans ∩nKn, ce qui est la contradiction
conclusive montrant que P est non dénombrable. �

Bien entendu, ce théorème est tout aussi vrai dans un espace métrique complet (X, d)
quelconque.

Définition 10.3. Dans un espace métrique (X, d), un sous-ensemble D ⊂ X est dit dense
lorsque tout point de X lui est adhérent :

D = X.

Observation 10.4. On a équivalence entre :
• D ⊂ X est dense ;
• D ∩Br(x) 6= ∅ pour tout x ∈ X et tout r > 0 ;
• D ∩ U 6= ∅ pour tout ouvert non vide U ⊂ X .

Démonstration. La vérification complète est laissée en exercice ; s’inspirer du raisonne-
ment de l’Observation 10.7. �
Définition 10.5. Dans un espace métrique (X, d), un sous-ensemble A ⊂ X est dit nulle
part dense lorsque l’intérieur de son adhérence est vide :

Int
(
A
)
= ∅.

Lemme 10.6. Pour tout ouvert O ⊂ X , on a :

X
∖
O = Int

(
X\O

)
.
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Démonstration. Tout d’abord, O ⊃ O donne X\O ⊂ X\O, d’où en prenant les intérieurs :

X
∖
O ⊂ Int

(
X\O

)
.

Pour l’inclusion inverse, un énoncé élémentaire sera utile.

Observation 10.7. Soit U ⊂ X un ouvert non vide, et soit G ⊂ X un sous-ensemble
quelconque. Alors :

U ∩G = ∅ =⇒ U ∩G = ∅.
Démonstration. En effet, tout point g∞ ∈ G\G est limite g∞ = lim gn d’une suite conver-
gente de points gn ∈ G. Si on avait g∞ ∈ U, alors à partir d’un certain rang n > N � 1,
tous les gn, proches de g∞, devraient se trouver dans l’ouvert U, mais gn ∈ U ∩ G = ∅ est
impossible. �

Soit x ∈ Int (X\O) quelconque, c’est-à-dire qu’il existe r > 0 tel que la boule ouverte :

Br(x) ⊂ X\O,
donc Br(x) ∩ O = ∅. L’observation qui précède donne Br(x) ∩ O = ∅. En particulier, le
centre x ∈ X\O, et ceci établit l’inclusion inverse :

Int (X\O) ⊂ X
∖
O

conclusive. �
Lemme 10.8. Un ouvert O ⊂ X d’un espace métrique (X, d) est dense dans X si et
seulement si le fermé complémentaire F := X\O est d’intérieur vide.

Démonstration. Il s’agit de montrer que :

O = X ⇐⇒ Int
(
X\O

)
= ∅,

ou, de manière équivalente, d’établir la contraposée :

O $ X ⇐⇒ Int
(
X\O

)
6= ∅,

qui est un corollaire (visuel) du Lemme 10.6. �
Lemme 10.9. Étant donné un nombre fini K > 2 d’ouvert denses O1, . . . ,OK dans un
espace métrique (X, d), leur intersection :

O1 ∩ · · · ∩ OK

est encore un ouvert dense de X .

Démonstration. Pour de simples raisons logiques, le cas K = 2 implique trivialement le
cas général K > 2. Traitons donc le cas K = 2.

Soit x ∈ X un point quelconque, et soit Br(x) une boule centrée en x de rayon r > 0
arbitrairement petit. Il s’agit de trouver, dans cette boule, au moins un point :

y2 ∈ O2 ∩ O1 ∩Br(x).

Mais O1 est dense, donc il existe y1 ∈ O1 ∩ Br(x). Qui plus est, O1 est ouvert, donc il
existe une boule :

Bs1(y1) ⊂ O1 ∩Br(x) (∃ s1 > 0).

Mais O2 est dense, donc il existe :

y2 ∈ O2 ∩Bs1(y1),

et alors un tel y2 fait parfaitement l’affaire ! �
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Bien entendu, quand on passe à un nombre infini dénombrable d’ouverts denses Ok =
X , k > 1, l’intersection ∩k Ok cesse en général d’être ouverte. Mais le célèbre Théorème
de Baire dont la démonstration est si élémentaire et dont les applications à l’Analyse et à la
Topologie sont si fantastiques, montre qu’on conserve la densité.

Théorème 10.10. [de Baire] Dans un espace métrique complet (X, d) :

(i) toute intersection infinie dénombrable ∩k>1Ok d’ouverts Ok ⊂ X denses Ok = X est
encore dense :

∩
k>1

Ok = X;

(ii) toute réunion infinie dénombrable ∪k>1 Fk de sous-ensembles fermés Fk ⊂ X d’inté-
rieur Int Fk = ∅ vide est encore d’intérieur vide :

Int ∪
k>1

Fk = ∅.

Démonstration. Eu égard au Lemme 10.8 et à la correspondance :

Fk = X\Ok ⇐⇒ Ok = X\Fk (k> 1),

les deux énoncés (i) et (ii) sont équivalents entre eux.

Focalisons-nous donc sur (i). Soit U ⊂ X un ouvert non vide quelconque. Le but est de
montrer que :

∅ 6= U ∩
(
∩
k>1

Ok

)
.

Comme O1 est dense, il existe x1 ∈ U∩O1, et comme cette intersection est ouverte, elle
contient une certaine boule ouverte centrée en x1 :

U ∩ O1 ⊃ B2r1(x1),

de rayon 2r1 avec 0 < r1 6 1
2

; ici, 2r1 est une marge de sécurité qui sera utile plus tard.
Ensuite, comme O2 est dense, il existe x2 ∈ Br1(x1) ∩ O2 — noter qu’on passe à une

sous-boule —, et comme cette intersection est ouverte, elle contient une boule ouverte
centrée en x2 :

Br1(x1) ∩ O2 ⊃ B2r2(x2).

de rayon 2r2, avec 0 < r2 6 1
22

, quitte à rapetisser le rayon. Par construction :

U ∩ O1 ∩ O2 ⊃ B2r2(x2).

Affirmation 10.11. Il existe une suite infinie (xk)
∞
k=1 de points xk ∈ X et des rayons

0 < rk 6 1
2k

tels que :

Brk(xk) ∩ Ok+1 ⊃ B2rk+1
(xk+1) (∀ k> 1).

Preuve. Par récurrence, supposons xk et rk déjà construits. Comme Ok+1 est dense, il existe
xk+1 ∈ Brk(xk) ∩ Ok+1, et comme cette intersection est ouverte, elle contient une boule
ouverte centrée en xk :

Brk(xk) ∩ Ok+1 ⊃ B2rk+1
(xk+1),

de rayon 2rk+1, avec 0 < rk+1 6 1
2k+1 . �
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Il découle de cette construction gigogne que :

U ∩ O1 ∩ · · · ∩ Ok ⊃ B2rk(xk) (∀ k> 1).

Le doublage des rayons comme marge de sécurité sert maintenant à garantir que les
boules fermées :

Brk+1
(xk+1) ⊂ B2rk+1

(xk+1) ⊂ Brk(xk) ⊂ Brk(xk) (k> 1)

sont emboîtées les unes dans les autres. D’après un théorème classique de topologie mé-
trique, comme X est complet, leur intersection infinie :

∩
k>1

Brk(xk) = {p}

est non vide, constituée d’ailleurs d’un point unique. Or comme :

U ∩ O1 ∩ · · · ∩ Ok ⊃ Brk(xk) (∀ k> 1),

il vient :
U ∩

(
∩
k>1

Ok

)
⊃ {p} = ∩

k>1
Brk(xk),

ce qui montre bien que cette intersection est non vide. �

Voici une conséquence très souvent utilisée de ce résultat.

Théorème 10.12. [de Baire bis] Si un espace métrique complet (X, d) non vide s’écrit
comme réunion dénombrable de fermés :

X =
⋃
k>1

Fk,

alors l’un au moins Fk∗ de ces fermés posssède un intérieur non vide :

∅ 6= IntFk∗ (∃ k∗ > 1).

Qui plus est, la réunion des intérieurs de ces fermés :

∪
k>1

IntFk = X

est dense dans X .

Démonstration. Soit U ⊂ X un ouvert non vide quelconque. Sa fermeture U est alors un
espace métrique complet.

Introduisons les ouverts relatifs de U :

Ok := U\Fk (k> 1).

L’hypothèse ∪k Fk = X se traduit en passant aux complémentaires par :

∩
k>1

Ok = ∅ (dansU).

Or ces Ok peuvent-ils être tous denses ? Ah que non ! Car le Théorème 10.10 impliquerait
la non-vacuité de leur intersection.

L’un, au moins, disons Ok∗ , de ces ouverts, n’est donc pas dense dans U, c’est-à-dire
qu’il existe un ouvert non vide V ⊂ U tel que :

Ok∗ ∩ V = ∅.
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Mais comme U est ouvert, on a de plus U ∩ V 6= ∅. Nous pouvons donc trouver un point
x ∈ V ∩ U et une boule de rayon r > 0 centrée en x tels que :

Br(x) ⊂ U ∩ V,

d’où :
Br(x) ∩ Ok∗ = ∅.

Nous avons donc trouvé une boule ouverte entièrement contenue dans le fermé :

Fk∗ = U
∖
Ok∗ ,

lequel est donc d’intérieur non vide !
De plus, comme l’ouvert de départ U était arbitraire, nous avons montré que la réunion

des intérieurs des Fk rencontre tout U, donc que cette réunion est dense. �
Voici enfin l’énoncé promis qui révèle une complexité intéressante des fonctions sous-

harmoniques.

Théorème 10.13. Soit K ⊂ C un sous-ensemble compact qui est parfait, à savoir sans
point isolé, soit (zn)∞n=1 une suite dénombrable dense de points zn ∈ K, et soit (an)∞n=1

une suite de nombres an > 0 tels que
∑

n an < ∞. Alors la fonction u : C −→ [−∞,∞[
définie par :

u(z) :=
∑
n>1

an log |z − zn| (z ∈C)

satisfait :
(i) u est sous-harmonique dans C et u 6≡ −∞ ;
(ii) u = −∞ sur un sous-ensemble dense non dénombrable de K ;
(iii) u est non continue en presque tout point de K.

Démonstration. (i). Avec les notations du Théorème 8.3, sur l’espace M := N∗ muni de la
mesure µ({n}) := an pour n > 1 telle que µ(M ) <∞, introduisons la fonction :

v : C× N∗ −→ [−∞,∞[,

(z, n) 7−→ log |z − zn|.
Alors d’après ledit théorème, la fonction :∫

N∗
v(z, n) dµ(n) =

∑
n>1

an log |z − zn| =: u(z)

est sous-harmonique dans C tout entier. De plus, il est clair (exercice mental) que u(z) >
−∞ pour tout z ∈ C\K, d’où u 6≡ −∞.
(ii). Examinons donc l’ensemble polaire :

{u = −∞}.
Nous venons de dire que {u = −∞} ⊂ K. De plus, chaque élément zn ∈ K de la suite
dense appartient à {u = −∞}, à cause du terme an log |zn − zn| = −∞, donc on a la
densité :

{u = −∞} = K.

Ensuite, son complémentaire dans K :

K
∖
{u = −∞} = ∪

j>1

{
z ∈ K : u(z) > − j

}
,(10.14)



32 François DE MARÇAY, Département de Mathématiques d’Orsay, Université Paris-Sud

s’écrit comme réunion dénombrable de sous-ensembles fermés, car u est sous-harmonique,
et d’intérieur vide dans K, car la collection {zn}∞n=1 ⊂ {u = −∞} est dense dans K
(exercice mental).

Notons que K, muni de la topologie euclidienne induite de celle de C ∼= R2, est un
espace métrique complet, et puisque K est parfait, le Théorème 10.2 assure qu’il est de
cardinal non dénombrable.

Affirmation 10.15. L’ensemble polaire {u = −∞} est non-dénombrable.

Preuve. Sinon, s’il était dénombrable, il serait (trivialement) réunion dénombrable de fer-
més (singletons) d’intérieur vide, et alors en revenant à (10.14) :

K =
{
u = −∞

}
∪
(
∪
j>1

{
z ∈ K : u(z) > − j

})
,

l’espace métrique complet K lui-même serait réunion dénombrable de fermés d’intérieur
vide, en contradiction flagrante avec le Théorème 10.12 de Baire bis. �

Donc {u = −∞} est bien non-dénombrable.
(iii). Il est instantané que la fonction u est non-continue en tout point de :

{u = −∞}
∖
{u = −∞}.

Or nous avons vu que :
{u = −∞} = K,

et comme le Corollaire 9.6 nous a informé qu’un ensemble polaire tel que {u = −∞} est
toujours de mesure de Lebesgue égale à 0, nous concluons bien que u est non-continue en
presque tout point de K. �

11. Convexité et sous-harmonicité

Comme nous l’avons déjà notifié, il existe des analogies profondes entre les fonctions
convexes sur R et les fonctions sous-harmoniques sur C.

Rappelons qu’une fonction ψ : R −→ R est convexe si, pour tout 0 < µ1, . . . , µK < 1
avec 1 = µ1 + · · ·+ µK, pour tous t1, . . . , tK ∈ R, elle satisfait l’inégalité :

ψ
(
µ1 t1 + · · ·+ µK tK

)
6 µ1 ψ(t1) + · · ·+ µK ψ(tK) (K > 2).

Les fonctions convexes sont continues (exercice de révision). Pour application aux fonc-
tions sous-harmoniques, nous aurons besoin d’une version continue classique de cette in-
égalité discrète.

Théorème 11.1. [Inégalité de Jensen réelle] Soient deux nombres réels −∞ 6 a < b 6
∞, et soit ψ : ]a, b[ −→ R une fonction convexe. Soit aussi (M , µ) un espace mesuré de
mesure µ(M ) = 1, et soit f : M −→ ]a, b[ une fonction Lebesgue-intégrable. Alors :

ψ

(∫
M

f dµ

)
6

∫
M

ψ ◦ f dµ.

Démonstration. Abrégeons :

c :=

∫
M

f dµ.
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Puisque a < f(m) < b pour tout m ∈M et puisque µ(M ) = 1, il est clair que a < c < b.
Comme la fonction ψ est convexe, pour tout couple de points :

a < t1 < c < t2 < b,

avec la combinaison linéaire à coefficients (strictement) positifs :

c =
t2 − c
t2 − t1

t1 +
c− t1
t2 − t1

t2 = µ1 t1 + µ2 t2 (µ1 +µ2 =1),

on a :

ψ(c) 6 t2 − c
t2 − t1

ψ(t1) +
c− t1
t2 − t1

ψ(t2).

Mais après réorganisation, ceci devient (exercice) :

ψ(c)− ψ(t1)
c− t1

6 ψ(t2)− ψ(c)
t2 − c

,

puis, en prenant supremum et infimum :

sup
t1∈ ]a,c[

ψ(c)− ψ(t1)
c− t1

6 inf
t2∈ ]c,b[

ψ(t2)− ψ(c)
t2 − c

.

Par conséquent, pour un nombre réel quelconque sup(·) 6 M 6 inf(·) coincé entre ce
supremum et cet infimum — et dorénavant fixé —, et pour tous a < t1 < c < t2 < b, on
a :

ψ(c)− ψ(t1)
c− t1

6 M 6 ψ(t2)− ψ(c)
t2 − c

,

d’où découle, après réorganisation, l’inégalité uniforme (exercice) :

ψ(t) > ψ(c) +M (t− c) (∀ t∈ ]a,b[).

Or maintenant, tout est presque fini : en insérant t := f(m) et en intégrant par rapport à
µ, il vient :∫

M

ψ
(
f(m)

)
dµ(m) >

∫
M

ψ(c) dµ(m) +M

∫
M

(
f(m)− c

)
dµ(m)

◦
= ψ(c) + 0,

ce qui est l’inégalité qui était ardemment désirée. �

Ceci nous permet d’engendrer par composition une grande quantité de fonctions sous-
harmoniques nouvelles.

Théorème 11.2. Soient deux nombres réels −∞ 6 a < b 6 ∞, soit u : Ω −→ [a, b[
une fonction sous-harmonique dans un ouvert Ω ⊂ C, et soit ψ : ]a, b[ −→ R une fonction
convexe croissante. Alors :

ψ ◦ u
est sous-harmonique dans Ω, où ψ(a) := limt→a ψ(t).

Noter que u est à valeurs dans [a, b[, mais que ψ est définie seulement sur ]a, b[, ce qui
se produit réellement lorsque a = −∞.
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Démonstration. Pour commencer, soit (an)∞n=1 une suite de réels an ∈ ]a, b[ qui tend en
décroissant vers an ↓ a. Pour tout n > 1, la fonction :

un := max
(
u, an

)
est sous-harmonique.

Lemme 11.3. Soient deux réels −∞ 6 c < d 6 ∞, soit un ouvert Ω ⊂ C, soit
v : Ω −→ ]c, d[ une fonction semi-continue supérieurement, soit χ : ]c, d[ −→ R une fonc-
tion continue croissante. Alors :

χ ◦ v
est semi-continue supérieurement.

Démonstration. En tout point z0 ∈ Ω, on a par hypothèse :

lim sup
z→ z0

v(z) 6 v(z0).

Autrement dit :

∀ δ > 0 ∀ (zn)∞n=1 −→ z0, ∃N � 1
(
n > N =⇒ v(zn) 6 v(z0) + δ

)
.

Mais la croissance de χ préserve cette inégalité :

χ
(
v(zn)

)
6 χ

(
v(z0) + δ

)
,

et comme χ est de plus continue, lorsque δ → 0, le membre de droite tend vers χ(v(z0)).
�

Grâce à ce lemme, comme toute fonction convexe est continue, les ψ ◦ un sont semi-
continues supérieurement. Notons qu’il était d’une certaine façon nécessaire de tronquer u
en un pour travailler avec des fonctions à valeurs dans ]a, b[.

Ensuite, pour tout disque Dr(z0) ⊂ Ω, l’inégalité de sous-moyenne (globale) satisfaite
par un composée avec ψ croissante donne :

ψ ◦ un(z0) 6 ψ

(
1

2π

∫ 2π

0

un
(
z0 + r eiθ

)
dθ

)
6 1

2π

∫ 2π

0

ψ ◦ un
(
z0 + r eiθ

)
dθ,

la second inégalité provenant de l’inégalité de Jensen réelle 11.1 appliquée à la mesure de
probabilité dθ

2π
sur le cercle unité.

Ceci montre que ψ ◦ un est sous-harmonique, pour tout n > 1.
Enfin, comme ψ ◦ un ↓ ψ ◦ u tend en décroissant vers ψ ◦ u, le Théorème 8.1 achève de

montrer que ψ ◦ u ∈ SH(Ω). �
Corollaire 11.4. Si une fonction u est sous-harmonique dans un domaine Ω ⊂ C, alors
expu l’est aussi. �
Corollaire 11.5. Pour toute fonction holomorphe f ∈ O(Ω), f 6≡ 0, et pour tout exposant
réel α > 0, on a :

|f |α ∈ SH(Ω).

Démonstration. La fonction sous-harmonique u := α log |f | a pour exponentielle |f |α. �
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À l’opposé d’une fonction convexe (croissante), la fonction logarithme est concave.
Néanmoins, voici un énoncé qui garantit que le logarithme d’une fonction est sous-
harmonique.

Théorème 11.6. Si u : Ω −→ [0,∞[ est une fonction définie sur un domaine Ω ⊂ C, alors
on a équivalence entre :
(i) log u est sous-harmonique dans Ω ;
(ii) u

∣∣eq∣∣ est sous-harmonique dans Ω, pour tout polynôme complexe q ∈ C[z].

Démonstration. Si log u est sous-harmonique, alors log u+ Re q l’est aussi, puis en prenant
l’exponentielle, u

∣∣eq∣∣ aussi grâce au Corollaire pénultième.
Réciproquement, supposons (ii). Avec q = 0, on voit que u est sous-harmonique, donc

en particulier semi-continue supérieurement. Le Lemme 11.3 donne que logu est encore
semi-continue supérieurement.

Pour établir que logu satisfait l’inégalité de sous-moyenne, soit un disque ∆ = Dr(z0) ⊂
Ω. Le Théorème 3.6 fournit une suite de fonctions continues φn : ∂∆ −→ R qui tendent en
décroissant vers logu sur le bord :

φn ↓ logu
∣∣
∂∆
.

Le Théorème de Stone-Weierstrass montre par ailleurs que pour tout n > 1, il existe un
polynôme qn ∈ C[z] tel que :

0 6 Re qn − φn 6 1
n

(sur ∂∆).

Alors de u 6 eφn , nous déduisons en tout point ζ ∈ ∂∆ :

lim sup
z→ ζ

u(z)
∣∣e−qn(z)

∣∣ 6 lim sup
z→ ζ

eφn(z)
∣∣e−qn(z)

∣∣
6 eφn(ζ) e−Re qn(ζ)

6 1.

Mais comme u |e−qn| est supposée sous-harmonique, le Principe du Maximum 5.4 au
bord donne à l’intérieur :

u(z)
∣∣e−qn(z)

∣∣ 6 1 (∀ z ∈∆).

Alors en prenant les logarithmes au point central z0 et en utilisant l’harmonicité de
Re qn(z) :

logu(z0) 6 Re qn(z0) =
1

2π

∫ 2π

0

Re qn
(
z0 + r eiθ

)
dθ

6 1

2π

∫ 2π

0

φn

(
z0 + r eiθ

)
dθ +

1

n
.

Il ne reste plus qu’à faire n −→∞ et à appliquer le théorème de convergence monotone
pour obtenir l’inégalité :

logu(z0) 6 1

2π

∫ 2π

0

log u
(
z0 + r eiθ

)
dθ,

de sous-moyenne ainsi satisfaite par logu. �
Lorsqu’une fonction est radiale, i.e. ne dépend que de la distance à l’origine, la sous-

harmonicité revient à la convexité réelle standard.
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Théorème 11.7. Soit v : DR(0) −→ [−∞, ∞[ , R > 0, une fonction radiale, v(z) =
v(|z|), avec v 6≡ −∞. Alors on a équivalence entre :

(i) v est sous-harmonique dans DR(0) ;

(ii) r 7−→ v(r) est une fonction convexe croissante de log r pour 0 < r < R, qui est
continue à l’origine v(0) = lim

r
>−→0

v(r).

Démonstration. Dans le sens (ii) =⇒ (i), il suffit d’appliquer le Théorème 11.2 aux fonc-
tions u(z) := log |z| et ψ(t) := v(et).

Réciproquement, soit v radiale sous-harmonique dans DR(0). Pour deux rayons inter-
médiaires :

0 6 r1 < r2 < R,

le principe du maximum appliqué à v sur Dr2(0) et la radialité de v donnent :

v(r1) 6 sup
∂Dr2 (0)

v = v(r2),

ce qui montre que v est croissante sur [0, R[.
Pour ce qui est de la continuité en 0, cette croissance implique :

lim inf
r→ 0

v(r) > v(0),

tandis que la semi-continuité supérieure n’est autre que :

lim sup
r→ 0

v(r) 6 v(0),

donc v est continue en 0 !
Il reste à faire voir que v(r) est une fonction convexe de log r. Comme v 6≡ −∞ est

radiale, son intégrale sur tout cercle centré à l’origine est constante. Alors le Corollaire 9.4
garantit que :

−∞ < v(r) (∀ 0<r<R).

Ensuite, soient deux rayons intermédiaires :

0 < r1 < r2 < R.

Par résolution linéaire, il existe deux constantes réelles α, β uniques telles que :

α+ β log r1 = v(r1),

α+ β log r2 = v(r2),

et il n’est pas nécessaire d’écrire les formules explicites de Cramér pour α et β. Alors le
principe du maximum appliqué à la fonction v(z)− α− β log |z| qui s’annule sur les deux
composantes du bord de l’anneau {r1 < |z| < r2} donne :

v(r) 6 α+ β log r (∀ r1 <r<r2).

Fixons maintenant un rayon r avec r1 < r < r2. Si 0 < λ < 1 est l’unique réel qui
réalise la combinaison barycentrique — à nouveau, la formule explicite n’est pas néces-
saire — :

log r = (1− λ) log r1 + λ log r2,
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un remplacement et une réorganisation :

v(r) 6 α+ β log r

= (1− λ)
(
α+ β log r1

)
+ λ

(
α+ β log r2

)
= (1− λ) v(r1) + λ v(r2)

conduisent à une inégalité qui montre que log r 7−→ v(log r) est bel est bien convexe ! �
Terminons cette section par l’étude de diverses invariants qui permettent de quantifier la

croissance des fonctions sous-harmoniques.

Définition 11.8. Soit u 6≡ −∞ une fonction sous-harmonique dans un disque ∆R(0) de
rayon R > 0 centré à l’origine. Pour tout rayon 0 < r < R, soient :

Mu(r) := sup
|z|=r

u(z),

Cu(r) :=
1

2π

∫ 2π

0

u
(
r eiθ

)
dθ,

Bu(r) :=
1

π r2

∫
Dr(0)

u
(
s eiθ

)
s ds dθ.

D’après la Proposition 3.5, le Théorème 9.1 et le Corollaire 9.4, nous savons déjà que
ces trois quantités sont bornées supérieurement :

Mu(r) < ∞, Cu(r) < ∞, Bu(r) < ∞.
De plus, Cu(r) et Bu(r) sont visiblement reliées entre elles par la relation :

Bu(r) =
2

r2

∫ r

0

Cu(s) s ds.(11.9)

Théorème 11.10. Les trois propriétés suivantes sont satisfaites :
(i) Mu(r), Cu(r), Bu(r) sont des fonctions convexes croissantes de log r ;
(ii) pour tout 0 < r < R, on a :

u(0) 6 Bu(r) 6 Cu(r) 6 Mu(r);

(iii) en r = 0 :
u(0) = lim

r→0
Mu(r) = lim

r→0
Cu(r) = lim

r→0
Bu(r).

Démonstration. (i). Pour tout 0 < r < R, nous pouvons écrire :

Mu(r) = vM(r) avec vM(z) := sup
θ∈[0,2π[

u
(
z eiθ

)
,

Cu(r) = vC(r) avec vC(z) :=
1

2π

∫ 2π

0

u
(
z eiθ

)
dθ,

Bu(r) = vB(r) avec vB(z) :=
1

π

∫ 2π

0

∫ 1

0

u
(
z s eiθ

)
s ds dθ.

Affirmation 11.11. Ces trois fonctions vM , vC , vB sont sous-harmoniques dans DR(0).

Démonstration. Pour vM , appliquer le Théorème 8.2, tandis que pour vC , vB, c’est le Théo-
rème 8.3 qui s’applique. �
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Manifestement, ces trois fonctions vM , vC , vB sont radiales ! Or nous venons de démon-
trer par le Théorème 11.7 que leur sous-harmonicité équivaut à (i) !

(ii). La dernière inégalité Cu(r) 6Mu(r) est claire.
Ensuite, grâce à (i) qui vient d’être établi, on a pour 0 6 s 6 r < R :

u(0) 6 Cu(s) 6 Cu(r).

Multiplions alors ces inégalités par 2 s
r2

et intégrons de s = 0 à s = r, ce qui donne :

u(0) 6 2

r2

∫ 2π

0

Cu(s) s ds 6 Cu(r).

En combinant cela à l’équation (11.9), nous obtenons bien :

u(0) 6 Bu(r) 6 Cu(r).

(iii). Grâce aux inégalités (ii) qui viennent d’être démontrées, il suffirait d’avoir :

lim sup
r→ 0

Mu(r) 6 u(0),

mais ceci est gratuit par semi-continuité supérieure de u en 0 !
�

12. Régularisation des fonctions sous-harmoniques

Bien que les fonctions sous-harmoniques soient parfois loin d’être régulières, elles
peuvent néanmoins être approximées à volonté par des fonctions sous-harmoniques C ∞,
grâce à l’opération standard — et magique ! — de convolution.

Notation 12.1. Étant donné un ouvert Ω ⊂ C, pour tout r > 0, on note :

Ωr :=
{
z ∈ Ω: dist

(
z, ∂Ω

)
> r

}
.

Soit maintenant u : Ω −→ [−∞,∞[ une fonction localement intégrable au sens de Le-
besgue, par exemple une fonction sous-harmonique, puisqu’on sait d’après le Théorème 9.1
que :

SH(Ω) ⊂ L1
loc(Ω).

Soit aussi :
φ : C −→ R

une fonction continue avec suppφ ⊂ Dr(0), pour un r > 0.

Définition 12.2. La convolution entre u et φ est la fonction :

u ∗ φ : Ωr −→ R
définie par l’intégrale :

u ∗ φ(z) :=

∫
C
u(z − w)φ(w) dλ(w) (z ∈Ωr).

On considère donc :
L1

loc ∗ C 0
c .

On vérifie (exercice de révision) que ∗ est associatif (utiliser Fubini-Tonelli). Le chan-
gement de variable w′ := z − w transforme :

u ∗ φ(z) =

∫
C
u(w)φ(z − w) dλ(w) = φ ∗ u(z),
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ce qui est la commutativité du produit de convolution. Grâce à cette seconde représentation,
on se convainc (révisions !) que u ∗ φ(z) est indéfiniment différentiable lorsque φ ∈ C ∞

c ,
avec des dérivées partielles obtenues en dérivant sous le signe d’intégration :

∂ix∂
j
y

(
u ∗ φ

)
(z) =

∫
C
u(w) ∂ix∂

j
y φ(z − w) dλ(w) (i, j,∈N).

Théorème 12.3. [de régularisation] Soit u 6≡ −∞ une fonction sous-harmonique dans
un ouvert Ω ⊂ C, soit χ : C −→ R une fonction satisfaisant :
• χ ∈ C ∞ ;
• χ > 0 ;
• χ(z) = χ(|z|) ;
• suppχ ⊂ D = D1(0) ;
•
∫
C χdλ = 1 ;

et pour r > 0, soient les fonctions renormalisées C ∞
c se concentrant en 0 lorsque r >−→ 0 :

χr(z) := 1
r2
χ
(
z
r

)
(z ∈C).

Alors les convolées : (
u ∗ χr

)
r>0

forment une famille de fonctions C ∞ sous-harmoniques dans Ωr qui tendent vers u :

u(z) = lim
r

>−→0

u ∗ χr(z) (∀ z ∈Ω)

en décroissant :
u(z) 6 u ∗ χs(z) 6 u ∗ χr(z) (0<s6 r; z ∈Ωr).

Un exemple d’une telle fonction χ (révision !) est :

χ(z) :=

{
c e

− 1
1−4 |z|2 lorsque |z| < 1

2
.

0 lorsque |z| > 1
2
,

où la constante c := 1∫
e−1/(1−4 |z|2) est choisie pour normaliser

∫
χ = 1.

Démonstration. Le Théorème 9.1 a fait voir que u ∈ L1
loc(Ω) ⊃ SH(Ω), ce qui garantit que

le produit de convolution u ∗ χr a un sens. De plus, comme χr est C ∞ et à support dans
{|z| < r}, on a u ∗ χr ∈ C ∞(Ωr).

Ensuite, le Théorème 8.3, appliqué avec :(
M , µ

)
:=

(
C, χr dλ

)
,

et avec v(z,m) := u(z −m), montre sans effort que u ∗ χr est sous-harmonique.
Maintenant, fixons z0 ∈ Ω. Pour 0 < r < dist (z0, ∂Ω), en passant aux coordonnées

polaires, on peut développer le produit de convolution comme :

u ∗ χr(z0) =

∫ 2π

0

∫ r

0

u
(
z0 − s eit

)
1
r2
χ
(
s
r

)
s ds dt.

Effectuons alors le changement de variable q := s
r
, posons v(z) := u(z0−z), et souvenons-

nous de la Définition 11.8 avec :

Cv(q r) =
1

2π

∫ 2π

0

v
(
q r eit

)
dt,
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pour ré-écrire ce qui précède comme :

u ∗ χr(z0) = 2π

∫ 1

0

Cv(q r)χ(q) q dq.

Grâce au Théorème 11.10 (iii), Cv(q r) décroît vers v(0) lorsque r ↓ 0. Ainsi, par le
théorème de convergence monotone, u ∗ χr(z0) décroît vers :

2π

∫ 1

0

v(0)χ(q) q dq = u(z0)

∫
C
χdλ = u(z0),

ce qu’il fallait. �
Corollaire 12.4. Soit u une fonction sous-harmonique dans un ouvert Ω ⊂ C, et soit ω b Ω
un sous-domaine relativement compact. Alors il existe une suite décroissante de fonctions :(

un
)∞
n=1
∈ C ∞(ω) ∩ SH(ω)

satisfaisant :
lim

n→∞
un = u 6 · · · 6 u3 6 u2 6 u1 (dansω).

Démonstration. Quand u ≡ −∞ dans ω, il suffit de prendre un := −∞.
Sinon, on choisit r > 0 assez petit pour que ω ⊂ Ωr, et il suffit de prendre les convolées :

un := u ∗ χ r
n

∣∣∣
ω

(n> 1),

en application du théorème qui précède. �
Comme autre application, voici un résultat qui généralise le Corollaire 7.3 à des fonc-

tions holomorphes pas forcément inversibles.

Théorème 12.5. Si f : Ω −→ Ω′ est une application holomorphe entre deux ouverts Ω ⊂ C
et Ω′ ⊂ C, alors :

u′ ∈ SH(Ω′) =⇒ u ◦ f ∈ SH(Ω).

Démonstration. Soit ω b Ω un sous-domaine relativement compact. Il suffit de faire voir
que u′ ◦ f est sous-harmonique dans ω.

Posons ω′ := f(ω). Choisissons une suite (u′n)
∞
n=1 de fonctions sous-harmoniques C ∞

dans ω′ telles que u′n ↓ u′ sur ω′. La caractérisation de la sous-harmonicité lisse donnée par
le Théorème 7.4 dit que ∆u′n > 0 dans ω′, et ce, pour tout n > 1.

Ensuite, un calcul direct utilisant l’holomorphie de f donne (exercice) :

∆
(
u′n ◦ f

)
=

(
(∆u′n) ◦ f

) ∣∣∂f
∂z

∣∣2 (dansω).

Donc on a ∆(u′n ◦ f) > 0 dans ω, et en réappliquant (dans l’autre sens) le Théorème 7.4, il
vient que u′n ◦ f est sous-harmonique dans ω.

Pour conclure que u′ ◦ f est sous-harmonique, il suffit de faire tendre n −→ ∞, cf. le
Théorème 8.1. �

Enfin, pour terminer cette section, le Théorème 12.3 de régularisation permet d’obtenir
un principe d’identité pour les fonctions sous-harmoniques qui s’avère parfois utile.

Théorème 12.6. [Principe d’identité faible] Si deux fonctions u et v sous-harmoniques
dans un ouvert Ω ⊂ C sont presque partout égales, alors u = v partout.
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Démonstration. Supposons d’abord que u et v sont bornées inférieurement sur Ω. En
convolant avec une famille de fonctions χr comme ci-dessus, on obtient l’identité :

u ∗ χr = v ∗ χr

valable dans Ωr, et en faisant r −→ 0, on déduit grâce au Théorème 12.3 que u = v partout
dans Ω.

Le cas général suit aisément en applicant cela aux deux suites de fonctions :

un := max
(
u, −n

)
et vn := max

(
v, −n

)
,

puis en faisant n −→∞. �
Un dernier commentaire. Pour les fonctions sous-harmoniques, on ne peut pas espérer

avoir un principe d’identité aussi fort que pour les fonctions harmoniques : égalité dans un
sous-ouvert ∅ 6= ω ⊂ Ω implique égalité partout dans le domaine Ω. En effet :

u(z) := max
(
Re z, 0

)
et v(z) := 0

coïncident sur ω := {Re z < 0} ⊂ C = Ω.
À un niveau élevé de compréhension interne de la théorie, ce sont justement leurs ‘dé-

fauts’ d’unicité et de rigidité qui rendent les fonctions sous-harmoniques si utiles et si
puissantes.

13. Formule de Jensen complexe

Pour effecter une variation thématique, nous allons maintenant présenter la formule de
Jensen, qui permet de redémontrer différemment l’inégalité de sous-moyenne globale du
Corollaire 7.2. Commençons par quelques rappels standard.

Lorsqu’une fonction ϕ : Ω −→ R définie dans un domaine Ω ⊂ C est de classe C 1, en
introduisant l’opérateur de différentiation standard :

dϕ =
∂ϕ

∂x
dx+

∂ϕ

∂y
dy,

on a (exercice) :

dϕ =
∂ϕ

∂z
dz +

∂ϕ

∂z
dz,

en termes des opérateurs :

∂ϕ :=
∂ϕ

∂z
dz :=

(
1

2

∂ϕ

∂x
− i
2

∂ϕ

∂y

)(
dx+i dy

)
et ∂ϕ :=

∂ϕ

∂z
dz :=

(
1

2

∂ϕ

∂x
+
i

2

∂ϕ

∂y

)(
dx−i dy

)
.

De manière abrégée :
d = ∂ + ∂,

et on vérifie la relation d’anticommutation (exercice) :

∂ ◦ ∂ = − ∂ ◦ ∂,
ainsi que les relations d’annulation (exercice) :

0 = ∂ ◦ ∂ = ∂ ◦ ∂,
dues au fait que dz ∧ dz = 0 et que dz ∧ dz = 0.

Introduisons maintenant aussi l’opérateur :

dc :=
1

2iπ

(
∂ − ∂

)
,
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le facteur de normalisation étant justifié par diverses nécessités contextuelles, voir infra le
commentaire de la Formule de Jensen 13.5. On vérifie que cet opérateur dc est réel, au sens
où dcϕ est encore une fonction à valeurs réelles lorsque ϕ l’est (exercice) :

2π dcϕ = i
(
∂ − ∂

)
ϕ =

∂ϕ

∂x
dy − ∂ϕ

∂y
dx.

Lemme 13.1. Lorsque ϕ : Ω −→ R est de classe au moins C 2, on a :

ddcϕ =
i

π
∂∂ ϕ =

i

π

∂2ϕ

∂z∂z
dz ∧ dz =

1

2π

(
∂2ϕ

∂x2
+
∂2ϕ

∂y2

)
dx ∧ dy.

Démonstration. En effet :

ddcϕ =
i

2π

(
∂ + ∂

)(
− ∂ + ∂

)
ϕ

=
i

2π

(
− ∂∂◦ + ∂∂ − ∂∂ + ∂∂◦

)
ϕ

=
i

π
∂∂ ϕ

=
i

π
∂

(
∂ϕ

∂z
dz

)
=

i

π

∂2ϕ

∂z∂z
dz ∧ dz

=
1

2π

(
∂2ϕ

∂x2
+
∂2ϕ

∂y2

)
dx ∧ dy,

ce qui conclut. �

Définition 13.2. Pour ϕ ∈ C 2(Ω,R), la notation ddcϕ > 0, respectivement > 0, signifie la
positivité de son laplacien :

∂2ϕ

∂z∂z
=

1

4

(
∂2ϕ

∂x2
+
∂2ϕ

∂y2

)
> 0 (> 0).

Maintenant, le passage des coordonnées cartésiennes aux coordonnées polaires :

x = r cos θ, y = r sin θ (r 6=0, 06 θ < 2π),

transfère, d’après l’Exercice 2, les dérivations fondamentales de la manière suivante :

∂

∂x
= cos θ

∂

∂r
− 1

r
sin θ

∂

∂θ
,

∂

∂y
= sin θ

∂

∂r
+

1

r
cos θ

∂

∂θ
.

Si on note en indice les dérivées partielles pour les contracter, il vient alors :

i
(
∂ − ∂

)
ϕ = ϕx dy − ϕy dx =

(
cos θ ϕr − sin θ

r
ϕθ

) (
sin θ dr + r cos θ dθ

)
−

−
(
sin θ ϕr +

cos θ
r
ϕθ

) (
cos θ dr − r sin θ dθ

)
=

(
− 1

r
ϕθ

)
dr +

(
r ϕr

)
dθ.

On obtient donc la formule utile :

dcϕ =
1

2π

(
− 1

r

∂ϕ

∂θ
dr + r

∂ϕ

∂r
dθ

)
,
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laquelle, appliquée à la fonction ϕ = log r = log|z|, donne :

dclog|z| = 1

2π
dθ.(13.3)

Lemme 13.4. Pour toutes fonctions ϕ, ψ ∈ C 1(Ω,C), on a :

dϕ ∧ dcψ = − dcϕ ∧ dψ.

Démonstration. En utilisant dz ∧ dz = dz ∧ dz = 0, on développe et on recontracte :

2iπ dϕ ∧ dcψ =
(
∂ϕ+ ∂ϕ

)
∧
(
∂ψ − ∂ψ

)
= ∂ϕ ∧ ∂ψ◦ − ∂ϕ ∧ ∂ψ + ∂ϕ ∧ ∂ψ − ∂ϕ ∧ ∂ψ◦

= −
(
∂ϕ− ∂ϕ

)
∧
(
∂ψ + ∂ψ

)
= − 2iπ dcϕ ∧ dψ,

calcul qui aurait pu être laissé en exercice. �

Théorème 13.5. [Formule de Jensen complexe] Soit ϕ une fonction de classe C 2 sur un
voisinage ouvert d’un disque fermé Dr(z0) ⊂ C de rayon r > 0 centré en un point z0 ∈ C.
Alors pour tout rayon 0 6 s 6 r, on a :

1

2π

∫ 2π

0

ϕ
(
z0 + r eiθ

)
dθ − 1

2π

∫ 2π

0

ϕ
(
z0 + s eiθ

)
dθ =

∫ r

s

dρ

ρ

∫
Dρ(z0)

i

π
∂∂ϕ

=

∫ r

s

dρ

ρ

∫
Dρ(z0)

ddcϕ.

Lisons et expliquons cette formule.
À droite, on intègre la 2-forme différentielle i

π
∂∂ϕ sur des disques de rayons croissants

s 6 ρ 6 r, et on intègre ensuite les résultats obtenus par rapport à la mesure dρ
ρ

. Le facteur
i
π

dans i
π
∂∂ϕ est inévitable, et la deuxième ligne ci-dessus explique en partie pourquoi on

a inscrit le facteur de normalisation 1
2iπ

dans la définition de dc(·).

Démonstration. Après une translation, on peut supposer que z0 = 0. Eu égard à l’équa-
tion (13.3), le théorème de Stokes transforme le terme de gauche de la formule à démontrer
en l’intégrale d’une 2-forme sur un anneau :∫

|z|=r

ϕ(z) dclog |z| −
∫
|z|=s

ϕ(z) dclog |z| =

∫
s<|z|<r

d
(
ϕ(z) dc log |z|

)
=

∫
s<|z|<r

dϕ(z) ∧ dclog |z|+
∫
s<|z|<r

ϕ(z) ddc log|z|
◦
,

le second morceau s’annulant car, sur C∗ qui contient l’anneau en question, en écrivant
log |z| = 1

2
log

(
zz
)
, on constate l’harmonicité (exercice) :

0 = ∂∂ log |z| = π
i
ddc log |z|.
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Ensuite, en appliquant le Lemme 13.4 spécialement préparé à l’avance, il vient :∫
|z|=r

ϕ(z) dclog |z| −
∫
|z|=s

ϕ(z) dclog |z| =

∫
s<|z|<r

d log |z| ∧ dcϕ

=

∫ r

s

dρ

ρ

∫
|z|=ρ

dcϕ

=

∫ r

s

dρ

ρ

∫
Dρ(0)

ddcϕ,

en réappliquant à la fin le Théorème de Stokes pour atterrir en douceur à la destination
désirée ! �

Cette formule de Jensen complexe fournit une démonstration particulièrement éclairante
de l’inégalité de sous-moyenne satisfaite par les fonctions sous-harmoniques lisses.

Corollaire 13.6. [Inégalité de sous-moyenne globale] Dans un ouvert Ω ⊂ C, si une fonc-
tion u ∈ C 2(Ω,R) satisfait ∆u > 0, alors pour tout z0 ∈ Ω et tout 0 6 r < dist (z0, ∂Ω),
on a :

u(z0) 6 1

2π

∫ 2π

0

u
(
z0 + r eiθ

)
dθ,

et plus généralement, pour tous 0 6 s 6 r < dist (z0, ∂Ω) :

1

2π

∫ 2π

0

u
(
z0 + s eiθ

)
dθ 6 1

2π

∫ 2π

0

u
(
z0 + r eiθ

)
dθ.

Démonstration. La formule de Jensen semble n’avoir été créée par Dieu que pour établir
cette croissance des moyennes sur des disques concentriques, puisqu’en effet la différence :

1

2π

∫ 2π

0

u
(
z0 + r eiθ

)
dθ − 1

2π

∫ 2π

0

u
(
z0 + s eiθ

)
dθ =

∫ r

s

dρ

ρ

∫
Dρ(z0)

ddcu

=

∫ r

s

dρ

ρ

∫
Dρ(z0)

1
2π

∆u

est une intégrale avec poids logarithmique de l’intégrale d’aire d’une fonction positive ! �
Voici un énoncé qui aura des répercussions dans la théorie des fonctions de plusieurs

variables complexes.

Théorème 13.7. Si u : Ω −→ [−∞,∞[ est une fonction semi-continue supérieurement
dans un domaine Ω ⊂ C, on a équivalence entre :
(i) u est sous-harmonique ;
(ii) pour tout disque Dr(z0) ⊂ Ω, et pour tout polynôme p ∈ C[z] :(

u
(
z0 + r eiθ

)
6 Re p

(
z0 + r eiθ

)
(∀ 06 θ < 2π)

)
=⇒ u(z0) 6 Re p(z0).

Démonstration. (i) =⇒ (ii). Supposons u ∈ SH(Ω) et soit un disque Dr(z0) ⊂ Ω. Comme
Re p est harmonique, la fonction u− Re p est sous-harmonique. Or elle satisfait :(

u− Re p
)
(ζ) 6 0 (∀ ζ ∈ ∂Dr(z0)),

donc le Principe du Maximum 5.4 assure que(
u− Re p

)
(z) 6 0 (∀ z ∈Dr(z0)),
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et en z = z0, c’est justement (ii) !
(ii) =⇒ (i). L’objectif est d’établir que u satisfait l’inégalité de sous-moyenne :

u(z0) 6 1

2π

∫ 2π

0

u
(
z0 + r eiθ

)
.

Pour abréger, notons ∆ := Dr(z0). Le Théorème 3.6 fournit une suite de fonctions
continues (un)∞n=1 ∈ C 0(∂∆,R) qui tendent en décroissant :

u 6 un+1 6 un (n> 1)

vers :
u
∣∣
∂∆

= lim
n→∞

un (sur ∂∆).

Au moyen de l’opérateur de Poisson P∆(·), introduisons leurs prolongements harmo-
niques : (

P∆un
)
(z) (z ∈∆),

continus jusqu’au bord :
lim
z→ζ

(
P∆un

)
(z) = un(ζ) (∀ ζ ∈ ∂∆).

À une constante près que l’on fixe égale à 0, ces fonctions harmoniques P∆un possèdent
une unique conjuguée harmonique, disons hn ∈ Harm(∆), de telle sorte que :

fn := P∆un + i hn ∈ O(∆)

est holomorphe.
Fixons temporairement un entier n > 1 quelconque, et prenons un ε > 0 arbitrairement

petit. Par continuité au bord uniforme du prolongement harmonique, il existe 0 � rε < r
assez proche de r tel que pour tout rε 6 s < r, on a :(

P∆un
)(
z0 + s eit

)
− ε < un

(
z0 + r eit

)
<

(
P∆un

)(
z0 + s eit

)
+ ε

= Re fn
(
z0 + s eit

)
+ ε,

uniformément quel que soit 0 6 t < 2π. Fixons à présent un s avec rε 6 s < r.
Maintenant, puisque la fonction holomorphe fn ∈ O(∆) peut être développée au point

central z0 en série entière :

fn(z) =
∞∑
k=0

1

k!

dkfn
dzk

(z0)
(
z − z0

)k
,

qui converge normalement sur les compacts de ∆ = Dr(z0), notamment sur Ds(z0) b
Dr(z0), en tronquant cette série à un ordre suffisamment élevé, on obtient un polynôme
qn(z) avec bien sûr :

qn(z0) = fn(z0)

tel que :
max

|z−z0|6s

∣∣fn(z)− qn(z)∣∣ 6 ε,

d’où :
Re fn

(
z0 + s eit

)
6 Re qn

(
z0 + s eit

)
+ ε,

puis en revenant à ce qui précède — noter le petit jeu dérangeant entre r et s — :

u
(
z0 + r eit

)
6 un

(
z0 + r eit

)
6 Re qn

(
z0 + s eit

)
+ 2 ε.
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Afin de neutraliser ce petit jeu perturbateur, avec les variables :

w = z0 + s eit et z = z0 + r eit,

d’où :
w = z0 +

s
r
(z − z0),

en introduisant le nouveau polynôme :

pn(z) := qn
(
z0 +

s
r
(z − z0)

)
,

satisfaisant donc :
pn
(
z0 + r eit

)
= qn

(
z0 + s eit

)
(∀ 06 t< 2π),

ainsi que :
pn(z0) = qn(z0) = fn(z0),

cette dernière inégalité se ré-écrit comme :

u(z) 6 Re pn(z) + 2 ε (∀ z ∈ ∂Dr(z0)).

L’hypothèse (ii) s’applique alors pour donner :

u(z0) 6 Re pn(z0) + 2 ε.

Mais comme Re pn(z) est une fonction harmonique, elle satisfait l’égalité de la moyenne :

Re pn(z0) =
1

2π

∫ 2π

0

Re pn
(
z0 + r eiθ

)
dθ.

Nous pouvons donc remplacer et estimer :

u(z0) 6 1

2π

∫ 2π

0

Re pn
(
z0 + r eiθ

)
dθ + 2 ε

=
1

2π

∫ 2π

0

Re qn
(
z0 + s eit

)
dt+ 2 ε

6 1

2π

∫ 2π

0

Re fn
(
z0 + s eit

)
dt+ 3 ε

=
1

2π

∫ 2π

0

(
P∆un

)(
z0 + s eit

)
dt+ 3 ε

6 1

2π

∫ 2π

0

un
(
z0 + r eit

)
dt+ 4 ε

Or ε > 0 était arbitraire, donc :

u(z0) 6 1

2π

∫ 2π

0

un
(
z0 + r eiθ

)
dθ.

Pour terminer, il ne reste plus qu’à faire n −→ ∞ pour obtenir grâce au théorème de
convergence monotone :

u(z0) 6 1

2π

∫ 2π

0

u
(
z0 + r eiθ

)
dθ,

ce qui est l’inégalité de sous-moyenne visée. �
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14. Théorème de Hartogs sous-harmonique

Soit un ouvert Ω ⊂ C. L’espace des fonctions sous-harmoniques dans Ω est noté :

SH(Ω).

La motivation du théorème suivant est un théorème exceptionnel de la théorie des fonctions
de plusieurs variables complexes, que nous verrons ultérieurement.

Théorème 14.1. [Hartogs sous-harmonique] Soit (vj)∞j=1 une suite de fonctions sous-
harmoniques vj ∈ SH(Ω) uniformément bornées supérieurement sur les compacts de Ω :

∀K b Ω ∃MK <∞ vj 6 MK ∀ j > 1.

On suppose qu’il existe une constante C <∞ telle que :

lim sup
j→∞

vj(z) 6 C (∀ z ∈Ω).

Alors pour tout compact K b Ω et pour tout ε > 0, il existe un entier j0 = j0(K, ε) assez
grand pour que :

j > j0 =⇒ vj(z) 6 C + ε (∀ z ∈K).

Ici, pour comprendre l’énoncé, les constantes MK dont on suppose l’existence au début
peuvent fort bien être très supérieures � C à la constante C des limites ‘sup’, mais à ε
près, le théorème dit que C + ε majorera uniformément sur les compacts les termes assez
grands de la suite.

Démonstration. Soit donc un compact K b Ω. On peut trouver un sous-domaine le conte-
nant :

K b Ω′ b Ω,

lui-même compactement contenu dans Ω, à savoir Ω
′ ⊂ Ω. Par hypothèse :

vj
∣∣
K

6 vj
∣∣
Ω

′ 6 MΩ
′ < ∞,

et donc, en remplaçant Ω par Ω′, que l’on notera de nouveau Ω, on peut supposer dès le
départ que :

vj 6 MΩ < ∞ (∀ j > 1).

Au-delà, en remplaçant vj par vj −MΩ que l’on notera de nouveau vj , on peut aussi sup-
poser que :

vj 6 0 (∀ j > 1).

Soit maintenant r > 0 assez petit pour que le sous-ouvert :

Ω3r :=
{
z ∈ Ω: dist

(
z, C\Ω

)
> 3 r

}
⊃ K

contienne le compact. Comme les fonctions vj sont sous-harmoniques, le Corollaire 7.2
montre qu’elles satisfont l’inégalité bidimensionnelle de la moyenne sur tous les disques
de rayon r centrés en les points de K :

π r2 vj(z) 6
∫
|ζ−z|6r

vj(ζ) dξ ∧ dη (z∈K, j > 1),

où ζ = ξ + iη et dξ ∧ dη est la mesure de Lebesgue sur R2. C’est à ce moment-là qu’on
utilise le :
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Lemme de Fatou en version Limite Supérieure. Sur un sous-ensemble mesurable E ⊂
Rn, soit une suite (fj)

∞
j=1 de fonctions mesurables négatives :

fj 6 0

intégrables pour la mesure de Lebesgue sur Rn restreinte à E. Alors on a :

lim sup
j→∞

∫
E

fj 6
∫
E

lim sup
j→∞

fj. �

Comme la limite supérieure des vj est par hypothèse 6 C, on obtient donc :

π r2 vj(z) 6 lim sup
j→∞

∫
|ζ−z|6r

vj(ζ) dξ ∧ dη 6 π C r2 (z∈K, j > 1).

Pour z ∈ K fixé, il existe donc j0(z)� 1 assez grand pour que l’on ait :

j > j0(z) =⇒
∫
|ζ−z|6r

vj(ζ) dξ ∧ dη 6 π
(
C + ε

2

)
r2.

Alors pour tout autre point w proche de z satisfaisant |z − w| < δ < r, on a inclusion des
disques :

Dr+δ(w) ⊃ Dr(z),

et comme vj 6 0, on obtient :

π (r+δ)2 vj(w) 6
sous-

harmonicité

∫
|ζ−w|6r+δ

vj(ζ) dξ∧dη 6
utiliser
vj 6 0

∫
|ζ−z|6r

vj(ζ) dξ∧dη 6 π
(
C+ ε

2

)
r2,

et ce, uniformément pour :

∀w ∈ Dδ(z) ∀ j > j0(z).

Si maintenant 0 < δ � r est très petit, l’inégalité qui s’en déduit entre les deux ex-
trêmes :

vj(w) 6
(
C + ε

2

)
r2(

r + δ
)2

6 C + ε (∀w∈Dδ(z), ∀ j > j0(z)),

permet de conclure en utilisant le lemme de recouvrement dit de Borel-Lebesgue du com-
pact K par un nombre fini de tels disques ouverts :

Dδ1(z1) ∪ · · · ∪ Dδn(zn) ⊃ K,

en choisissant bien sûr :

j0 := max
(
j0(z1), . . . , j0(zn)

)
,

ce qui conclut. �
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15. Exercices

Exercice 1. Trouver un exemple de suite de fonctions continues fn ∈ C 0([0, 1],R+), n ∈ N, croissante
fn 6 fn+1 dont la limite ponctuelle f := lim fn existe en tout point x ∈ [0, 1], mais qui n’est pas semi-
continue supérieurement sur un certain sous-ensemble dense de [0, 1].

Exercice 2. Dans le plan complexe C, un point z = x+ i y = r eiθ distinct de l’origine (r 6= 0) se représente
au moyen soit des coordonnées cartésiennes (x, y), soit des coordonnées polaires (r, θ), avec 0 6 θ < 2π.
Établir les formules de transfert de dérivations :

r
∂

∂r
= x

∂

∂x
+ y

∂

∂y
,

∂

∂x
= cos θ

∂

∂r
− 1

r
sin θ

∂

∂θ
,

∂

∂θ
= − y ∂

∂x
+ x

∂

∂y
,

∂

∂y
= sin θ

∂

∂r
+

1

r
cos θ

∂

∂θ
.

Indication: Étant donné une fonction F = F (x, y), dériver F (x, y) = F (r cos θ, r sin θ).

Exercice 3. Avec les notations qui précèdent, établir le transfert suivant entre opérateurs du second ordre : ∂2

∂r2
1
r

(
∂2

∂r∂θ −
1
r

∂
∂θ

)
1
r2

(
∂2

∂θ2 + r ∂
∂r

)
 =

 cos2θ 2 cos θ sin θ sin2θ
−sin θ cos θ cos2θ − sin2θ sin θ cos θ

sin2θ −2 sin θ cos θ cos2θ




∂2

∂x2

∂2

∂x∂y
∂2

∂y2

 .

Exercice 4. Démontrer qu’une fonction u : U −→ [−∞,∞[ définie sur un espace topologique X (pas
forcément métrique) satisfaisant :

lim sup
x→ x0

u(x) 6 u(x0)

pour tout x0 ∈ X est bornée supérieurement sur tout sous-ensemble compact K ⊂ X .

Exercice 5. Soit E un sous-ensemble d’un espace métrique (X, d). Montrer que la fonction caractéristique
1E de E est semi-continue supérieurement si et seulement si E est fermé dans X .

Exercice 6. L’objectif est de démontrer que le Théorème 3.6 reste vrai sans l’hypothèse que la fonction u est
bornée supérieurement.

Sur un espace métrique (X, d), soit donc u : X −→ [−∞,∞[ une fonction semi-continue supérieure-
ment. Pour n > 0 entier, on introduit les sous-ensembles :

Fn :=
{
x ∈ X : u(x) > n

}
,

ainsi que les fonctions :
ψn(x) := max

(
0, 1− n dist (x, Fn)

)
(x∈X).

(a) Montrer que
∑

n>0 ψn converge uniformément sur les compacts de X vers une fonction ψ : X −→ R
satisfaisant ψ > u sur X .
(b) En considérant la fonction bornée supérieurement u− ψ, déduire le résultat souhaité.

Exercice 7. L’objectif est de démontrer qu’une fonction semi-continue supérieurement sur un espace mé-
trique complet est en fait continue en tout point d’un sous-ensemble dense.

Soient deux espaces topologiques métriques (X, d) et (X ′, d′), et soit une application arbitraire f : X −→
X ′. En un point x ∈ X , l’oscillation de f est définie comme :

ωf (x) := lim
r

>−→0

(
sup

y,z∈Br(x)

d′
(
f(y), f(z)

))
.

(a) Vérifier que f est continue en un point x ∈ X lorsque, et seulement lorsque, 0 = ωf (x).
(b) Montrer, pour c > 0 quelconque, que les ensembles {x : ωf (x) < c} sont ouverts dans X .
(c) Montrer que l’ensemble des points en lesquels f est continue est un Gδ de X , à savoir une intersection
dénombrable de certains ouverts de X , que l’on précisera.
(d) On suppose dorénavant que (X, d) est complet et que f est limite ponctuelle d’une suite d’applications
fn : X −→ X ′ continues. Montrer, pour c > 0 quelconque, que l’ensemble {x : ωf (x) < c} est dense dans
X .
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(e) En appliquant le Théorème de Baire, montrer que l’ensemble des points en lesquels f est continue forme
un Gδ dense de X .
(f) Conclure dans ce contexte que la semi-continuité supérieure implique la continuité sur un Gδ dense.

Exercice 8. Utiliser l’inégalité de Cauchy-Schwarz pour montrer que si une fonction h est harmonique dans
un domaine Ω ⊂ C, alors h2 est encore harmonique dans Ω.

Exercice 9. (a) Étant donné ζ ∈ C, calculer pour tout r > 0 :

1

2π

∫ 2π

0

log
∣∣r eit − ζ∣∣ dt =

{
log |ζ| lorsque r 6 |ζ|,
log r lorsque r > |ζ|.

(b) Utiliser cela pour montrer que la fonction :

u(z) :=
∑
n>1

1
2n log

∣∣z − 1
2n

∣∣
est sous-harmonique dans C.
(c) Vérifier que u n’est pas continue en z = 0.

Exercice 10. Soient u1, . . . , uK des fonctions sous-harmoniques dans un domaine Ω ⊂ C. On suppose que
leur somme u1 + · · · + uK atteint un maximum en un certain point de Ω. Montrer que toutes les fonctions
u1, . . . , uK sont alors harmoniques.

Exercice 11. Soit u une fonction sous-harmonique dans le disque unité D ⊂ C qui y est < 0. Pour tout
ζ ∈ ∂D, établir le Lemme de Hopf :

lim sup
r

<−→ 1

u(r ζ)

1− r
< 0.

ε
>−→ 0. Indication: Appliquer le principe du maximum à la fonction u(z) + c log |z| sur l’ensemble { 12 <

|z| < 1} pour une constante appropriée c.

Exercice 12. Soit D ⊂ C le disque unité, et soit f : D −→ D une fonction holomorphe satisfaisant, lorsque
z → 1 :

f(z) = z + o
(
|1− z|3

)
.

(a) On introduit φ(z) := 1+z
1−z ainsi que :

u(z) := Re
(
φ(z)− φ(f(z))

)
.

Montrer, pour tout ζ ∈ ∂D\{1}, que :
lim sup
z→ ζ

u(z) 6 0.

(b) Montrer que u(z) = o
(
|1− z|

)
lorsque z → 1.

(c) En utilisant le principe du maximum, montrer que u 6 0, puis, grâce à l’Exercice 11, que u ≡ 0.
(d) Conclure que f(z) ≡ z.
(e) Donner un exemple montrant que cette conclusion échouerait si on supposait seulement que f(z) =
z +O

(
|1− z|3

)
.

Exercice 13. Soit u une fonction sous-harmonique sur le disque unité D satisfaisant :

u(z) 6 − log |Im z| (z ∈D).

Montrer que :
u(z) 6 − log

∣∣ 1−z2

2

∣∣ (z ∈D).

Indication: Appliquer le principe du maximum à la fonction :

u(z) + log
∣∣ r2−z2

2 r

∣∣,
définie sur Dr(0), où 0 < r < 1, et faire r → 1.



15. Exercices 51

Exercice 14. Soit u une fonction semi-continue supérieurement dans un domaine Ω ⊂ C satisfaisant, en tout
point z0 ∈ Ω où u(z0) > −∞ :

0 6 lim sup
r→ 0

1

r2

(
1

2π

∫ 2π

0

u
(
z0 + r eiθ

)
dθ − u(z0)

)
.

Montrer que u est sous-harmonique dans Ω. Indication: Pour ε > 0, introduire uε := u + ε |z|2. Imiter
les arguments successifs qui ont conduit au Corollaire 7.2 pour établir que uε satisfait l’inégalité de sous-
moyenne.

Exercice 15. (a) Montrer que si une fonction u(z) est sous-harmonique dans un voisinage de 0 ∈ C, alors
u(zk) l’est aussi pour tout entier k > 1.
(b) Montrer que si f est holomorphe dans un voisinage d’un point z0 ∈ C, et si f(z)− f(z0) s’annule à un
ordre précisément égal à un entier k > 1 en z0, alors il existe une application holomorphe injective g définie
dans un voisinage de z0 telle que :

f(z)− f(z0) =
(
g(z)

)k
.

(c) Montrer que si f : Ω −→ Ω′ est une application holomorphe entre deux ouverts Ω ⊂ C et Ω′ ⊂ C, alors :

u′ ∈ SH(Ω′) =⇒ u ◦ f ∈ SH(Ω),

ce qui généralise le Corollaire 7.3.

Exercice 16. Soit Ω ⊂ C un sous-ensemble ouvert quelconque. Montrer que la fonction :

z 7−→ − log dist
(
z, ∂Ω

)
est sous-harmonique dans Ω.

Exercice 17. Soit u une fonction sous-harmonique dans un domaine Ω ⊂ C. L’objectif est de démontrer que
si u vaut −∞ sur un segment de droite ouvert L ⊂ Ω de longueur > 0, alors u ≡ −∞ dans Ω.
(a) On choisit un disque ouvert ∆ centré en un point de L de rayon assez petit pour que L ∩ ∆ soit un
diamètre de ∆, le découpant en deux demi-disques ouverts ∆− et ∆+. Montrer que la fonction :

v(z) :=

{
− ∞ lorsque z ∈ ∆− ∪ L,
u(z) lorsque z ∈ ∆+,

est sous-harmonique dans ∆.
(b) Montrer que v ≡ −∞ dans ∆, et conclure.

Exercice 18. Est-il possible qu’une fonction sous-harmonique dans un domaine Ω ⊂ C soit non-continue en
tout point de Ω ? Indication: Penser à un exercice qui précède.

Exercice 19. Soit u : D −→ R une fonction définie sur le disque unité D ⊂ C telle que x 7−→ u(x+ i y) et
y 7−→ u(x+ i y) sont convexes.
(a) Montrer que u est sous-harmonique.
(b) Trouver un contre-exemple à la réciproque.

Exercice 20. Soit−∞ 6 a < b 6∞, soit Ω −→ ]a, b[ une fonction harmonique dans un domaine Ω ⊂ C, et
soit ψ : ]a, b[−→ R une fonction convexe (pas forcément croissante). Montrer que ψ ◦h est sous-harmonique
dans Ω.

Exercice 21. Soit u : Ω −→ [0,∞[ une fonction définie dans un domaine Ω ⊂ C. Montre que log u est
sous-harmonique dans Ω si et seulement si uα est sous-harmonique dans Ω pour tout α > 0. Indication: Pour
le ‘si’, utiliser le fait que uα−1

α décroît vers log u lorsque α ↓ 0.

Exercice 22. Montrer que si log u et log v sont sous-harmoniques dans Ω ⊂ C, alors log(u+ v) l’est aussi.

Exercice 23. (a) Montrer que toute fonction convexe sur R qui est bornée supérieurement est nécessairement
constante.
(b) Re-démontrer le Théorème de Liouville pour les fonctions sous-harmoniques (Corollaire 6.8).



52 François DE MARÇAY, Département de Mathématiques d’Orsay, Université Paris-Sud

Exercice 24. Avec les notations de la Définition 11.8, montrer que l’on a :

Bu(r) > Cu

(
r√
e

)
(∀ 0<rR).

Indication: Écrire Cu(r) sous la forme ψ(log r), avec ψ convexe, et appliquer l’inégalité de Jensen réelle 11.1
à la relation 11.9, i.e. à Bu(r) =

2
r2

∫ r

0
Cu(s) s ds.

Exercice 25. Montrer que si log u est sous-harmonique dans un disque DR(0) avec R > 0, alors les trois
fonctions :

logMu(r), logCu(r), logBu(r)

sont des fonctions convexes de log r. Indication: S’inspirer des démonstrations des Théorèmes 11.6 et 11.10.

Exercice 26. Soient (aj)∞j=0 et (bj)∞j=0 deux suites infinies de nombres aj , bj > 0. Pour k > 0, on introduit :

ck :=
∑

06j6k

aj bk−j .

(a) En utilisant l’inégalité de Cauchy-Schwarz, montrer que :
∞∑
k=0

c2k
k + 1

6
( ∞∑

j=0

a2j

)( ∞∑
j=0

b2j

)
.

(b) Soient f et g deux fonctions holomorphes dans un disque DR(0) de rayon R > 0 muni de la mesure de
Lebesgue dλ. Montrer, pour tout 0 < r < R, que :

1

π r2

∫
Dr(0)

|f |2 |g|2 dλ 6
(

1

2π

∫ 2π

0

∣∣f(r eiθ)∣∣2 dθ)(
1

2π

∫ 2π

0

∣∣g(r eiθ)∣∣2 dθ).
(c) Si u > 0 et v > 0 sont deux fonctions sur DR(0), R > 0, telles que log u et log v sont sous-harmoniques,
montrer que :

Buv(r) 6 Cu(r)Cv(r) (∀ 0<r<R).

Indication: Adapter les idées de la démonstration du Théorème 11.6.
(d) Donner une interprétation géométrique de cette dernière inégalité dans le cas u = v = |f ′|, où
f : DR(0)

∼−→ Ω est un biholomorphisme.

Exercice 27. Soit un domaine Ω ⊂ C, et soit u : Ω −→ [−∞,∞[ une fonction mesurable qui est bornée
inférieurement et supérieurement sur tout compactK b Ω, et qui satisfait l’inégalité locale de sous-moyenne.
On ne suppose pas que u est semi-continue supérieurement.
(a) Avec une fonction χ comme dans le Théorème 12.3, montrer pour tout r > 0 que u ∗ χr est sous-
harmonique dans Ωr.
(b) On introduit la régularisée semi-continue supérieure de u :

u∗(z) := lim
r→0

(
sup

w∈Dr(z)

u(w)
)

(z ∈Ω).

Vérifier que u∗ est semi-continue supérieurement dans Ω.
(c) Montrer que :

lim
r→0

u ∗ χr = u∗.

(d) Pour r, s > 0, montrer que l’on a sur Ωr+s :(
u ∗ χr

)
∗ χs =

(
u ∗ χs

)
∗ χr.

(e) Déduire que u ∗ χr décroît avec 0
<←− r et que l’on a :

u ∗ χr = u∗ ∗ χr,

ceci sur Ωr, pour tout r > 0.
(f) Montrer que u∗ est sous-harmonique dans Ω, et que u∗ = u presque partout.
(g) En tronquant pour n > 1 :

un := max
(
u, −n

)
,

montrer que ces conclusions restent vraies sans supposer que u soit bornée inférieurement sur les compacts.
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Exercice 28. Soit u une fonction sous-harmonique dans un domaine Ω ⊂ C, et soit v une fonction semi-
continue supérieurement dans Ω telle que :

u 6 v

presque partout. Montrer qu’on a en fait u 6 v partout.

Exercice 29. EE

—————–


