Key Vanishing Theorems

1. LOGARITHMIC JET DIFFERENTIALS

On P? = P?(C), let [T': X : Y] be homogeneous coordinates. Consider 3 homogeneous
polynomials:
AT, X,)Y), B(T, X,Y), C(T,X,Y),
of respective degrees d4,dp,dc > 1. Later, A, B, C will be of equal degree 2, with
zero-sets defining three conic curves of P2, mutually in general position.
For now, let us assume more generally that:
1 < da=dp = dec =: dapc,

and let us point out that inequal degrees could equally be treated after some mild adapta-
tions.

Also, let us restrict ourselves to jets of order 2, with derivatives of (entire) holomorphic
curves:

¢ — (T(0), X(0), Y(Q)),

having corresponding jet coordinates denoted as:
T/ X/ Y/ T// X// Y”.
As 1s known, with the coordinate axes divisor:
A = {T=0}U{X=0}U{Y =0},

for any weighted degree m > 1, the logarithmic 2-jet differential bundle E» ,, Ty, (log )
of weight m is freely and globally generated by the following sections:

(o))" (og3))" (2220, (o= )f

(log 7)" (log 7)”
for all integers i, j, k > 0 satisfying:

Y

it+J+3k =m.
More simply, the logarithmic 1-jet differential bundle £ ,,, 75, (Iog H ) has the generators:

((10g %)) ({102 %))’ (4 =)

Of course, thanks to log % = —log %, etc., the roles of 7', X, Y can be permuted.
On the affine chart {T # 0} of P2, denote homogeneous coordinates as:
(z,9) where =%, y= X
and set:

a(z,y) = A(l,z,y), b(w,y) ::13(1,x,y), c(z,y) = C(1,z,y),
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Consider the Jacobian of the 3 polynomials A, B, C' of equal degrees d4 = dp = d¢:

AT BT CYT
J = AX BX CX
Ay By Cy

=ArBxCy +Ax By Cr +Ay By Cx — Ay Bx Cpr — Ax By Cy — Ar By Cy.
By homogeneity:

AT, X)Y) = T"A(1, £, %) = T% A(1,2,y),
B(T,X,Y) = T% B(1,£,X) = 7% B(1,z,y),
C(T,X,Y) =T%C(1,2,%) = T% C(1,z,y),

that 1s:
A(T, 2T, yT) = T a(x,y), B(T,2T,yT) = T b(z,y), C(T,xT,yT) = T% c(x,y),

whence by differentiation with respect to 7', to z, to y:

Ap = d T4 1a By = dg T 1 Cr = deT% e
TAx = T%q,, TBx = T%b,, TByx = T% ¢,
TAy = T%aq, TBy = T% b, TCy = T% ¢,

and hence:

dATdA_la dBTdB_lb dchc_l c
J = | T% tq, T"1p, Tdolc,
TdAflay TdBflby Tdcflcy

a b ¢
= dABC TdA_1+dB_1+dC_1 Ay bx Cp|l =t D.
ay by ¢y
In the case of three conics:
J =2T°D.

Consider the divisor:
2 ={A=0}uU{B=0}U{C =0},

and assume that the coefficients of the three homogeneous polynomials A, of B, of C' are
generic enough to insure that:
° {J = 0} has finite (algebraically transverse) intersection in P? with each one of the 3
coordinate lines {T = O}, {X = 0}, {Y = 0};
° {J = O} has finite (algebraically transverse) intersection in P with each one of the 3
algebraic curves {A = 0}, { B =0}, {C = 0}.

Then according to a previously established proposition, on the Zariski-open comple-

ment:
P\ {J =0},
the logarithmic 2-jet differential bundle £ ,,, T}, ( log .@) is freely generated by the sections:

(e 2 (s )’ [ (s, Cos gl

(log2)" (log2)"|




for all integers ¢, j, k > 0 satisfying:
i+j+3k =m.
More simply, the logarithmic 1-jet differential bundle E ,, T} (log ) has the generators:
((0g2)") ((1og2)")’ (i =m).
Here by equality of degrees and by homogeneity:
AT, X,)Y) T4 A1, z,y) _a(z,y)
C(T,X,Y) Tde C(1,x,y) c(x,y)

(in chart {T#0}),

and the same holds for Z. By jet differentiation of holomorphic curves ¢ — (z(¢),y(¢))
valued in the affine chart C* 5 (z,y), it follows that:

(log 2)' = (log2)’ = (loga)' — (loge)’ = = — =

(log 4)" = (log2)" = (loga)" — (loge)” = & = 25 - = 4 £2,

with, similarly:

b/ C/
IO E ! —_— — —_ —
( g C) b C7
bl/ b/b/ C// C/c/
|O§/,:—____+_
( & C) b bb ¢ cc’
where:
a = 12a,+1y ay, a" = a"ap +y" ay + 2’7 g, + 22"y agy + Y'Y ayy,
Vo= 2'b, +y by, V' = 2" b, +y" by + 2’2 by + 22"y byy + Y'Y by,
d = a"c, +y ¢y =2y ey + 27 + 22y Cuy + Y'Y
Consequently:
c a c . ac . ac
=« =4
g/ — (log [_))l _ x'b, + y/by B e, + y'cy _ bpc—bec, o byC - bCy y/‘
c b c bc bc
=4 =7

In what follows, we will abbreviate these 1% jet transfer formulas from standard jets (z’, y')
to logarithmic jets (7', 7') as:

— / / .__ agc—ac . Gycmacy
T =ax + By, Q= aeenle B =
— / ’ _ by c—be
— x 5 . — by c—=bcy — Y Y
Y =2 +dy B = bacher § = ey,

Because logarithmic jet differentials are by definition assumed to exist and to be holo-
morphic outside the considered divisor — here = {A BC = 0} which may be three
conics —, the presence of a, b, ¢ (within the affine C? ¢ P?) in denominator places does
not produce any singularity.



The only possible singularity — which enlightens why the proposition mentioned above
holds in the complement IP)Q\{J = 0} — comes from inverting the transfer formulas from
logarithmic jets to standard jets:

Lf’—L_l o
ad—pBy ad—pB~y o

_ A o ol
s T Tt =Y

and this requires the nonvanishing of the 2 x 2 determinant:

/B ArC—acCy ayc—acy a b c J

o — ac ac =la. b. c.| =D =

'Y 5 by Cb—cbcz by CI:cbcy €z T €z 2 T3 ’
ay by ¢

which happens, by a direct computation in the affine chart {T" # 0}, to be a nonzero
multiple of the Jacobian determinant .J.
The transfer of the logarithmic Wronskian, from

(og2)’ (o8 )
7" = | log )" (log &’

5/ ‘

is much more delicate, computationally, as it requires to expand:

az' + 5y ya' +dy
CEZL‘”—}—ﬁy//—i—"' ,Y:L,//_‘_(Sy//_l__..

==/

Y

the cdots being the already not small ‘remainders’ in:

a\"” Ay C— A Cy A, C—ac
<|Og_) _ x//( >+y//< y y)
c ac ac

2 2
P
a a? c c?
a a, a c Cy C
1y Qay z Ay zy z Cy
oy (e ety ey
a a? 1 c?
2 2
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with a similar formula for (Iog g) " Then a full expansion of the logarithmic Wronskian is:

/
—=m B oy
wo = (04 v-p5 5) "y
N g ey Qg Cax Co baz _ by Ggy Cy Qgy by Cra
ab ac cb ba ca be

xXr
a b? ac? b2c a2b a’c bc?

az b2 azc:  bie,  alb, alc, by cﬁ)

b alaly (2 Uz boy o GsCoy | Gybas  GyCow o Caboy  Cybaa

ab ac ab ac ch cb
_ by Gz n Cy Oax 5 by Gy P CpOzy | by Cay P bs Cay
ba ca ba ca be be
g by by Qg Cy Cy by by s Gz Gy by Qg Gy Cy by cz cy
— 2 2 -2 -2
abb acc + bbe aab aac bce

_aybwbw+aycwcz by by c aajamby_%awcy_bycmcw
abb acc bbe aab aac bce

1 ((Gabyy Az cyy ay bay Ay Cay  Cabyy Cy bay
- 2 —2 - —2 -
trYY ( ab ac ab ac cb cb

_ o by azy I CyQay by Gyy  Cpayy 9 by Cay n by Cyy
ch ba ca be be

az by by Gy by by Gy Cy Cy by by cy Qg Gy by Qg Oy Cy
— -2 2 2 2 -2
abb abb + acc bbe + aab aac
_ o byczcy azcycy bybycy  ayayby Gy aycy by cy ey
bece acc bbe aab aac bce

+ o'y ay by, Gy Cyy Gy byy _ byayy | cyayy | bycyy
ab ac ch ba ca be

_aybyby+aycycy+bybycy ayayby_ayaycy_bycycy
abb acc bbc aab aac bce )

Key Observation 1.1. In the logarithmic Wronskian transferred to the standard affine jet
coordinates (z',y', 2", y"):

yl

===/ x
" 7
T

|74 :(ay—ﬁé) y

+nm’3+/\:p’2y'—|—,ux’y'2 —|—Vy’3,

the remainder cubic terms in the first order jets x', y' have coefficients k, A, p, v which
express in terms of the second order derivatives:

Qryy, Qry, Qyy, b:wm bxya byy7 Coxs Caxy, Cyy,
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and in terms of o, (3, 7, 0 as follows:

rxr b T
liZ:—’Ya—+ T—(a— )C—
+0z27—oc72,
Ay Ay b Crax Cy
e L R e e

+ a? 5—}—2@57—2&75—57,

a a b b c c
e o5l Yy 90w 5ﬁ_ _ ) Cwy
u Loy A28 rant—2(6-0) (@ —7)
+2aB0 —ad*+ 52y —2879,
b
vi= — W L g (g )
a b c
+ 325 — B2
Proof. This is verified by a direct computation. U

In the sequel, these (a bit complicated) coefficients , A, u, v will play a crucial role.
Before really treating jets of order 2, it is advisable to understand first jets of order 1.

2. JET OF ORDER 1

In the complement C*\{D = 0}, a first order jet differential is a linear combination of
the generators shown above:

Jetyy, = Z R, ; <(|0g %)’)1 ((Iog g)’)j

i+j=m
— Z Rz,j T/i y/j .
i+j=m
Here, the R; ; should be holomorphic (no singularity) outside { D = 0}. The GAGA princi-
ple then insures that each R; ; is a rational expressions with denominator a certain integer

power of D. Our preliminary objective is to determine these integers.
To this aim, we should perform the transfer to the standard affine first jet coordinates:

Z R;j(aa —I—By) (va' —|—5y) Z (?) 2"y,
i+j=m i+j=m
for instance when m = 1:
Rig(az' +BY)+ Roi (v’ +6y)

x [04 Rip+~ R0,1:| + 9/ [5 Rip+9 Ro,l}
=: 2 El,o + 9/ EO,la

a 7\ (Rio) _ (Ruo
f o) \Roa Ry
For general m > 1, let us give the names R, ; to the transferred coefficients, so that:

Z Ri’jflzy/] _ Z E,jx”y’j.

i+j=m i+j=m

so that:



When m = 2, a similar computation gives:

a? ay 72 Rap 52,0
208 ad+ [y 290 Ry | = [ Bia |
52 B 6 Roz Ro2
while for m = 3:
a3 o’y ary? o Rs Es,o
2028 a?0 +2aBy 2070 + By 3920 Roi | | Ren
3a3% 206y + B2y ad? 42876 3v6° Riz| | Riz
53 525 552 53 R073 EO,S

These are (known) matrices of linear representations of GL(2,C) on binary forms of de-
grees 1, 2, 3.
Remember that v, (3, 7, ¢ are holomorphic outside the divisor:

20T 40} = {a=0}U{b=0}U{c=0)
because only a, b, ¢ appear in their denorminators.

Hypothesis 2.1. The main assumption is that, in the standard affine coordinates (z,y) €
C?, the jet differential be holomorphic all over C?\ {abc = 0}.

Therefore, all coefficients:

El?]
should be holomorphic, and hence by the GAGA principle rational with only a, b, ¢ allowed
in their denominators.
Coming back to m = 1, the inversion:

R1,0 _ 1 6o - EI,O
Roa ad — By \—B « Roa
_ i o - ELO
DL \-B « Roq
shows that the maximal allowed power of D in R, o, [y is equal to 1.

For m = 2 and for m = 3, a direct inversion of the matrices written above would
show, analogously, that the maximal allowed power of D in the {Ri:j}i =2 and in the

{Ri;}, Lj_s is equal to 2 and to 3. Yet, to treat any m > 1 (still only for jets of order 1 in

this section), one should invert a certain (m + 1) x (m + 1) matrix, a task which could be
delicate to perform.
For the time being, let us at least write what a direct inversion gives when m = 2:

R270 1 52 —”}/5 f}/2 5270
R171 = ﬁ —255 ad + B’y —2(1/’7 R171
Rip) WO P\ 2 —ap o ) \Ry,

L
D2
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and when m = 3:

R 6° —0? 720 —v? R0

Ror | 1 —3B6%  ad®+2B7v0 —2av0 — By? 3ay? R,

Rig | (ad = Bv)° 3% —2aP6 — By a6 +2afy  —3a’y Ry

R073 Hl_/ _53 OéﬁQ —CtQB a3 }—%0’3
- 4

Next, let us attempt to vlrite down the (m + 1) x (m + 1) matrix, depending on «, 3, 7,
0, which shows how the {R;;}, . express (linearly) in terms of the { Ry}, ., . This
is done by examining the fundamental transfer equation and by expanding:

Z Ei’jx/iy/j _ Z Ri,jf”@/j

i+j=m i+j=m
= g R”(ozx +By) (71‘ —|—5y)
i+j=m
— E Ri,j E au x/zl Bzz 119 11+12 E : ’le x/jl 5]2 172 (]1+]2)
i+j=m 11+i2=1 Jitje=jJ

_ riy+j1 , tietge | (titi2 (Jiti2) i1 Qiz 401 Si2 . .
- Z x Y [( i1 )( g1 )a B2 Ao R11+Z27J1+J2]

i1+i2+j1+je=m

_ i, 1] z1+12 Jlﬂz ogie AJ1 gl R
= E Yy ( § E ) B2t o R11+12,J1+J2>'

i+j=m i1+J1=1 i2+j2=]
All the obtained expressions within the large parentheses are linear with respect to
R0, ..., Rom, and we decide to summarize the result as:
S iRy = X a3 Aen 8.0 Ru )
i+j=m i+j=m k+l=m

without trying to formulate precisely how these A, ;;; come from
which would be useless. Therefore by identification:

Z Aimjvkvl(a7 77 ﬁ? 5) Rk,l (Z+]:m)

k+l=m

1+j1=1 Ziz-l—jz:j’

Observation 2.2. Then with the same functions A, j ., of 4 variables, the inverse formulas

are: ( )
Ai, ikl 67 -7, _ﬁ7 a) —
Z 2 ( 5_6 )m Rkl = Ri’j (i4+j=m).
k+l=m a v
Proof. Indeed, starting from:
T = ad +ﬁy/7 m;(sg,y T - m;fg,y y, = xlv
=1 _ / 5 / — —/
Y "}/IE—F ) a557$+a65’yy =Y,

the inverse formulas are found simply by expanding in a totally parallel manner:

D o =/ B —/i v =t — —/
ZRM(M“”_aéfﬁwf‘/>(_aé—ﬁv$+aé By Y ) > RyT'yd. O

i+j=m i+j=m

Thus, these linear transfer formulas show that the allowed maximal power of D =
ad — (7 in the denominators of the R; ; is equal to m. In conclusion:



Proposition 2.3. In the affine chart (x,y) € C* C P? minus the Jacobian zero-locus:

{D=0} = {J=0}n{T #1},

the coefficients R; j of any 1" order logarithmic jet differential defined and holomorphic
outside {abc = 0} with total number of primes equal to m > 1:

Jetype = Zﬂzzm R;; ((Iog %)/)i ((Iog g)/>j’

and with a, b, c allowed in denominator places, are rational expressions incorporating as
maximal singularity:

L 1 C
Dm o (ad = fy)™
For instance when m = 4:
Ray 54 —763 7262 —35 v E4,o
R34 1 —4B53 ad? 4 3B7y62 —2ay8% — 237268 3ay28 + B3 —4ary3 R3 1
Roo | = o 6,32(?2 —3a86% — 38%76 a?6% + 4aBv6 + B2 73q275 —3aBy? 6a2y? Ry
Ry —4335  3a8%5 + B3y —20%B5 — 2032y a®d+3a*fy 4o’y | | Ry
R0,4 54 _O‘B?) a2ﬂ2 _QBB ot R0,4
the polynomials a, b, c being present in denominator places inside:
. axc—acx’ 5= ayc—acy,
ac ac
byc—bc b,c—bc
g o= 2C 20 § o= 0%
bc bc
For later purposes, it will be convenient to write:
Ei,j = Z IL; j ey R (i+j=m),
k+l=m
where:
ks = Nijra(e,8,0),
and also, we will write the inverse formulas as:
1 — _
Z Dm IL j ko Ry = Rij (i+j=m),

k+l=m
with by what precedes:
ﬁz‘,j,k,l = Nijri (5, -, =0, Oé)-
More concise formulas are welcome. Since i + j = m and £ + [ = m anyway, we

can erase ¢+ and we can erase k. Yet, we will indicate the considered m by putting it in
upper-case place, so that we will write:

m m pm .
Rj = E Hj,l 1 (0<j<m),
o<i<m
1 —m—=m
_ m .
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3. WEIGHTED DEGREE m = 3 AND JETS OF ORDER 2

Assuming m = 3 and working now with jets of order 2, let us start from:

Jetype = Z Ri; ((Iog %)/>Z ((Iog g)’)j + So0

i+j=3
= R 79" + Sy oW
= i T Y7+ 000 ;

i+j=3

(log2)' (log?)’
(log2)” (log?)"

and let us perform the transfer to the standard affine jet coordinates (z,y,2',y’, 2", y"),
which amounts to expanding and reorganizing:

Z R, TG + SpoW" = Z Rij(aa’ + ﬁy/)i (va'+ 5yl)j

i+j=3 i+j=3

+SO,0 ((045—57) W”’+/<c$’3—|—)\x’2y'+ux’y/2+l/y’3>,

where we have abbreviated the standard Wronskian as:

/ /
s
mo.__

|44 R P y//

! n !
=2y — 2"y

Using our formalism, we receive the equation:

" Rij(aa +8y) (va' +6y)

i+j=m
+ 50,0 ((a5 —BNW" + ke’ + A2y + pa'y? + Vy’?’) = Y Rija'y+ S oW,
i+5=3
whence firstly by identification of the coefficients of W "':
Soo D = So,

and secondly by identification of the powers of 2/, ¥ (in matrix notation):

o’ oty ay? o Rs K S0,0 R3
2023 20 + 208y 2090 + B2 3720 Ra 4 ASoo | | Rax
3aB? 2aBy+ B2y ad?+28v0 362 Ri + 1Soo | | Ria

ﬁg 525 ﬁ52 53 R0,3 v SO,O }_%0 3.

Here, we should solve the R, ; in terms of the Ek,l and of ?070. At first, we substitute
So,0 in terms of Sy o and we reorganize this matrix equation as:

o? aty ay’ 0N Rsp Rs m Flﬂv Eo,o
2023 o264+ 206y 2096 + By? 3736 Roi| | Raa A m;+57 So,0
3af? 2afy+ B2y ad?+2870 3y9? Rip| E1,2 B M w;+57 §0,0

ﬁg 525 652 63 R0,3 EO 3 v + §0’0
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Next, since we know well the inverse of this 3 x 3 matrix, we may solve:

EB,O (53 —’7(52 ’}/2(5 —’73 ng()
RZI _ 1 —3B6%2  af?+2Bv5 —20v6 — By 3ay? Eg,l
ELQ a (ad — [37)3 3626 —2aB6 — B2y a2 +2aBy —3a’y RLQ
Eo,?, T -3 ap? —a?f o’ Ro,:s
D3

o3 —’y(52 725 _,YS K

1 So.,0 —3362  ad?+2B7v6 2075 — By? 3an? A

" (ab = By)3 (b — By)t | 3826  —2aB5—pB%y  a?5+2aBy -3’y | | n

_53 0452 —Oz2ﬂ a3 v

Looking at this formula it seems that the maximal appearing power of the reciprocal affine
Jacobian determmant is equal to 3 + 1 = 4. But let us examine more closely:

= %8y B
53 —v6? o) —~3 K T30
—3B6%  ad®+2B7v6 —20v6 — By? 3ar? A 7
3620  —2aB6 — %y %5 +2aBy —3aly pwl | T2
—p3 af? —a?p3 o’ v To.3
Miracle Factorizations 3.1. The 4 expressions:
T30 =0 Kk —YOEN+ 06— v
= (a5 69) (),
Toq 1= — 355211—1-(0462—1-2675))\%—(— 2a75—ﬁ72)u+3a72u
= (a0 67) (),
Ty 2 ::3525/1—1-(—20455—527))\—1—(oz25+2aﬁfy),u—3oz27y
= (w537 (-,
Tos3 = — BPr+aBiPr—a?Bu+a’y
~ (a5-87) (),
are all multiples of a6 — vy = D.
Proof. Indeed, by a direct computation:
QC:’CLE Cmy 2b b Qbyy
= (ad— L, PP g 2 Jy
T30 (a5 57)(5 . 750—1—7 - -0 ) + 6b - b)’
b
To1 = (a5—ﬁ’7)<_0z252+2a675 ﬁ272—|—2046——2a’y —2ad Zy
+20wbb 255%—"425 52 ”+2 5y 2w
c c

xx x Azy T a
+286-%—287 y+52 2767@%72%),

T2 = (ad—B7) (a252—2a675+62v2+a2@—oﬂb%—zaﬁcﬂ
C C

X bx :Ex T €T
—2a5Q+2a’y@+2aﬁ y + 52 = +255——2570y
c

bﬁ.’E X Tx X
—,627+2a5“y 20z'y 255a—+257ay)
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05 = (a8 — ) (_a2@+2a5@_52@+&2@_2aﬁ@+52%)7
C C C a a a

we find the four missing ( . ) 0
Therefore:
73,0 050
2,11 _. _ 02,1
71,2 o (04(5 57) 9172
70,3 o3
and finally:
R0 & —76° 720 - Rs
Roy | 1 —3B6%  ad?+2Bv5 2076 — By 3ay? Ro 1
Rip| ~ (a6 By | 3820 —2080—B* % +2aBy —3a*y| |Rio
Ros —p3 af? —a? ad Ros
— 93,0
1 So,0 1| 621
_ ) 5 _ 5
6= 7 fas— g @O oy,

Proposition 3.2. In the affine chart (x,y) € C* C P? minus the Jacobian zero-locus:
{D=0} = {J=0}n{T #1},

the coefficients {Rm}i =3 and So of any 2" order logarithmic jet differential defined

and holomorphic outside {abc = 0} with total number of primes equal to m = 3:
Jet,,. = Z R, <(I0g E)/>i <(|Og l_’)/>j s (log %)’ (log %)/
abc =, 1,] c c 0,0 (Iog %)// (Iog g)//

and with a, b, c allowed in denominator places, are rational expressions incorporating as
maximal singularity:

1 1 :
D' by M

1 1
— = ————  in Syo,. U
D' {as—pyr

4. BACK TO HOMOGENEOUS COORDINATES FOR THREE CONICS

Therefore, this Proposition 3.2 shows that a general logarithmic jet differential of
weighted order m = 3 must be the following form in the original homogeneous coordi-
nates:

e = (T, X, Y) o AN o B\ Soo(T, X,Y) (log 2
oane ;3 (J(T.X,Y))" ((es ) ((|g0)>+(J(T,X,Y))1 (log 4)

/ B /
(log &)
" BN\ >
(log &)
with certain homogeneous polynomials:

R;; € C[T, X,Y], Soo € C[T, X,Y],
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the denominators being controlled powers J? and J! of the Jacobian determinant:

Ar Br Cr
J(T,X)Y) = |[Ax Bx Cx|;
AY BY CY

by slight abuse of notation, we employ the same letters R; ; and Sy as before.

However, there still remains a crucial necessary condition for such a jet differential
Jet4pc to really be a holomorphic logarithmic jet differential, namely to be holomorphic
everywhere outside the 3-curves locus:

¢ = {ABC =0},

the necessary condition that, after passing to any of the 3 possible affine charts {7" # 0} or
{X # 0} or {Y # 0}, the Jacobians completely disappears in denominator places (while
A, B, C are allowed in denominator places by definition of logarithmic jets).

For this to be satisfied, the coefficients of the polynomials R;; and Sy, must satisfy
a certain complicated linear system that we will set up and analyze later. We will in fact
focus only on the case 2 = d4 = dg = d¢ of three projective conics, where:

deg J = 3.

For now, in the 3-conics case, let us observe that if we assign constant (homogeneous)
degrees:

dr = degR; ;, ds = degSp,

with in addition:
dp—3-3 =dg—3-1

=: 1,
this Jet 4gc written above is a meromorphic (rational) section of:
E273 1;2 (lOg (g) X ﬁPQ (t)7

indeed, in homogeneous coordinates, the twist ¢ of a section o of a vector bundle £ — P2
is determined by just viewing how it transforms as A\’ o under a dilation (7, X,Y) —
(AT, AX, AY).

Similarly, Proposition 2.3 read in the 3-conics case shows that a general logarithmic jet
differential of jet order 1 and of any weighted order m must be of the following form in the
original homogeneous coordinates:

e = 3 Gty (22 ()’

i+j=m

with homogeneous polynomials R;; € C[T,X,Y]| — not the same coefficients R, ; as
before by slight abuse of notation — of constant degrees:

dR = det Ri,j (i+j=m),
so that this Jet 43¢ is a meromorphic (rational) section of:
El,m ];2 (lOg cg) X ﬁ[pﬁ (t),

where:
t:=dr—3-m.
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5. WEIGHTED DEGREE m = 4, JET ORDER 2

Next, with m = 4, let us compute the transfer:

Jetype = Z R;; <(|0g %)’>Z ((log lg))’)j

itj=4
(log2)" (log?)’
(log 2)"  (log )"
= Z Ri,jf/iglj + Sl,OEIWW n Sng/Wm
itj=4
= > Riyj(ad’+py) (vo' + 5y
itj=d
+ S10 (aa’ +8Y) ((@5 —BNW" + k2 + X2y + paty” + Vy,3>

+ Sl,O (lOg %)/ + SO,l (lOg l_c))/

+So1 (Y2'+6Y) ((a5 — BN W" + ka2 + X2y + paly” +v y’?’)
=: Z Rijx"y" + S0’ W" + So1y W".
i+j=4
By identification of the coefficients of W ", we get:
S10 (Oé z' + 5?/) (a6 — B7y) + So (7 z’ + 59’) (a6 — By) = Sio2’ + S0 Y,
hence by identification of the coefficient of =’ and 3/:
(ad — By) (04 S0+ 50,1) = S10
(ad — By) (7 S1o+0 50,1) = So1,

(5) = e (5 7))
So,1 (ad — Y2 \—B8 « So1)
After subtraction, it remains:
Z Rij(aa’ + By’)i (va' + 5y’)j
itj=4
+ [Sl,o (aa’+By) +Son (ya' +9 y’)] (ﬁ 2P+ N2y 4+ paly v y’3>

_ 5) 17,1
= E Rz’,jx Yy,

whence by inversion:

itj=4
that is:
Z Rij(az'+BY) (va'+ 6y
itj=4
_ o g
= Y Riyyallyi - (fﬁ NPy oy u:v’y’3>
L ’ ad — By
i+j=4
§01 12

L (,@x/Sy’—i-)\x y2 —|—,ux/y’2 +Vy/4),



a?

4038

60{252

4033
B4

Ry
R3
Ry o
R
Ry
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or equivalently in matrix notation:

a’y a?y? ar? N Ry Ruo K
a8+ 30268y 2a2v5 + 20672 3ay26 4+ By 4436 Rs1 Rs 1 3 A
30286 + 3aB%y  a28% +4aBys  3ays? + 38726 67252 Roi | = | Ran | — 5 10 I
30820 + B3y 2aB62+28%y6  ad®+3B762  4y6% | | Ris Fg| 70|y
B36 3262 B3 5t R4 ROA 0
A simple inversion yields:
54 —’}/(53 ,YQ 52 _735 74
1 —4p53 ad® + 3862 —2ay6% — 23726 3ay28 + B3 —4ary3
= =% 63262 —3aB0% =362y a26% +4apfys + 292 —3a?v6 — 3aBy? 60242
(ad — By) —4335  3aB%5 + B3y —2a%B5 — 2032y a6+ 3028y —4aly
64 —Oéﬁ3 a252 —0436 a4
54 —’}/(53 7252 —73(5
1 3 —4B8% b + 36762 —2a76% — 23726 3ay?6 + B3
- — - 1,0 - 66262 —3aB6% —38%y5 a28% + 4aByd + B2y?  —3a2v6 — 3aBy?
(@0 = By)* (a6 =B | _yg3s 30825 + B3 —20266 — 2082y a3 + 302 By
54 _aﬁ?) a2ﬁ2 _0435
54 7,}/53 ,7252 7735
1 35 —48683 ad® + 38~62 —2a76% — 23726 3ay28 + B3
o 17as 9,1 - 66262 —3aB6% —35%y6 a28% + 4aBys + 8242 =306 — 3aBy?
(ad = py)* (ad — By) —4B35 30825 + B3y —20%B36 — 203%y a6 + 3028y
64 —0463 04252 _QSB
Again at denominator places, there occurs a D-power discrepancy:
4 <441

But to fix this problem, remind that the 5 X 5 matrix written above (and copied three times)

—4 NS

Miracle Factorizations 5.1. All the 5 + 5 expressions:

—4 —4 —4 —4 1

73l = gk + T A+ T, e+ 105w = (a6 —-87) 0.2, <<,
0,1 . —4 —4 =4 =4 1 50,1

Tyl = Ik + I A+ g pu+1L 0 = (ad—B7) 0, (o<i<),

are factorizable by:
(a6 — ﬁv)l = D'

We will realize that these 5 + 5 further factorizations are inherited from the initial 4
Miracle Factorizations 3.1:

750y = Lok + A+ Mo p + s = (ad — 59) 637, (0<j<3).

and to this aim, we need some preparation.

Lemma 5.2. The matrix coefficients 117 | satisfy:

m mo__ m+1 .
BIY,  + oIl = 117, (0<j <m+1, 0<I<m),

m mo__ m+1 .
oIl + 117 = 117 (0<j<m+1, 0<I<m),

RE > O O T >

RE >3 O
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and similarly, the matrix coefficients H , satisfy:
=m =m =m-+1
=PI+ o1l = 1,
=m+1

—m —=m
aHj—l,l - 'YH]‘J = Hj,l-i-l (0<j<m+1,0<i<m),

Here by convention for all 7,/ € Z and all m € N:

<j<—1 or m—|—1<l> — =0

Proof. To prove the first pair of identities, let us start from the fundamental identity:

Z Rm—/m g—/] _ Z R 2 J

0<]<m O<]<m

which we mutiply by 7' = a2’ + S /-

Z R;nflm—jy/j _ (04:1:’+6y’) Z E;nxlm—j y/j7

0<j<m 0<j<m
—1 [y — rm~+1 / /m—
E R;”me Ty = E aR AR Y E ﬁR Ty
o<y<m 0<g<m o<gj<m
-—m -—m m+1—5 15
0<j<m+1

that is by definition of the matrices H’”’“r L

Z ( Z H;n’l-i-l le) x/m—i—l—j y/j _ Z ( Z H Rm—i-ﬂ Z H ”Rm) /m+1—jy/j.

0<j<m+1 o<I<m 0<gj<m+1 o<ism o<i<m

ym+1—j

By identification of the coefficients of y"”, we therefore get:

Z Ry = a Z 7 R + 8 Z e, R (0<j<m+1)

o<i<m o<i<m o<i<m

and by identification of the coefficients of the R;", we finally obtain the announced first
collection of identities (the admitted convention being useful):

m+1 __ .
Hj,l — +5H] 1,1 (0<j<m+1).

The second collection of identities is proved similarly, after multiplying by 3’ = v 2’ +
0y instead of by T’.

The second pair of collections of identities is proved totally similarly, by just dealing
with the inverse transformation. U
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Proof of the Miracle Factorizations 5.1. Applying these identities, we may confirm the
first collection of 5 factorizations:

T = Mok + T A+ T+ Ty v
=3 =3 =3 =3 =3 =3 =3 =3
(= BT 1o +0T0) kit (= BTy + 6T ) A+ (= BTG+ 0T, ) u+ (= BT 5 +0T0,,) v

= —5|: G— 10K,+H] 11)\+H] 12,LL+HJ 13 :|

+5{ J— 10’€+Hg 11/\+Hg 12M+HJ 13V }
= A5 89)! () +a(0d -5 ()
=: (05—57) Giom,

while the second collection is handled similarly. |

Proposition 5.3. In the affine chart (x,y) € C* C P? minus the Jacobian zero-locus:
{D=0} = {J=0}n{T #1},

the coefficients {RZ j} , and Sy, So1, of any 2" order logarithmic jet differential de-
fined and holomorphic outszde {abc = 0} with total number of primes equal to m = 4:

Jetyp. = Z Rm- ((|0g %)’)Z ((Iog g)’)j

i+j=4
(log )’ (log ) (log ) (log )

(log2)" (log %) (log ¢)" (log)

and with a, b, c allowed in denominator places, are rational expressions incorporating as

maximal singularity:

+ 501 (log )

+ 510 (log %)I

1 1

— = ————  in R,

DU (@ —py)t M

1 1

T = T < 5 <5 in 5170, S(),l.. U

Dt (ad — By)?

6. WEIGHTED DEGREE m = 6

For weighted degree m = 5, the maximal singularity is D5 , a property that relies upon
factorizations of the shape:

=5 =5 =5 =5
75 = Wion + Ty A+ T, p+ Ty v = (a6-89)" 622, (0<7<5),
=5 =5 =5 =5
5 = Wyart T A I g+ 10 = (ad—57) 0% (0<1<5),
=5 =5 =5 =5
T = M r+ T AT u+ T g0 = (ad— 7)) 62 oy (0<I<5).

At the next weighted degree m = 6, a slightly new phenomenon / difficulty occurs, while
at all other weighted degrees, no more technical novelty / difficulty will be encountered.
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Consider a jet differential of weighted order m = 6, written as:

Jetwe = ¥ Ri7j((|0g%)/>i((logg)’)j

i+j=6
e ay | (log2)" (logt)’
20 5008 [(og i) (1ogiy”
2
(log2) (log?)’
T (g d)" (o))

with a logarithmic Wronskian raised at power 2. To better organize calculations, we employ
three different letters R, ., S.., T...
Similarly as in the cases m = 3, 4, the transfer equation reads as:

Z Ei,j I/iy/j + Z gi,j w4 Z TO,O (W///)2
i+j=6 i+j=3 i+5=0
= Z Rij (o —|—6y’)l (va' + (Sy’)]

i+j=6

+ Z Sij (ax’ + By’)i (va' + 5y’)j (DW’” +ra” + 22y +pay” + vy’g)
i+7=3

1

+To o <D2 (W’”)2 +2DW" [/m;'g+Ax’2y'+uaz'y'2+uy'3] + [nm'3+)\x’2y'+um'y/2 +1/y'3]2>.

An identification of the coefficients of (W " )2 gives:
TO,O == D2 T0,0.

An identification of the coefficients of W " gives:
Z Sy’ = Z Sij(az’+ ﬁy’)i (va' + 5y')j D
i+j=3 i+j=3
+2D Ty [k 2+ N2y +pay’ v y’g} ,

that is, after reorganization and substitution of 7 ¢:

> Sig(ad' +8y) (va' +6y) = % 2y -2 % o + X2y + paly” + vy
i+j=3 i+j=3

Using the inverse matrix:

_ 1 —3
(H?,l) = D3 (Hﬂ),

and using again the 4 Miracle Factorizations 3.1 which compensates by a factor D' at

numerator place the # of %, we realize that the maximal power of D present in all S; ;

with 7 + j = 3 is equal not to 5 but to:
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Before making an identification of the coefficients of (1" )0, let us observe that by
multiplying what precedes with x 2> + - - - + v /°, we have the useful equation:

Z Sij (o —|—5y) (va' ~|—(5y) [/{x + A2 y+umy2+ug/3}

i+j=3
Sii i T
= Z ?’]x’ y”? [ka” + X2y + pay® + vy —2—;)’0 [/@9&’3+/\x’2y’+ux’y’2+uy'3}2.
i+j=3

Now, we can identify the terms which do not incorporate the Wronskian:

Z Rij(ax —|—ﬁy) (va' —|—6y)

i+j=6
— Z Ry’ — Z Sij (az —i—ﬁy) (va' +5y)‘[/ix'3+)\x’2y'+ux'y’2+Vy’3]
i+j=6 i+j=3

— Too [Ii 23 + /\x/2y/ + ,u:t’y'Q + Vy/?)}Z’

and hence, using the useful equation:

Z Rij(ax —I—By) (va' —|—6y)

i+75=6
i gz ]
Z R g x/ 1 Z ?7]17/ y/] [FL x/3 + )\J,’/Qy, +/w'y’2 + VyIS}
i+35=6 i+j=3
+(2-1) 71;2 [/m:'?) + A2y + paly? + yy’3}2.
To determine the {R;;}, . o interms of {Rij}. . o {Si;},, . 5 {Tij},,;_ We must

now use the invere matrlx
6 \—1 o 1 —6
(M50 = 55 (M),
and, although we already know from an easy (not written) generalization to m = 6 of
the Miracle Factorizations 5.1 that the + in the ” will disappear, an new trouble occurs
caused by the ﬁ in =5 TO . What to do, then‘7 At least expand the annoying square:
[FL.TIB 222y +pay? +vy”? ]
= rx22% + (2K ) 2%y + (2K p+2?) AT (26v+2Ap) AT (2Av + p?) oyt 4 (2pv) 'y P2y
At least, we suspect that there are more advanced

Miracle Factorizations 6.1. One has:

K2 D?

2K A D?

o\ 0<I<6 2K 1+ A2 D?
() | 2ev+2au| = | D2
0<j<6 2)\1/+,u2 D2

2puv D?

V2 D?
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Proof. Indeed, remembering the identity:
RTP AT+ pTG? + v g = mea” + maay + madly” sy,

let us take the square:
—13 — 12—/ —/—12 —73 2 13 12 /12 13 2
["Wf +ATY +pTY T+ vy } = [Ts,oiﬁ + o1 X Y +T2xy +To3Y ] )

that is:
RT0 4+ (20N T Y 4+ (2rp+ W) TG+ 2R+ 200) TG+ (200 4 107) TP+ 2p0) TG0+ 07"
= Tio 2"+ (2730 72.1) %y + (271.27s50) oy + (27037304 271,272,1) T

12

2 4 5 6
+ (2 T0,3T2,1 + 712’2) 7y + (2 T1,2 7'0,3) z'y"” + 7'(?73 Yy

It only remains to replace on the left:
7 = ax'+ By,
—7

g =+ 0y,

and then by identification of the coefficients of these two sextic homogeneous polynomial
in (z/,y), we obtain:

K2 50 D? )
2k A 2730721 D? )
_6 \ 0<I<6 26+ N 2712 T30 D%(--.
<Hj,l> | 2rvr2dp ] = 2103 mot2mamn | = | D*(--) |,
0<j<6 2\ + l’[’2 ) T3 To1 + 7_1272 D2 )
2pv 2712703 D?
v? 7'02,3 D? )
thanks to:
Tg’g D
1| | D
T1,2 o D
7'073 D
which concludes. 0

Thus, we realize that the maximal power of D present in all ; ; with ¢ + 7 = 6 is equal
to not to 8 but to:

6.
Proposition 6.2. In the affine chart (x,y) € C* C P? minus the Jacobian zero-locus:
{D=0} = {J=0}n{T #1},

the coefficients {Ri,j}i+j:6; {Si,j}iﬂ.:g, {Ti,j}iﬂ-zo, of any 2" order logarithmic jet dif-
ferential defined and holomorphic outside {abc = 0} with total number of primes equal to
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Jetype = Z R;; ((|og %)f>i <(|og g)f)j

i+j=6
e ay | (log2)" (logt)’
2 S (08 | 1og5)" (log )’
2
(log2)’ (log?)’
I lGog )" (og ']

and with a, b, ¢ allowed in denominator places, are rational expressions incorporating as
maximal singularity:

1 1
o= in Ry,

DT~ (a6 —pypE

1 1

= in S,

DT~ (a6 —pyt W

1 1

— = T in TO,O- O

Dz (ad = fv)?

7. WEIGHTED DEGREE m < 13, JET ORDER 2

The general pattern of powers of D in denominator places is now easily devised. We
will dispense us of writing formal, detailed proofs valuable for general m > 1 with jet
order 2. According to the introduction of [1], we in fact only need to reach m = 13.

Thus, from an easily devised pattern and in the 3-conics case only (from now on) so that
2 =dy = dp = d¢, a general logarithmic 2-jet differential of weighted order m < 13 must
be of the following form in homogeneous coordinates:

=~
I

B Ri;(T,X,Y)
e = 2 Xy

N—"
_—
o
0

Qlwq|w

N—" .

VS
g
Q
S—
N——
VS
—_—
O
(05}
Ql
S~—
~
<

o o
® 09
Q=

i+j=m

Su(T.X.Y) (0 Ay
ps (J(T, X, Y )" <(| 5o

<.
o
(0]
—

~—
~

~
<
~
<

((Iog

o
0’

i+j=m—3

)
. Z U ;(T,X,Y) <(|ogg)/)i<(|0g
)

~
[\

~—
~

N—— N— N—— N~
.

=~
<

o
o

(J(1,x,7))" "

i+j=m—6

~
w

<.
o =}
(05] (05]
Qe Qlqlk  Qleq

~—
~

~
N
~
<

N——r N—"— —'— —~
<

QAlw Qlw QIw
.~ N~ [ P
o
o
Awalwy QAwalw  QAwqlw
~— ——

Vi (T, X,Y) o Ay
+ Z (J(T, X, Y))mfﬁ ((l g C)

o
0’

WisT XY (10 A ((10g By) [082)! (log 2)'[
i+j§_u (J(T, X, Y))m—s ((I g C) ) ((I g C) ) (log é)ﬂ (|Og g)// )

this formula being in fact valuable up to m = 14 (while for m = 15 one more line should

be added), any sum } . i—negative DEINg Inexistent, with homogeneous polynomials:

Ro,o? So,oa Uo,oa ‘/0,0) Wo,o S C[T7 X7 Y]?
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of constant degrees:
dr = degR.., ds = degS,., dy = degU.., dy = degV.., dw = degW,.,
satisfying:
dp—m-3 =ds—(m—-2)-3=dy—(m—4)-3=dy—(m—6)-3 =dy—(m—28)-3
=:t,
so that this Jet 43¢ is a meromorphic (rational) section of:
BTz (log €) @ Opa(1).

For Jetspc to really be a holomorphic logarithmic jet differential, the coefficients of
the polynomials R, ., S.., U.., V.., W.., should satisfy a certain (huge) linear system
which expresses that, when passing to any of the 3 affine charts {7 # 0} or {X # 0} or
{Y # 0}, and after simplifying all existing rational fractions, the (powers of the) Jacobian
J in the denominator should disappear completely. More details about this appear in the
Maple program copied below.

8. KEY VANISHING THEOREM

Key Vanishing Theorem 8.1. For generic degree 2 (conic) homogeneous polynomials:
A, B, C € C[T,X,Y]s,
with the 3-conics divisor in P?:
¢ = {ABC =0},
there are no nonzero logarithmic 2-jet differentials:
0= H° (IP’2, BT (l0g @) ® Ope (t)) ,
forall (m,t) in the set:
{(1, -1),(2,-1),(3,-3),(4,-3),(5,—4), (6,-5), (7,-5), (8,—6), (9, —7), (10, —=7), (11, —8), (12, —9), (13, 79)}.

Proof. Let us take the equations of our 3 conics to be of the (very) simple Fermat-type

form:
0=A:=2T*+X>+Y?

0=B:=T"+2X"+Y?
0=C:=T"+X*+2Y?
so that:
J = 32TXY.

We will show that already for such (very) simple conics, there are no nonzero logarith-
mic 2-jet differentials for all the indicated values of (m,t). By semiconinuity, this will
imply that the same holds true for a generic collection of 3 conics. The final computation
will be delegated to a digital computer.

We will work in the 2 affine charts:

{T #0} and {y #0},
replacing:
(T,X,Y) — (1,z,y) and (T,X,)Y) — (t,x,1).
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so that:

= 32xy and J = 32tx.
In these two affine charts, the powers of 32 zy and the powers of 32 ¢x should completely
disappear.

In the program copied below, we express the necessary divisibility by (powers of) xy
and by (powers of) tz, we ask the computer to solve the concerned linear system. To speed
up the process, we also work modulo a prime number p. It appears that with p = 5, the
computations for all items (m, t) listed above always led us to conclude that the coefficients
of all the polynomials R, ., S.., U.., V.., W, are all zero.

The values of 1 < m < 14 and of ¢ € Z can be changed manually on top of the program,
to test (to treat) different items.

In the case (m,t) = (13, —9), there were:

35 378 Equations,
12 550 Variables,
solved in:
22117 Seconds,
994.27 MegaOctets. U

REFERENCES

[1] Hou, L.; Huynh, D.T.; Merker, J.; Xie, S.: A second main theorem for entire curves intersecting three
conics, Preprint, 2026.



#Hit
AA

BB :
CC :

AT :
AX :
AY :

#

#Hit

ATT :
AXX :
BTT :
BXX :
CTT :
CXX :

2
1
1

diff(AA,T): BT :
diff(AA,X): BX:
diff(AAY): BY :

3* +
3* +
3*(m-4) + twist:
3* +
3* +

twist:
twist:

twist:
twist:

STA2 + 1*XA2 + 1%YA2;
STA2 + 2%XA2 + 1%YA2;
STA2 + 1¥XA2 + 2%YA2;

diff(AA,T,T): ATX :
diff(AA,X,X): AXY :
diff(BB,T,T): BTX :
diff(BB,X,X): BXY :
diff(CC,T,T): CTX :
diff(CC,X,X): CXY :

MatDD := Matrix([[AT,BT,CT],

[AX,BX,CX],
[AY,BY,CY]]):

diff(BB,T): CT:
diff(BB,X): CX:
diff(BB,Y): CY :

diff(AA,T,X):
diff(AA,X,Y):
diff(BB,T,X):
diff(BB,X,Y):
diff(CC,T,X):
diff(CC,X,Y):

DD := factor(Determinant(MatDD));

> restart: with(LinearAlgebra): with(Groebner):

diff(CC,T):
diff(CC,X):
diff(CC,Y):
ATY := diff(AA,T,Y):
AYY := diff(AA,Y,Y):
BTY := diff(BB,T,Y):
BYY := diff(BB,Y,Y):
CTY := diff(CC,T,Y):
CYY := diff(CC,Y,Y):



AT*T1 + AX*X1 + AY*Y1:
BT*T1 + BX*X1 + BY*Y1:
CT*T1 + CX*X1 + CY*Y1:

u9)
©
I

App =+ AT*T2 + AX*X2 + AY*Y2
+ ATT*T1*T1 + 2*ATX*T1*X1 + 2*ATY*T1*Y1 + AXX*X1*X1 + 2*
AXY*X1*Y1 + AYY*Y1*Y1:

Bpp =+ BT*T2 + BX*X2 + BY*Y2
+ BTT*T1*T1 + 2*BTX*T1*X1 + 2*BTY*T1*Y1 + BXX*X1*X1 + 2*
BXY*X1*Y1 + BYY*Y1*Y1:

Cpp =+ CT*T2 + CX*X2 + CY*Y2
+ CTT*TLI*T1 + 2*CTX*T1*X1 + 2*CTY*T1*Y1 + CXX*X1*X1 + 2*
CXY*X1*Y1 + CYY*Y1*Y1:

#it

logACp := Ap/AA - Cp/CC:

logBCp :=Bp/BB - Cp/CC:

logACpp := App/AA - Ap*2/AA™2 - (Cpp/CC - Cpn2/CC"2):
logBCpp := Bpp/BB - Bp*2/BB*2 - (Cpp/CC - Cp~2/CC*2):
##

Carte_xy :={T =1, X =x, Y =y,
T1=0, X1=x1, Y1l=y1,
T2=0, X2=x2, Y2=y2}:

XyAA := subs(Carte_xy, AA):
XxyBB := subs(Carte_xy, BB):
xyCC := subs(Carte_xy, CC):
xyDD := subs(Carte_xy, DD):
xylogACp := subs(Carte_xy, logACp):

xylogBCp := subs(Carte_xy, logBCp):

xylogACpp := subs(Carte_xy, logACpp):
xylogBCpp := subs(Carte_xy, logBCpp):

#H#

Carte_tx := {T =t, X =x, Y =1,
Tl=t1l, X1=x1, Y1=0,
T2=t2, X2=x2, Y2=0}:

txAA = subs(Carte_tx, AA):



txBB :
txCC :
txDD :

subs(Carte_tx, BB):
subs(Carte_tx, CC):
subs(Carte_tx, DD):

txlogACp :
txlogBCp :

subs(Carte_tx, logACp):
subs(Carte_tx, logBCp):

txlogACpp := subs(Carte_tx, logACpp):
txlogBCpp := subs(Carte_tx, logBCpp):

H##
Jet_ABC := + (1/(T*X*Y)"(m-0))

add(R[m-0-j,j] *logACp~r(m-0-j) * logBCp"j *
(logACp*logBCpp-logACpp*logBCp)”n0, j=0..m-0)

+  (1/(T*X*Y)A"(m-2))

add(S[m-3-j,j] *logACpA*(m-3-j) * logBCp”"j *
(logACp*logBCpp-logACpp*logBCp)™1, j=0..m-3)

+  (L/(T*X*Y)A(m-4))

add(U[m-6-j,j] * logACp*"(m-6-j) * logBCp”"j *
(logACp*logBCpp-logACpp*logBCp)*2, j=0..m-6)

+  (1/(T*X*Y)*(m-6))

add(V[m-9-j,j] * logACp*(m-9-j) * logBCp”"j *
(logACp*logBCpp-logACpp*logBCp)”*3, j=0..m-9)

+  (1/(T*X*Y)A(m-8))

add(W[m-12-j,j] * logACp~*(m-12-j) * logBCp”"j *
(logACp*logBCpp-logACpp*logBCp)™4, j=0..m-12):

H#it
xyJet _ABC := factor(+ (1/(x*y)"(m-0))

add(Rxy[m-0-j,j] * xylogACp~(m-0-j) * xylogBCp"j
* (xylogACp*xylogBCpp-xylogACpp*xylogBCp)*0, j=0..m-0)

+ &1/(X*Y)A(m-2))

add(Sxy[m-3-j,j] * xylogACp~*(m-3-j) * xylogBCp?"j
* (xylogACp*xylogBCpp-xylogACpp*xylogBCp)”1, j=0..m-3)



+ &1/(X*y)"(m-4))

add(Uxy[m-6-j,j] * xylogACp~r(m-6-j) * xylogBCp"j
* (xylogACp*xylogBCpp-xylogACpp*xylogBCp)*2, j=0..m-6)

+ &1/(X*Y)"(m-6))

add(Vxy[m-9-j,j] * xylogACp~"(m-9-j) * xylogBCp"j
* (xylogACp*xylogBCpp-xylogACpp*xylogBCp)*3, j=0..m-9)

+  (1/(x*y)*(m-8))
add(Wxy[m-12-j,j] * xylogACp~*(m-12-j) *
xylogBCp”j * (xylogACp*xylogBCpp-xylogACpp*xylogBCp)"4, j=0..
m-12)):
#
txJet_ABC := + (1/(t*x)"(m-0))

*

add(Rtx[m-0-j,j] * txlogACp~*(m-0-j) * txlogBCp?"j
* (txlogACp*txlogBCpp-txlogACpp*txlogBCp)*0, j=0..m-0)

+ (1/(t*x)*(m-2))

add(Stx[m-3-j,j] * txlogACp~r(m-3-j) * txlogBCp"]j
* (txlogACp*txlogBCpp-txlogACpp*txlogBCp)*1, j=0..m-3)

+ (2/(t*x)"(m-4))

add(Utx[m-6-j,j] * txlogACp*(m-6-j) * txlogBCp*"j
* (txlogACp*txlogBCpp-txlogACpp*txlogBCp)"2, j=0..m-6)

+ (1/(t*x)*(m-6))

add(Vtx[m-9-j,j] * txlogACp~(m-9-j) * txlogBCp"j
* (txlogACp*txlogBCpp-txlogACpp*txlogBCp)”*3, j=0..m-9)

+  (1/(t*x)*(m-8))
add(Wtx[m-12-j,j] * txlogACp~*(m-12-j) *
txlogBCp”j * (txlogACp*txlogBCpp-txlogACpp*txlogBCp)"4, j=0..
m-12):
#it

NFxy := proc(P,j,i)



expand(mtaylor(P,x,j) + mtaylor(P,y,i) - mtaylor(mtaylor(P,y,i),
X, j)):

end proc:
#
NFtx := proc(P,j,i)

expand(mtaylor(P,t,j) + mtaylor(P,x,i) - mtaylor(mtaylor(P,x,i),
t,j)):

end proc:

m:=13
twist:= -9
p:=>5

AA=2 TP+ X* + Y
BB:=T°+2X°+Y*
CC:=T"+X°+2Y
DD:=32TXY (1)

xyJet := mtaylor(

factor((x*y*xyAA*xyBB*xyCC)"m * (subs(y2=(xyW+x2*y1)/x1,
xyJet _ABC)))

, [x1,y1l,xyW], 100):
#
txJet := mtaylor(

factor((t*x*txAA*txBB*txCC)"m * (subs(x2=(txW+t2*x1)/t1,
txJet ABC)))

, [t1,x1,txW], 100):



> printlevel := 2:
for k from 0 to m/3 do
for j from 0 to m-3*k do

XYyEEEEqQ[m-j-3*k,j,k] := factor(coeftayl(xyJet, [x1,y1,xyW]=[0,0,
0], [m-j-3*k,j,k])):

od: od:
#
printlevel := 2:

for k from 0 to m/3 do
for j from O to m-3*k do

tXEEEEqQ[m-j-3*k,j,k] := factor(coeftayl(txJet, [t1l,x1,txW]=[0,0,
0], [m-j-3*k,j,k])):

od: od:

> printlevel := 2:
for k from 0 to m/3 do
for j from 0 to m-3*k do
XyEEEqQ[m-j-3*k,j,k] := mtaylor(
factor(
(L/(x™(m-j-3*k)*y"j*(x*y)"(3*k))) *
(L/((xyAA*xyBB*xyCC)"(2*k)))
XYEEEEqQ[m-j-3*k,j,k])

, [x,y], 1000):

od: od:
#
printlevel := 2:

for k from 0 to m/3 do
for j from 0 to m-3*k do

txEEEq[m-j-3*k,j,k] := mtaylor(



factor(
(L/(tAM(m-j-3*k)*x™Mj*(t*x)"(3*k))) *
(L/((txAA*txBB*txCC)"(2*k)))
tXEEEEq[m-j-3*k,j,k])
, [t,x], 1000):

od: od:

printlevel := 2:
for k from 0 to m/3 do
for j from 0 to m-3*k do

XyEEqQ[m-j-3*k,j,k] := NFxy(xyEEEqQ[m-j-3*k,j,k], ],m-j-3*k) mod p:

od: od:
#
printlevel := 2:

for k from 0 to m/3 do
for j from O to m-3*k do

txEEqQ[m-j-3*k,j,k] := NFtx(txEEEq[m-j-3*k,j,k], j,m-j-3*k) mod p:

od: od:

for j from 0 to m-0 do

Rxy[m-0-j,j] := add(add(cR[m-0-j,j,dR-gq-r,q,r]*1*"(dR-qg-r)*x"qg*
yrr, q=0..dR-r), r=0..dR):

od:

for j from 0 to m-3 do

Sxy[m-3-j,j] := add(add(cS[m-3-j,j,dS-g-r,q,r]*1*(dS-g-r)*x*qg*
y~rr, q=0..dS-r), r=0..dS):

od:

for j from 0 to m-6 do
Uxy[m-6-j,j] := add(add(cU[m-6-j,j,dU-g-r,q,r]*1*(dU-g-r)*x~qg*



y~r, q=0..dU-r), r=0..dU):
od:

for j from 0 to m-9 do

Vxy[m-9-j,j] := add(add(cV[m-9-j,j,dV-q-r,q,r]*1*(dV-q-r)*x~qg*
y~rr, g=0..dV-r), r=0..dV):

od:

for j from 0 to m-12 do

Wxy[m-12-j,j] := add(add(cW[m-12-j,j,dW-q-r,q,r]*1*(dW-q-r)*x"qg*
yrr, g=0..dW-r), r=0..dW):

od:

#

for j from 0 to m-0 do

Rtx[m-0-j,j] := add(add(cR[m-0-j,j,dR-qg-r,q,r]*t*"(dR-q-r)*x"qg*
1*r, q=0..dR-r), r=0..dR):

od:

for j from 0 to m-3 do

Stx[m-3-j,j] := add(add(cS[m-3-j,j,dS-q-r,q,r]*t*"(dS-q-r)*x~qg*
1~r, g=0..dS-r), r=0..dS):

od:

for j from 0 to m-6 do

Utx[m-6-j,j] := add(add(cU[m-6-j,j,dU-qg-r,q,r]*t*(dU-qg-r)*x"q*
1~r, gq=0..dU-r), r=0..dU):

od:

for j from 0 to m-9 do

Vtx[m-9-j,j] := add(add(cV[m-9-j,j,dV-g-r,q,r]*t*(dV-q-r)*x~q*
1~r, q=0..dV-r), r=0..dV):

od:

for j from 0 to m-12 do

Wtx[m-12-j,j] := add(add(cW[m-12-j,j,dW-qg-r,q,r]*t"(dW-q-r)*x"q*
17r, 9q=0..dW-r), r=0..dW):

od:

printlevel := 2:
for k from 0 to m/3 do
for j from 0 to m-3*k do



XyYEq[m-j-3*k,j,k] := NFxy(xyEEq[m-j-3*k,j,k], j,m-j-3*Kk):

od: od:
#
printlevel := 2:

for k from 0 to m/3 do
for j from 0 to m-3*k do

txEq[m-j-3*k,j,k] := NFtx(txEEq[m-j-3*k,j,k], j,m-j-3*k):

od: od:

printlevel := 2:
for k from 0 to m/3 do
for j from 0 to m-3*k do

xyEquations[m-j-3*k,j,k] := {coeffs(xyEq[m-j-3*k,j,k], [x,y])}:

od: od:
#
printlevel := 2:

for k from 0 to m/3 do
for j from 0 to m-3*k do

txEquations[m-j-3*k,j,k] := {coeffs(txEq[m-j-3*k,j,k], [t,x])}:

od: od:

xyEquations_Add := {}:

for k from 0 to m/3 do
for j from 0 to m-3*k do



xyEquations_Add := xyEquations_Add union xyEquations[m-j-3*k,j,k]

od: od:

Equations_xy := xyEquations_Add:
#

txEquations_Add := {}:

for k from 0 to m/3 do
for j from 0 to m-3*k do

txEquations_Add := txEquations_Add union txEquations[m-j-3*k,j,k]

od: od:

Equations_tx := txEquations_Add:

Equations := Equations_xy union Equations_tx mod p:
Nombre_Equations := nops(Equations);

Nombre_Equations := 35378 (2)

Variables := {seq(seq(seq(cR[m-0-j,j,dR-q-r,q,r], q=0..dR-
ry, r=0..dR), j=0..m-0)}

union {seq(seq(seq(cS[m-3-j,j,dS-q-r,q,r], q=0..dS-
ry, r=0..dSs), j=0..m-3)}

union {seq(seq(seq(cU[m-6-j,j,dU-g-r,q,r], g=0..dU-
ry, r=0..dU), j=0..m-6)}

union {seq(seq(seq(cV[m-9-j,j,dV-q-r,q,r], q=0..dV-
ry, r=0..dv), j=0..m-9)}

union {seq(seq(seq(cW[m-12-j,j,dW-q-r,q,r], q=0..dW-
ry, r=0..dw), j=0..m-12)}:

Nombre_Variables := nops(Variables);



|_ Nombre_Variables:= 12550 (3)

|:> Solutions := msolve(Equations,p):

(> verification := seq(op(2,0p(i,Solutions)),i=1..nops(Solutions));
indets({Verification}):
nops(indets({Verification})):

Verification:=0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, O, O, 0, 0, 0, O, O, (4)
00000000000000000,00~0000,0,00,0,00,0,O0,
00000000000000000,°00?0,°-0,0?0,°-0,0?0,-0,0D0,o0,o0,
00000000000000000,000000000,0,00,0,O0,
00000000000000000,000000,000,0,0,0,-0,O0,
00000000000000000,000000,0,00,0,00,-0,O0,
0000000000°90°0,0,°0,0,°00,°00,000000000,:0,o0,
00000000000000000000000000,0,00,0,O0,
00000000000000000,000000,000,0,00,0,O0,
00000000000000000,°00?0,°-00?0,°-0,0?0,°-0,0,:o0,:o,o,
0000000000000°0,000,000000000,0,0,0,0,O0,
00000000000000000,000000,000,0,00,-0,O0,
00000000000000000,°000,00?0,°-0,0?0,°-0,°0:o0,-0,-o,
000000000000,°0,0,°0,0,°00,°00000000000,:0,O0,
00000000000000000,000000000,0,00,0,O0,
00000000000000000,000000000,0,00,-0,O0,
00000000000000000000,-0,0?0,°-0,0?0,°-0,0,:0,:o,o,
00000000000000000,000000000,0,00,0,O0,
00000000000000000,000000000,0,0,0,0,O0,
00000000000000000,°00?0,-0,0?0,°-0,0?0,°-0,°0?o0,-0,°-o,
0000000000090,°9,0?”00”,00,00000000000,0,O0,
00000000000000000,000000000,0,0,0,0,O0,
00000000000000000,000000,0,00,0,0,0,-0,O0,
0000000000000000000~0,-00?0,°-o0,0?0,°-0,°-0,?0,-o,-o,




0000000000090°0,0,°0,0,°00,00,000000000,:0,O0,
00000000000000000,000000000,0,0,0,0,O0,
0000000000000~0000,000,000,-0,0?0,-0,0?o0,-0,°-/,
00000000000000000,00?0,°-0,0?,°-0,0?0,°-0,0,:0,:o,o0,
0000000000000°0000,000000000,0,0,0,0,O0,
00000000000000000000000,000,0,00,-0,O0,
00000000000000000000-000,0,00,-0,0,?0,-0,Oo,
0000000000°90°0,0,°0,0,°00,°00,0000,00000,0,oO0,
00000000000000000,000000000,0,0,0,0,O0,
00000000000000000,000000,0,00,0,0,?0,-0,O0,
00000000000000000,°0,0,?0,°-0,0°?,°-0,0,?0,-0,0,0, 0,0,
0000000000000°0000000000000,0,00,0,O0,
0000000000000°0000000000,000,0,00,-0,O0,
00000000000000000,°000,-00?0,°-0,0?0,°-0,0?o0,-0o,o,
0000000000°00°0,0,°00,°00,°00000000000,0,oO0,
00000000000000000,000000000,0,00,0,O0,
00000000000000000,000000,000,0,0,0,-0,O0,
00000000000000000000,°-0,0?0,°-o0,0?0,°-0,°0?0,-0o,o,
00000000000000000000000000,0,0,0,0,O0,
0000000000000°0000,000000,000?0,0,00,-0,O0,
00000000000000000,00?0,°-00°?0o,-0,0?0,-0,0:o0,-0,°-o,
0000000000°90,°90”°00,°00,00000000000,0,0O0,
00000000000000000,000000000,0,0,0,0,O0,
00000000000000000,000000,000,0,00,-0,O0,
00000000000000000000,000,°-0,0?0,-0,0,:o0,-o,o,
00000000000000°0000000000000,0,00,0,O0,
00000000000000000,000000000,0,0,0,0,O0,
00000000000000000000,000,0,00,-0,0,?o0,-0,°-o,
000000000000,°0,0”,°0,0”,°00,00,000000000,0,O0,
00000000000000000000000000,0,00,0,O0,
0000000000000°0000000000000,0,00,-0,°-0,
00000000000000000,00,?0,°-0,0°?o,°-0,0?0,°-0,°-0,?0,-o,o,
00000000000000°0000000000000,0,0,0,0,O0,
00000000000000000,000000000,0,00,0,O0,
00000000000000000,00000?0°-0,00,-0,0,:o0,-o0,o,
000000000000,°9,0”°00,00,00,000000000,0,O0,
00000000000000000,000000000,0,00,0,0,
00000000000000000,0000000,00,0,0,0,0,O0,



0000000000090°0,0,°0,0,°00,00,000000000,:0,O0,
00000000000000000,000000000,0,0,0,0,O0,
0000000000000~0000,000,000,-0,0?0,-0,0?o0,-0,°-/,
00000000000000000,00?0,°-0,0?,°-0,0?0,°-0,0,:0,:o,o0,
0000000000000°0000,000000000,0,0,0,0,O0,
00000000000000000000000,000,0,00,-0,O0,
00000000000000000000-000,0,00,-0,0,?0,-0,Oo,
0000000000°90°0,0,°0,0,°00,°00,0000,00000,0,oO0,
00000000000000000,000000000,0,0,0,0,O0,
00000000000000000,000000,0,00,0,0,?0,-0,O0,
00000000000000000,°0,0,?0,°-0,0°?,°-0,0,?0,-0,0,0, 0,0,
0000000000000°0000000000000,0,00,0,O0,
0000000000000°0000000000,000,0,00,-0,O0,
00000000000000000,°000,-00?0,°-0,0?0,°-0,0?o0,-0o,o,
0000000000°00°0,0,°00,°00,°00000000000,0,oO0,
00000000000000000,000000000,0,00,0,O0,
00000000000000000,000000,000,0,0,0,-0,O0,
00000000000000000000,°-0,0?0,°-o0,0?0,°-0,°0?0,-0o,o,
00000000000000000000000000,0,0,0,0,O0,
0000000000000°0000,000000,000?0,0,00,-0,O0,
00000000000000000,00?0,°-00°?0o,-0,0?0,-0,0:o0,-0,°-o,
0000000000°90,°90”°00,°00,00000000000,0,0O0,
00000000000000000,000000000,0,0,0,0,O0,
00000000000000000,000000,000,0,00,-0,O0,
00000000000000000000,000,°-0,0?0,-0,0,:o0,-o,o,
00000000000000°0000000000000,0,00,0,O0,
00000000000000000,000000000,0,0,0,0,O0,
00000000000000000000,000,0,00,-0,0,?o0,-0,°-o,
000000000000,°0,0”,°0,0”,°00,00,000000000,0,O0,
00000000000000000000000000,0,00,0,O0,
0000000000000°0000000000000,0,00,-0,°-0,
00000000000000000,00,?0,°-0,0°?o,°-0,0?0,°-0,°-0,?0,-o,o,
00000000000000°0000000000000,0,0,0,0,O0,
00000000000000000,000000000,0,00,0,O0,
00000000000000000,00000?0°-0,00,-0,0,:o0,-o0,o,
000000000000,°9,0”°00,00,00,000000000,0,O0,
00000000000000000,000000000,0,00,0,0,
00000000000000000,0000000,00,0,0,0,0,O0,



0000000000090°0,0,°0,0,°00,00,000000000,:0,O0,
00000000000000000,000000000,0,0,0,0,O0,
0000000000000~0000,000,000,-0,0?0,-0,0?o0,-0,°-/,
00000000000000000,00?0,°-0,0?,°-0,0?0,°-0,0,:0,:o,o0,
0000000000000°0000,000000000,0,0,0,0,O0,
00000000000000000000000,000,0,00,-0,O0,
00000000000000000000-000,0,00,-0,0,?0,-0,Oo,
0000000000°90°0,0,°0,0,°00,°00,0000,00000,0,oO0,
00000000000000000,000000000,0,0,0,0,O0,
00000000000000000,000000,0,00,0,0,?0,-0,O0,
00000000000000000,°0,0,?0,°-0,0°?,°-0,0,?0,-0,0,0, 0,0,
0000000000000°0000000000000,0,00,0,O0,
0000000000000°0000000000,000,0,00,-0,O0,
00000000000000000,°000,-00?0,°-0,0?0,°-0,0?o0,-0o,o,
0000000000°00°0,0,°00,°00,°00000000000,0,oO0,
00000000000000000,000000000,0,00,0,O0,
00000000000000000,000000,000,0,0,0,-0,O0,
00000000000000000000,°-0,0?0,°-o0,0?0,°-0,°0?0,-0o,o,
00000000000000000000000000,0,0,0,0,O0,
0000000000000°0000,000000,000?0,0,00,-0,O0,
00000000000000000,00?0,°-00°?0o,-0,0?0,-0,0:o0,-0,°-o,
0000000000°90,°90”°00,°00,00000000000,0,0O0,
00000000000000000,000000000,0,0,0,0,O0,
00000000000000000,000000,000,0,00,-0,O0,
00000000000000000000,000,°-0,0?0,-0,0,:o0,-o,o,
00000000000000°0000000000000,0,00,0,O0,
00000000000000000,000000000,0,0,0,0,O0,
00000000000000000000,000,0,00,-0,0,?o0,-0,°-o,
000000000000,°0,0”,°0,0”,°00,00,000000000,0,O0,
00000000000000000000000000,0,00,0,O0,
0000000000000°0000000000000,0,00,-0,°-0,
00000000000000000,00,?0,°-0,0°?o,°-0,0?0,°-0,°-0,?0,-o,o,
00000000000000°0000000000000,0,0,0,0,O0,
00000000000000000,000000000,0,00,0,O0,
00000000000000000,00000?0°-0,00,-0,0,:o0,-o0,o,
000000000000,°9,0”°00,00,00,000000000,0,O0,
00000000000000000,000000000,0,00,0,0,
00000000000000000,0000000,00,0,0,0,0,O0,



0000000000090°0,0,°0,0,°00,00,000000000,:0,O0,
00000000000000000,000000000,0,0,0,0,O0,
0000000000000~0000,000,000,-0,0?0,-0,0?o0,-0,°-/,
00000000000000000,00?0,°-0,0?,°-0,0?0,°-0,0,:0,:o,o0,
0000000000000°0000,000000000,0,0,0,0,O0,
00000000000000000000000,000,0,00,-0,O0,
00000000000000000000-000,0,00,-0,0,?0,-0,Oo,
0000000000°90°0,0,°0,0,°00,°00,0000,00000,0,oO0,
00000000000000000,000000000,0,0,0,0,O0,
00000000000000000,000000,0,00,0,0,?0,-0,O0,
00000000000000000,°0,0,?0,°-0,0°?,°-0,0,?0,-0,0,0, 0,0,
0000000000000°0000000000000,0,00,0,O0,
0000000000000°0000000000,000,0,00,-0,O0,
00000000000000000,°000,-00?0,°-0,0?0,°-0,0?o0,-0o,o,
0000000000°00°0,0,°00,°00,°00000000000,0,oO0,
00000000000000000,000000000,0,00,0,O0,
00000000000000000,000000,000,0,0,0,-0,O0,
00000000000000000000,°-0,0?0,°-o0,0?0,°-0,°0?0,-0o,o,
00000000000000000000000000,0,0,0,0,O0,
0000000000000°0000,000000,000?0,0,00,-0,O0,
00000000000000000,00?0,°-00°?0o,-0,0?0,-0,0:o0,-0,°-o,
0000000000°90,°90”°00,°00,00000000000,0,0O0,
00000000000000000,000000000,0,0,0,0,O0,
00000000000000000,000000,000,0,00,-0,O0,
00000000000000000000,000,°-0,0?0,-0,0,:o0,-o,o,
00000000000000°0000000000000,0,00,0,O0,
00000000000000000,000000000,0,0,0,0,O0,
00000000000000000000,000,0,00,-0,0,?o0,-0,°-o,
000000000000,°0,0”,°0,0”,°00,00,000000000,0,O0,
00000000000000000000000000,0,00,0,O0,
0000000000000°0000000000000,0,00,-0,°-0,
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|_ 00000000000000000000000,00000000

[> assign(Solutions):

> for j from 0 to m-0 do

Voir_R[m-0-j,j] := add(add(cR[m-0-j,j,dR-g-r,q,r]*T*"(dR-qg-r)*X"q*
Y~r, q=0..dR-r), r=0..dR):

od;

for j from 0 to m-3 do

Voir_S[m-3-j,j] := add(add(cS[m-3-j,j,dS-q-r,q,r]*TA(dS-g-r)*X~q*
Y~r, q=0..dS-r), r=0..dS):

od;

for j from 0 to m-6 do

Voir_U[m-6-j,j] := add(add(cU[m-6-j,j,dU-g-r,q,r]*T*(dU-qg-r)*X"q*
Y~r, q=0..dU-r), r=0..dU):

od;

for j from 0 to m-9 do

Voir_V[m-9-j,j] := add(add(cV[m-9-j,j,dV-q-r,q,r]*TA(dV-qg-r)*X~q*
Y~Ar, q=0..dV-r), r=0..dV):

od;

for j from 0 to m-12 do
Voir_ W[m-12-j,j] := add(add(cW[m-12-j,j,dW-q-r,q,r]*T*(dW-q-r)*
X*q*Y”r, g=0..dW-r), r=0..dW):

od;
Voir_Ry3 (=0
Voir_Ry, 1:=0
Voir_Ry, ,:=0
Voir_Ry 5:=0
Voir_Ry 4:=0
Voir_Rg 5:=0
Voir_R; :=0

Voir_Rg ;:=0




Voir_RS, g =0

Voir_RZ, 11:= 0
Voir_RL 2= 0
Voir_R, 153:=0
Voir_SlO’ 0:=0
Voir_Sg’ 1:=0
Voir_S; 3:=0
Voir_S& 4:=0
Voir_557 5:=0
Voir_§, ¢:=0
Voir_S3’ -:=0
Voir_$§; ¢:=0
Voir_SO, 10:=0
Voir U; (:=0
Voir_ U6, 1:=0
Voir_ Us, »:=0
Voir_U, 5:=0
Voir_U; ,:=0
Voir_ Uz, 5:=0
Voir_ U, 4:=0
Voir_ on -:=0
Voir_V4, 0:=0
Voir_V& 1:=0
Voir_V, ,:=0
Voir_VL 3= 0
Voir_Vj, 4 =0
Voir_Wl, 0:=0

Voir_ Wo, 1:=0
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