
Key Vanishing Theorems

1. LOGARITHMIC JET DIFFERENTIALS

On P2 = P2(C), let [T : X : Y ] be homogeneous coordinates. Consider 3 homogeneous
polynomials:

A(T,X, Y ), B(T,X, Y ), C(T,X, Y ),

of respective degrees dA, dB, dC > 1. Later, A, B, C will be of equal degree 2, with
zero-sets defining three conic curves of P2, mutually in general position.

For now, let us assume more generally that:

1 6 dA = dB = dC =: dABC ,

and let us point out that inequal degrees could equally be treated after some mild adapta-
tions.

Also, let us restrict ourselves to jets of order 2, with derivatives of (entire) holomorphic
curves:

ζ 7−→
(
T (ζ), X(ζ), Y (ζ)

)
,

having corresponding jet coordinates denoted as:

T ′, X ′, Y ′, T ′′, X ′′, Y ′′.

As is known, with the coordinate axes divisor:

H :=
{
T = 0

}
∪
{
X = 0

}
∪
{
Y = 0

}
,

for any weighted degree m > 1, the logarithmic 2-jet differential bundle E2,mT
∗
P2

(
logH

)
of weight m is freely and globally generated by the following sections:((

log X
T

)′)i ((
log Y

T

)′)j ∣∣∣∣(log X
T

)′ (
log Y

T

)′(
log X

T

)′′ (
log Y

T

)′′∣∣∣∣k ,
for all integers i, j, k > 0 satisfying:

i+ j + 3 k = m.

More simply, the logarithmic 1-jet differential bundle E1,mT
∗
P2

(
logH

)
has the generators:((

log X
T

)′)i ((
log Y

T

)′)j
(i+j=m).

Of course, thanks to log X
T

= − log T
X

, etc., the roles of T,X, Y can be permuted.
On the affine chart

{
T 6= 0

}
of P2, denote homogeneous coordinates as:

(x, y) where x := X
T
, y := Y

T
,

and set:

a(x, y) := A(1, x, y), b(x, y) := B(1, x, y), c(x, y) := C(1, x, y),
1
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Consider the Jacobian of the 3 polynomials A, B, C of equal degrees dA = dB = dC :

J :=

∣∣∣∣∣∣
AT BT CT
AX BX CX
AY BY CY

∣∣∣∣∣∣
=AT BX CY + AX BY CT + AY BT CX − AY BX CT − AX BT CY − AT BY CX .

By homogeneity:

A(T,X, Y ) = T dA A
(
1, X

T
, Y
T

)
= T dA A(1, x, y),

B(T,X, Y ) = T dB B
(
1, X

T
, Y
T

)
= T dB B(1, x, y),

C(T,X, Y ) = T dC C
(
1, X

T
, Y
T

)
= T dC C(1, x, y),

that is:

A(T, xT, yT ) = T dA a(x, y), B(T, xT, yT ) = T dB b(x, y), C(T, xT, yT ) = T dC c(x, y),

whence by differentiation with respect to T , to x, to y:

AT = dA T
dA−1 a

TAX = T dA ax,

TAY = T dA ay

BT = dB T
dB−1 b

TBX = T dB bx,

TBY = T dB by

CT = dC T
dC−1 c

TBX = T dC cx,

TCY = T dC cy

and hence:

J =

∣∣∣∣∣∣
dAT

dA−1a dBT
dB−1b dCT

dC−1 c
T dA−1ax T dB−1bx T dC−1cx
T dA−1ay T dB−1by T dC−1cy

∣∣∣∣∣∣
= dABC T

dA−1+dB−1+dC−1

∣∣∣∣∣∣
a b c
ax bx cx
ay by cy

∣∣∣∣∣∣ =: D.

In the case of three conics:
J = 2T 3D.

Consider the divisor:

D :=
{
A = 0

}
∪
{
B = 0

}
∪
{
C = 0

}
,

and assume that the coefficients of the three homogeneous polynomials A, of B, of C are
generic enough to insure that:
•
{
J = 0

}
has finite (algebraically transverse) intersection in P2 with each one of the 3

coordinate lines
{
T = 0

}
,
{
X = 0

}
,
{
Y = 0

}
;

•
{
J = 0

}
has finite (algebraically transverse) intersection in P2 with each one of the 3

algebraic curves
{
A = 0

}
,
{
B = 0

}
,
{
C = 0

}
.

Then according to a previously established proposition, on the Zariski-open comple-
ment:

P2
∖{
J = 0

}
,

the logarithmic 2-jet differential bundleE2,mT
∗
P2

(
logD

)
is freely generated by the sections:((

log A
C

)′)i ((
log B

C

)′)j ∣∣∣∣(log A
C

)′ (
log B

C

)′(
log A

C

)′′ (
log B

C

)′′∣∣∣∣k ,
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for all integers i, j, k > 0 satisfying:

i+ j + 3 k = m.

More simply, the logarithmic 1-jet differential bundle E1,mT
∗
P2

(
logD

)
has the generators:((

log A
C

)′)i ((
log B

C

)′)j
(i+j=m).

Here by equality of degrees and by homogeneity:

A(T,X, Y )

C(T,X, Y )
=

T dA A(1, x, y)

T dC C(1, x, y)
=

a(x, y)

c(x, y)
(in chart {T 6=0}),

and the same holds for B
C

. By jet differentiation of holomorphic curves ζ 7−→
(
x(ζ), y(ζ)

)
valued in the affine chart C2 3 (x, y), it follows that:(

log A
C

)′
=
(
log a

c

)′
=
(
log a

)′ − (log c)′ =
a′

a
− c′

c
,(

log A
C

)′′
=
(
log a

c

)′′
=
(
log a

)′′ − (log c)′′ =
a′′

a
− a′a′

a a
− c′′

c
+
c′c′

c c
,

with, similarly: (
log B

C

)′
=

b′

b
− c′

c
,(

log B
C

)′′
=

b′′

b
− b′b′

b b
− c′′

c
+
c′c′

c c
,

where:
a′ := x′ ax + y′ ay,

b′ := x′ bx + y′ by,

c′ := x′ cx + y′ cy,

a′′ := x′′ ax + y′′ ay + x′x′ axx + 2x′y′ axy + y′y′ ayy,

b′′ := x′′ bx + y′′ by + x′x′ bxx + 2x′y′ bxy + y′y′ byy,

c′′ := x′′ cx + y′′ cy + x′x′ cxx + 2x′y′ cxy + y′y′ cyy.

Consequently:

x′ :=
(
log

a

c

)′
=

x′ax + y′ay
a

− x′cx + y′cy
c

=
ax c− a cx

a c︸ ︷︷ ︸
=: α

x′ +
ay c− a cy

a c︸ ︷︷ ︸
=: β

y′,

y′ :=
(
log

b

c

)′
=

x′bx + y′by
b

− x′cx + y′cy
c

=
bx c− b cx

b c︸ ︷︷ ︸
=: δ

x′ +
by c− b cy

b c︸ ︷︷ ︸
=: γ

y′.

In what follows, we will abbreviate these 1st jet transfer formulas from standard jets (x′, y′)
to logarithmic jets (x′, y′) as:

x′ = αx′ + β y′,

y′ = γ x′ + δ y′.

α := ax c−a cx
a c

, β := ay c−a cy
a c

,

β := bx c−b cx
b c

, δ := by c−b cy
b c

.

Because logarithmic jet differentials are by definition assumed to exist and to be holo-
morphic outside the considered divisor — here D =

{
AB C = 0

}
which may be three

conics —, the presence of a, b, c (within the affine C2 ⊂ P2) in denominator places does
not produce any singularity.
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The only possible singularity — which enlightens why the proposition mentioned above
holds in the complement P2

∖
{J = 0} — comes from inverting the transfer formulas from

logarithmic jets to standard jets:

δ
α δ−β γ x

′ − β
α δ−β γ x

′ = x′,

− γ
α δ−β γ x

′ + α
α δ−β γ x

′ = y′,

and this requires the nonvanishing of the 2× 2 determinant:

∣∣∣∣α β
γ δ

∣∣∣∣ =

∣∣∣∣∣ axc−acxa c

ayc−acy
a c

bxc−bcx
b c

byc−bcy
b c

∣∣∣∣∣ =

∣∣∣∣∣∣∣
a b c

ax bx cx

ay by cy

∣∣∣∣∣∣∣ = D =
J

2T 3
,

which happens, by a direct computation in the affine chart {T 6= 0}, to be a nonzero
multiple of the Jacobian determinant J .

The transfer of the logarithmic Wronskian, from

W
′′′

=

∣∣∣∣(log A
C

)′ (
log B

C

)′(
log A

C

)′′ (
log B

C

)′′∣∣∣∣ =

∣∣∣∣(log a
c

)′ (
log b

c

)′(
log a

c

)′′ (
log b

c

)′′∣∣∣∣
is much more delicate, computationally, as it requires to expand:

W
′′′

=

∣∣∣∣αx′ + β y′ γ x′ + δ y′

αx′′ + β y′′ + · · · γ x′′ + δ y′′ + · · ·

∣∣∣∣ ,
the cdots being the already not small ‘remainders’ in:

(
log

a

c

)′′
= x′′

(ax c− a cx
a c

)
+ y′′

(ay c− a cy
a c

)
+ x′x′

(axx
a
− a2x
a2
− cxx

c
+
c2x
c2

)
+ 2x′y′

(axy
a
− ax ay

a2
− cxy

c
+
cx cy
c2

)
+ 2x′y′

(ayy
a
−
a2y
a2
− cyy

c
+
c2y
c2

)
,
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with a similar formula for
(
log b

c

)′′. Then a full expansion of the logarithmic Wronskian is:

W
′′′

=
(
αγ − β δ

) ∣∣∣∣x′ y′

x′′ y′′

∣∣∣∣
+ x′x′x′

(
ax bxx
a b

− ax cxx
a c

− cx bxx
c b

− bx axx
b a

+
cx axx
c a

+
bx cxx
b c

− ax b
2
x

a b2
+
ax c

2
x

a c2
+
b2x cx
b2 c

+
a2x bx
a2 b

− a2x cx
a2 c

− bx c
2
x

b c2

)
+ x′x′y′

(
2
ax bxy
a b

− 2
ax cxy
a c

+
ay bxx
a b

− ay cxx
a c

− 2
cx bxy
c b

− cy bxx
c b

− by axx
b a

+
cy axx
c a

− 2
bx axy
b a

+ 2
cx axy
c a

+
by cxx
b c

+ 2
bx cxy
b c

− 2
ax bx by
a b b

+ 2
ax cx cy
a c c

+ 2
bx by cx
b b c

+ 2
ax ay bx
a a b

− 2
ax ay cx
a a c

− 2
bx cx cy
b c c

− ay bx bx
a b b

+
ay cx cx
a c c

+
bx bx c

b b c
+
ax ax by
a a b

− ax ax cy
a a c

− by cx cx
b c c

)
+ x′y′y′

(
ax byy
a b

− ax cyy
a c

+ 2
ay bxy
a b

− 2
ay cxy
a c

− cx byy
c b

− 2
cy bxy
c b
−

− 2
by axy
a

+ 2
cy axy
c b

− bx ayy
b a

+
cx ayy
c a

+ 2
by cxy
b c

+
bx cyy
b c

− ax by by
a b b

− 2
ay bx by
a b b

+ 2
ay cx cy
a c c

+ 2
bx by cy
b b c

+ 2
ax ay by
a a b

− 2
ax ay cy
a a c

− 2
by cx cy
b c c

+
ax cy cy
a c c

+
by by cx
b b c

+
ay ay bx
a a b

− ay ay cx
a a c

− bx cy cy
b c c

)
+ y′y′y′

(
ay byy
a b

− ay cyy
a c

− cy byy
c b

− by ayy
b a

+
cy ayy
c a

+
by cyy
b c

− ay by by
a b b

+
ay cy cy
a c c

+
by by cy
b b c

+
ay ay by
a a b

− ay ay cy
a a c

− by cy cy
b c c

)
.

Key Observation 1.1. In the logarithmic Wronskian transferred to the standard affine jet
coordinates (x′, y′, x′′, y′′):

W
′′′

=
(
α γ − β δ

) ∣∣∣∣x′ y′

x′′ y′′

∣∣∣∣
+ κx′

3
+ λx′

2
y′ + µx′y′

2
+ ν y′

3
,

the remainder cubic terms in the first order jets x′, y′ have coefficients κ, λ, µ, ν which
express in terms of the second order derivatives:

axx, axy, ayy, bxx, bxy, byy, cxx, cxy, cyy,
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and in terms of α, β, γ, δ as follows:

κ := − γ axx
a

+ α
bxx
b
− (α− γ)

cxx
c

+ α2 γ − α γ2,

λ := − δ axx
a
− 2 γ

axy
a

+ β
bxx
b

+ 2α
bxy
b
− (β − γ)

cxx
c
− 2 (α− γ)

cxy
c

+ α2 δ + 2αβ γ − 2α γ δ − β γ2,

µ := − 2 δ
axy
a
− γ ayy

a
+ 2 β

bxy
b

+ α
byy
b
− 2 (β − δ) cxy

c
− (α− γ)

cyy
c

+ 2αβ δ − α δ2 + β2 γ − 2 β γ δ,

ν := − δ ayy
a

+ β
byy
b
− (β − δ) cyy

c
+ β2 δ − β δ2.

Proof. This is verified by a direct computation. �

In the sequel, these (a bit complicated) coefficients κ, λ, µ, ν will play a crucial role.
Before really treating jets of order 2, it is advisable to understand first jets of order 1.

2. JET OF ORDER 1

In the complement C2\{D = 0}, a first order jet differential is a linear combination of
the generators shown above:

Jetabc :=
∑
i+j=m

Ri,j

((
log

a

c

)′)i ((
log

b

c

)′)j
=

∑
i+j=m

Ri,j x
′i y ′j.

Here, the Ri,j should be holomorphic (no singularity) outside {D = 0}. The GAGA princi-
ple then insures that each Ri,j is a rational expressions with denominator a certain integer
power of D. Our preliminary objective is to determine these integers.

To this aim, we should perform the transfer to the standard affine first jet coordinates:∑
i+j=m

Ri,j

(
αx′ + β y′

)i (
γ x′ + δ y′

)j
=

∑
i+j=m

(
?
)
x′i y′j,

for instance when m = 1:
R1,0

(
αx′ + β y′

)
+R0,1

(
γ x′ + δ y′

)
= x′

[
αR1,0 + γ R0,1

]
+ y′

[
β R1,0 + δ R0,1

]
=: x′R1,0 + y′R0,1,

so that: (
α γ
β δ

) (
R1,0

R0,1

)
=

(
R1,0

R0,1.

)
For general m > 1, let us give the names Ri,j to the transferred coefficients, so that:∑

i+j=m

Ri,j x
′i y ′j =

∑
i+j=m

Ri,j x
′i y ′j.
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When m = 2, a similar computation gives: α2 αγ γ2

2αβ αδ + β γ 2γδ
β2 βδ δ2

 R2,0

R1,1

R0,2

 =

R2,0

R1,1

R0,2

 ,

while for m = 3:
α3 α2γ αγ2 γ3

2α2β α2δ + 2αβγ 2αγδ + βγ2 3γ2δ
3αβ2 2αβγ + β2γ αδ2 + 2βγδ 3γδ2

β3 β2δ βδ2 δ3



R3,0

R2,1

R1,2

R0,3

 =


R3,0

R2,1

R1,2

R0,3

 .

These are (known) matrices of linear representations of GL(2,C) on binary forms of de-
grees 1, 2, 3.

Remember that α, β, γ, δ are holomorphic outside the divisor:

D ∩ {T 6= 0} = {a = 0} ∪ {b = 0} ∪ {c = 0}

because only a, b, c appear in their denorminators.

Hypothesis 2.1. The main assumption is that, in the standard affine coordinates (x, y) ∈
C2, the jet differential be holomorphic all over C2

∖
{abc = 0}.

Therefore, all coefficients:

Ri,j

should be holomorphic, and hence by the GAGA principle rational with only a, b, c allowed
in their denominators.

Coming back to m = 1, the inversion:(
R1,0

R0,1

)
=

1

αδ − βγ

(
δ −γ
−β α

) (
R1,0

R0,1

)
=

1

D1

(
δ −γ
−β α

) (
R1,0

R0,1

)
shows that the maximal allowed power of D in R1,0, R0,1 is equal to 1.

For m = 2 and for m = 3, a direct inversion of the matrices written above would
show, analogously, that the maximal allowed power of D in the

{
Ri,j

}
i+j=2

and in the{
Ri,j

}
i+j=3

is equal to 2 and to 3. Yet, to treat any m > 1 (still only for jets of order 1 in
this section), one should invert a certain (m+ 1)× (m+ 1) matrix, a task which could be
delicate to perform.

For the time being, let us at least write what a direct inversion gives when m = 2:R2,0

R1,1

R0,2

 =
1

(αδ − βγ)2︸ ︷︷ ︸
= 1

D2

 δ2 −γδ γ2

−2βδ αδ + βγ −2αγ
β2 −αβ α2

 R2,0

R1,1

R0,2


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and when m = 3:
R3,0

R2,1

R1,2

R0,3

 =
1

(αδ − βγ)3︸ ︷︷ ︸
= 1

D3


δ3 −γδ2 γ2δ −γ3
−3βδ2 αδ2 + 2βγδ −2αγδ − βγ2 3αγ2

3β2δ −2αβδ − β2γ α2δ + 2αβγ −3α2γ
−β3 αβ2 −α2β α3



R3,0

R2,1

R1,2

R0,3

 .

Next, let us attempt to write down the (m+ 1)× (m+ 1) matrix, depending on α, β, γ,
δ, which shows how the

{
Ri,j

}
i+j=m

express (linearly) in terms of the
{
Rk,l

}
k+l=m

. This
is done by examining the fundamental transfer equation and by expanding:∑
i+j=m

Ri,j x
′i y ′j =

∑
i+j=m

Ri,j x
′i y ′j

=
∑
i+j=m

Ri,j

(
αx′ + β y′

)i (
γ x′ + δ y′

)j
=

∑
i+j=m

Ri,j

∑
i1+i2=i

αi1 x ′i1 βi2 y ′i2
(
i1+i2
i1

) ∑
j1+j2=j

γj1 x ′j1 δj2 y ′j2
(
j1+j2
j1

)
=

∑
i1+i2+j1+j2=m

x ′i1+j1 y ′i2+j2
[(

i1+i2
i1

) (
j1+j2
j1

)
αi1 βi2 γj1 δj2 Ri1+i2,j1+j2

]
=

∑
i+j=m

x ′i y ′j
( ∑
i1+j1=i

∑
i2+j2=j

(
i1+i2
i1

) (
j1+j2
j1

)
αi1 βi2 γj1 δj2 Ri1+i2,j1+j2

)
.

All the obtained expressions within the large parentheses are linear with respect to
Rm,0, . . . , R0,m, and we decide to summarize the result as:∑

i+j=m

x ′i y ′j Ri,j =
∑
i+j=m

x ′i y ′j
( ∑
k+l=m

Λi,j,k,l(α, γ, β, δ)Rk,l

)
,

without trying to formulate precisely how these Λi,j,k,l come from
∑

i1+j1=i

∑
i2+j2=j

,
which would be useless. Therefore by identification:

Ri,j =
∑
k+l=m

Λi,j,k,l(α, γ, β, δ)Rk,l (i+j=m).

Observation 2.2. Then with the same functions Λi,j,k,l of 4 variables, the inverse formulas
are: ∑

k+l=m

Λi,j,k,l

(
δ,−γ,−β, α

)
(αδ − βγ)m

Rk,l = Ri,j (i+j=m).

Proof. Indeed, starting from:

x ′ = αx′ + β y′,

y ′ = γ x′ + δ y′
⇐⇒

δ
αδ−βγ x

′ − β
αδ−βγ y

′ = x′,

− γ
αδ−βγ x

′ + α
αδ−βγ y

′ = y′,

the inverse formulas are found simply by expanding in a totally parallel manner:∑
i+j=m

Ri,j

(
δ

αδ−βγ x
′ − β

αδ−βγ y
′
)i(
− γ

αδ−βγ x
′ + α

αδ−βγ y
′
)j

=
∑
i+j=m

Ri,j x
′i y ′j. �

Thus, these linear transfer formulas show that the allowed maximal power of D =
αδ − βγ in the denominators of the Ri,j is equal to m. In conclusion:
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Proposition 2.3. In the affine chart (x, y) ∈ C2 ⊂ P2 minus the Jacobian zero-locus:{
D = 0

}
=
{
J = 0

}
∩ {T 6= 1},

the coefficients Ri,j of any 1st order logarithmic jet differential defined and holomorphic
outside {abc = 0} with total number of primes equal to m > 1:

Jetabc =
∑
i+j=m

Ri,j

((
log

a

c

)′)i ((
log

b

c

)′)j
,

and with a, b, c allowed in denominator places, are rational expressions incorporating as
maximal singularity:

1

Dm
=

1

(αδ − βγ)m
. �

For instance when m = 4:
R4,0

R3,1

R2,2

R1,3

R0,4

 =
1

D4


δ4 −γδ3 γ2δ2 −γ3δ γ4

−4βδ3 αδ3 + 3βγδ2 −2αγδ2 − 2βγ2δ 3αγ2δ + βγ3 −4αγ3

6β2δ2 −3αβδ2 − 3β2γδ α2δ2 + 4αβγδ + β2γ2 −3α2γδ − 3αβγ2 6α2γ2

−4β3δ 3αβ2δ + β3γ −2α2βδ − 2αβ2γ α3δ + 3α2βγ −4α3γ
β4 −αβ3 α2β2 −α3β α4



R4,0

R3,1

R2,2

R1,3

R0,4

 ,

the polynomials a, b, c being present in denominator places inside:

α :=
ax c− a cx

a c
, β :=

ay c− a cy
a c

,

β :=
bx c− b cx

b c
, δ :=

by c− b cy
b c

.

For later purposes, it will be convenient to write:

Ri,j =
∑
k+l=m

Πi,j,k,lRk,l (i+j=m),

where:
Πi,j,k,l := Λi,j,k,l

(
α, γ, β, δ

)
,

and also, we will write the inverse formulas as:∑
k+l=m

1

Dm
Πi,j,k,lRk,l = Ri,j (i+j=m),

with by what precedes:
Πi,j,k,l := Λi,j,k,l

(
δ,−γ,−β, α

)
.

More concise formulas are welcome. Since i + j = m and k + l = m anyway, we
can erase i and we can erase k. Yet, we will indicate the considered m by putting it in
upper-case place, so that we will write:

R
m

j =
∑

06l6m

Πm
j,lR

m
l (06j6m),

∑
06l6m

1

Dm
Π
m

j,lR
m

l = Rm
j (06j6m).
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3. WEIGHTED DEGREE m = 3 AND JETS OF ORDER 2

Assuming m = 3 and working now with jets of order 2, let us start from:

Jetabc :=
∑
i+j=3

Ri,j

((
log a

c

)′)i ((
log b

c

)′)j
+ S0,0

∣∣∣∣(log a
c

)′ (
log b

c

)′(
log a

c

)′′ (
log b

c

)′′∣∣∣∣
=
∑
i+j=3

Ri,j x
′i y ′j + S0,0W

′′′
,

and let us perform the transfer to the standard affine jet coordinates (x, y, x′, y′, x′′, y′′),
which amounts to expanding and reorganizing:∑
i+j=3

Ri,j x
′i y ′j + S0,0W

′′′
=
∑
i+j=3

Ri,j

(
αx′ + β y′

)i (
γ x′ + δ y′

)j
+ S0,0

(
(αδ − βγ)W ′′′ + κx′

3
+ λx′

2
y′ + µx′y′

2
+ ν y′

3
)
,

where we have abbreviated the standard Wronskian as:

W ′′′ :=

∣∣∣∣x′ y′

x′′ y′′

∣∣∣∣ = x′ y′′ − x′′ y′.

Using our formalism, we receive the equation:∑
i+j=m

Ri,j

(
αx′ + β y′

)i (
γ x′ + δ y′

)j
+ S0,0

(
(αδ − βγ)W ′′′ + κx′

3
+ λx′

2
y′ + µx′y′

2
+ ν y′

3
)

=
∑

i+j=3

Ri,j x
′i y ′j + S0,0W

′′′,

whence firstly by identification of the coefficients of W ′′′:

S0,0D = S0,0,

and secondly by identification of the powers of x′, y′ (in matrix notation):
α3 α2γ αγ2 γ3

2α2β α2δ + 2αβγ 2αγδ + βγ2 3γ2δ
3αβ2 2αβγ + β2γ αδ2 + 2βγδ 3γδ2

β3 β2δ βδ2 δ3



R3,0

R2,1

R1,2

R0,3

+


κS0,0

λS0,0

µS0,0

ν S0,0

 =


R3,0

R2,1

R1,2

R0,3.


Here, we should solve the Ri,j in terms of the Rk,l and of S0,0. At first, we substitute

S0,0 in terms of S0,0 and we reorganize this matrix equation as:
α3 α2γ αγ2 γ3

2α2β α2δ + 2αβγ 2αγδ + βγ2 3γ2δ
3αβ2 2αβγ + β2γ αδ2 + 2βγδ 3γδ2

β3 β2δ βδ2 δ3



R3,0

R2,1

R1,2

R0,3

 =


R3,0

R2,1

R1,2

R0,3

−

κ 1
αδ−βγ S0,0

λ 1
αδ−βγ S0,0

µ 1
αδ−βγ S0,0

ν 1
αδ−βγ S0,0

 .
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Next, since we know well the inverse of this 3× 3 matrix, we may solve:
R3,0

R2,1

R1,2

R0,3

 =
1

(αδ − βγ)3︸ ︷︷ ︸
= 1

D3


δ3 −γδ2 γ2δ −γ3
−3βδ2 αδ2 + 2βγδ −2αγδ − βγ2 3αγ2

3β2δ −2αβδ − β2γ α2δ + 2αβγ −3α2γ
−β3 αβ2 −α2β α3



R3,0

R2,1

R1,2

R0,3



− 1

(αδ − βγ)3
S0,0

(αδ − βγ)1


δ3 −γδ2 γ2δ −γ3
−3βδ2 αδ2 + 2βγδ −2αγδ − βγ2 3αγ2

3β2δ −2αβδ − β2γ α2δ + 2αβγ −3α2γ
−β3 αβ2 −α2β α3



κ
λ
µ
ν

 .

Looking at this formula, it seems that the maximal appearing power of the reciprocal affine
Jacobian determinant 1

D
= 1

αδ−βγ is equal to 3 + 1 = 4. But let us examine more closely:
δ3 −γδ2 γ2δ −γ3
−3βδ2 αδ2 + 2βγδ −2αγδ − βγ2 3αγ2

3β2δ −2αβδ − β2γ α2δ + 2αβγ −3α2γ
−β3 αβ2 −α2β α3



κ
λ
µ
ν

 =:


τ3,0
τ2,1
τ1,2
τ0,3

 .

Miracle Factorizations 3.1. The 4 expressions:

τ3,0 := δ3 κ− γ δ2 λ+ γ2 δ µ− γ3 ν
=
(
α δ − β γ

) (
· · ·
)
,

τ2,1 := − 3 β δ2 κ+
(
α δ2 + 2 β γ δ

)
λ+

(
− 2α γ δ − β γ2

)
µ+ 3α γ2 ν

=
(
α δ − β γ

) (
· · ·
)
,

τ1,2 := 3 β2 δ κ+ (− 2αβ δ − β2 γ
)
λ+

(
α2 δ + 2αβ γ

)
µ− 3α2 γ ν

=
(
α δ − β γ

) (
· · ·
)
,

τ0,3 := − β3 κ+ αβ2 λ− α2 β µ+ α3 ν

=
(
α δ − β γ

) (
· · ·
)
,

are all multiples of αδ − βγ = D.

Proof. Indeed, by a direct computation:

τ3,0 =
(
α δ − β γ

)(
δ2
cxx
c
− 2 γ δ

cxy
c

+ γ2
cyy
c
− δ2 bxx

b
+ 2 γ δ

bxy
b
− γ2 byy

b

)
,

τ2,1 =
(
α δ − β γ

)(
− α2 δ2 + 2αβ γ δ − β2 γ2 + 2α δ

cxy
c
− 2α γ

cyy
c
− 2α δ

bxy
b

+ 2α γ
byy
b
− 2 β δ

cxx
c

+ 2 β γ
cxy
c
− δ2 cxx

c
+ 2 γ δ

cxy
c
− γ2 cyy

c

+ 2 β δ
bxx
b
− 2 β γ

bxy
b

+ δ2
axx
a
− 2 γ δ

axy
a

+ γ2
ayy
a

)
,

τ1,2 =
(
α δ − β γ

)(
α2 δ2 − 2αβ γ δ + β2 γ2 + α2 cyy

c
− α2 byy

b
− 2αβ

cxy
c

− 2α δ
cxy
c

+ 2α γ
cyy
c

+ 2αβ
bxy
b

+ β2 cxx
c

+ 2 β δ
cxx
c
− 2 β γ

cxy
c

− β2 bxx
b

+ 2α δ
axy
a
− 2α γ

ayy
a
− 2 β δ

axx
a

+ 2 β γ
axy
a

)
,
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τ0,3 =
(
α δ − β γ

)(
− α2 cyy

c
+ 2αβ

cxy
c
− β2 cxx

c
+ α2 ayy

a
− 2αβ

axy
a

+ β2 axx
a

)
,

we find the four missing
(
· · ·
)
. �

Therefore: 
τ3,0
τ2,1
τ1,2
τ0,3

 =:
(
α δ − β γ

) 
θ3,0
θ2,1
θ1,2
θ0,3


and finally:


R3,0

R2,1

R1,2

R0,3

 =
1

(αδ − βγ)3


δ3 −γδ2 γ2δ −γ3
−3βδ2 αδ2 + 2βγδ −2αγδ − βγ2 3αγ2

3β2δ −2αβδ − β2γ α2δ + 2αβγ −3α2γ
−β3 αβ2 −α2β α3



R3,0

R2,1

R1,2

R0,3



− 1

(αδ − βγ)3
S0,0

(αδ − βγ)1
(
α δ − β γ

)1

θ3,0
θ2,1
θ1,2
θ0,3

 .

Proposition 3.2. In the affine chart (x, y) ∈ C2 ⊂ P2 minus the Jacobian zero-locus:{
D = 0

}
=
{
J = 0

}
∩ {T 6= 1},

the coefficients
{
Ri,j

}
i+j=3

and S0,0 of any 2nd order logarithmic jet differential defined
and holomorphic outside {abc = 0} with total number of primes equal to m = 3:

Jetabc =
∑
i+j=3

Ri,j

((
log

a

c

)′)i ((
log

b

c

)′)j
+ S0,0

∣∣∣∣(log a
c

)′ (
log b

c

)′(
log a

c

)′′ (
log b

c

)′′∣∣∣∣
and with a, b, c allowed in denominator places, are rational expressions incorporating as
maximal singularity:

1

D3
=

1

(αδ − βγ)3
in Ri,j,

1

D1
=

1

(αδ − βγ)1
in S0,0, . �

4. BACK TO HOMOGENEOUS COORDINATES FOR THREE CONICS

Therefore, this Proposition 3.2 shows that a general logarithmic jet differential of
weighted order m = 3 must be the following form in the original homogeneous coordi-
nates:

JetABC =
∑
i+j=3

Ri,j(T,X, Y )(
J(T,X, Y )

)3 ((log AC )′)i ((log BC )′)j+ S0,0(T,X, Y )(
J(T,X, Y )

)1 ∣∣∣∣(log A
C

)′ (
log B

C

)′(
log A

C

)′′ (
log B

C

)′′∣∣∣∣ ,
with certain homogeneous polynomials:

Ri,j ∈ C[T,X, Y ], S0,0 ∈ C[T,X, Y ],
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the denominators being controlled powers J3 and J1 of the Jacobian determinant:

J(T,X, Y ) =

∣∣∣∣∣∣
AT BT CT
AX BX CX
AY BY CY

∣∣∣∣∣∣ ;
by slight abuse of notation, we employ the same letters Ri,j and S0,0 as before.

However, there still remains a crucial necessary condition for such a jet differential
JetABC to really be a holomorphic logarithmic jet differential, namely to be holomorphic
everywhere outside the 3-curves locus:

C :=
{
AB C = 0

}
,

the necessary condition that, after passing to any of the 3 possible affine charts {T 6= 0} or
{X 6= 0} or {Y 6= 0}, the Jacobians completely disappears in denominator places (while
A, B, C are allowed in denominator places by definition of logarithmic jets).

For this to be satisfied, the coefficients of the polynomials Ri,j and S0,0 must satisfy
a certain complicated linear system that we will set up and analyze later. We will in fact
focus only on the case 2 = dA = dB = dC of three projective conics, where:

deg J = 3.

For now, in the 3-conics case, let us observe that if we assign constant (homogeneous)
degrees:

dR = degRi,j, dS = degS0,0,

with in addition:
dR − 3 · 3 = dS − 3 · 1

=: t,

this JetABC written above is a meromorphic (rational) section of:

E2,3T
∗
P2(logC )⊗ OP2(t);

indeed, in homogeneous coordinates, the twist t of a section σ of a vector bundle E −→ P2

is determined by just viewing how it transforms as λt σ under a dilation (T,X, Y ) 7−→(
λT, λX, λY

)
.

Similarly, Proposition 2.3 read in the 3-conics case shows that a general logarithmic jet
differential of jet order 1 and of any weighted order m must be of the following form in the
original homogeneous coordinates:

JetABC =
∑
i+j=m

Ri,j(T,X, Y )(
J(T,X, Y )

)m ((log A
C

)′)i ((
log

B

C

)′)j
,

with homogeneous polynomials Ri,j ∈ C[T,X, Y ] — not the same coefficients Ri,j as
before by slight abuse of notation — of constant degrees:

dR = detRi,j (i+j=m),

so that this JetABC is a meromorphic (rational) section of:

E1,mT
∗
P2(logC )⊗ OP2(t),

where:
t := dR − 3 ·m.
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5. WEIGHTED DEGREE m = 4, JET ORDER 2

Next, with m = 4, let us compute the transfer:

Jetabc :=
∑
i+j=4

Ri,j

((
log a

c

)′)i ((
log b

c

)′)j
+ S1,0

(
log a

c

)′ ∣∣∣∣(log a
c

)′ (
log b

c

)′(
log a

c

)′′ (
log b

c

)′′∣∣∣∣+ S0,1

(
log b

c

)′ ∣∣∣∣(log a
c

)′ (
log b

c

)′(
log a

c

)′′ (
log b

c

)′′∣∣∣∣
=
∑
i+j=4

Ri,j x
′i y ′j + S1,0 x

′W
′′′

+ S0,1 y
′W

′′′

=
∑
i+j=4

Ri,j

(
αx′ + β y′

)i (
γ x′ + δ y′

)j
+ S1,0

(
αx′ + β y′

) (
(αδ − βγ)W ′′′ + κx′

3
+ λx′

2
y′ + µx′y′

2
+ ν y′

3
)

+ S0,1

(
γ x′ + δ y′

) (
(αδ − βγ)W ′′′ + κx′

3
+ λx′

2
y′ + µx′y′

2
+ ν y′

3
)

=:
∑
i+j=4

Ri,j x
′i y ′j + S1,0 x

′W ′′′ + S0,1 y
′W ′′′.

By identification of the coefficients of W ′′′, we get:

S1,0

(
αx′ + β y′

)
(αδ − βγ) + S0,1

(
γ x′ + δ y′

)
(αδ − βγ) = S1,0 x

′ + S0,1 y
′,

hence by identification of the coefficient of x′ and y′:

(αδ − βγ)
(
αS1,0 + γ S0,1

)
= S1,0

(αδ − βγ)
(
γ S1,0 + δ S0,1

)
= S0,1,

whence by inversion: (
S1,0

S0,1

)
=

1

(αδ − βγ)2

(
δ −γ
−β α

) (
S1,0

S0,1

)
.

After subtraction, it remains:∑
i+j=4

Ri,j

(
αx′ + β y′

)i (
γ x′ + δ y′

)j
+
[
S1,0

(
αx′ + β y′

)
+ S0,1

(
γ x′ + δ y′

)] (
κx′

3
+ λx′

2
y′ + µx′y′

2
+ ν y′

3
)

=
∑
i+j=4

Ri,j x
′i y ′j,

that is: ∑
i+j=4

Ri,j

(
αx′ + β y′

)i (
γ x′ + δ y′

)j
=
∑
i+j=4

Ri,j x
′i y ′j − S1,0

αδ − βγ

(
κx′

4
+ λx′

3
y′ + µx′

2
y′

2
+ ν x′y′

3
)

− S0,1

αδ − βγ

(
κx′

3
y′ + λx′

2
y′

2
+ µx′y′

2
+ ν y′

4
)
,



15

or equivalently in matrix notation:
α4 α3γ α2γ2 αγ3 γ4

4α3β α3δ + 3α2βγ 2α2γδ + 2αβγ2 3αγ2δ + βγ3 4γ3δ
6α2β2 3α2βδ + 3αβ2γ α2δ2 + 4αβγδ 3αγδ2 + 3βγ2δ 6γ2δ2

4αβ3 3αβ2δ + β3γ 2αβδ2 + 2β2γδ αδ3 + 3βγδ2 4γδ3

β4 β3δ β2δ2 βδ3 δ4



R4,0

R3,1

R2,1

R1,3

R0,4

 =


R4,0

R3,1

R2,2

R1,3

R0,4

− S1,0

αδ − βγ


κ
λ
µ
ν
0

− S0,1

αδ − βγ


0
κ
λ
µ
ν

 .

A simple inversion yields:
R4,0

R3,1

R2,2

R1,3

R0,4

 =
1

(αδ − βγ)4


δ4 −γδ3 γ2δ2 −γ3δ γ4

−4βδ3 αδ3 + 3βγδ2 −2αγδ2 − 2βγ2δ 3αγ2δ + βγ3 −4αγ3

6β2δ2 −3αβδ2 − 3β2γδ α2δ2 + 4αβγδ + β2γ2 −3α2γδ − 3αβγ2 6α2γ2

−4β3δ 3αβ2δ + β3γ −2α2βδ − 2αβ2γ α3δ + 3α2βγ −4α3γ
β4 −αβ3 α2β2 −α3β α4



R4,0

R3,1

R2,2

R1,3

R0,4



− 1

(αδ − βγ)4
S1,0

(αδ − βγ)1


δ4 −γδ3 γ2δ2 −γ3δ γ4

−4βδ3 αδ3 + 3βγδ2 −2αγδ2 − 2βγ2δ 3αγ2δ + βγ3 −4αγ3

6β2δ2 −3αβδ2 − 3β2γδ α2δ2 + 4αβγδ + β2γ2 −3α2γδ − 3αβγ2 6α2γ2

−4β3δ 3αβ2δ + β3γ −2α2βδ − 2αβ2γ α3δ + 3α2βγ −4α3γ
β4 −αβ3 α2β2 −α3β α4



κ
λ
µ
ν
0



− 1

(αδ − βγ)4
S0,1

(αδ − βγ)1


δ4 −γδ3 γ2δ2 −γ3δ γ4

−4βδ3 αδ3 + 3βγδ2 −2αγδ2 − 2βγ2δ 3αγ2δ + βγ3 −4αγ3

6β2δ2 −3αβδ2 − 3β2γδ α2δ2 + 4αβγδ + β2γ2 −3α2γδ − 3αβγ2 6α2γ2

−4β3δ 3αβ2δ + β3γ −2α2βδ − 2αβ2γ α3δ + 3α2βγ −4α3γ
β4 −αβ3 α2β2 −α3β α4




0
κ
λ
µ
ν

 .

Again at denominator places, there occurs a D-power discrepancy:

4 < 4 + 1.

But to fix this problem, remind that the 5× 5 matrix written above (and copied three times)
is: (

Π
4

j,l

)06l65
06j64

.

Miracle Factorizations 5.1. All the 5 + 5 expressions:

τ 1,04−j,j := Π
4

j,0 κ+ Π
4

j,1 λ+ Π
4

j,2 µ+ Π
4

j,3 ν =
(
α δ − β γ

)1
θ1,04−j,j (06j64),

τ 0,14−j,j := Π
4

j,1 κ+ Π
4

j,2 λ+ Π
4

j,3 µ+ Π
4

j,4 ν =
(
α δ − β γ

)1
θ0,14−j,j (06l64),

are factorizable by: (
α δ − β γ

)1
= D1.

We will realize that these 5 + 5 further factorizations are inherited from the initial 4
Miracle Factorizations 3.1:

τ 0,03−j,j := Πj,0 κ+ Πj,1 λ+ Πj,2 µ+ Πj,3 =
(
α δ − β γ

)
θ0,03−j,j (06 j 6 3).

and to this aim, we need some preparation.

Lemma 5.2. The matrix coefficients Π•
•,• satisfy:

β Πm
j−1,l + αΠm

j,l = Πm+1
j,l (06 j 6m+1, 06 l6m),

δΠm
j−1,l + γ Πm

j,l = Πm+1
j,l+1 (06 j 6m+1, 06 l6m),
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and similarly, the matrix coefficients Π
•

•,• satisfy:

− β Π
m

j−1,l + δΠ
m

j,l = Π
m+1

j,l (06 j 6m+1, 06 l6m),

αΠ
m

j−1,l − γ Π
m

j,l = Π
m+1

j,l+1 (06 j 6m+1, 06 l6m),

Here by convention for all j, l ∈ Z and all m ∈ N:(
j 6 − 1 or m+ 1 6 l

)
=⇒ Πm

j,l := 0.

Proof. To prove the first pair of identities, let us start from the fundamental identity:∑
06j6m

Rm
j x

′m−j y ′j =
∑

06j6m

R
m

j x
′m−j y′

j
,

which we mutiply by x ′ = αx′ + β y′:

x ′
∑

06j6m

Rm
j x

′m−j y ′j =
(
αx′ + β y′

) ∑
06j6m

R
m

j x
′m−j y′

j
,∑

06j6m

Rm
j x

′m+1−j y ′j =
∑

06j6m

αR
m

j x
′m+1−j

y′
j

+
∑

06j6m

β R
m

j x
′m−j y′

j

=
∑

06j6m+1

(
αR

m

j + β R
m

j−1

)
x′
m+1−j

y′
j
,

that is by definition of the matrices Πm+1
•,• :

∑
06j6m+1

( ∑
06l6m

Πm+1
j,l Rm

l

)
x′
m+1−j

y′
j

=
∑

06j6m+1

(
α
∑

06l6m

Πm
j,lR

m
l +β

∑
06l6m

Πm
j−1,lR

m
l

)
x′
m+1−j

y′
j
.

By identification of the coefficients of x′m+1−j y′j , we therefore get:∑
06l6m

Πm+1
j,l Rm

l = α
∑

06l6m

Πm
j,lR

m
l + β

∑
06l6m

Πm
j−1,lR

m
l (06 j 6m+1)

and by identification of the coefficients of the Rm
l , we finally obtain the announced first

collection of identities (the admitted convention being useful):

Πm+1
j,l = αΠm

j,l + β Πm
j−1,l (06 j 6m+1).

The second collection of identities is proved similarly, after multiplying by y ′ = γ x′ +
δ y′ instead of by x ′.

The second pair of collections of identities is proved totally similarly, by just dealing
with the inverse transformation. �
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Proof of the Miracle Factorizations 5.1. Applying these identities, we may confirm the
first collection of 5 factorizations:

τ1,04−j,j = Π
4

j,0 κ+ Π
4

j,1 λ+ Π
4

j,2 µ+ Π
4

j,0 ν

=
(
− βΠ

3

j−1,0 + δΠ
3

j,0

)
κ+

(
− βΠ

3

j−1,1 + δΠ
3

j,1

)
λ+

(
− βΠ

3

j−1,2 + δΠ
3

j,2

)
µ+

(
− βΠ

3

j−1,3 + δΠ
3

j,3

)
ν

= −β
[
Π

3

j−1,0 κ+ Π
3

j−1,1 λ+ Π
3

j−1,2 µ+ Π
3

j−1,3 ν
]

+ δ
[
Π

3

j−1,0 κ+ Π
3

j−1,1 λ+ Π
3

j−1,2 µ+ Π
3

j−1,3 ν
]

= −β
(
α δ − β γ

)1 ( · · · )+ δ
(
α δ − β γ

)1 ( · · · )
=:
(
α δ − β γ

)1
θ1,04−j,j ,

while the second collection is handled similarly. �

Proposition 5.3. In the affine chart (x, y) ∈ C2 ⊂ P2 minus the Jacobian zero-locus:{
D = 0

}
=
{
J = 0

}
∩ {T 6= 1},

the coefficients
{
Ri,j

}
i+j=4

and S1,0, S0,1, of any 2nd order logarithmic jet differential de-
fined and holomorphic outside {abc = 0} with total number of primes equal to m = 4:

Jetabc :=
∑
i+j=4

Ri,j

((
log a

c

)′)i ((
log b

c

)′)j
+ S1,0

(
log a

c

)′ ∣∣∣∣(log a
c

)′ (
log b

c

)′(
log a

c

)′′ (
log b

c

)′′∣∣∣∣+ S0,1

(
log b

c

)′ ∣∣∣∣(log a
c

)′ (
log b

c

)′(
log a

c

)′′ (
log b

c

)′′∣∣∣∣
and with a, b, c allowed in denominator places, are rational expressions incorporating as
maximal singularity:

1

D4
=

1

(αδ − βγ)4
in Ri,j,

1

D1
=

1

(αδ − βγ)2
in S1,0, S0,1.. �

6. WEIGHTED DEGREE m = 6

For weighted degree m = 5, the maximal singularity is 1
D5 , a property that relies upon

factorizations of the shape:

τ2,05−j,j := Π
5

j,0 κ+ Π
5

j,1 λ+ Π
5

j,2 µ+ Π
5

j,3 ν =
(
α δ − β γ

)1
θ2,05−j,j (06j65),

τ1,15−j,j := Π
5

j,1 κ+ Π
5

j,2 λ+ Π
5

j,3 µ+ Π
5

j,4 ν =
(
α δ − β γ

)1
θ1,25−j,j (06l65),

τ0,25−j,j := Π
5

j,2 κ+ Π
5

j,3 λ+ Π
5

j,4 µ+ Π
5

j,5 ν =
(
α δ − β γ

)1
θ0,25−j,j (06l65).

At the next weighted degreem = 6, a slightly new phenomenon
/

difficulty occurs, while
at all other weighted degrees, no more technical novelty

/
difficulty will be encountered.
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Consider a jet differential of weighted order m = 6, written as:

Jetabc :=
∑
i+j=6

Ri,j

((
log a

c

)′)i ((
log b

c

)′)j
+
∑
i+j=3

Si,j
(
log a

c

)′ ∣∣∣∣(log a
c

)′ (
log b

c

)′(
log a

c

)′′ (
log b

c

)′′∣∣∣∣
+ T0,0

∣∣∣∣(log a
c

)′ (
log b

c

)′(
log a

c

)′′ (
log b

c

)′′∣∣∣∣2 ,
with a logarithmic Wronskian raised at power 2. To better organize calculations, we employ
three different letters R•,•, S•,•, T•,•.

Similarly as in the cases m = 3, 4, the transfer equation reads as:∑
i+j=6

Ri,j x
′i y′

j
+
∑

i+j=3

Si,j W
′′′ +

∑
i+j=0

T 0,0

(
W ′′′)2

=
∑

i+j=6

Ri,j

(
αx′ + β y′

)i (
γ x′ + δ y′

)j
+
∑

i+j=3

Si,j

(
αx′ + β y′

)i (
γ x′ + δ y′

)j (
DW ′′′ + κx′

3
+ λx′

2
y′ + µx′y′

2
+ ν y′

3
)1

+ T0,0

(
D2
(
W ′′′)2 + 2DW ′′′ [κx′3 + λx′

2
y′ + µx′y′

2
+ ν y′

3]
+
[
κx′

3
+ λx′

2
y′ + µx′y′

2
+ ν y′

3]2)
.

An identification of the coefficients of
(
W ′′′)2 gives:

T 0,0 = D2 T0,0.

An identification of the coefficients of W ′′′ gives:∑
i+j=3

Si,j x
′i y′

j
=
∑
i+j=3

Si,j
(
αx′ + β y′

)i (
γ x′ + δ y′

)j
D

+ 2DT0,0
[
κx′

3
+ λx′

2
y′ + µx′y′

2
+ ν y′

3]
,

that is, after reorganization and substitution of T0,0:∑
i+j=3

Si,j
(
αx′ + β y′

)i (
γ x′ + δ y′

)j
=
∑
i+j=3

Si,j
D

x′
i
y′
j − 2

T 0,0

D2

[
κx′

3
+ λx′

2
y′ + µx′y′

2
+ ν y′

3]
Using the inverse matrix: (

Π3
j,l

)−1
=

1

D3

(
Π

3

j,l

)
,

and using again the 4 Miracle Factorizations 3.1 which compensates by a factor D1 at
numerator place the 1

D2 of T 0,0

D2 , we realize that the maximal power of D present in all Si,j
with i+ j = 3 is equal not to 5 but to:

4.
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Before making an identification of the coefficients of
(
W ′′′)0, let us observe that by

multiplying what precedes with κx′3 + · · ·+ ν y′3, we have the useful equation:∑
i+j=3

Si,j
(
αx′ + β y′

)i (
γ x′ + δ y′

)j [
κx′

3
+ λx′

2
y′ + µx′y′

2
+ ν y′

3]
=
∑
i+j=3

Si,j
D

x′
i
y′
j [
κx′

3
+ λx′

2
y′ + µx′y′

2
+ ν y′

3]− 2
T 0,0

D

[
κx′

3
+ λx′

2
y′ + µx′y′

2
+ ν y′

3]2
.

Now, we can identify the terms which do not incorporate the Wronskian:∑
i+j=6

Ri,j

(
αx′ + β y′

)i (
γ x′ + δ y′

)j
=
∑
i+j=6

Ri,j x
′i y′

j −
∑
i+j=3

Si,j
(
αx′ + β y′

)i (
γ x′ + δ y′

)j [
κx′

3
+ λx′

2
y′ + µx′y′

2
+ ν y′

3]
− T0,0

[
κx′

3
+ λx′

2
y′ + µx′y′

2
+ ν y′

3]2
,

and hence, using the useful equation:∑
i+j=6

Ri,j

(
αx′ + β y′

)i (
γ x′ + δ y′

)j
=
∑
i+j=6

Ri,j x
′i y′

j −
∑
i+j=3

Si,j
D

x′
i
y′
j [
κx′

3
+ λx′

2
y′ + µx′y′

2
+ ν y′

3]
+ (2− 1)

T 0,0

D2

[
κx′

3
+ λx′

2
y′ + µx′y′

2
+ ν y′

3]2
.

To determine the
{
Ri,j

}
i+j=6

in terms of
{
Ri,j

}
i+j=6

,
{
Si,j
}
i+j=3

,
{
T i,j
}
i+j=0

, we must
now use the invere matrix: (

Π6
j,l

)−1
=

1

D6

(
Π

6

j,l

)
,

and, although we already know from an easy (not written) generalization to m = 6 of
the Miracle Factorizations 5.1 that the 1

D
in the Si,j

D
will disappear, an new trouble occurs

caused by the 1
D2 in T 0,0

D2 . What to do, then? At least, expand the annoying square:[
κx′

3
+ λx′

2
y′ + µx′y′

2
+ ν y′

3]2
= κ2 x′

6
+
(
2κλ

)
x′

5
y′ +

(
2κµ+ λ2

)
x′

4
y′

2
+
(
2κ ν + 2λµ

)
x′

3
y′

3
+
(
2λ ν + µ2

)
x′

2
y′

4
+
(
2µ ν

)
x′y′

5
+ ν2 y′

6
.

At least, we suspect that there are more advanced

Miracle Factorizations 6.1. One has:

(
Π

6

j,l

)06l66
06j66



κ2

2κλ
2κµ+ λ2

2κ ν + 2λµ
2λ ν + µ2

2µ ν
ν2


=



D2
(
· · ·
)

D2
(
· · ·
)

D2
(
· · ·
)

D2
(
· · ·
)

D2
(
· · ·
)

D2
(
· · ·
)

D2
(
· · ·
)


.
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Proof. Indeed, remembering the identity:

κx ′3 + λx ′2y ′ + µx ′y ′2 + ν y ′3 = τ3,0 x
′3 + τ2,1 x

′2y′ + τ1,2 x
′y′

2
+ τ0,3 y

′3,

let us take the square:[
κx ′3 + λx ′2y ′ + µx ′y ′2 + ν y ′3

]2
=
[
τ3,0 x

′3 + τ2,1 x
′2y′ + τ1,2 x

′y′
2

+ τ0,3 y
′3
]2
,

that is:

κ2 x ′6 +
(
2κλ

)
x ′5y ′ +

(
2κµ+ λ2

)
x ′4y ′2 +

(
2κ ν + 2λµ

)
x ′3y ′3 +

(
2λ ν + µ2

)
x ′2y ′4 +

(
2µ ν

)
x ′y ′5 + ν2 y ′6

= τ23,0 x
′6 +

(
2 τ3,0 τ2,1

)
x′

5
y′ +

(
2 τ1,2 τ3,0

)
x′

4
y′

2
+
(
2 τ0,3 τ3,0 + 2 τ1,2 τ2,1

)
x′

3
y′

3

+
(
2 τ0,3 τ2,1 + τ21,2

)2
x′

2
y′

4
+
(
2 τ1,2 τ0,3

)
x′y′

5
+ τ20,3 y

′6.

It only remains to replace on the left:

x ′ = αx′ + β y′,

y ′ = γ x′ + δ y′,

and then by identification of the coefficients of these two sextic homogeneous polynomial
in (x′, y′), we obtain:

(
Π

6

j,l

)06l66
06j66



κ2

2κλ
2κµ+ λ2

2κ ν + 2λµ
2λ ν + µ2

2µ ν
ν2


=



τ 23,0
2 τ3,0 τ2,1
2 τ1,2 τ3,0

2 τ0,3 τ3,0 + 2 τ1,2 τ2,1
2 τ0,3 τ2,1 + τ 21,2

2 τ1,2 τ0,3
τ 20,3


=



D2
(
· · ·
)

D2
(
· · ·
)

D2
(
· · ·
)

D2
(
· · ·
)

D2
(
· · ·
)

D2
(
· · ·
)

D2
(
· · ·
)


,

thanks to: 
τ3,0
τ2,1
τ1,2
τ0,3

 =


D
(
· · ·
)

D
(
· · ·
)

D
(
· · ·
)

D
(
· · ·
)


which concludes. �

Thus, we realize that the maximal power of D present in all Ri,j with i+ j = 6 is equal
to not to 8 but to:

6.

Proposition 6.2. In the affine chart (x, y) ∈ C2 ⊂ P2 minus the Jacobian zero-locus:{
D = 0

}
=
{
J = 0

}
∩ {T 6= 1},

the coefficients
{
Ri,j

}
i+j=6

,
{
Si,j
}
i+j=3

,
{
Ti,j
}
i+j=0

, of any 2nd order logarithmic jet dif-
ferential defined and holomorphic outside {abc = 0} with total number of primes equal to
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m = 4:

Jetabc :=
∑
i+j=6

Ri,j

((
log a

c

)′)i ((
log b

c

)′)j
+
∑
i+j=3

Si,j
(
log a

c

)′ ∣∣∣∣(log a
c

)′ (
log b

c

)′(
log a

c

)′′ (
log b

c

)′′∣∣∣∣
+ T0,0

∣∣∣∣(log a
c

)′ (
log b

c

)′(
log a

c

)′′ (
log b

c

)′′∣∣∣∣2 ,
and with a, b, c allowed in denominator places, are rational expressions incorporating as
maximal singularity:

1

D4
=

1

(αδ − βγ)6
in Ri,j,

1

D4
=

1

(αδ − βγ)4
in Si,j,

1

D2
=

1

(αδ − βγ)2
in T0,0. �

7. WEIGHTED DEGREE m 6 13, JET ORDER 2

The general pattern of powers of D in denominator places is now easily devised. We
will dispense us of writing formal, detailed proofs valuable for general m > 1 with jet
order 2. According to the introduction of [1], we in fact only need to reach m = 13.

Thus, from an easily devised pattern and in the 3-conics case only (from now on) so that
2 = dA = dB = dC , a general logarithmic 2-jet differential of weighted orderm 6 13 must
be of the following form in homogeneous coordinates:

JetABC =
∑
i+j=m

Ri,j(T,X, Y )(
J(T,X, Y )

)m ((log A
C

)′)i ((
log

B

C

)′)j ∣∣∣∣(log A
C

)′ (
log B

C

)′(
log A

C

)′′ (
log B

C

)′′∣∣∣∣0

+
∑

i+j=m−3

Si,j(T,X, Y )(
J(T,X, Y )

)m−2 ((log AC )′)i ((log BC )′)j
∣∣∣∣(log A

C

)′ (
log B

C

)′(
log A

C

)′′ (
log B

C

)′′∣∣∣∣1

+
∑

i+j=m−6

Ui,j(T,X, Y )(
J(T,X, Y )

)m−4 ((log AC )′)i ((log BC )′)j
∣∣∣∣(log A

C

)′ (
log B

C

)′(
log A

C

)′′ (
log B

C

)′′∣∣∣∣2

+
∑

i+j=m−9

Vi,j(T,X, Y )(
J(T,X, Y )

)m−6 ((log AC )′)i ((log BC )′)j
∣∣∣∣(log A

C

)′ (
log B

C

)′(
log A

C

)′′ (
log B

C

)′′∣∣∣∣3

+
∑

i+j=m−12

Wi,j(T,X, Y )(
J(T,X, Y )

)m−8 ((log AC )′)i ((log BC )′)j
∣∣∣∣(log A

C

)′ (
log B

C

)′(
log A

C

)′′ (
log B

C

)′′∣∣∣∣4 ,
this formula being in fact valuable up to m = 14 (while for m = 15 one more line should
be added), any sum

∑
i+j=negative being inexistent, with homogeneous polynomials:

R•,•, S•,•, U•,•, V•,•, W•,• ∈ C[T,X, Y ],
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of constant degrees:

dR = degR•,•, dS = degS•,•, dU = degU•,•, dV = deg V•,•, dW = degW•,•,

satisfying:
dR −m · 3 = dS − (m− 2) · 3 = dU − (m− 4) · 3 = dV − (m− 6) · 3 = dW − (m− 8) · 3

=: t,

so that this JetABC is a meromorphic (rational) section of:

E2,mT
∗
P2

(
logC

)
⊗ OP2(t).

For JetABC to really be a holomorphic logarithmic jet differential, the coefficients of
the polynomials R•,•, S•,•, U•,•, V•,•, W•,•, should satisfy a certain (huge) linear system
which expresses that, when passing to any of the 3 affine charts {T 6= 0} or {X 6= 0} or
{Y 6= 0}, and after simplifying all existing rational fractions, the (powers of the) Jacobian
J in the denominator should disappear completely. More details about this appear in the
Maple program copied below.

8. KEY VANISHING THEOREM

Key Vanishing Theorem 8.1. For generic degree 2 (conic) homogeneous polynomials:

A, B, C ∈ C[T,X, Y ]2,

with the 3-conics divisor in P2:

C =
{
AB C = 0

}
,

there are no nonzero logarithmic 2-jet differentials:

0 = H0
(
P2, E2,mT

∗
P2(logC )⊗ OP2(t)

)
,

for all (m, t) in the set:{
(1,−1), (2,−1), (3,−3), (4,−3), (5,−4), (6,−5), (7,−5), (8,−6), (9,−7), (10,−7), (11,−8), (12,−9), (13,−9)

}
.

Proof. Let us take the equations of our 3 conics to be of the (very) simple Fermat-type
form:

0 = A := 2T 2 +X2 + Y 2,

0 = B := T 2 + 2X2 + Y 2,

0 = C := T 2 +X2 + 2Y 2,

so that:
J = 32TXY.

We will show that already for such (very) simple conics, there are no nonzero logarith-
mic 2-jet differentials for all the indicated values of (m, t). By semiconinuity, this will
imply that the same holds true for a generic collection of 3 conics. The final computation
will be delegated to a digital computer.

We will work in the 2 affine charts:{
T 6= 0

}
and

{
Y 6= 0

}
,

replacing:

(T,X, Y ) 7−→ (1, x, y) and (T,X, Y ) 7−→ (t, x, 1).
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so that:
J = 32 xy and J = 32 tx.

In these two affine charts, the powers of 32xy and the powers of 32 tx should completely
disappear.

In the program copied below, we express the necessary divisibility by (powers of) xy
and by (powers of) tx, we ask the computer to solve the concerned linear system. To speed
up the process, we also work modulo a prime number p. It appears that with p = 5, the
computations for all items (m, t) listed above always led us to conclude that the coefficients
of all the polynomials R•,•, S•,•, U•,•, V•,•, W•,• are all zero.

The values of 1 6 m 6 14 and of t ∈ Z can be changed manually on top of the program,
to test (to treat) different items.

In the case (m, t) = (13,−9), there were:
35378 Equations,
12550 Variables,

solved in:

22117 Seconds,
994.27 MegaOctets. �
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>  >  res ta r t :  w i th (L inearA lgebra ) :  w i th (Groebner ) :

m  : =  1 3 ;

t w i s t  : =  -  m  +  4 ;

p  : =  5 ;

d R  : =  3 * ( m - 0 )  +  t w i s t :
d S  : =  3 * ( m - 2 )  +  t w i s t :
d U  : =  3 * ( m - 4 )  +  t w i s t :
d V  : =  3 * ( m - 6 )  +  t w i s t :
d W  : =  3 * ( m - 8 )  +  t w i s t :

##

AA :=  2 *T^2  +  1 *X^2  +  1 *Y^2;   
BB :=  1 *T^2  +  2 *X^2  +  1 *Y^2;   
CC :=  1*T^2 + 1*X^2 + 2*Y^2;

#

A T  : =  d i f f ( A A , T ) :   B T  : =  d i f f ( B B , T ) :   C T  : =  d i f f ( C C , T ) :
A X  : =  d i f f ( A A , X ) :   B X  : =  d i f f ( B B , X ) :   C X  : =  d i f f ( C C , X ) :
A Y  : =  d i f f ( A A , Y ) :   B Y  : =  d i f f ( B B , Y ) :   C Y  : =  d i f f ( C C , Y ) :

#

A T T  : =  d i f f ( A A , T , T ) :   A T X  : =  d i f f ( A A , T , X ) :   A T Y  : =  d i f f ( A A , T , Y ) :  
A X X  : =  d i f f ( A A , X , X ) :   A X Y  : =  d i f f ( A A , X , Y ) :   A Y Y  : =  d i f f ( A A , Y , Y ) :
B T T  : =  d i f f ( B B , T , T ) :   B T X  : =  d i f f ( B B , T , X ) :   B T Y  : =  d i f f ( B B , T , Y ) :  
B X X  : =  d i f f ( B B , X , X ) :   B X Y  : =  d i f f ( B B , X , Y ) :   B Y Y  : =  d i f f ( B B , Y , Y ) :
C T T  : =  d i f f ( C C , T , T ) :   C T X  : =  d i f f ( C C , T , X ) :   C T Y  : =  d i f f ( C C , T , Y ) :  
C X X  : =  d i f f ( C C , X , X ) :   C X Y  : =  d i f f ( C C , X , Y ) :   C Y Y  : =  d i f f ( C C , Y , Y ) :

#

MatDD :=  Matr ix( [ [AT,BT,CT] ,
                 [ A X , B X , C X ] ,
                 [ A Y , B Y , C Y ] ] ) :

DD := factor(Determinant(MatDD));

##
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Ap  := AT*T1 + AX*X1 + AY*Y1:
Bp  := BT*T1 + BX*X1 + BY*Y1:
Cp  := CT*T1 + CX*X1 + CY*Y1:

App  := + AT*T2 + AX*X2 + AY*Y2 
        +  ATT*T1*T1 +  2*ATX*T1*X1 +  2*ATY*T1*Y1 +  AXX*X1*X1 +  2*
AXY*X1*Y1 + AYY*Y1*Y1:

Bpp  := + BT*T2 + BX*X2 + BY*Y2 
        +  BTT*T1*T1 +  2*BTX*T1*X1 +  2*BTY*T1*Y1 +  BXX*X1*X1 +  2*
BXY*X1*Y1 + BYY*Y1*Y1:

Cpp  := + CT*T2 + CX*X2 + CY*Y2 
        +  CTT*T1*T1 +  2*CTX*T1*X1 +  2*CTY*T1*Y1 +  CXX*X1*X1 +  2*
CXY*X1*Y1 + CYY*Y1*Y1:

##

logACp  := Ap/AA - Cp/CC:
logBCp  := Bp/BB - Cp/CC:

logACpp := App/AA - Ap^2/AA^2 - (Cpp/CC - Cp^2/CC^2):
logBCpp := Bpp/BB - Bp^2/BB^2 - (Cpp/CC - Cp^2/CC^2):

##

C a r t e _ x y  : =  { T  = 1 ,   X  = x ,  Y  = y ,
             T 1 = 0 ,  X 1 = x 1 ,  Y 1 = y 1 ,
             T 2 = 0 ,  X 2 = x 2 ,  Y 2 = y 2 } :

xyAA := subs(Carte_xy, AA):
xyBB := subs(Carte_xy, BB):
xyCC := subs(Carte_xy, CC):
xyDD := subs(Carte_xy, DD):

xylogACp := subs(Carte_xy, logACp):
xylogBCp := subs(Carte_xy, logBCp):

xylogACpp := subs(Carte_xy, logACpp):
xylogBCpp := subs(Carte_xy, logBCpp):

##

C a r t e _ t x  : =  { T  = t ,   X  = x ,   Y  = 1 ,
             T 1 = t 1 ,  X 1 = x 1 ,  Y 1 = 0 ,
             T 2 = t 2 ,  X 2 = x 2 ,  Y 2 = 0 } :

txAA :=  subs(Carte_tx ,  AA):
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txBB :=  subs(Carte_tx ,  BB):
txCC :=  subs(Carte_tx ,  CC):
txDD :=  subs(Carte_tx ,  DD):

txlogACp := subs(Carte_tx,  logACp):
txlogBCp := subs(Carte_tx,  logBCp):

txlogACpp := subs(Carte_tx,  logACpp):
txlogBCpp := subs(Carte_tx,  logBCpp):

##

J e t _ A B C  : =  +    ( 1 / ( T * X * Y ) ^ ( m - 0 ) )
             *
               a d d ( R [ m - 0 - j , j ]  *  l o g A C p ^ ( m - 0 - j )  *  l o g B C p ^ j  *  
(logACp*logBCpp-logACpp*logBCp)^0, j=0..m-0)

           +    ( 1 / ( T * X * Y ) ^ ( m - 2 ) )
             *
               a d d ( S [ m - 3 - j , j ]  *  l o g A C p ^ ( m - 3 - j )  *  l o g B C p ^ j  *  
(logACp*logBCpp-logACpp*logBCp)^1, j=0..m-3)

           +    ( 1 / ( T * X * Y ) ^ ( m - 4 ) )
             *
               a d d ( U [ m - 6 - j , j ]  *  l o g A C p ^ ( m - 6 - j )  *  l o g B C p ^ j  *  
(logACp*logBCpp-logACpp*logBCp)^2, j=0..m-6)

           +    ( 1 / ( T * X * Y ) ^ ( m - 6 ) )
             *
               a d d ( V [ m - 9 - j , j ]  *  l o g A C p ^ ( m - 9 - j )  *  l o g B C p ^ j  *  
(logACp*logBCpp-logACpp*logBCp)^3, j=0..m-9)

           +    ( 1 / ( T * X * Y ) ^ ( m - 8 ) )
             *
               a d d ( W [ m - 1 2 - j , j ]  *  l o g A C p ^ ( m - 1 2 - j )  *  l o g B C p ^ j  *  
(logACp*logBCpp-logACpp*logBCp)^4, j=0..m-12):

##

x y J e t _ A B C  : =  f a c t o r ( +    ( 1 / ( x * y ) ^ ( m - 0 ) )
               *
                 a d d ( R x y [ m - 0 - j , j ]  *  x y l o g A C p ^ ( m - 0 - j )  *  x y l o g B C p ^ j
* (xylogACp*xylogBCpp-xylogACpp*xylogBCp)^0, j=0..m-0)

             +    ( 1 / ( x * y ) ^ ( m - 2 ) )
               *
                 a d d ( S x y [ m - 3 - j , j ]  *  x y l o g A C p ^ ( m - 3 - j )  *  x y l o g B C p ^ j
* (xylogACp*xylogBCpp-xylogACpp*xylogBCp)^1, j=0..m-3)
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             +    ( 1 / ( x * y ) ^ ( m - 4 ) )
               *
                 a d d ( U x y [ m - 6 - j , j ]  *  x y l o g A C p ^ ( m - 6 - j )  *  x y l o g B C p ^ j
* (xylogACp*xylogBCpp-xylogACpp*xylogBCp)^2, j=0..m-6)

             +    ( 1 / ( x * y ) ^ ( m - 6 ) )
               *
                 a d d ( V x y [ m - 9 - j , j ]  *  x y l o g A C p ^ ( m - 9 - j )  *  x y l o g B C p ^ j
* (xylogACp*xylogBCpp-xylogACpp*xylogBCp)^3, j=0..m-9)

             +    ( 1 / ( x * y ) ^ ( m - 8 ) )
               *
                 a d d ( W x y [ m - 1 2 - j , j ]  *  x y l o g A C p ^ ( m - 1 2 - j )  *  
xylogBCp^j * (xylogACp*xylogBCpp-xylogACpp*xylogBCp)^4, j=0..
m - 1 2 ) ) :

#

t x J e t _ A B C  : =  +    ( 1 / ( t * x ) ^ ( m - 0 ) )
               *
                 a d d ( R t x [ m - 0 - j , j ]  *  t x l o g A C p ^ ( m - 0 - j )  *  t x l o g B C p ^ j
* (txlogACp*txlogBCpp-txlogACpp*txlogBCp)^0, j=0..m-0)

             +    ( 1 / ( t * x ) ^ ( m - 2 ) )
               *
                 a d d ( S t x [ m - 3 - j , j ]  *  t x l o g A C p ^ ( m - 3 - j )  *  t x l o g B C p ^ j
* (txlogACp*txlogBCpp-txlogACpp*txlogBCp)^1, j=0..m-3)

             +    ( 1 / ( t * x ) ^ ( m - 4 ) )
               *
                 a d d ( U t x [ m - 6 - j , j ]  *  t x l o g A C p ^ ( m - 6 - j )  *  t x l o g B C p ^ j
* (txlogACp*txlogBCpp-txlogACpp*txlogBCp)^2, j=0..m-6)

             +    ( 1 / ( t * x ) ^ ( m - 6 ) )
               *
                 a d d ( V t x [ m - 9 - j , j ]  *  t x l o g A C p ^ ( m - 9 - j )  *  t x l o g B C p ^ j
* (txlogACp*txlogBCpp-txlogACpp*txlogBCp)^3, j=0..m-9)

             +    ( 1 / ( t * x ) ^ ( m - 8 ) )
               *
                 a d d ( W t x [ m - 1 2 - j , j ]  *  t x l o g A C p ^ ( m - 1 2 - j )  *  
txlogBCp^j *  ( txlogACp*txlogBCpp-txlogACpp*txlogBCp)^4, j=0. .
m-12) :

##

N F x y  : =  p r o c ( P , j , i )
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e x p a n d ( m t a y l o r ( P , x , j )  +  m t a y l o r ( P , y , i )  -  m t a y l o r ( m t a y l o r ( P , y , i ) ,
x , j ) ) :

end proc:

#

N F t x  : =  p r o c ( P , j , i )

e x p a n d ( m t a y l o r ( P , t , j )  +  m t a y l o r ( P , x , i )  -  m t a y l o r ( m t a y l o r ( P , x , i ) ,
t , j ) ) :

end proc:

x y J e t  : =  m t a y l o r (

         factor ( (x*y*xyAA*xyBB*xyCC)^m *  (subs(y2=(xyW+x2*y1) /x1 ,
xyJet_ABC)))

         ,  [ x 1 , y 1 , x y W ] ,  1 0 0 ) :

#

t x J e t  : =  m t a y l o r (

         f a c t o r ( ( t * x * t x A A * t x B B * t x C C ) ^ m  *  ( s u b s ( x 2 = ( t x W + t 2 * x 1 ) / t 1 ,
txJet_ABC)))

         ,  [ t 1 , x 1 , t x W ] ,  1 0 0 ) :
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>  >  p r i n t l e v e l  : =  2 :
f o r  k  f r o m  0  t o  m / 3    d o
f o r  j  f r o m  0  t o  m - 3 * k  d o

x y E E E E q [ m - j - 3 * k , j , k ]  : =  f a c t o r ( c o e f t a y l ( x y J e t ,  [ x 1 , y 1 , x y W ] = [ 0 , 0 ,
0 ] ,  [ m - j - 3 * k , j , k ] ) ) :

od :  od :

#

p r i n t l e v e l  : =  2 :
f o r  k  f r o m  0  t o  m / 3    d o
f o r  j  f r o m  0  t o  m - 3 * k  d o

t x E E E E q [ m - j - 3 * k , j , k ]  : =  f a c t o r ( c o e f t a y l ( t x J e t ,  [ t 1 , x 1 , t x W ] = [ 0 , 0 ,
0 ] ,  [ m - j - 3 * k , j , k ] ) ) :

od :  od :

p r i n t l e v e l  : =  2 :
f o r  k  f r o m  0  t o  m / 3    d o
f o r  j  f r o m  0  t o  m - 3 * k  d o

xyEEEq[m- j - 3 *k , j , k ]  : =  mtay lo r (

                      f a c t o r (
                              ( 1 / ( x ^ ( m - j - 3 * k ) * y ^ j * ( x * y ) ^ ( 3 * k ) ) )  *
(1/ ( (xyAA*xyBB*xyCC)^(2*k)))
                            *
                              x y E E E E q [ m - j - 3 * k , j , k ] )

,  [ x , y ] ,  1 0 0 0 ) :

od :  od :

#

p r i n t l e v e l  : =  2 :
f o r  k  f r o m  0  t o  m / 3    d o
f o r  j  f r o m  0  t o  m - 3 * k  d o

t x E E E q [ m - j - 3 * k , j , k ]  : =  m t a y l o r (
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                     f a c t o r (
                              ( 1 / ( t ^ ( m - j - 3 * k ) * x ^ j * ( t * x ) ^ ( 3 * k ) ) )  *
(1 / ( ( txAA* txBB* txCC)^(2*k ) ) )
                            *
                              t x E E E E q [ m - j - 3 * k , j , k ] )

,  [ t , x ] ,  1 0 0 0 ) :

od :  od :

p r i n t l e v e l  : =  2 :
f o r  k  f r o m  0  t o  m / 3    d o
f o r  j  f r o m  0  t o  m - 3 * k  d o

x y E E q [ m - j - 3 * k , j , k ]  : =  N F x y ( x y E E E q [ m - j - 3 * k , j , k ] ,  j , m - j - 3 * k )  m o d  p :

od :  od :

#

p r i n t l e v e l  : =  2 :
f o r  k  f r o m  0  t o  m / 3    d o
f o r  j  f r o m  0  t o  m - 3 * k  d o

t x E E q [ m - j - 3 * k , j , k ]  : =  N F t x ( t x E E E q [ m - j - 3 * k , j , k ] ,  j , m - j - 3 * k )  m o d  p :

od :  od :

f o r  j  f r o m  0  t o  m - 0  d o
R x y [ m - 0 - j , j ]  : =  a d d ( a d d ( c R [ m - 0 - j , j , d R - q - r , q , r ] * 1 ^ ( d R - q - r ) * x ^ q *
y ^ r ,  q = 0 . . d R - r ) ,  r = 0 . . d R ) :
od:

f o r  j  f r o m  0  t o  m - 3  d o
S x y [ m - 3 - j , j ]  : =  a d d ( a d d ( c S [ m - 3 - j , j , d S - q - r , q , r ] * 1 ^ ( d S - q - r ) * x ^ q *
y ^ r ,  q = 0 . . d S - r ) ,  r = 0 . . d S ) :
od:

f o r  j  f r o m  0  t o  m - 6  d o
U x y [ m - 6 - j , j ]  : =  a d d ( a d d ( c U [ m - 6 - j , j , d U - q - r , q , r ] * 1 ^ ( d U - q - r ) * x ^ q *
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y ^ r ,  q = 0 . . d U - r ) ,  r = 0 . . d U ) :
od:

f o r  j  f r o m  0  t o  m - 9  d o
V x y [ m - 9 - j , j ]  : =  a d d ( a d d ( c V [ m - 9 - j , j , d V - q - r , q , r ] * 1 ^ ( d V - q - r ) * x ^ q *
y ^ r ,  q = 0 . . d V - r ) ,  r = 0 . . d V ) :
od:

f o r  j  f r o m  0  t o  m - 1 2  d o
Wxy[m-12- j , j ]  :=  add(add(cW[m-12- j , j ,dW-q- r ,q , r ] *1^(dW-q- r ) *x^q*
y ^ r ,  q = 0 . . d W - r ) ,  r = 0 . . d W ) :
od:

#

f o r  j  f r o m  0  t o  m - 0  d o
R t x [ m - 0 - j , j ]  : =  a d d ( a d d ( c R [ m - 0 - j , j , d R - q - r , q , r ] * t ^ ( d R - q - r ) * x ^ q *
1 ^ r ,  q = 0 . . d R - r ) ,  r = 0 . . d R ) :
od:

f o r  j  f r o m  0  t o  m - 3  d o
S t x [ m - 3 - j , j ]  : =  a d d ( a d d ( c S [ m - 3 - j , j , d S - q - r , q , r ] * t ^ ( d S - q - r ) * x ^ q *
1 ^ r ,  q = 0 . . d S - r ) ,  r = 0 . . d S ) :
od:

f o r  j  f r o m  0  t o  m - 6  d o
U t x [ m - 6 - j , j ]  : =  a d d ( a d d ( c U [ m - 6 - j , j , d U - q - r , q , r ] * t ^ ( d U - q - r ) * x ^ q *
1 ^ r ,  q = 0 . . d U - r ) ,  r = 0 . . d U ) :
od:

f o r  j  f r o m  0  t o  m - 9  d o
V t x [ m - 9 - j , j ]  : =  a d d ( a d d ( c V [ m - 9 - j , j , d V - q - r , q , r ] * t ^ ( d V - q - r ) * x ^ q *
1 ^ r ,  q = 0 . . d V - r ) ,  r = 0 . . d V ) :
od:

f o r  j  f r o m  0  t o  m - 1 2  d o
Wtx [m-12 - j , j ]  :=  add(add(cW[m-12 - j , j ,dW-q- r ,q , r ] * t^ (dW-q- r ) *x^q*
1 ^ r ,  q = 0 . . d W - r ) ,  r = 0 . . d W ) :
od:

p r i n t l e v e l  : =  2 :
f o r  k  f r o m  0  t o  m / 3    d o
f o r  j  f r o m  0  t o  m - 3 * k  d o



>  >  

>  >  

>  >  

>  >  

>  >  

>  >  

(1)(1)

>  >  

x y E q [ m - j - 3 * k , j , k ]  : =  N F x y ( x y E E q [ m - j - 3 * k , j , k ] ,  j , m - j - 3 * k ) :

od :  od :

#

p r i n t l e v e l  : =  2 :
f o r  k  f r o m  0  t o  m / 3    d o
f o r  j  f r o m  0  t o  m - 3 * k  d o

t x E q [ m - j - 3 * k , j , k ]  : =  N F t x ( t x E E q [ m - j - 3 * k , j , k ] ,  j , m - j - 3 * k ) :

od :  od :

p r i n t l e v e l  : =  2 :
f o r  k  f r o m  0  t o  m / 3    d o
f o r  j  f r o m  0  t o  m - 3 * k  d o

x y E q u a t i o n s [ m - j - 3 * k , j , k ]  : =  { c o e f f s ( x y E q [ m - j - 3 * k , j , k ] ,  [ x , y ] ) } :

od :  od :

#

p r i n t l e v e l  : =  2 :
f o r  k  f r o m  0  t o  m / 3    d o
f o r  j  f r o m  0  t o  m - 3 * k  d o

t x E q u a t i o n s [ m - j - 3 * k , j , k ]  : =  { c o e f f s ( t x E q [ m - j - 3 * k , j , k ] ,  [ t , x ] ) } :

od :  od :

xyEquations_Add := {}:

f o r  k  f r o m  0  t o  m / 3    d o
f o r  j  f r o m  0  t o  m - 3 * k  d o
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xyEquations_Add := xyEquations_Add union xyEquations[m-j-3*k,j ,k]
:

od :  od :

Equations_xy := xyEquations_Add:

#

txEquat ions_Add :=  { } :

f o r  k  f r o m  0  t o  m / 3    d o
f o r  j  f r o m  0  t o  m - 3 * k  d o

txEquations_Add := txEquations_Add union txEquations[m-j-3*k, j ,k]
:

od :  od :

Equations_tx := txEquations_Add:

Equations := Equations_xy union Equations_tx mod p:

Nombre_Equations := nops(Equations);

V a r i a b l e s  : =        { s e q ( s e q ( s e q ( c R [ m - 0 - j , j , d R - q - r , q , r ] ,  q = 0 . . d R -
r ) ,  r = 0 . . d R ) ,  j = 0 . . m - 0 ) }
             u n i o n  { s e q ( s e q ( s e q ( c S [ m - 3 - j , j , d S - q - r , q , r ] ,  q = 0 . . d S -
r ) ,  r = 0 . . d S ) ,  j = 0 . . m - 3 ) }
             u n i o n  { s e q ( s e q ( s e q ( c U [ m - 6 - j , j , d U - q - r , q , r ] ,  q = 0 . . d U -
r ) ,  r = 0 . . d U ) ,  j = 0 . . m - 6 ) }
             u n i o n  { s e q ( s e q ( s e q ( c V [ m - 9 - j , j , d V - q - r , q , r ] ,  q = 0 . . d V -
r ) ,  r = 0 . . d V ) ,  j = 0 . . m - 9 ) }
             u n i o n  { s e q ( s e q ( s e q ( c W [ m - 1 2 - j , j , d W - q - r , q , r ] ,  q = 0 . . d W -
r ) ,  r = 0 . . d W ) ,  j = 0 . . m - 1 2 ) } :

Nombre_Variables := nops(Variables);
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Solut ions :=  msolve(Equat ions,p) :

V e r i f i c a t i o n  : =  s e q ( o p ( 2 , o p ( i , S o l u t i o n s ) ) , i = 1 . . n o p s ( S o l u t i o n s ) ) ;

i n d e t s ( { V e r i f i c a t i o n } ) :

n o p s ( i n d e t s ( { V e r i f i c a t i o n } ) ) :
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ass ign(Solut ions) :

f o r  j  f r o m  0  t o  m - 0  d o
V o i r _ R [ m - 0 - j , j ]  : =  a d d ( a d d ( c R [ m - 0 - j , j , d R - q - r , q , r ] * T ^ ( d R - q - r ) * X ^ q *
Y ^ r ,  q = 0 . . d R - r ) ,  r = 0 . . d R ) :
od;

f o r  j  f r o m  0  t o  m - 3  d o
V o i r _ S [ m - 3 - j , j ]  : =  a d d ( a d d ( c S [ m - 3 - j , j , d S - q - r , q , r ] * T ^ ( d S - q - r ) * X ^ q *
Y ^ r ,  q = 0 . . d S - r ) ,  r = 0 . . d S ) :
od;

f o r  j  f r o m  0  t o  m - 6  d o
V o i r _ U [ m - 6 - j , j ]  : =  a d d ( a d d ( c U [ m - 6 - j , j , d U - q - r , q , r ] * T ^ ( d U - q - r ) * X ^ q *
Y ^ r ,  q = 0 . . d U - r ) ,  r = 0 . . d U ) :
od;

f o r  j  f r o m  0  t o  m - 9  d o
V o i r _ V [ m - 9 - j , j ]  : =  a d d ( a d d ( c V [ m - 9 - j , j , d V - q - r , q , r ] * T ^ ( d V - q - r ) * X ^ q *
Y ^ r ,  q = 0 . . d V - r ) ,  r = 0 . . d V ) :
od;

f o r  j  f r o m  0  t o  m - 1 2  d o
Voi r_W[m-12- j , j ]  :=  add(add(cW[m-12- j , j ,dW-q- r ,q , r ] *T^(dW-q- r ) *
X^q*Y^r ,  q=0 . .dW-r ) ,  r=0 . .dW) :
od;



>  >  

(3)(3)

>  >  

>  >  

>  >  

(1)(1)

>  >  

(5)(5)

>  >  

(4)(4)

>  >  




