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2 2 L’évaluation paresseuse

1 Introduction

Ce texte présente deux contributions remarquables aux mathématiques intuitives non
formalisées.

La premiere contribution que nous décrivons est un article révolutionnaire de deux
pages (Della Dora, Dicrescenzo, et Duval/[1985) qui explique comment calculer dans la
cloture algébrique dun corps explicite quand bien méme on ne sait pas construire cette
cloture algébrique en tant que corps explicite. Cet article releve du Calcul Formel et de
I'Informatique Théorique. Cette approche fournit une sémantique constructive pour cette
cloture algébrique, au prix d’un trait de modestie que 'on peut résumer comme suit :
rien ne sert de vouloir connaitre «toute la vérité» quand une partie de cette vérité est
suffisante pour poursuivre les calculs. C’est la méthode de I’évaluation paresseuse bien
connue des informaticiennes(l

La seconde contribution, plus fondamentale, est le livre de Bishop| (1967, Founda-
tions of Constructive Analysis) qui explique comment échapper au formalisme domi-
nant de I’époque pour revenir aux mathématiques intuitives traditionnelles. Pour que les
théoremes d’existence aient un contenu concret indiscutable, il est nécessaire d’admettre
uniquement les démonstrations qui manipulent des objets finis de maniere algorithmique.
Un certain nombre de prérequis communs a la communauté des mathématiciens ne sont
pas susceptibles de définition mais peuvent seulement étre discutés, au cas par cas, si une
contestation raisonnable est présentée. Ces prérequis sont d’une part les nombres entiers
et d’autre part la notion de construction. Notons qu’aucune formalisation ne peut décrire
completement les nombres entiers intuitifs (voir Dehornoy| (2017))). Notons également que
la notion intuitive d’algorithme échappe a la définition par les machines de Turing adoptée
en mathématiques classiques.

La plupart des définitions et résultats de mathématiques constructives donnés dans
cet article sont extraits des livres Lombardi et Quitté 2021 et |Diaz-Toca, Lombardi, et
Quitte| 2014,

2 L’évaluation paresseuse

2.1 L’article original D5

Quand on traite de maniere algorithmique la théorie des nombres, la premiere étape
est de définir le corps de nombres qui nous intéresse. Il s’agit d'une extension finie de Q,
de la forme K = Q[¢] ou £ est un nombre algébrique complexe, zéro d'un polynome
P € Q[X]. A priori le corps Q[¢] est isomorphe & un quotient Q[z] = Q[X]/(f) olt f est le
polynome minimal de . Mais si le polynome P n’est pas irréductible, le calcul de f n’est
pas évident. Cette premiere étape a été résolue par un article fameux (Lenstra, Lenstra,
et Lovasz (1982)) qui donne un algorithme pour factoriser complétement les polynomes
de Q[X].

Cependant, des qu’il s’agit d’introduire un nouveau nombre algébrique complexe «
pour résoudre une question relative a K, les algorithmes pour décrire le corps K[a]
s’averent rapidement impraticables.

L’article D5 propose la solution paresseuse suivante : si nous savons quun a € C
annule un polynome unitaire g € K[Y], ou si nous voulons introduire de maniere formelle

1. Dans tout I'article, le lecteur est soumis a ’alternance des sexes.



2.1 L’article original D5 3

un tel a dans une extension finie de K contentons nous de travailler dans I’algebre quotient

L = K[Y]/(g(x,Y)) = Kly] = Q[z,Y]/{g(,Y)) = QIX, Y]/{f(X, 9(X,Y)))

tant que celle-ci se comporte dans les calculs comme si g était irréductible. Notez que L
est un K-espace vectoriel de dimension égale au degré de g, si bien que 1’on dispose d'un
test d’égalité dans cette K-algebre.

Si L est un corps explicite, et si un élément v € L se présente dans les calculs, alors ~
doit étre nul ou inversible.

En fait, pour tout v € L, comme on va le voir, on a un test qui répond a la question
«~y est-il nilpotent, inversible ou ni 'un ni "autre dans L 7).

Si v est inversible ou nul, on peut poursuivre les calculs sans rien changer, car L se
comporte comme un corps explicite.

Si v est nilpotent mais pas nul, on peut le forcer a étre nul en considérant le quotient
L/(7) qui peut étre décrit de maniere précise sous la forme K[Y]/(g1) ot g; est un facteur
de gP}

Si v n’est ni nilpotent ni inversible, la situation doit étre reconsidérée. Deux cas se
présentent, celui ou ’on force v a étre nul, et celui ou I'on force v a étre inversible. Il faut
donc ouvrir deux branches de calcul si 'on veut examiner toutes les situations possibles.

Nous allons démontrer que la démarche proposée, dite d’évaluation paresseuse, ou
d’évaluation dynamique tient bien la route et que tous les calculs intermédiaires donnent
toujours des résultats corrects.

Rappelons qu'un anneau A est isomorphe & un produit d’anneaux A; (i € [1..r]) si, et
seulement si, on a dans A un systeme fondamental d’idempotents orthogonauxﬂ (ei)ie[[l..r]]
tel que chaque quotient A /(1 — e;) est isomorphe a A;.

Rappelons aussi la convention usuelle selon laquelle pour n’importe quel x € A, on
pose 2 = 1. Cela permet d’avoir 2"z™ = 2" et (zy)" = 2™y" pour tous n,m € N.

Lemme 2.1 (construction d'un idempotent). Dans un anneau A supposons qu’on ait
un égalité " = ax™t, (c’est-a-dire (z") = (x™*1)) avec n € N. On considére I'élément
e := (ax)". Alors

. e est idempotent ;
cex™ =a" et (e) = (z");

. e =1 si, et seulement si, x est inversible ;

1

2

3

4. e = 0 si, et seulement si, x est nilpotent ;

5. x n’est ni nilpotent ni inversible si, et seulement si, e # 0,1 ;
6

. e est le seul idempotent tel que x est inversible modulo e — 1 et nilpotent modulo e.

Définition 2.2 (anneau zéro-dimensionnel). On dira qu’un anneau est zéro-dimensionnel
lorsqu’il vérifie I’axiome suivant :

Vic AJac AIkeN  a2Ff =aaft (1)

En mathématiques classiques un anneau est zéro-dimensionnel si, et seulement si, tout
idéal premier est maximal.

2. En effet, si v™ = 0 on exprime  comme un polynéme en y. On peut alors remplacer g(Y") par le
pged g1 de g(Y) et v(Y) dans K[Y]. On remplace ainsi L par une sous-K-algebre Lj qui est une meilleure
approximation de I’extension K[a] convoitée (on y a forcé un nilpotent & s’annuler).

3. > ,ei=1letee;=0sii+#j.
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En mathématiques constructives, un corps explicite avec test a zéro est appelé un
corps discret.

Un corps discret peut-étre défini comme un anneau zéro-dimensionnel réduit dont les
éléments 0 et 1 sont les seuls idempotents.

Le lemme[2.1|s’applique de maniere systématique dans les anneaux zéro-dimensionnels.

Un anneau integre A est de dimension < 1 si, et seulement si, pour tout z # 0, A /(z)
est zéro-dimensionnel. C’est le cas de I'anneau d’entiers d’un corps de nombres.

En mathématiques classiques, un anneau arbitraire est de dimension < 1 si une suite
strictement croissante de trois idéaux premiers est impossible. Une définition constructive
(équivalente en mathématiques classiques) est la suivante :

Vo,y€ AJda,be A Ik, (e N 2"y (1+ay) +bx)=0.

Un premier exemple non trivial d’anneau zéro-dimensionnel est le suivant.

Lemme 2.3. Si k est un corps discret, toute k-algébre A qui est un k-espace vectoriel
de dimension finie (explicite) est un anneau zéro-dimensionnel discret.

Démonstration. Soit r = dimy(A). On peut regarder A comme une sous-k-algebre com-
mutative de M, (k) en identifiant tout élément v de A & la matrice p1, de multiplication
par v dans le k-espace vectoriel A. Soit alors z € A un élément non nul et M le polynome
minimal unitaire (ou le polynéme caractéristique) de p, : M(Z) = ag + a2 + -+ Z°.
On sait que ay est inversible si, et seulement si, z est inversible (alors (z) = (1) = (z?)).
En outre z est nilpotent si, et seulement si, M = Z* pour un certain entier & > 0. Dans
ce cas zF =0 € (1),

Si z n’est ni inversible ni nilpotent alors considérons le plus petit £ < s tel que a est
inversible. On écrit —ap2* = 2 (apy 1 + -+ + a,2°F71), et en multipliant par I'inverse
de —ay, on obtient 2* € <zk+1>. O

Lemme 2.4. Sous les hypothéses du lemme tout quotient A/(z) est également un
k-espace vectoriel de dimension finie (explicite).

Démonstration. L’idéal (z) est un sous-k-espace vectoriel de type fini. Donc il admet une
base explicite, et il possede un supplémentaire qui admet une base finie explicite. O

En fait, le lemme est valide en remplagant k par une k-algebre qui admet une
base finie explicite. On réécrit la démonstration du lemme en scindant ’anneau en un
produit de deux anneaux si ag n’est ni nilpotent ni inversible. Dans la composante ou ag
est inversible, la démonstration est terminée. Dans la composante ou aq est nilpotent, on
commence par forcer ay = 0 (lemme et on traite a;. Dans la composante ou a; est
inversible, la démonstration est terminée. Etc

On obtient précisément 1’énoncé suivant.

Lemme 2.5. Soit k un corps discret et b une k-algébre qui est un k-espace vectoriel
de dimension finie. Toute b-algébre qui est un b-module libre de dimension finie peut
étre explicitée comme une k-algebre de dimension finie, a condition d’annuler certains
éléments nilpotents qui se présentent au cours du calcul.

Ceci conduit a la description suivante de ce qui se passe quand on applique la
méthode D5.

Proposition 2.6. Lorsque 'on étudie la cloture algébrique d’un corps discret k selon la
méthode D5 on obtient un arbre de calcul du type suivant.
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1. A la racine de I’arbre est implémenté le corps discret k avec la construction de ses
éléments, son test a 0, ses lois d’anneaux et son passage a I'inverse des éléments # 0.

2. A chaque nceud v de I’arbre est implémenté une k-algebre a, de dimension finie.
3. Le passage d’un noeud a a son ou ses successeurs est de I’'un des trois types suivants :

(a) on introduit un zéro formel z d’un polynéme unitaire f € a[Z] : on passe
de a aalZ]/(f);

(b) a partir d’'un élément v € a qui est nilpotent mais non nul, on ajoute la
contrainte u = 0, ce qui modifie a en conséquence ;

(c) a partir d’'un élément u € a qui n’est ni nilpotent ni inversible on introduit
deux embranchements vers des noeuds a/(e) et a/(1 — e) ou e est I'idempotent
de a vérifiant : modulo e, u est nilpotent, et modulo 1 — e, u est inversible.

4. Chaque k-algébre a implémentée a un nceud de l'arbre est isomorphe a une
k-algebre triangulaire k[zy, ..., x,] avec k[z1] ~ k[X1]/(f1), fi polynéme unitaire
de k[X4], et pour k > 1, k[(x;)i<k] = K[(2:)i<t][Xk]/{fx), fx polynéme unitaire de
k()i [Xi]

Commentaire. La procédure de construction de 'arbre est extrémement récursive : dans
le cas 3c¢) le calcul de I'idempotent e € k[(x;);<x] peut nécessiter d’affiner la connaissance
de la k-algebre k[(x;);<x] du nceud précédent et donc de la décomposer en un produit de
plusieurs sous-k-algebres. [

Premiere conclusion. L’article D5 a été écrit pour faciliter la description des corps
de nombres en Calcul Formel. Sous sa forme originale telle que nous venons de 'expo-
ser il fournit une sémantique constructive dynamique pour un objet «cloture algébrique
d’un corps discret» qui n’a pas en général de sémantique constructive en tant qu’objet
algébrique classique «statique).

Les performances du systeme D5 en termes de complexité algébrique n’ont pas vraiment
tenu la promesse de ses autrices et auteur. Néanmoins, ’article van der Hoeven et Lecert
(2020), qui modifie un peu les algorithmes de départ, démontre sa pertinence également
en termes de complexité algébrique. [ ]

2.2 Généralités sur les anneaux zéro-dimensionnels

Fait 2.7.

Tout anneau fini, tout corps discret est zéro-dimensionnel.

— Tout quotient et tout localisé d’un anneau zéro-dimensionnel est zéro-dimensionnel.

Tout produit fini d’anneaux zéro-dimensionnels est un anneau zéro-dimensionnel.

— Une algebre de Boole est un anneau zéro-dimensionnel.

Le point 3 du lemme suivant généralise le lemme [2.1]en remplagant 'idéal principal ()
par un idéal de type fini arbitraire.
Lemme 2.8. Les propriétés suivantes sont équivalentes.

1. A est zéro-dimensionnel.

2. Vo € A Je € A 3h € N* tels que (2") = (e) et e idempotent.

3. Pour tout idéal de type fini a de A, il existe d € N* tel que a = (e) ol e est un
idempotent. En particulier,

(a) a est nilpotent dans A/(e);



6 2 L’évaluation paresseuse

(b) Ann(a?) = (1 —¢);
(c) a" =a pourr >d;

(d) en outre les générateurs de a sont comaximaux dans A /(1 — e).
Le lemme qui suit peut étre vu comme une généralisation partielle de la méthode D5.

Lemme 2.9 (lemme de scindage zéro-dimensionnel). Soit (2;)ic; une famille finie
d’éléments dans un anneau zéro-dimensionnel A.. On sait construire un systeme fondamen-
tal d’idempotents orthogonaux (es,...,e,) tel que dans chaque composante A /(1 — e;),
chaque z; est nilpotent ou inversible.

Les anneaux zéro-dimensionnels réduits

Lemme 2.10 (anneaux zéro-dimensionnels réduits).

Les propriétés suivantes sont équivalentes.
1. L’anneau A est zéro-dimensionnel réduit.
2. Tout idéal principal est idempotent (i.e. Va € A, a € (a?)).
3. Tout idéal de type fini est engendré par un idempotent.

4. Le produit de deux idéaux de type fini est toujours égal a leur intersection.

Fait 2.11. Un anneau zéro-dimensionnel réduit est cohérent. Il est fortement discretE] Si,
et seulement si, il y a un test d’égalité a zéro pour les idempotents.

Exemple. Soit P I'ensemble des nombres premiers. L’anneau A = [[ p Z/(p) est zéro-
dimensionnel réduit mais il n’est pas discret. [

Dans les calculs, un anneau zéro-dimensionnel réduit se comporte comme un produit
fini de corps discrets. Cela se concrétise sous forme dynamique par le principe de démons-
tration suivant.

Machinerie locale-globale élémentaire des anneaux zéro-dimensionnels réduits.
La plupart des algorithmes qui fonctionnent avec les corps discrets peuvent étre modifiés
de maniére a fonctionner avec les anneaux zéro-dimensionnels réduits, en scindant I’anneau
en deux composantes chaque fois que ’algorithme écrit pour les corps discrets utilise le
test «cet élément est-il nul ou inversible 7). Dans la premiére composante 1’élément en
question est nul, dans la seconde il est inversible.

Exemple. Voici un exemple obtenu a partir du théoreme qui affirme que sur un corps
discret k

1. toute matrice est équivalente a une matrice simple standard ;
2. tout k-espace vectoriel de présentation finie est libre;
3. tout sous-k-espace vectoriel de type fini d'un k-espace vectoriel de dimension finie
admet un supplémentaire libre (théoreme de la base incomplete).
Théoréme 2.12 (le paradis des anneaux zéro-dimensionnels réduits).
Soit A un anneau zéro-dimensionnel réduit.

1. Toute matrice est équivalente a une matrice en forme de Smith avec des idempo-
tents sur la diagonale principale.

4. On dit qu’un anneau est fortement discret lorsqu’on a un test d’appartenance aux idéaux de type
fini.
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2. Tout module de présentation finie est projectif de type fini, isomorphe a une somme
directe finie d’idéaux (e;) pour des idempotents e;.

3. Tout sous-module de type fini d’'un module de présentation finie est facteur direct.

Exemple. Voici un autre exemple a propos de la mise en position de Noether d’un systeme
polynomial.

Le théoreme pour un corps discret est le suivant.

Théoréme 2.13 (Nullstellensatz faible et mise en position de Noether, sans cloture
algébrique).
Soit k un corps discret et (fi,...,fs) un systéme polynomial dans I'algebre k| X] =
k[Xi,...,X;] (n > 1). Notons f = (f1,..., fs)yx et A = k[X]/f I'algébre quotient.
> (Nullstellensatz faible)
— QOu bien A = {0}, c’est-a-dire 1 € (f1,..., fs). Dans ce cas, le systéme (fi,..., fs)
n’admet de zéro dans aucune k-algébre non triviale.
— QOu bien il existe un quotient non nul de A qui est une k-algébre strictement finie.
> (Position de Noether) On a un entier r € [—1..n] bien défini avec les propriétés suivantes.
1. Ou bienr=—1et A={0}.

2. Ou bien r = 0, et A est une k-algebre strictement finie non nulle (en particulier,
I’homomorphisme naturel k — A est injectif).

3. Ou bien r > 1, et il existe un changement de variables (les nouvelles variables sont
notées Y, ...,Y,) qui satisfait les propriétés suivantes.
(a) On afnklYy,...,Y,] ={0}. Autrement dit, 'anneau k[Y1, ...,Y,| s’identifie
a un sous-anneau du quotient k[X]/f.
(b) Pour j € [r+ 1..n], Y; est entier sur k[Y,...,Y;] modulo f et 'anneau A est

un k[Y, ..., Y,]-module de présentation finie.

(c) 1l existe un entier N tel que pour chaque (aq,..., ) € k", I'algébre quotient
A/(Y1 —aq,...,Y, —«a,) est un k-espace vectoriel non nul de dimension finie
< N.

Voici la version pour les anneaux zéro-dimensionnels réduits.

Théoréme bis (Nullstellensatz faible et mise en position de Noether, cas des an-
neaux zéro-dimensionnels réduits)

Soit k un anneau zéro-dimensionnel réduit, (fi,...,fs) un systéme polynomial dans
lalgebre C = k[X] = k[X;,...,X,] Notons f = (f1,...,fs) et A = k[X]/f I'algébre
quotient. Il existe un systeme fondamental d’idempotents orthogonaux (e_1,eq,...,€y)

de k tel que, en notant
k,=k/(1—¢,), C, =k, @, C=k[X] et A, =A/{1—¢,)=k, @A ~C,/fC,,

on ait les résultats suivants.
1. A_1 = O, ie. 1€ fC_l.
2. koNfCy =0 et Ay est un ko-module projectif de type fini fidele.

3. Pourr =1, ..., n on a un changement de variables tel que, en appelant Y;,...,Y,
les nouvelles variables,
(a) k. [Y1,...,Y,] N §C, = 0, autrement dit l'algebre k.[Y1,...,Y,] peut étre
considérée comme une sous-k,.-algébre de A, ;
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(b) A, est un module de présentation finie sur k,[Y7,...,Y,];

(c) il existe un entier N tel que pour chaque (a1, ...,«,) € k., la k,-algébre quo-
tient A,./(Y1 — a1,...,Y, —a,) est un k,-module projectif de type fini fidele
engendré par au plus N éléments.

En conséquence, la k-algébre A est un module de présentation finie sur la sous-algébre
«polynomialey T]"_, k,[Y1,...,Y;].

3 Les mathématiques constructives a la Bishop

Nous nous contenterons ici de renvoyer a ’annexe dans le livre |Lombardi et Quitté
(2021)) et a l'article |Coquand, (2018)) dont voici un extrait de I'introduction.

Brouwer’s work on the foundation of mathematics is closely connected to his work
on topology and the influences between these two research directions went both ways.
While the notion of choice sequences, for instance, was clearly motivated by topological
considerations, it also has been argued that the “logical ideas which he published several
years before his topological work, were not only novel, but almost detailed enough to
deduce rigorously some of his topological innovations from them” [25]. The links between
foundation of mathematics and topology have recently been revisited by the discovery
of the univalence axiom [37] and the univalent foundations program [37, 36]. From a
logical point of view, one puzzling feature of this approach is the use of homotopy theory,
developed in a highly non effective way [9, 22, 18], to provide a semantics of dependent
type theory [12], which is usually thought of as a formal system for expressing constructive
mathematics [28]. This semantics is indeed based on the notion of Kan simplicial sets, and
basic properties about Kan simplicial sets used for representing spaces are inherently non
constructive [3, 31]. This is surprising since one goal of this notion was precisely to provide
a combinatorial account of higher homotopy groups [24]. The first part of this paper
consists in an analysis of this situation from a constructive point of view. We present a
basic result (Theorem 1.8) which suggests an alternative and effective formulation of basic
notions of homotopy theory. The second part explains that this work has close connections
with the foundation of constructive mathematics, and in particular with Bishop’s notion of
set [5]. This also is related to the question of how to represent collections of mathematical
structures (and the notion of category) in a constructive setting [29].

3 M. Bezem, Th. Coquand, A Kripke model for simplicial sets, Theoret. Comput. Sci. 574
(2015) 86-91.
5 E. Bishop, Foundations of Constructive Analysis, McGraw-Hill Book Co., 1967.
9 D.-C. Cisinski, Les préfaisceaux comme modeles des types d’homotopie, Astérisqu 308
(2006).
12 N. G. de Bruijn, The Mathematical Language AUTOMATH, its Usage, and Some of its
Extensions, in : Lecture Notes in Mathematics, vol. 125, Springer, Berlin, 1970, p. 29-61.
18 P. G. Goerss, J. F. Jardine, Simplicial Homotopy Theory, in : Progress in Mathematics,
Birkh&user, 2009.
22 A. Joyal, M. Tierney, Notes on simplicial homotopy theory. Preprint, 2008.
24 D. Kan, A combinatorial definition of homotopy groups, Ann. of Math. (2) 67 (1958)
282-312.
25 G. Kreisel, M. H. A. Newman, Luitzen Egbertus Jan Brouwer (1881-1966), Biogr. Mem.
Fellows Roy. Soc. 15 (1969) 39-68.
28 P. Martin-Lof, An Intuitionistic Theory of Types : Predicative Part. Logic Colloquium’73,
North-Holland, Amsterdam, 1975, p. 73-118.



29 R. Mines, F. Richman, W. Ruitenburg, A Course in Constructive Algebra, Springer-
Verlag, 1988. Traduction francaise par Henri Lombardi, révisée par Stefan Neuwirth. Un
cours d’algebre constructive. Presses Universitaires de Franche-Comté. 2020.

31 E. Parmann, Case Studies in Constructive Mathematics (Ph.D.), University of Bergen,
2016.

37 V. Voevodsky, The equivalence axiom and univalent models of type theory. Talk at CMU,
https://arxiv.org/abs/1402.5556, 2010.

4 La méthode dynamique en mathématiques
constructives

4.1 L’invention de la méthode dynamique par Paul Lorenzen

La méthode dynamique est exposée pour la premiere fois (a notre connaissance) par
Paul Lorenzen, mathématicien et philosophe allemand, dans I’article |Lorenzen! 1950, ou il
développe de maniere constructive son célebre article antérieur Lorenzen|1939.

Voir les commentaires dans Neuwirth|[2021], (Coquand, Lombardi, et Neuwirth/[2019 et
Coquand, Lombardi, et Neuwirth/ 2021

Dans cet article Lorenzen explique le contenu constructif du théoreme de Krull qui
affirme que la cloture intégrale d’un anneau integre A est l'intersection des anneaux de
valuation de son corps de fractions qui contiennent A. Il n’utilise aucun des mystérieux
anneaux de valuation de Krull et remplace cette intersection infinie d’objets purement
idéaux par un nombre fini de tests dans des anneaux concrets que I'on peut voir comme
des approximations finies des anneaux de valuation en question.

Concernant les groupes ordonnés il explique comment construire le groupe réticulé
engendré par un monoide préordonné donné. En utilisant librement le lemme de Zorn, il
en déduit toutes les manieres possibles de construire un morphisme du monoide de départ
vers un groupe totalement ordonné. La méthode consiste a construire un treillis distributif
aux neeuds duquel on ouvre deux branches chaque fois que se présente le probleme, pour
un élément x du groupe ordonné en cours de construction, de décider si x > 0 ou x < 0.

L’article |Lorenzen| [1953] souligne I'importance des treillis distributifs et utilise la
premiere version connue du ¢théoreme fondamental des relations implicativesy qu’il a
démontré par ailleurs et qui a été redécouvert indépendamment par (Cederquist et Co-
quand| (2000)).

Dans le méme article, Lorenzen explique aussi comment construire, pour un anneau
integre et intégralement clos, un groupe réticulé «de divisibilité» qui correspond, via le
lemme de Zorn, a tous les morphismes possibles de I’anneau vers un anneau de valuation
(i.e. un anneau integre dont le groupe de divisibilité est totalement ordonné). De maniere
étonnante, ce groupe, que nous appelons le groupe de Lorenzen pour I’anneau, est rarement
mis en valeur ou méme cité dans la littérature usuelle. Dans le cas d’'un domaine de Priifer,
ce groupe est le groupe des idéaux fractionnaires inversibles de I’anneau.

4.2 Un article fondateur

L’article (Coste, Lombardi, et Roy| 2001 explique de maniere générale la méthode dy-
namique en la mettant en relation directe avec la théorie des topos cohérents de Grothen-
dieck. C’est plutot un article de logique que d’algebre constructive, mais la méthode dyna-
mique en question permet de décrypter constructivement des résultats d’algebre abstraite
qui établissent des «certificats algébriques» (dans le style du Nullstellensatz de Hilbert)


https://arxiv.org/abs/1402.5556
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qui donnent une explication purement algébrique de phénomenes de nature géométrique
comme l'inclusion d’une variété algébrique dans une autre (une fois les scalaires étendus
a un corps algébriquement clos).

Au sujet de I'utilisation de la logique en algebre constructive voir I'article Coquand et
Lombardil 2006.

4.3 Décryptage de démonstrations qui utilisent la localisation
en tout idéal premier

Un argument de localisation typique fonctionne comme suit en mathématiques clas-
siques. Lorsque 'anneau est local une certaine propriété P est vérifiée en vertu dune
démonstration assez concrete. Lorsque ’anneau n’est pas local, la méme propriété est
encore vraie (d'un point de vue classique non constructif) car il suffit de la vérifier loca-
lement. Ceci en vertu d’un principe local-global abstrait.

Nous examinons avec un peu d’attention la premiere démonstration. Nous voyons alors
apparaitre certains calculs qui sont 1égitimes en vertu du principe suivant :

Vre A z€ A" oux € Rad(A),

principe qui est appliqué a des éléments x provenant de la démonstration elle-méme.
Autrement dit, la démonstration classique donnée dans le cas local nous fournit une
démonstration constructive sous I’hypotheése d’un anneau local résiduellement discret.
Voici alors notre décryptage dynamique constructif. Dans le cas d'un anneau arbitraire,
nous répétons la méme démonstration, en remplagant chaque disjonction «z est inversible
ou z est dans le radicaly, par la considération des deux anneauxﬂ Asrzuy et Asira),
ol As(r,yy est la localisation «courantey de I'anneau A de départ, a l'endroit de la
démonstration ou l'on se trouve. Lorsque la démonstration initiale est ainsi déployée,
on a construit a la fin un certain nombre, fini parce que la démonstration est finie, de
localisés Ag,, pour lesquels la propriété est vraie. Et les monoides .S; sont comaximaux
par construction.

D’un point de vue constructif, nous obtenons ainsi le résultat «quasi global» pour I’an-
neau A, c’est-a-dire le résultat apres localisation en des monoides comaximaux, en vertu
du lemme [£.3] On fait alors appel & un principe local-global concret pour conclure.

Notre décryptage de la démonstration classique est rendu possible par le fait que la
propriété P étudiée est de caractere fini : elle est conservée par localisation, et si elle est
vraie apres localisation en un monoide S, elle est également vraie apres localisation en un
élément s € S.

Le décryptage complet contient donc deux ingrédients essentiels. Le premier est le
décryptage de la démonstration donnée dans le cas local qui permet d’obtenir un résultat
quasi global (parce que la propriété est de caractere fini). Le deuxiéme est la démonstration
constructive du principe local-global concret correspondant au principe local-global abs-
trait utilisé en mathématiques classiques. Dans tous les exemples que nous avons ren-
contrés, cette démonstration constructive n’offre aucune difficulté parce que la démons-
tration que nous trouvons dans la littérature classique donne déja ’argument concret, au
moins sous forme télégraphique (sauf parfois dans Bourbaki, lorsqu’il réussit a dissimuler
habilement les arguments concrets).

La conclusion générale est que les démonstrations classiques « par principe local-global
abstrait) sont déja constructives, si I’on veut bien se donner la peine de les lire en détail.

5. Voir la définition
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C’est une bonne nouvelle, outre le fait que cela confirme que les mathématiques ne sont
le lieu d’aucun miracle surnaturel.

Définition 4.1. On dit que les monoides Sy, ..., S, de I'anneau A recouvrent le
monoide S si S est contenu dans le saturé de chaque .S; et si un idéal de A qui coupe
chacun des S; coupe toujours S, autrement dit si 'on a :

Vsi €81 ... Vs, €8, Ja,. e €A D asi€S.

Des monoides sont comaximaux s’ils recouvrent le monoide {1 }.

Définition et notation 4.2. Soient U et I des parties de 'anneau A. Nous notons M (U)
le monoide engendré par U, et S(I,U) est le monoide :

S(I,U) = (I) , + M(U).

Le couple q = (I,U) est encore appelé un idéal premier potentiel, et ’'on note (par abus)
A, pour Ags(;ry. De la méme maniere on note :

S(ar, ..., ap;ur, ... up) = (a1,...,a5) o + M(ur,. .., up).

Nous disons qu’un tel monoide admet une description finie. Le couple

{ar,...;ak }, {ur,...,ue })

est appelé un idéal premier potentiel fini.

Lemme 4.3 (lemme des localisations successives).
Soient U et I des parties de 'anneau A et a € A ; alors les monoides
S(IU,a) ¥ S(I,uu{a}) et ST, a;U) ¥ S(TU{a),U)
recouvrent le monoide S(I,U).
En particulier, les monoides S = M(a) = §(0;a) et ' = S(a;1) = 1+ aA sont comaxi-
maux.

La méthode indiquée ci-dessus donne donc, comme Corolaireﬂ du lemme le prin-
cipe général de décryptage suivant, qui permet d’obtenir automatiquement une version
constructive globale (ou au moins quasi globale) d’un théoréme a partir de sa version
locale.

Machinerie locale-globale a idéaux premiers.
Lorsque I'on relit une démonstration constructive, donnée pour le cas d’un anneau local
résiduellement discret, avec un anneau A arbitraire, que I'on considére au départ comme
A = Asqa) et qu’a chaque disjonction (pour un élément a qui se présente au cours du
calcul dans le cas local)

a € A* ou a € Rad(A),

on remplace I'anneau «en cours) Ags( vy par les deux anneaux As(r.vq) et As(r,qv) (dans
chacun desquels le calcul peut se poursuivre), on obtient a la fin de la relecture une fa-
mille finie d’anneaux A, v,) avec les monoides S(I;,U;) comaximaux et I;, U; finis.

6. Le lecteur ou la lectrice sera sans doute surprise de 'orthographe du mot ’corolaire’, avec d’autres
innovations auxquelles elle n’est pas habituée, comme la suppression de certains accents circonflexes. En
fait, nous avons essayé de suivre au plus pres les préconisations de 'orthographe nouvelle recommandée,
telle qu’elle est enseignée aujourd’hui dans les écoles en France.
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Dans chacun de ces anneaux, le calcul a été poursuivi avec succes et a donné le résultat
souhaité.

On obtient ainsi la version quasi globale du résultat pour I'anneau A, c’est-a-dire le
résultat apres localisation en des monoides comaximaux. On fait ensuite appel a un prin-
cipe local-global concret pour conclure que le résultat est constructivement valide pour
lanneau A lui-méme.

On notera que si «I’anneau en cours) est B = Ags(.p) et si la disjonction porte sur
be B* ou be Rad(B),

avec b = a/(u+1i),a € A, u e M(U) et i € (I),, alors il faut considérer les localisés
Asrua) et Asian).

La machinerie locale-globale a idéaux premiers a été exposée dans Lombardi et Quitté
2003, Fez. Elle est utilisée depuis de maniere systématique dans les articles écrits dans le
style des mathématiques constructives a la Bishop.

4.4 Quotienter par tous les idéaux maximaux

Références : Outre la section XV-6 dansLombardi et Quitté| (2021]) on pourra consulter
I’article original |Yenguil[2008.

On trouve dans la littérature un certain nombre de démonstrations dans lesquelles
I’auteur démontre un résultat en considérant «le passage au quotient par un idéal maximal
arbitraire». L’analyse de ces démonstrations montre que le résultat peut étre compris
comme le fait qu’un anneau obtenu a partir de constructions plus ou moins compliquées
est en fait réduit a 0. Par exemple, si I’'on veut démontrer qu'un idéal a de A contient 14,
on raisonne par l'absurde, on considere un idéal maximal m qui contiendrait a, et l'on
trouve une contradiction en faisant un calcul dans le corps résiduel A /m.

Cela revient a appliquer le principe «un anneau qui n’a pas d’idéaux maximaux est
réduit a 0».

Le fait de présenter le raisonnement comme une démonstration par ’absurde est le
résultat d’'une déformation professionnelle. Car prouver qu’un anneau est réduit a 0 est
un fait de nature concrete (on doit prouver que 1 = 0 dans I'anneau considéré), et non
pas une absurdité. Et le calcul fait dans le corps A/m ne conduit a une absurdité que
parce que l'on a décidé un jour que dans un corps, il est interdit que 1 = 0. Mais le calcul
n’a rien a voir avec une telle interdiction. Le calcul dans un corps utilise le fait que tout
élément est nul ou inversible, mais pas le fait que cette disjonction serait exclusive.

En conséquence, la relecture dynamique de la démonstration par l’absurde en une
démonstration constructive est possible selon la méthode suivante. Suivons le calcul que
'on nous demande de faire comme si I'anneau A /a était vraiment un corps. Chaque fois
que le calcul exige de savoir si un élément z; est nul ou inversible modulo a, parions sur
x; = 0 et rajoutons cet z; a I'idéal a. Au bout d’un certain temps, on trouve que 1 = 0
modulo I'idéal construit. Au lieu de perdre courage devant une telle absurdité, voyons le
bon coté des choses. Nous venons par exemple de constater que 1 € a + (xy, x5, x3). Ceci
est un fait positif et non une absurdité. Nous venons en fait de calculer un inverse y3 de z3
dans A modulo a+ (x1, x2). Nous pouvons donc examiner le calcul que nous demande de
faire la démonstration classique lorsque 1,9 € m et x3 est inversible modulo m. A ceci
pres que nous n’avons pas besoin de m puisque nous venons d’établir que x3 est inversible
modulo a + (1, z).

Contrairement a la stratégie qui correspondait a la localisation en n’importe quel idéal
premier, nous n’essayons pas de déployer tout I’arbre du calcul qui semble se présenter
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a nous. Nous n’utilisons que des quotients, et pour cela nous suivons systématiquement
la branche «étre nul» (modulo m) plutét que la branche «étre inversibley. Ceci crée des
quotients successifs de plus en plus poussés. Lorsqu’une soi-disant contradiction apparait,
¢’est-a-dire lorsqu’un calcul a abouti a un certain résultat de nature positive, nous revenons
en arriere en profitant de 'information que nous venons de récolter : un élément a été
certifié inversible dans le quotient précédent.

Résumons la discussion précédente.

Machinerie locale-globale a idéaux maximaux.

Pour relire une démonstration classique qui démontre par ’absurde qu’un anneau A est
trivial en supposant le contraire, puis en considérant un idéal maximal m de cet anneau,
en faisant un calcul dans le corps résiduel et en trouvant la contradiction 1 = 0, procéder
comme suit.

Premiérement s’assurer que la démonstration devient une démonstration constructive que
1 = 0 sous I’hypothése supplémentaire que A est un corps discret.

Deuxiemement, supprimer I’hypothése supplémentaire et suivre pas a pas la démons-
tration précédente en privilégiant la branche x = 0 chaque fois que la disjonction «x = 0
ou x inversible) est requise pour la suite du calcul. Chaque fois que I'on prouve 1 = 0 on a
en fait montré que dans ’anneau quotient précédemment construit, le dernier élément a
avoir subi le test était inversible, ce qui permet de remonter a ce point pour suivre la
branche «x inversible) conformément a la démonstration proposée pour le cas inversible
(qui est maintenant certifié). Si la démonstration considérée est suffisamment uniforme
(I'expérience montre que c’est toujours le cas), le calcul obtenu dans son ensemble est fini
et aboutit a la conclusion souhaitée.

4.5 Localiser en tous les idéaux premiers minimaux

Références : Outre les sections XV-7 et XVI-2 dans Lombardi et Quitté (2021) on
pourra consulter 'article original Coquand|2006.

La lectrice est maintenant mise a contribution pour se convaincre de la justesse de la
méthode suivante, en remplacant dans la section précédente ’addition par la multiplica-
tion et le passage au quotient par la localisation.

Machinerie locale-globale a idéaux premiers minimaux.

Pour relire une démonstration classique qui démontre par ’absurde qu’un anneau A est
trivial en supposant le contraire, puis en considérant un idéal premier minimal de cet
anneau, en faisant un calcul dans Ianneau localisé (qui est local et zéro-dimensionnel,
donc un corps dans le cas réduit) et en trouvant la contradiction 1 = 0, procéder comme
suit.

Premierement s’assurer que la démonstration devient une démonstration constructive de
I’égalité 1 = 0 sous I’hypothese supplémentaire que A est local et zéro-dimensionnel.
Deuxiémement, supprimer I’hypothése supplémentaire et suivre pas a pas la démons-
tration précédente en privilégiant la branche «x inversible) chaque fois que la disjonction
«x nilpotent ou x inversibley est requise pour la suite du calcul. Chaque fois que 1’on
prouve 1 = 0 on a en fait montré que dans I'anneau localisé précédemment construit,
le dernier élément a avoir subi le test était nilpotent, ce qui permet de remonter a ce
point pour suivre la branche «x nilpotent) conformément a la démonstration proposée
pour le cas nilpotent (qui est maintenant certifié). Si la démonstration considérée est
suffisamment uniforme (I'expérience montre que c’est toujours le cas), le calcul obtenu
dans son ensemble est fini et aboutit a la conclusion souhaitée.
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4.6 Autres utilisations de la cléture algébrique dynamique d’un
corps discret

Voir par exemple I'article|(Coquand, Lombardi, et Neuwirth (2025) ot ’on construit des
k-algebres finies pour un corps de base k sur lequel est définie une algebre centrale simple.
On procede comme pour la méthode D5 mais de maniere tres économique : lorsqu’un
élément z de la k-algebre de dimension finie que I'on construit (pour mimer un sous-corps
de la cloture algébrique ou de la cloture séparable de k) n’est pas inversible, on se contente
d’ajouter la contrainte z = 0.

4.7 Autres usages de la méthode dynamique en mathématiques
constructives

On peut citer le principe de recouvrement par quotients XI-2.10 dans [Lombardi et
Quitte[2021. 11 affirme que pour démontrer une relation a < b entre deux éléments d'un
groupe réticulé, on peut toujours se limiter au cas ou le groupe réticulé est totalement
ordonné. Précisément, cela revient a dire qu’an cours du calcul visant a démontrer la
relation, on peut supposer que les éléments zi,...,2,. qui interviennent dans le calcul
sont totalement ordonnés. De nombreux exemples de telles relations sont donnés[’| dont
la preuve est identique : dans le cas d’un groupe réticulé totalement ordonné, la relation
est claire.

Un autre exemple remarquable, dii a Thsen Yengui, intervient dans la démonstration
du théoreme de Lequain-Simis : Si A est un anneau arithmétique, tout module projectif
de type fini sur A[X,...,X,] est étendu depuis A. Voir I'article [Ellouz, Lombardi, et
Yengui| 2008/ ou |[Lombardi et Quitte| 2021, Théoreme XVI-6.13.

Puisque nous parlons de Thsen Yengui, signalons un autre tour de force (qui n’a ce-
pendant rien a voir avec le méthodes dynamiques) qui est une démonstration presque
constructive du fait que pour un anneau de valuation inteégre (ou un domaine de Priifer) V
I'anneau V[X7, ..., X, ] est cohérent, sans hypotheése de type noethérien ou de dimension
de Krull concernant V : voir Ducos, Valibouze, et Yengui| 2015,
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