
ar
X

iv
:0

90
7.

27
10

v2
  [

m
at

h.
K

T
] 

 9
 S

ep
 2

00
9

Algebrai
 K-theory, A1-homotopy and Riemann-Ro
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tIn this arti
le, we show that the 
ombination of the 
onstru
tions done in SGA 6 [1℄and the A1-homotopy theory [32℄ naturally leads to results on higher algebrai
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6 Riemann-Ro
h theorems 276.1 Adams-Riemann-Ro
h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276.1.1 Pushforwards on BGL . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286.1.2 Statement of the theorem . . . . . . . . . . . . . . . . . . . . . . . . . . 296.1.3 Morphisms Rf⋆BGLQ,X → BGLQ,S . . . . . . . . . . . . . . . . . . . 296.2 Motivi
 Eilenberg-Ma
 Lane spe
tra . . . . . . . . . . . . . . . . . . . . . . . . 316.2.1 Morphisms Z × Gr → K(Z(n), 2n) . . . . . . . . . . . . . . . . . . . . . 316.2.2 Additive morphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326.2.3 Stable morphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336.3 Grothendie
k-Riemann-Ro
h . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35The starting point of this arti
le is the theorem whi
h represents the algebrai
 K-theoryof regular s
hemes in the A1-homotopy theory:Theorem 0.1 (Morel-Voevodsky [32, Theorem 3.13, page 140℄) Let S be a regulars
heme. Then, for any n ∈ N and X ∈ Sm/S, there is a 
anoni
al isomorphism
HomH•(S)(S

n ∧X+,Z × Gr) ≃ Kn(X) .Here, Gr is the 
olimit of the system (Grd,r)(d,r)∈N2 in the 
ategory of presheaves over
Sm/SNis where Grd,r is the Grassmann s
heme whi
h parametrises subbundles of rank d in thetrivial bundle of rank d+ r. To make the de�nition of the transition morphisms unambiguousenough, we may say that they are of the form Grd,r → Gr1+d,r and Grd,r → Grd,r+1 andthat the pla
e where �1� appears tells us on whi
h side a trivial bundle of rank 1 is added.It should be pointed out that theorem 0.1 only applies to regular s
hemes be
ause it 
anbe true only over s
hemes where the algebrai
 K-theory is known to be A1-invariant. Thisis the reason why the assumption that the base s
heme is regular will appear throughout thepaper.From theorem 0.1, it follows that the endomorphisms of Z × Gr in H•(S) a
t on all thealgebrai
 K-groups of s
hemes in Sm/S. The basi
 result we obtain in se
tion 1 is that theseendomorphisms are 
ompletely 
hara
terised by their a
tion on K0:Theorem 0.2 Let S be a regular s
heme. We let K0(−) be the presheaf of sets on Sm/Swhi
h maps X to K0(X). Then, the map indu
ed by theorem 0.1 is a bije
tion:

EndH(S)(Z × Gr)
∼
→ EndSm/SoppSets(K0(−)) ,where Sm/SoppSets is the 
ategory of presheaves of sets on Sm/S.It follows that the operations de�ned in [1℄ at the level of K0 (e.g., λn, Ψk) uniquely liftin H(S). From there, using theorem 0.1, we 
an make them a
t on higher algebrai
 K-theory.This prin
iple also works for operations involving several operands (e.g., produ
ts) and in asense whi
h will be made pre
ise in se
tion 2, we obtain a ma
hinery whi
h takes as an inputthe algebrai
 stru
tures on K0 and outputs su
h a stru
ture on Z × Gr inside H(S). Thus,

Z × Gr is equipped with a stru
ture of spe
ial λ-ring with duality.Stru
tures of (spe
ial) λ-ring had already been obtained on higher K-theory, with di�erents
ales of generality. We may mention 
onstru
tions of produ
ts, λ-operations or Adams op-erations by Loday [30℄, Waldhausen [47℄, Kratzer [26℄, Soulé [42℄, Grayson [18℄, Le
omte [27℄2



and Levine [28℄. We 
ompare the stru
tures on K⋆(X) for X regular obtained by our methodto these previous 
onstru
tions in se
tion 3. The 
omparison with Waldhausen's produ
t (seeproposition 3.2.1) may seen surprisingly straightforward, but it is a typi
al use of theorem 0.2and its variants involving several operands (see theorem 1.1.4).Se
tion 4 relates our results to virtual 
ategories, an insight of Deligne [10℄. We show that,after inverting 2, 
onstru
tions done at the level of K0 re�ne to these virtual 
ategories, whi
hembodies both K0 and K1. This theory was used by Dennis Eriksson in his thesis [12℄ in orderto re�ne Riemann-Ro
h theorems at the level of these virtual 
ategories.In se
tion 5, we fo
us on operations τ : K0(−) → K0(−) su
h that τ(x+ y) = τ(x)+ τ(y),i.e., H-group endomorphisms of Z × Gr in H•(S). We 
ompute them using the splittingprin
iple. We show that the datum of τ is equivalent to the datum of an element in K0(S)[[U ]].Then, we 
onstru
t, up to a unique isomorphism in the stable homotopy 
ategory SH(S), the
P1-spe
trum BGL whi
h represents algebrai
 K-theory and study its endomorphisms (it issomewhat related but quite di�erent from the methods of [4, Chapter 6℄, [3℄ and [5℄). Aftertensoring with Q, we show that this spe
trum de
omposes in SH(S) as the dire
t sums of�eigenspa
es� for the Adams operations. Alternate interesting des
riptions of stable operationson algebrai
 K-theory (and more general oriented theory) have been obtained by very di�erentmethods by Naumann, Østvær and Spitzwe
k in [33℄.We prove in se
tion 6 that these ideas 
an be used to obtain an homotopi
al variant ofsome Riemann-Ro
h theorems in the 
ase of a smooth and proje
tive morphism f : X → S.Basi
ally, we prove that 
ertain Riemann-Ro
h formulas are satis�ed on zeroth K-groups ifand only if they are satis�ed on the whole higher algebrai
 K-theory. In that se
tion, wegive formulas for the group of morphisms BGL → HA[n] in SH(k) where k is a perfe
t �eldand HA the motivi
 Eilenberg-Ma
 Lane spe
trum with 
oe�
ients in A. This 
omputationgives a simple example of nonzero stably phantoms morphisms in the P1-stable homotopy
ategory SH(k): all morphisms BGL → HZ[1] are stably phantoms. There is an homologous
omputation in the standard topologi
al stable homotopy 
ategory: this gives a more 
on
reteexample than the one 
onstru
ted in [8, Proposition 6.10℄.If se
tion 6 stands as a signi�
ant ex
eption, most of these results appeared in my thesis[36℄ and were announ
ed in [38℄ (however, when di�erent proofs were available, my 
hoi
eshave tended to be di�erent). Hen
e, I would like to thank Yves André, Joseph Ayoub, Denis-Charles Cisinski, Frédéri
 Déglise, Dennis Eriksson, Hinda Hamraoui, Bruno Kahn, Floren
eLe
omte, Georges Maltsiniotis, Fabien Morel, Christophe Soulé, Burt Totaro, Jörg Wildeshausfor their useful 
omments or dis
ussions.1 First unstable results1.1 StatementsIn this paper, we shall say that a s
heme is regular if it is noetherian separated and that all itslo
al rings are regular lo
al rings (see [40, IV �D℄). For any s
heme S, the 
ategory of smoothand separated s
hemes of �nite type over S is denoted Sm/S.For regular s
hemes, all the standard de�nitions of algebrai
 K-theory agree. Then, wemay de�ne some obje
ts in the 
ategory Sm/Sopp

Sets of presheaves of sets over Sm/S: forany natural number n, the presheaf that mapsX ∈ Sm/S to its nth algebrai
 K-group Kn(X)is denoted Kn(−). 3



Theorem 1.1.1 Let S be a regular s
heme. For any natural transformation τ : K0(−) →
K0(−) of presheaves of sets on Sm/S su
h that τ(0) = 0, there is a unique reasonable way tode�ne an extension of τ : Kn(−) → Kn(−) for all n.This theorem is a 
onsequen
e of the following A1-homotopy theoreti
 statement:Theorem 1.1.2 Let S be a regular s
heme. Then, the 
anoni
al map indu
ed by the isomor-phism of theorem 0.1 is a bije
tion:

EndH(S)(Z × Gr)
∼
→ EndSm/SoppSets(K0(−)) .Indeed, if τ : K0(−) → K0(−) is a natural transformation, the theorem says that thereexists a unique morphism τ̃ : Z × Gr → Z × Gr in H(S) indu
ing τ on K0(−). As Z × Grhas a stru
ture of H-group (see [32, page 139℄), if we assume τ(0) = 0, then we see that τ̃ 
anbe identi�ed to an endomorphism of Z×Gr in H•(S). Su
h endomorphisms not only indu
enatural transformations on K0(−) but also on Kn(−) for all n as one may evaluate them onhigher homotopy groups.This theorem applies to operations like the λ-operations λn for all n ∈ N [1, V 2.2 b℄,

γ-operations γn for all n ∈ N − {0} [1, V 3.2℄ and Adams operations Ψk [1, V 7.1℄ for all
k ∈ Z. Then, to 
onstru
t these operations on higher K-groups, the only spe
i�
 informationwe need to know is how to de�ne them on K0, whi
h is usually easy using the presentation ofthese groups by generators and relations.Remark 1.1.3 One 
an prove similar results for Gr instead of Z × Gr: endomorphisms of
Gr in H(S) identify to endomorphisms of K̃0(−) in Sm/SoppSets where K̃0(X) is the kernelof the rank map K0(X) → Zπ0(X). Moreover, in the situation of theorem 1.1.1, if we use thefa
t that the loop spa
e RΩ(Z) of Z is •, we see that τ : Kn(−) → Kn(−) for n ≥ 1 onlydepends on the natural transformation K̃0(−) → K̃0(−) indu
ed by τ : K0(−) → K0(−).The operations 
onsidered above are unary operations on algebrai
 K-theory. One mayalso 
onsider operations involving several operands (e.g., the produ
t law K0(X)×K0(X) →
K0(X)):Theorem 1.1.4 Let S be a regular s
heme. Let n be a natural number. Then, the 
anoni
almap is a bije
tion:

HomH(S)((Z × Gr)n,Z × Gr) → HomSm/Sopp
Sets(K0(−)n,K0(−)) .As we shall see, the method of the proof allows to 
onsider not only operations on algebrai


K-theory but also maps from algebrai
 K-theory to other 
ohomology theories. However, weneed to know that the 
ohomology theory is represented by an obje
t in H•(S), whi
h meansthat it 
an be expressed as homotopy presheaves of an obje
t in H•(S):De�nition 1.1.5 Let S be a noetherian s
heme. Let E be an obje
t in H(S). We let π0E bethe presheaf of sets on Sm/S de�ned by π0E(X) = HomH(S)(X,E). If E belongs to H•(S)and n is any natural number, we de�ne a presheaf πnE by the formula πnE(X) = π0RΩnE,where RΩ: H•(S) → H•(S) is the loop spa
e fun
tor.Theorem 0.1 states that for any natural number n and S a regular s
heme, we have a
anoni
al isomorphism πn(Z × Gr) ≃ Kn(−) in Sm/Sopp
Sets.4



Theorem 1.1.6 Let S be a regular s
heme. Let E be an obje
t in H•(S). If we assume that
E satis�es property (K) (a mild te
hni
al assumption, see de�nition 1.2.2), then the 
anoni
almap is a bije
tion:

HomH(S)(Z × Gr, E)
∼
→ HomSm/SoppSets(K0(−), π0E) .This set of morphisms 
an also be identi�ed to an in�nite produ
t indexed by Z of 
opies ofthe proje
tive limit lim(d,r)∈N2 HomH(S)(Grd,r, E).As above, there is a similar homotopi
al des
ription of natural transformations K0(−)n →

π0E involving n operands.We may fo
us on the 1-operand 
ase. If a natural transformation τ : K0(−) → π0E veri�es
τ(0) = 0, it 
orresponds to a unique morphism Z×Gr → E in H•(S). Then, in the same waywe mentioned it for operations on algebrai
 K-theory, τ will indu
e natural transformations
τ : Kn(−) → πnE for all n.The proof of theorems 1.1.2, 1.1.4 and 1.1.6 will also supply a 
on
rete 
omputation of theset of all operations on algebrai
 K-theory. In the 1-operand 
ase, it gives:Theorem 1.1.7 Let S be a regular s
heme. The sets of endomorphisms EndH(S)(Z×Gr) ≃

EndSm/SoppSets(K0(−)) 
an be identi�ed to the produ
t RZ of an in�nite number of 
opiesof a ring R = K0(S)[[γ̃1, γ̃2, . . . ]] of formal power series with an in�nite number of variablesand 
oe�
ient ring K0(S). The elements γ̃n are related to the usual γ-operations on algebrai

K-theory.The 
omputation of the set of morphisms Z × Gr → RΩi(Z × Gr) in H(S) is given by asimilar formula, where K0(S) is repla
ed by Ki(S).1.2 ProofsLemma 1.2.1 Let S be a noetherian s
heme. Let E be a group obje
t in H•(S) ( i.e., E isan H-group). Let (Xi)i∈I be a dire
t system indexed by a dire
ted ordered set I. The 
olimitof this system in the 
ategory of presheaves over Sm/S is denoted X . We assume that I hasa 
o�nal sequen
e ( i.e., there exists a fun
tor x : N → I su
h that for any i ∈ I, there exists
n ∈ N su
h that i ≤ xn). Then, there is an exa
t sequen
e of groups.

1 → R1lim
i∈I

π1E(Xi) → HomH(S)(X , E) → lim
i∈I

π0E(Xi) → 1 .Using a 
o�nal sequen
e N → I, one may assume that I = N. In that 
ase, it followsfrom the usual Milnor exa
t sequen
e [17, Proposition VI.2.15℄.De�nition 1.2.2 With the notations of lemma 1.2.1, we say that the dire
t system (Xi)i∈Idoes not unveil phantoms in E if the group R1lim
i∈I

π1E(Xi) vanishes. We say that E satis�esproperty (K) if the dire
t system (Grd,r)(d,r)∈N2 does not unveil phantoms in E. More gen-erally, for any natural number n, we say that E satis�es property (K) with n operands if thedire
t system (
∏n

i=1 Grdi,ri
)(d1,r1,...,dn,rn)∈N2n does not unveil phantoms in E.Thus, whenever an indu
tive system (Xi)i∈I does not unveil phantoms in E, the datumof a morphism colim

i∈I
Xi → E in H(S) is equivalent to the datum of a 
ompatible family ofmorphisms Xi → E in H(S). 5



De�nition 1.2.3 We let T be the family of morphisms in Sm/S of the form T → X where
T is a torsor under a ve
tor bundle over X.Lo
ally on the base, morphisms in T are of the form An×X → X. This implies that theyindu
e A1-weak equivalen
es. The important fa
t we need about this family of maps is:Theorem 1.2.4 (Jouanolou [23, Lemme 1.5℄, Thomason [49, Proposition 4.4℄)Let S be a regular s
heme. For any X ∈ Sm/S, there exists a morphism T → X in Tsu
h that T is an a�ne s
heme.We require that the s
heme T is a�ne; as S is separated, it implies that T → S in ana�ne morphism, but the 
onverse impli
ation is not true. In the sequel, the word �a�ne� willbe used in that absolute sense only.De�nition 1.2.5 Let S be a regular s
heme. Let X be a presheaf of sets on Sm/S. Then
X de�ned an obje
t in H(S) and a presheaf of sets π0X is atta
hed to it. We say that π0Xis generated by X up to T if for any a�ne s
heme U ∈ Sm/S, the map X (U) → π0X (U) isonto.We will give an explanation for this terminologi
al 
hoi
e in remark 1.2.7. First, we seehow one may apply this de�nition to algebrai
 K-theory:Lemma 1.2.6 Let S be a regular s
heme. If X = Z×Gr, then π0X is generated by X up to
T . The same 
on
lusion applies to (Z × Gr)n for any natural number n and also to (P∞)n.Obviously, the 
ondition we have to 
he
k is stable under �nite produ
ts. Then, we shall�rst fo
us on the 
ase X = Z×Gr. It is impli
it in the proof of theorem 0.1 that for any n ∈ Zand (d, r) ∈ N2, if we 
onsider the 
anoni
al in
lusion ιd,r,n : Grd,r = {n} × Grd,r → Z × Gras an element in X (Grd,r), its image in π0X (Grd,r) 
orresponds to the 
lass [M′

d,r]− d+n in
K0(Grd,r) under the isomorphism of theorem 0.1, where M′

d,r is the universal ve
tor bundleof rank d on Grd,r. Then, the lemma follows from the obvious fa
t that if U is a 
onne
teda�ne s
heme in Sm/S, any 
lass x ∈ K0(U) is of the form x = [M]− d+n for some integers
d, n, and M a ve
tor bundle of rank d on U . Indeed, as U is a�ne, M is isomorphi
 to adire
t fa
tor of Od+r

U for a big enough r. Then, by de�nition of Grassmann varieties, thereexists an S-morphism f : U → Grd,r su
h that f⋆M′
d,r ≃ M. It follows that the element in

X (U) 
orresponding to the 
omposition ιd,r,n ◦ f : U → X maps to x = f⋆([M′
d,r − d+ n]) in

π0X (U) ≃ K0(U).The 
ase X = P∞ is similar: it uses the identi�
ation π0P
∞ = Pic(−), see [32, Proposi-tion 3.8, page 138℄.Remark 1.2.7 The 
ategory of presheaves on Sm/S 
ontains the full sub
ategory of the 
at-egory of presheaves X su
h that for any f : T → X in T , the map f⋆ : X (X) → X (T ) isa bije
tion. This sub
ategory 
an be identi�ed to the 
ategory of presheaves on the lo
alised
ategory Sm/S[T −1] (see [15, Lemma I.1.2℄). For any presheaf X on Sm/S, there exists auniversal presheaf X [T −1] on Sm/S[T −1] equipped with a morphism X → X [T −1] (see [2,I 5.1℄). As π0X fa
tors through Sm/S[T −1], the 
anoni
al morphism X → π0X indu
es amorphism X [T −1] → π0X . Using theorem 1.2.4, it is easy to 
he
k that the 
ondition statedin de�nition 1.2.5 implies that X [T −1] → π0X is an epimorphism. The 
onverse impli
ation6



is also true, but we will not need it in the sequel. This is the reason why we 
hose to refer to�generation up to T � in the terminology.Moreover, the proof of lemma 1.2.6 a
tually shows that as a presheaf F on Sm/S[T −1]satisfying F (X ⊔ Y )
∼
→ F (X) × F (Y ) for all X and Y in Sm/S, K0(−) ≃ π0(Z × Gr) isgenerated by the elements ud,r + n for all (d, r) ∈ N2 and n ∈ Z.Remark 1.2.8 If is easy to dedu
e from theorem 1.2.4 that the lo
alised 
ategory Sm/S[T −1]is equivalent to SmAffS [H−1

A1 ] where SmAffS is the fullsub
ategory of Sm/S 
onsisting ofa�ne s
hemes and HA1 is the family of proje
tions X ×A1 → X for X ∈ SmAffS (see [25,�7.4℄). Hen
e, the 
ategory of T -invariant presheaves on Sm/S is equivalent to the 
ategoryof A1-invariant presheaves on SmAffS.Proposition 1.2.9 Let S be a regular s
heme. Let E ∈ H•(S) be an H-group. Let (Xi)i∈Ibe a dire
t system in Sm/S that does not unveil phantoms in E. We let X be the 
olimit ofthis system in the 
ategory of presheaves over Sm/S. We assume that π0X is generated by Xup to T . Then, the following obvious maps are bije
tions:
HomH(S)(X , E) ∼

α
//

∼
γ

**TTTTTTTTTTTTTTTT

HomSm/SoppSets(π0X , π0E)

∼β
��

lim
i∈I

π0E(Xi)Using lemma 1.2.1, we see that the assumption that (Xi)i∈I does not unveil phantoms on
E pre
isely says that γ is a bije
tion. To �nish the proof, we only have to prove that β is an in-je
tion. To do this, we may observe that lim

i∈I
π0E(Xi) identi�es to HomSm/SoppSets(X , π0E) ≃

HomSm/SoppSets(X [T −1], π0E). Then, β identi�es to the map obtained by applying the fun
-tor HomSm/SoppSets(−, π0E) to the 
anoni
al map X [T −1] → π0X , whi
h is an epimorphismas X → π0X is an epimorphism up to T (see remark 1.2.7). Thus, β is inje
tive.At this stage, theorem 1.1.6 is proved as lemma 1.2.6 implies that it is a spe
ial 
ase ofproposition 1.2.9. To �nish the proof of theorems 1.1.1, 1.1.2 and 1.1.4, the remaining step isthe following lemma:Lemma 1.2.10 Let S be regular s
heme. Let n be a natural number. The obje
t Z × Grsatis�es property (K) with n operands. This 
on
lusion also applies to the loop spa
es RΩj(Z×
Gr) for any j ∈ N.On the one hand we have to noti
e the te
hni
al fa
t that Z×Gr has a stru
ture ofH-group(see [32, page 139℄). On the other hand, we have to prove the vanishing of the R1 lim of someproje
tive systems. To do this, one may use the Mittag-Le�er 
ondition, whi
h is obviouslysatis�ed when all transition maps are onto. Then, we need to know that the 
anoni
al map
Kj+1(

∏n
i=1 Grd′i,r

′
i
) → Kj+1(

∏n
i=1 Grdi,ri

)) is onto whenever di ≤ d′i and ri ≤ r′i.An S-s
heme X is 
ellular if there exists a sequen
e of 
losed subs
hemes ∅ = Z0 ⊂ Z1 ⊂
· · · ⊂ Zk = X of S su
h that Zi−Zi−1 is isomorphi
 to an a�ne spa
e Ad over S for 1 ≤ i ≤ k.It is well known that Grassmann varieties are 
ellular (see [11℄) and it is easy to prove thefollowing formulas:

• if X is a smooth 
ellular S-s
heme, then for any j ∈ N, Kj(S)⊗K0(S)K0(X)
∼
→ Kj(X);7



• if X is a smooth 
ellular S-s
heme, T a regular s
heme and T → S a morphism, then
K0(T ) ⊗K0(S) K0(X)

∼
→ K0(T ×S X);

• if X and Y are smooth 
ellular S-s
hemes, then K0(X) ⊗K0(S) K0(Y )
∼
→ K0(X ×S Y ).We see that we only have to prove that K0(Grd′,r′) → K0(Grd,r) is onto whenever d ≤ d′and r ≤ r′. One may also assume that S = Spec(Z). Then, for any tuple (d, r) ∈ N2,

K0(Grd,r) is generated as a λ-ring by the 
lass ud,r = [M′
d,r] − d (see [1, VI 4.6℄). With thenotations above, the lemma follows from the obvious fa
t that the inverse image of ud′,r′ bythe in
lusion Grd,r → Grd′,r′ is ud,r.Remark 1.2.11 The parti
ular 
ase d = d′ = 1 in the proof shows that the dire
t system

(Pn)n∈N does not unveil phantoms in the obje
ts RΩj(Z × Gr). This gives an interpreta-tion of morphisms P∞ → Z × Gr in H(S) as natural transformation Pic(−) → K0(−) in
Sm/SoppSets.To �nish the proof of theorem 1.1.7, we have to determine the stru
ture of the ring
R = lim

(d,r)∈N2
K0(Grd,r). If we �x d, we know from [1, VI 4.10℄ that lim

r∈N
K0(Grd,r) ≃

K0(S)[[γ̃1, . . . , γ̃d]] where γ̃i is given by the 
ompatible family γi(ud,r). Then, R identi�es to
lim
d∈N

K0(S)[[γ̃1, . . . , γ̃d]]. One 
an easily see that the indu
ed transition maps
K0(S)[[γ̃1, . . . , γ̃d, γ̃d+1]] → K0(S)[[γ̃1, . . . , γ̃d]]are obtained by making γ̃d+1 vanish. It proves that R identi�es to the ring of formal powerseries with an in�nite number of variables γ̃1, γ̃2, . . . and 
oe�
ient ring K0(S).2 Algebrai
 stru
turesWe shall see that the previous results show that the algebrai
 stru
tures on the sets K0(X),

X ∈ Sm/S uniquely re�ne to stru
tures of the same type on Z × Gr in the 
ategory H(S).Thus, Z × Gr shall be endowed with the stru
ture of a spe
ial λ-ring with duality in H(S).In this se
tion, we shall use similar notions to those appearing in [9℄.2.1 Abstra
t operators, formulas, algebrai
 stru
turesDe�nition 2.1.1 We de�ne a language L as the datum of a family of elements (li)i∈I 
alledabstra
t operators, where ea
h of these operators is equipped with its arity ni ∈ N.De�nition 2.1.2 A formula of the language L = (li, ni)i∈I involving variables (xv)v∈V (V isassumed to be �nite) is the set of expressions indu
tively built from the following rules:
• for any v ∈ V , xv is a formula;
• for any i ∈ I, if F1, . . . , fni

are formulas, then li(F1, . . . , Fni
) is a formula.De�nition 2.1.3 An abstra
t algebrai
 stru
ture is the datum of a language L and of a familyof pairs (Ar, Br)r∈R of formulas of L involving variables in some �nite set Vr. These pairsare 
alled �relations� and shall be denoted Ar = Br.8



Example 2.1.4 The abstra
t algebrai
 stru
ture of group is de�ned as follows. The language
L is made of a 0-ary operator e (we may say that e is a 
onstant), a binary operator µ andan unary operator i. The relations are:

• µ(x, µ(y, z)) = µ(µ(x, y), z)) ;
• µ(e, x) = x ;
• µ(x, e) = x ;
• µ(x, i(x)) = e ;
• µ(i(x), x)) = e.Ea
h of these relations involves a subset of {x, y, z} as set of variables.2.2 Algebrai
 stru
tures on obje
tsDe�nition 2.2.1 Let L = (li, ni)i∈I be a language. An L-obje
t 
onsists of an obje
t X ofa 
ategory C su
h that all �nite produ
ts Xn exist and of a family of morphisms Xni → Xdenoted li, for all i ∈ I.A morphism of L-obje
ts X → Y in a 
ategory C is a morphism F : X → Y in C su
h thatfor any i ∈ I, the obvious diagram 
ommutes:

Xni

(F,...,F )
��

li
// X

F
��

Y ni
li

// YIf X is an L-obje
t, then one 
an indu
tively de�ne a morphism F : XV → X for anyformula F of L involving a �nite set of variables V .De�nition 2.2.2 Let S = (L, (Ar = Br)r∈R) be an abstra
t algebrai
 stru
ture. An obje
tequipped with an S-stru
ture is an L-obje
t X in some 
ategory C su
h that for any r ∈ R, themorphisms XVr → X de�ned by Ar and Br are equal. We may also say that X is an S-obje
tor that X is a model of S in the 
ategory C.We may de�ne the 
ategory of S-obje
ts as a full sub
ategory of the 
ategory of L-obje
ts.Proposition 2.2.3 Let S be an abstra
t algebrai
 stru
ture. Let F : C → D be a fun
tor. Weassume that �nite produ
ts exist in C and that F 
ommutes with these produ
ts. If X is an
S-obje
t in C, then FX has a natural stru
ture of an S-obje
t in D.Conversely, if the 
anoni
al map HomC(X

n,X) → HomD(F (Xn), FX) is a bije
tion forany n ∈ N and some obje
t X of C, then an S-stru
ture on FX uniquely arises from an
S-stru
ture on X.Furthermore, let X and Y be two S-obje
ts. We assume that for any n ∈ N, the map
HomC(X

n, Y ) → HomD(F (Xn), FY ) is a bije
tion. Let f : X → Y be a morphism in C.Then, f is a morphism of S-obje
ts in C if and only if Ff : FX → FY is a morphism of
S-obje
ts in D.This is a pliantly true. 9



2.3 Stru
tures on Z× GrThe example 2.1.4 shows that there is an obvious abstra
t algebrai
 stru
ture whose mod-els in the 
ategory of sets are groups. The same applies to 
ommutative rings (with unit):the underlying language of the 
orresponding abstra
t algebrai
 stru
ture involves the 0-aryoperators 0 and 1, the unary operator − and the binary operators + and ×. Following [1,RRR I 1℄, if we add a family of unary operators (λn)n∈N, we 
an de�ne the abstra
t algebrai
stru
tures of λ-rings and of spe
ial λ-rings. One may also introdu
e the abstra
t algebrai
stru
ture of spe
ial λ-rings with duality: we add an unary duality operator that should be aninvolution 
ommuting with the other operators.Theorem 2.3.1 Let S be a regular s
heme. In the 
ategory H(S), there exists a uniquestru
ture of a spe
ial λ-ring with duality on the obje
t Z × Gr su
h that the 
orrespondingindu
ed stru
tures of λ-rings with duality on K0(X) for all X ∈ Sm/S are the usual ones.For any X ∈ Sm/S, the set K0(X) is endowed with the stru
ture of a spe
ial λ-ring withduality [1, VI 3.2℄. All these stru
tures are 
ompatible with inverse image maps f⋆ : K0(X) →
K0(Y ) for morphisms f : Y → X. This shows that, as a presheaf of sets on Sm/S, K0(−) =
π0(Z × Gr) is endowed with the stru
ture of a spe
ial λ-ring with duality. Proposition 2.2.3and theorem 1.1.4 shows that it lifts to a unique stru
ture of a spe
ial λ-ring with duality on
Z × Gr in H(S).Proposition 2.3.2 Let f : Y → X be a morphism of regular s
hemes. Let Z×GrX ∈ H(X)(resp. Z × GrY ∈ H(Y )) be the spe
ial λ-rings with duality de�ned in theorem 2.3.1. Thestru
tures on Z × GrX indu
e a stru
ture of spe
ial λ-rings with duality on f⋆(Z × GrX).Then, the obvious isomorphism f⋆(Z×GrX) ≃ Z×GrY in H(Y ) is an isomorphism of spe
ial
λ-rings with duality.We 
an use the 
onstru
tion of proposition 2.2.3 be
ause the fun
tor f⋆ : H(X) → H(Y )(see [32, page 108℄) 
ommutes with �nite produ
ts. Using theorem 1.1.4, it su�
es to 
omparethe two indu
ed spe
ial λ-rings with duality stru
tures on the presheaf K0(−) on Sm/Y . If fis smooth, one may argue by saying that the stru
tures on π0f

⋆(Z×GrX) are obtained fromthose on π0(Z ×GrX) by applying the �restri
tion� fun
tor Sm/Xopp
Sets → Sm/Y opp

Setsobtained by 
omposition with the �forgetful� fun
tor Sm/Y → Sm/X. In the general 
ase,we may observe that it su�
es to 
he
k that the two spe
ial λ-rings stru
tures 
onsideredon K0(−) in Sm/Y opp
Sets agree on the �universal� elements ud,r + n ∈ K0(Grd,r,Y ) (seeremark 1.2.7) and this follows from the fa
t that the presheaves K0(−) on Sm/X or Sm/Y
ome from a presheaf of spe
ial λ-rings with duality on the 
ategory of all regular s
hemes.Remark 2.3.3 Similar arguments 
an be used to prove that, through the interpretation ofoperations as formal power series (see theorem 1.1.7), the map f⋆ : EndH(X)(Z × GrX) →

EndH(Y )(Z × GrY ) 
orresponds to the extension of s
alars of formal power series along themorphism f⋆ : K0(X) → K0(Y ).2.4 Stru
tures on higher K-groupsLet S be a regular s
heme. We have 
onstru
ted stru
tures on Z × Gr in H(S). For any
X ∈ H(S), they indu
e stru
tures on the set HomH(S)(X ,Z × Gr), whi
h we denote K0(X ).10



As a result, these sets K0(X ) are spe
ial λ-rings with duality. To extend some stru
tures tothe higher K-groups Kn(X ) = HomH•(S)(S
n∧X+,Z×Gr), one has to re�ne some morphismsin H(S) to morphisms in H•(S).Theorem 1.1.2 and the subsequent 
omments shows that the families of operations (Ψk)k∈Z,

(λn)n∈N and (γn)n∈N−{0} and more generally all operations τ : K0(−) → K0(−) su
h that
τ(0) = 0 naturally a
t on these sets Kn(X ). Moreover, relations known at the level of K0implies similar relations on all the K-groups: for instan
e, the formula Ψk ◦ Ψk′

= Ψkk′ issatis�ed by the 
orresponding operations on K⋆(X ).This also applies to operations involving several operands like + and ×. The 
ommutativegroup stru
ture on Z×Gr in H(S) 
omes from a 
ommutative group stru
ture on Z×Gr in
H•(S). Using this H-group stru
ture, we obtain abelian group stru
tures on the sets Kn(X )for all n ∈ N. Using the argument of [31, page 74℄, the produ
t law × : (Z×Gr)2 → Z×Grin H(S) 
an easily be re�ned to a pairing µ : (Z × Gr) ∧ (Z × Gr) → Z × Gr, whi
h indu
epairings Ki(X ) × Kj(Y) → Ki+j(X × Y) for X and Y in H(S). Using this 
onstru
tionin the 
ase Y = X and the diagonal morphism X → X × X , we get a produ
t law on thegraded abelian group K⋆(X ). It formally follows from the 
ommutative ring stru
ture on
Z × Gr in H(S) that with these de�nitions, K⋆(X ) is a graded 
ommutative ring. One 
aneasily 
he
k 
ompatibilities between the λ-operations and the produ
t. For instan
e, if k ∈ Z,the fa
t that Ψk is an endomorphism of the ring Z × Gr in H(S) shows that the operation
Ψk : K⋆(X ) → K⋆(X ) is an endomorphism of graded rings.Example 2.4.1 The following 
onfusing example should warn the reader against misinterpre-tations of the previous results. Let τ : K0(−) → K0(−) be the operation de�ned by τ(x) = x2for any x ∈ K0(X) and X ∈ Sm/S. This operation satis�es τ(0) = 0; then it indu
es maps
τ : Kn(X) → Kn(X) for all n ∈ N and X ∈ Sm/S. However, this operation on higher K-groups is unrelated to the squaring map Kn(X) → K2n(X) unless n = 0. Indeed, a simple
omputation using the splitting prin
iple shows that τ = Ψ2 +2λ2. To the latter, we asso
iatedmaps Kn(X) → Kn(X) rather than maps Kn(X) → K2n(X).3 Comparison with previous 
onstru
tions3.1 Models of algebrai
 K-theoryDe�nition 3.1.1 Let S be a regular s
heme. A 
andidate model of algebrai
 K-theory (over
S) is an obje
t K ∈ H•(S) equipped with a morphism αK : K0(−) → π0K of presheaves ofpointed sets on Sm/S. We say that (K, αK) is stri
t if αK is an isomorphism.For su
h an obje
t K, X ∈ H(S) and n ∈ N, we de�ne KK

n (X ) to be the set of morphisms
HomH•(S)(S

n ∧ X+,K).A morphism of 
andidate models (K, αK) → (K′, αK′) is the datum of a morphism f : K →
K′ in H•(S) su
h that αK′ = π0(f) ◦ αK.Proposition 3.1.2 Candidate models of algebrai
 K-theory 
an be asso
iated to the followingde�nitions of algebrai
 K-theory :

• Quillen's Q-
onstru
tion [34, 7.1℄;
• Waldhausen's [47, �1.9℄; 11



• Thomason-Trobaugh's [43, 3.5.3℄.For ea
h of these 
onstru
tions, there is a well-de�ned presheaf K of pointed simpli
ial setsof Sm/S su
h that the 
orresponding K-groups are the homotopy groups of the spa
es K(X)for all X ∈ Sm/S. This presheaf K de�nes an obje
t in H•(S) and there are 
anoni
al mapsfor all X ∈ Sm/S (see de�nition 1.1.5) :
π0(K(X)) → HomH•(S)(X,K) = (π0K)(X) .For any of these de�nitions of algebrai
 K-theory, in degree zero, π0(K(X)) is identi�ed tothe Grothendie
k group K0(X) of the exa
t 
ategory of ve
tor bundles on X. Then, we getthe expe
ted map αK : K0(−) → π0K in Sm/SoppSets•.Thanks to theorem 0.1, the obje
t Z×Gr is endowed with a stru
ture of a (stri
t) 
andidatemodel of algebrai
 K-theory. The map αZ×Gr : K0(−) → π0(Z×Gr) has the (
hara
teristi
)property that the 
lass ud,r +n ∈ K0(Grd,r) is mapped to the homotopy 
lass of the in
lusion

Grd,r ⊂ {n} × Gr ⊂ Z × Gr.The following proposition shows that this model (Z×Gr, αZ×Gr) plays an almost universalrole:Proposition 3.1.3 Let S be a regular s
heme. Let (K, αK) be a 
andidate model of algebrai

K-theory over S. Then, there exists a morphism (Z × Gr, αZ×Gr) → (K, αK) of 
andidatemodels of algebrai
 K-theory. If this morphism is an isomorphism, then it is unique and weshall say that (K, αK) is a genuine model of algebrai
 K-theory.May K not be an H-group, the surje
tivity part of the Milnor exa
t sequen
e stated inlemma 1.2.1 is still true. Then, there exists a morphism f : Z × Gr → H in H•(S) su
h thatthe morphism of presheaves αK and π0(f) ◦ αZ×Gr in HomSm/SoppSets(K0(−), π0K) 
oin
ideon the universal 
lasses ud,r + n ∈ K0(Grd,r). Then remark 1.2.7 implies that that they areequal whi
h proves that f is a morphism of 
andidate models of algebrai
 K-theory.If f is an isomorphism, then we may repla
e (K, αK) by (Z×Gr, αZ×Gr) and the uniquenessof f means that there exists a unique endomorphism of Z×Gr whi
h indu
es the identity on
π0(Z × Gr) = K0(−), whi
h is known thanks to theorem 1.1.2.Corollary 3.1.4 Let S be a regular s
heme. If (K, αK) and (K′, αK′) are two genuine modelsof algebrai
 K-theory, they are 
anoni
ally isomorphi
 and the asso
iated K-groups are also
anoni
ally isomorphi
 for all X ∈ H(S) and n ∈ N :

KK
n (X ) ≃ KK′

n (X ) .It follows from the fa
t that both genuine models are 
anoni
ally isomorphi
 to (Z ×
Gr, αZ×Gr).Proposition 3.1.5 Let S be a regular s
heme. The 
andidate models de�ned in proposi-tion 3.1.2 are genuine models of algebrai
 K-theory.
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The proofs of the 
omparison theorems between Quillen's, Waldhausen's and Thomason-Trobaugh's 
onstru
tions ([47, 1.9℄ and [43, proposition 3.10℄) are fun
torial enough to implythat the three 
orresponding presheaves of pointed simpli
ial sets indu
e isomorphi
 obje
tsin the pointed homotopy 
ategory of the site Sm/SNis. Moreover, these obje
ts satisfy theNisnevi
h des
ent property [43, theorem 10.8℄ and the homotopy invarian
e of algebrai
 K-theory for regular s
hemes [34, �6℄ shows that they are A1-lo
al. As a result, if K is one of thesepresheaves of pointed simpli
ial sets, the obvious maps πn(K(X)) → HomH•(S)(S
n ∧X+,K)are bije
tions for all X ∈ Sm/S. In parti
ular, the map αK : K0(−) → π0K, whi
h is partof the datum of a 
andidate model, is an isomorphism. These 
andidate models are stri
tones. Then, the proposition follows from the fa
t that the obje
t K asso
iated to Quillen's

Q-
onstru
tion is isomorphi
 to Z × Gr, whi
h is impli
it in the proof of theorem 0.1.3.2 Produ
tsProposition 3.2.1 Let S be a regular s
heme. For all X ∈ Sm/S, (i, j) ∈ N2, the pairing
Ki(X) × Kj(X) → Ki+j(X) de�ned in subse
tion 2.4 is the same as the one de�ned byWaldhausen [47℄.First, thanks to the results of subse
tion 3.1, it truly makes sense to say that these pairings
oin
ide as the di�erent �avours of models of algebrai
 K-theory give 
anoni
ally isomorphi
groups. Then, as Waldhausen's produ
t on K⋆(X) obviously extends the standard one on
K0(X), theorem 1.1.4 shows that we only need to observe that Waldhausen's pairing is fun
-torial enough to be de�ned at the level of presheaves of pointed simpli
ial sets on Sm/S andthus indu
es a morphism K × K → K in H•(S) where K is the model of algebrai
 K-theoryasso
iated to Waldhausen's de�nition.Remark 3.2.2 Using similar arguments, one may prove that the pairing Ki(X) ×Kj(X) →
Ki+j(X) 
oin
ides with the one de�ned by Quillen (only for i = 0 or j = 0). For i 6= 0,
j 6= 0 and X a�ne, one may also 
ompare them with the produ
t de�ned by Loday using the
+-
onstru
tion [30℄; the arguments would be similar to the arguments in subse
tion 3.3 below.In parti
ular, Waldhausen's pairing 
oin
ide with those de�ned by Quillen and Loday. This
omparison was already known (see [48℄).3.3 Operations involving one operandIn his arti
le [42℄, Soulé de�ned an a
tion of RZGL = lim

d∈N
RZGLd on the higher algebrai


K-theory of s
hemes, where RZGLd is the Grothendie
k group de�ned by Serre [39℄. If we �xa regular base s
heme S, theorem 1.1.1 introdu
es su
h an a
tion on K-theory of smooth S-s
hemes for elements τ ∈ EndSm/Sopp
Sets•(K0(−)). As we would like to state a 
ompatibilitybetween these two 
onstru
tions, we shall introdu
e a 
ommon input for both of them.De�nition 3.3.1 Let d ∈ N. We let Univd be the universal spe
ial λ-ring equipped with anelement idd satisfying the following 
onditions:(i) λd(idd) is invertible;(ii) λk(idd) vanishes for k ≥ d+ 1. 13



The spe
ial λ-ring Univ∞ is the proje
tive limit of the system (Univd)d∈N where the transitionmap Univd+1 → Univd maps idd+1 to idd + 1.Obviously, for any d, there is a 
anoni
al morphism of spe
ial λ-rings Univd → RZGLdthat maps idd to the 
lass of the tautologi
al representation id : GLd → GLd of rank d ofthe group s
heme GLd. Serre's 
omputation [39, �3.8℄ shows that this sequen
e of morphisms
onsists of isomorphisms. Then, the 
anoni
al morphism Univ∞ → RZGL is an isomorphism.We may also use the universal properties of the spe
ial λ-rings Univd to de�ne a morphismof spe
ial λ-rings Univ∞ → K0(Gr) = HomH(S)(Gr,Z×Gr). It is indu
ed by the morphisms
Univd → HomH(S)(Grd,∞,Z × Gr) ≃ lim

r∈N
K0(Grd,r)sending idd to the 
ompatible family of 
lasses ([M′

d,r])r∈N (see the proof of lemma 1.2.6 forthis notation).We let (Univ∞)0 and (RZGL)0 be the kernel of the rank morphism from these groups to Z.Similarly, we denote K̃0(Gr) the kernel of the restri
tion to the base-point K0(Gr) → K0(S).The 
omparison theorem announ
ed above is the following:Theorem 3.3.2 Let S be a regular s
heme. For any n ≥ 1, the following diagram 
ommutes:
(Univ∞)0

∼

uukkkkkkkkkkkkkkk

))RRRRRRRRRRRRRR

(RZGL)0

))SSSSSSSSSSSSSS
K̃0(Gr)

uullllllllllllll

EndSm/SoppAb(Kn(−)) ,where the two upper maps are the ones mentioned above, the lower-left one is the one de-�ned by Soulé and the lower-right one arises from theorem 0.1. (Thanks to previous results,this lower-right map 
an be interpreted as the 
anoni
al map EndSm/Sopp
Sets•(K̃0(−)) →

EndSm/SoppAb(Kn(−)).)The strategy of the proof 
onsists in the 
onstru
tion of an horizontal map (RZGL)0 →
K̃0(Gr) whi
h makes both upper and lower triangles 
ommute. This map is indu
ed by amorphism RZGL → K0(Gr) and is a parti
ular 
ase of a more general 
onstru
tion:Proposition 3.3.3 Let G be a smooth group s
heme over Spec(Z). We let RZG be theGrothendie
k group of �nitely generated free Z-modules endowed with a linear a
tion of G (see[39, �2.3℄). We let BG ∈ H•(S) be the 
lassifying spa
e of G (where G is 
onsidered as a sheafof groups on Sm/SNis). Let ρ : G → GL(M) be a free �nitely generated Z-module endowedwith a linear a
tion of G (we shall say thatM is a representation of G). The 
hoi
e of a Z-basisof M identi�es ρ with a morphism of group s
hemes G→ GLd over Spec(Z) where d = rkM .We let [ρ] ∈ HomH(S)(BG,Z × Gr) be the morphism obtained from Bρ : BG → BGLd by
omposing with the 
anoni
al morphism BGLd ≃ Grd,∞ ≃ {d} × Grd,∞ ⊂ Z × Gr. Then,this assignment ρ 7−→ [ρ] does not depend on the the 
hoi
e of Z-bases and indu
es a morphismof spe
ial λ-rings with duality RZG→ HomH(S)(BG,Z × Gr) = K0(BG).14



The 
hoi
e of two di�erent Z-bases of a representation M of G would lead to morphisms
G → GLd whi
h would di�er by an inner automorphism of GLd (indu
ed by an element of
GLd(Z)): the asso
iated morphisms BG→ BGLd are equal in H(S) (and also in H•(S) after
omposition with BGLd → BGL∞ be
ause BGL∞ is an H-group).To prove that ρ 7−→ [ρ] indu
es a morphism at the level of the Grothendie
k group ofrepresentations of G, we use the following two lemmas:Lemma 3.3.4 Let +: BGL∞×BGL∞ → BGL∞ be the H-group stru
ture 
oming from theusual group stru
ture on K̃0(−) (see remark 1.1.3). For any d, d′ ≥ 0, the following diagram
ommutes in H•(S):

BGLd × BGLd′

��

B⊕
// BGLd+d′

��

BGL∞ × BGL∞
+

// BGL∞ ,where the verti
al morphisms are the obvious ones and the upper one is the morphism B⊕dedu
ed from the �dire
t sum� morphism ⊕ : GLd × GLd′ → GLd+d′ .The 
orresponden
e between GLd-torsors on s
hemes and rank-d ve
tor bundles providesa fun
torial map H1(X,GLd) → K̃0(X) (we substra
t the rank in K0(X) so as to get elementsin K̃0(X)). An obvious veri�
ation leads to the following 
ommutative square whi
h statesa 
ompatibility between this 
orresponden
e, the sum in K̃0(X) and the map indu
ed on
ohomology by the morphism ⊕ : GLd × GLd′ → GLd+d′ :
H1(X,GLd) ×H1(X,GLd′)

��

⊕⋆
// H1(X,GLd+d′)

��

K̃0(X) × K̃0(X)
+

// K̃0(X)The two morphisms we want to 
ompare are in HomH(S)(BGLd × BGLd′ ,BGL∞) ≃

lim(r,r′) K̃0(Grd,r × Grd′,r′). Then, the lemma follows from the 
ommutativity mentionedabove in the 
ase where X is a produ
t of Grassmann varieties and where the torsors 
orre-sponds to the universal ve
tor bundles on these varieties.Lemma 3.3.5 Let 0 → ρ′ → ρ→ ρ′′ → 0 be an exa
t sequen
e of representations of G. Then,
[ρ] = [ρ′ ⊕ ρ′′] in HomH(S)(BG,Z × Gr).Let d′ = rkρ′, d = rkρ and d′′ = rk ρ′′. Using the obvious fun
toriality of the 
onstru
tionswith respe
t to the group G, we may assume that we are in the universal situation where
ρ : G → GLd is the in
lusion of the subgroup of matri
es of the form g =

(
g′ h
0 g′′

) where
g′ ∈ GLd′ , g′′ ∈ GLd′′ and h is an d′-by-d′′ matrix and where the representations ρ′ and ρ′′
orrespond to the obvious morphisms G→ GLd′ and G→ GLd′′ .Let D = GLd′ × GLd′′ be the subgroup of G 
onsisting of matri
es of the previousform su
h that h = 0. Obviously, the restri
tion of the representations ρ and ρ′ ⊕ ρ′′ from
G to D are isomorphi
. Then, to �nish the proof, it su�
es to know that the restri
tionmap K0(BG) → K0(BD) is an inje
tion. Indeed, this map is a bije
tion be
ause D → G15



is an A1-weak equivalen
e and thus BD → BG is also an A1-weak equivalen
e (see [32,Proposition 2.14, page 74℄).We have 
onstru
ted a morphism of abelian groups RZG → K0(BG). To �nish the proofof the proposition, it remains to show that this is a morphism of spe
ial λ-rings with duality.The 
ompatibility of the 
onstru
tion with external powers and duality 
an be 
he
ked in thesame way as we did it for dire
t sums (see lemma 3.3.4).To prove theorem 3.3.2, we apply proposition 3.3.3 to the 
ases G = GLd for all d. Itprovides a morphism of spe
ial λ-rings RZGLd → K0(Grd,∞). Taking the proje
tive limit overall d and 
onsidering the rank-0 part leads to the expe
ted morphism (RZGL)0 → K̃0(Gr).The universal property of Univd and the fa
t that the morphisms RZGLd → K0(Grd,∞) aremorphisms of spe
ial λ-rings shows that the upper triangle 
ommutes. The fa
t that the lowertriangle 
ommutes follows easily from the very de�nition in Soulé's paper [42℄.4 Virtual 
ategoriesVirtual 
ategories were introdu
ed by Deligne in [10℄. They are re�nements of K0-groups.More pre
isely, if X ∈ Sm/S (S regular), the 
ategory V(X) is identi�ed to the fundamentalgroupoid of K(X) where K is some A1-�brant genuine model of algebrai
 K-theory. Anyve
tor bundle E on X de�nes an obje
t E of the 
ategory V(X) whose isomorphism 
lass
orresponds to [E ] in K0(X). When we have a short exa
t sequen
e 0 → E ′ → E → E ′′ → 0,we not only have an equality of 
lasses [E ] = [E ′⊕E ′′], whi
h means that E and E ′⊕E ′′ be
omeisomorphi
 in V(X) but we have a spe
i�
 isomorphism E ≃ E ′ ⊕ E ′′ in this 
ategory V(X).4.1 The Thom spe
trum of a virtual bundleThe 
onstru
tion of this paragraph will be used only in �6.1.3. It appears here be
ause itfavours the understanding of virtual 
ategories.Proposition 4.1.1 Let X be a s
heme. The 
onstru
tion of the Thom spe
trum ThX E of ave
tor bundle E on X (see [32, De�nition 2.16, page 111℄) extends to a fun
tor ThX : V(X) →
SH(X).(See also [6, Théorème 1.5.18℄.) One may �rst 
he
k that the Thom spe
trum of a ve
torbundle is invertible for the ∧-produ
t in SH(X); one is redu
ed to the 
ase of a trivial bundlebe
ause the invertibility 
an be 
he
ked lo
ally for the Zariski topology on X. Then, using theuniversal property of V(X) as a Pi
ard 
ategory, one has to de�ne an isomorphism ThX E ′ ∧
ThX E ′′ ≃ ThX E for any short exa
t sequen
e 0 → E ′ → E → E ′′ → 0 of ve
tor bundles. Ifthe sequen
e splits, a splitting of it gives su
h an isomorphism (see [32, Proposition 2.17, page112℄) and expli
it A1-homotopies show that it is independant of the splitting. The general 
aseredu
es to this be
ause we 
an use a torsor T → X under a ve
tor bundle su
h that the inverseimage of the sequen
e splits over T . If Jouanolou's tri
k is available (see theorem 1.2.4), wemay use it; otherwise, as I learned from Dennis Eriksson, we 
an always use the s
heme whi
hparametrises the se
tions of E → E ′′: it is a torsor under the ve
tor bundle Hom(E ′′, E ′). To
he
k the needed 
oheren
e properties, we may split a �nite number of short exa
t sequen
esof ve
tor bundles as above; then, it be
omes straightforward.16



De�nition 4.1.2 Let f : X → S be a smooth morphism between noetherian s
hemes. Propo-sition 4.1.1 de�nes a fun
tor ThX : V(X) → SH(X). We also denote ThX : V(X) → SH(S)the fun
tor obtained by 
omposition with f♯ : SH(X) → SH(S) (see [37, Proposition 4.4℄).4.2 Inverting primes on Z ×GrDe�nition 4.2.1 Let S be a regular s
heme. Let a ∈ N − {0}. For any (d, r) ∈ N2,we de�ne a morphism Grd,r → Grad,ar whi
h sends an admissible subbundle M′ ⊂ On(n = d + r) of rank d to δa,n(M′⊕a) where δa,n : (On)⊕a → Oan is the isomorphism thatsends (s11, . . . , s
1
n), . . . , (sa

1, . . . , s
a
n) to (s11, . . . , s

a
1, . . . , s

1
n, . . . , s

a
n). This 
ompatible family ofmorphisms indu
es a morphism ma : Gr → Gr of presheaves of pointed sets. We also denote

ma : Z × Gr → Z × Gr the morphism whi
h is the multipli
ation by a on Z and ma on Gr.Lemma 4.2.2 Let a and b be two positive natural numbers. Then, the endomorphisms maband ma ◦mb of Z × Gr are equal in the 
ategory of presheaves of pointed sets.De�nition 4.2.3 For any x ∈ N − {0}, we set 1
x(Z × Gr) = Z × Gr. If y ∈ N − {0} is amultiple of x, the endomorphism my/x of Z×Gr de�nes a 
anoni
al morphism 1

x(Z×Gr) →
1
y (Z × Gr).Lemma 4.2.2 says that this de�nes a dire
t system ( 1

x(Z × Gr))x∈N−{0} of sheaves ofpointed sets of Sm/S. It is indexed by N − {0}, whi
h is ordered by divisibility.De�nition 4.2.4 Let n be a supernatural number (see [41, �I.1.3℄). We denote (Z × Gr)[ 1
n ]the 
olimit of the system 1

x(Z × Gr) where x varies in the set of positive natural numbersdividing n∞.Proposition 4.2.5 Let S be a regular s
heme. Let i ∈ N. Let n be a supernatural number.Then, the 
anoni
al maps are bije
tions:
HomH(S)(Z ×Gr,RΩi(Z × Gr)[ 1

n ])
∼
→ HomSm/SoppSets(K0(−),Ki(−)[ 1

n ]) ,
HomH(S)((Z × Gr)[ 1

n ],RΩi(Z × Gr)[ 1
n ])

∼
→ HomSm/SoppSets(K0(−)[ 1

n ],Ki(−)[ 1
n ]) .A variant of lemma 1.2.10 shows that RΩi(Z × Gr)[ 1

n ] satis�es property (K). Hen
e,theorem 1.1.6 gives the �rst bije
tion. The se
ond bije
tion needs additional arguments.From lemma 1.2.6, it is easy to show that (Z × Gr)[ 1
n ] generates π0((Z × Gr)[ 1

n ]) up to T .The de�nition also gives an expression of (Z × Gr)[ 1
n ] as the 
olimit of some dire
t system

(Xi)i∈I of representable sheaves, where I is an ordered set whi
h has a 
o�nal sequen
e.Then, using proposition 1.2.9, we have to show that (Xi)i∈I does not unveil phantoms in
RΩi(Z × Gr)[ 1

n ]. Reasoning like in the proof of lemma 1.2.10, it su�
es to 
he
k that fora natural number a dividing a power of n, the morphisms ma,d,r : Grd,r → Grad,ar indu
esurje
tions m⋆
a,d,r : K0(Grad,ar)[

1
n ] → K0(Grd,r)[

1
n ]. This is true be
ause K0(Grd,r)[

1
n ] isgenerated by ud,r as a K0(S)[ 1

n ]-λ-algebra and m⋆
a,d,r(uad,ar) = aud,r.We leave the variants involving several operands to the reader.

17



4.3 Operations on virtual 
ategoriesDe�nition 4.3.1 Let S be a regular s
heme. Let n be a supernatural number. We let V(−)[ 1
n ]be the presheaf of groupoids that sends X ∈ Sm/S to the fundamental groupoid of K[ 1

n ](X)where K[ 1
n ] is an A1-�brant repla
ement of (Z × Gr)[ 1

n ].Theorem 4.3.2 Let n be an even supernatural number. Let τ : K0(−)[ 1
n ] → K0(−)[ 1

n ] bea morphism in Sm/Spec(Z)oppSets. Then, up to a unique isomorphism, we 
an de�ne afamily of fun
tors τ̃X : V(X)[ 1
n ] → V(X)[ 1

n ] for X ∈ Sm/Spec(Z) whi
h indu
es τ on sets ofisomorphisms 
lasses in V(−)[ 1
n ] and su
h that for any morphism f : Y → X in Sm/Spec(Z),it satis�es the equality f⋆ ◦ τ̃X = τ̃Y ◦ f⋆. (Variants involving several operands are also true.)From proposition 4.2.5, we know that τ 
orresponds to an endomorphism of K[ 1

n ] in
H(Spec(Z)). As K[ 1

n ] is A1-�brant, τ lifts to a morphism τ̃ : K[ 1
n ] → K[ 1

n ]. Passing to funda-mental groupoids, we get a family of fun
tors τ̃X : V(X)[ 1
n ] → V(X)[ 1

n ] for X ∈ Sm/Spec(Z).We let E = hom(K[ 1
n ],K[ 1

n ]) be the simpli
ial set of endomorphisms of K[ 1
n ] (it is given bythe simpli
ial stru
ture). The morphism τ̃ 
orresponds to a 0-simplex in E. If τ̃ ′ : K[ 1

n ] → K[ 1
n ]is in the same homotopy 
lass as τ̃ , the 
hoi
e of an homotopy (i.e., a path between τ̃ and

τ̃ ′ in E gives an isomorphism between the asso
iated families of fun
tors (τ̃X) and (τ̃ ′X). Thequestion is whether this isomorphism is uniquely determined or not. It will be so if thereexists a unique homotopy 
lass of paths τ̃ → τ̃ ′. As E is an H-group, it means that the
onne
ted 
omponents of E are simply 
onne
ted, i.e., π1E = 0. This group identi�es to
HomH(Spec(Z))(K[ 1

n ],ΩK[ 1
n ]), whi
h identi�es to HomSm/ Spec(Z)oppSets(K0(−)[ 1

n ],K1(−)[ 1
n ]).To prove that this group vanishes, we 
an use proposition 1.2.9 whi
h expresses it as aproje
tive limit of some groups K1(Grd,r)[

1
n ]. The result then follows from the fa
t that

K1(Z) ≃ Z/2Z.Remark 4.3.3 In theorem 4.3.2, we may repla
e Sm/Spec(Z) by any small full sub
ategory
Reg of the 
ategory of regular s
hemes. Indeed, we may assume that Spec(Z) ∈ Reg andthat for any S ∈ Reg, obje
ts in Sm/S belong to Reg. Then, we may work in the A1-homotopy 
ategory H(Reg) of the site RegNis equipped with the interval A1. Argumentsleading to theorem 4.3.2 
an be made with the 
ategory H(Reg) instead of H(Spec(Z)). Wemay also dedu
e results for Reg from the 
ase of Sm/Spec(Z) by using the fully faithfulfun
tor p⋆ : H(Spec(Z)) → H(Reg) asso
iated to the obvious reasonable 
ontinuous map ofsites p : RegNis → Sm/Spec(Z)Nis.5 Additive and stable results5.1 The splitting prin
ipleNow, we shall fo
us on natural transformations K0(−) → K0(−) whi
h are 
ompatible withthe abelian group stru
tures on K-groups, i.e., morphisms in Sm/SoppAb rather than in
Sm/Sopp

Sets. From theorem 1.1.4 and proposition 2.2.3, we know that these additive oper-ations pre
isely 
orrespond to endomorphisms of Z× Gr as an H-group (i.e., a group obje
tin H•(S)).To 
ompute these additive transformations, we shall use the �splitting prin
iple�. We let
Pic(−) be the presheaf of sets on Sm/S (for a regular s
heme S) that maps U ∈ Sm/S tothe Pi
ard group Pic(U), 
onsidered as a set. We denote c : Pic(−) → K0(−) the morphism18



in Sm/Sopp
Sets that maps the isomorphism 
lass of a line bundle L to the 
lass [L] in theGrothendie
k group of ve
tor bundles.Proposition 5.1.1 Let S be a regular s
heme. For any integer i, the map indu
ed by c
c⋆ : HomSm/SoppAb(K0(−),Ki(−)) → HomSm/SoppSets(Pic(−),Ki(−))is a bije
tion. Moreover, the latter group identi�es to

HomH(S)(P
∞,RΩi(Z × Gr)) ≃ lim

n
Ki(P

n) ≃ Ki(S)[[U ]] ,where U = [O(1)] − 1 is the obvious 
ompatible family in limnK0(P
n).The inje
tivity of c⋆ follows easily from the �splitting prin
iple�: if M is a ve
tor bundleof rank r on a s
heme X ∈ Sm/S, the 
omplete �ag s
heme D(M)

π
→ X is su
h that

[π⋆M] de
omposes in K0(D(M)) as a sum of the 
lasses of r line bundles and π⋆ : Ki(X) →
Ki(D(M)) is inje
tive.Proposition 1.2.9, lemma 1.2.6, lemma 1.2.10 and remark 1.2.11 show that we have bije
-tions:

HomSm/SoppSets(Pic(−),Ki(−)) ≃ HomH(S)(P
∞,RΩi(Z × Gr)) ≃ lim

n
Ki(P

n) .The identi�
ation of this group with Ki(S)[[U ]] follows from the 
omputation of the al-gebrai
 K-theory of proje
tive spa
es: Ki(P
n) ≃ K0(P

n) ⊗K0(S) Ki(S) and K0(P
n) ≃

K0(S)[U ]/(Un+1).It remains to show that c⋆ is surje
tive. Using the previous identi�
ations, we rewrite it asa map c⋆ : HomSm/SoppAb(K0(−),Ki(−)) → Ki(S)[[U ]]. First, we observe that for any k ∈ Nand x ∈ Ki(S), we may denote xΨk the natural transformation K0(−) → Ki(−) that maps yto x · Ψk(y) and see that it satis�es c⋆(xΨk) = x(1 + U)k. This proves that the image of c⋆
ontains Ki(S)[U ]. To �nish the proof, we use the following lemma:Lemma 5.1.2 Let (τn)n∈N be a sequen
e of additive natural transformations K0(−) → Ki(−)su
h that c⋆(τn) 
onverges to zero in Ki(S)[[U ]] for the in�nite produ
t topology, where Ki(S)is endowed with the dis
rete topology; in other words, we assume that for ea
h k ∈ N, the
oe�
ient of Uk in c⋆(τn) eventually vanishes. Then, for any X ∈ Sm/S and x ∈ K0(X),there exists N ∈ N su
h that for all n ≥ N , τn(x) = 0 and it makes sense to de�ne anatural transformation τ : K0(−) → Ki(−) by the formula τ(x) =
∑∞

n=0 τn(x) and we havethe equality c⋆(τ) =
∑

n∈N c⋆(τn) in Ki(S)[[U ]].We have to prove that given X ∈ Sm/S and x ∈ K0(X), τn(x) eventually vanishes. Theassumption says that it is true for the 
lass x = [O(1)] on Pn for all n. Taking inverse imagesof these 
lasses by morphisms f : X → Pn enables to obtain the more general 
ase of 
lassesof line bundles generated by their global se
tions, e.g., line bundles on a�ne s
hemes. Using
T (see theorem 1.2.4), we get the 
ase of line bundles on any X ∈ Sm/S. Then, the general
ase follows from the splitting prin
iple.Remark 5.1.3 We may de�ne a topology on HomSm/SoppAb(K0(−),Ki(−)) by 
onsideringthe weakest topology for whi
h the evaluation maps at all elements x ∈ K0(X) for all X ∈
Sm/S are 
ontinuous, where all groups Ki(X) are endowed with the dis
rete topology. The ar-gument of the lemma shows that the bije
tion c⋆ : HomSm/SoppAb(K0(−),Ki(−)) → Ki(S)[[U ]]is an homeomorphism. 19



Remark 5.1.4 The 
omposition of endomorphisms endows
EndSm/SoppAb(K0(−)) ≃ K0(S)[[U ]]with a stru
ture of a (possibly non-
ommutative) ring. If this law on K0(S)[[U ]] is denoted

⋆, one may 
hara
terise it by the fa
t that it is 
ontinuous and that for all (x, y) ∈ K0(S)2,
(k, k′) ∈ N2, (x(1 + U)k)⋆(y(1 + U)k

′

) = (xΨk(y)(1 + U)kk′. More generally, we have agraded ring stru
ture on ⊕i∈NKi(S)[[U ]] whi
h 
omes from the fa
t that Ki(S)[[U ]] identi�esto the group of homomorphisms Z × Gr → RΩi(Z × Gr) of abelian groups inside H(S); themultipli
ation 
an be des
ribed similarly as it has been des
ribed in degree 0.Remark 5.1.5 The surje
tivity of the map
c⋆ : HomSm/SoppAb(K0(−),Ki(−)) → Ki(S)[[U ]]may be proved using a di�erent argument. First, we may assume that the formal power series

f =
∑

k≥0 akU
k is su
h that a0 = 0, so that we a
tually have to 
onstru
t a natural transforma-tion τ : K̃0(−) → Ki(−). After the appli
ation of Jouanolou's tri
k and the splitting prin
iple,an element x ∈ K̃0(X) 
an be expressed as x =

∑n
i=1 ui where ui = [Li] − 1 for a family ofve
tor bundles L1, . . . , Ln for a big enough n. Then, τ(x) should be f(u1) + · · · + f(un) =∑

k≥1 ak(u
k
1 + · · ·+ uk

n). Using the theory of symmetri
 polynomials and on
e we have noti
edthat the elementary symmetri
 fun
tions of the u1, . . . , un are the elements γ1(x), . . . , γn(x),we get the existen
e of an element in Ki(S)[[γ̃1, γ̃2, . . . ]] whose asso
iated natural transforma-tion τ : K̃0(−) → Ki(−) (see theorem 1.1.7) is additive and su
h that τ(u) = f(u) whenever
u = [L] − 1 and L is a line bundle.Remark 5.1.6 The method of remark 5.1.5 
an be used for the study of natural transforma-tion τ : K0(−) → K0(−) whi
h indu
es group morphisms (K0(X),+) → (K0(X)×, ·) for all
X ∈ Sm/S, i.e., 
lasses whi
h are multipli
ative on short exa
t sequen
es ( e.g., the Todd 
lass,whi
h is de�ned after tensoring with Q). The result is that for any series f =

∑
k≥0 akU

k su
hthat a0 is invertible in K0(S), there exists a unique τ : K0(−) → K0(−) as above su
h that forany line bundle L, τ([L]) = f(u) where u = [L]−1. The proof follows the same pattern: redu
eto the 
ase a0 = 1 and then 
onsider f(u1)f(u2) . . . f(un) instead of f(u1)+f(u2)+· · ·+f(un).Exer
ise 5.1.7 (Optional) Assume that S is a regular s
heme su
h that K0(S) ≃ Z. Provethat any ring endomorphism ϕ of Z×Gr in H(S) is of the form Ψk for some k ∈ Z. (Hint: ϕ
orresponds to a series f ∈ Z[[U ]] whi
h satis�es f(0) = 1 and f(U) ·f(V ) = f(U +V +UV ).Then, ratio
inate in Q[[U ]] to prove that f is of the form (1 + U)α for α ∈ Q.)5.2 The P
1-spe
trum BGLLet S be a regular s
heme. We de�ne a morphism σ : P1 ∧ (Z × Gr) → Z × Gr in H•(S)(where ∞ is the base-point of P1) as the 
omposition

P1 ∧ (Z × Gr)
u∧id

// (Z × Gr) ∧ (Z × Gr)
µ

// Z × Grwhere u : P1 → Z×Gr 
orresponds to the 
lass u = [O(1)]− 1 ∈ ker(∞⋆ : K0(P
1) → K0(S))and µ is the pairing de�ned in subse
tion 2.4. We denote σ̃ : Z×Gr → RHom•(P

1,Z×Gr)20



the morphism in H•(S) 
orresponding to σ by adjun
tion. It follows from the proje
tivebundle theorem that σ̃ is an isomorphism.We 
an use this to de�ne an obje
t of the naive variant SHnaïve(S) (see [37, �6℄) of thestable homotopy 
ategory SH(S), i.e., an (Ω)-P1-spe
trum up to homotopy. More pre
isely,an obje
t of SHnaïve(S) 
onsists in the datum of a sequen
e (En)n∈N of obje
ts of H•(S)and of bonding morphisms σ : P1 ∧ En → En+1 in H•(S) whi
h are supposed to be su
hthat the adjoint morphisms En → RHom•(P
1,En+1) are isomorphisms for all n ∈ N. Theobje
t BGLnaive ∈ SHnaïve(S) is de�ned by the fa
t that (BGLnaive)n = Z × Gr and thatall bonding morphisms identi�es to the morphism σ de�ned above.We shall see that we may de�ne an obje
t BGL ∈ SH(S) up to a unique isomorphismand that it lifts BGLnaive. The obstru
tion we may en
ounter to do this lies in the notionof stably phantom morphisms. More pre
isely, if E and F are obje
ts of SH(S), representedby Ω-spe
tra, for any i ∈ N, the sequen
e of groups (HomH•(S)(En,RΩiFn))n∈N is equippedwith the stru
ture of a proje
tive system, and it follows from the Milnor exa
t sequen
e thatwe have a short exa
t sequen
e (see [37, Lemme 6.5℄):

0 → R1 lim
n

HomH•(S)(En,RΩFn) → HomSH(S)(E,F)

→ HomSHnaïve(S)(oubE, oubF) → 0 ,where oub: SH(S) → SHnaïve(S) is the forgetful fun
tor. The group on the right identi�es to
limn HomH•(S)(En,Fn) and the group on the left is the subgroup of stably phantom morphisms
E → F.An obje
t of SHnaïve(S) always lifts to an obje
t of SH(S), unique up to isomorphism;however, this lifting is unique up to a unique isomorphism if and only if a given lifting has nononzero stably phantom endomorphisms [37, Proposition 6.3℄. We will see that it is the 
asefor BGLnaive if K1(S) is �nite (e.g., S = Spec(Z)), whi
h is su�
ient to 
onstru
t a 
anoni
al
BGL ∈ SH(S) for all regular s
hemes S as we may take the inverse image by S → Spec(Z)(see [37, Proposition 4.4℄) of the unique one in SH(Spec(Z)). This appeared in my thesis [36℄and in [21℄ similar arguments reappeared. This being said, until the end of this subse
tion,we 
hoose a lifting BGL of BGLnaive in SH(S).Remark 5.2.1 In the study of proje
tive systems (HomH•(S)(En,R

1ΩiFn))n∈N, for some
i ∈ N, we may fo
us on the subsystem made of H-group morphisms, whi
h may be denoted
(Hom+

H•(S)(En,R
1ΩiFn))n∈N. Indeed, the 
okernel of this in
lusion is a proje
tive systemwith zero transition maps, whi
h implies that the in
lusion indu
e isomorphisms on lim and

R1 lim.De�nition 5.2.2 Let A be an abelian group. We set AΩ to be the following proje
tive systemindexed by N:
· · · → A[[U ]]

Ω
P1
→ A[[U ]]

Ω
P1
→ A[[U ]]

Ω
P1
→ A[[U ]] ,where the map ΩP1 : A[[U ]] → A[[U ]] is de�ned by ΩP1(f) = (1 + U) df

dU .Proposition 5.2.3 Let S be a regular s
heme. The proje
tive system
(Hom+

H•(S)((BGL)n,R
iΩ(BGL)n))n∈N
anoni
ally identi�es to Ki(S)Ω. 21



From proposition 5.1.1, we already know that Hom+
H•(S)((BGL)n,RΩi(BGL)n) identi�esdegreewise to the group Ki(S)[[U ]]. We let ω : Ki(S)[[U ]] → Ki(S)[[U ]] be the morphism
orresponding to the transition maps on the proje
tive system

(Hom+
H•(S)((BGL)n,RΩi(BGL)n))n∈Nunder this identi�
ation. We have to prove that ω = ΩP1 .Let τ =

∑
n≥0 anU

n ∈ Ki(S)[[U ]]. It 
orresponds to an additive natural transformation
(τX : K0(X) → Ki(X))X∈Sm/S whi
h is su
h that τX([L]) =

∑
n≥0 an([L] − 1)n for all linebundles L. The natural transformation K0(X) → Ki(X) asso
iated to ω(τ) is 
hara
terisedby the formula:

ω(τ)X(x) ⊠ v = τX×P1(x⊠ v) ,where v = [O(1)]−1 ∈ K0(P
1) and ⊠ is the external produ
t K⋆(X)×K0(P

1) → K⋆(X×P1).Assume that x = [L] is the 
lass of a line bundle L on a s
heme X ∈ Sm/S. Then, x⊠ v =
[L ⊠ O(1)] − [L ⊠ OP1 ]. We may apply τX×P1 to this di�eren
e; if we set u = x− 1 and usethat K⋆(X ×P1) ≃ K⋆(X)[v]/(v2), we get:

τX×P1(x⊠ v) =
∑

n≥0

an [(1 + u)(1 + v) − 1]n −
∑

n≥0

anu
n

=
∑

n≥0

an [(u+ v(1 + u))n − un]

=
∑

n≥1

nan(1 + u)un−1v .Then, ω(τ)X(x) =
∑

n≥1 nan(1 + u)un−1 whi
h proves that ω(τ) =
∑

n≥1 nan(1 +U)Un−1 =

(1 + U) dτ
dU = ΩP1(τ).Corollary 5.2.4 Let S be a regular s
heme. For all i ∈ Z, we have a 
anoni
al short exa
tsequen
e:

0 → R1 limKi+1(S)Ω → HomSH(S)(BGL,BGL[−i]) → limKi(S)Ω → 0 .Proposition 5.2.5 Let A be an abelian group. If A is either �nite or divisible, then
R1 limAΩ = 0 .If A is divisible, the map ΩP1 : A[[U ]] → A[[U ]] is surje
tive. Hen
e, the result is obviousin this 
ase.As a sequen
e of abelian groups 0 → A′ → A→ A′′ → 0 leads to a short exa
t sequen
e ofproje
tive systems 0 → A′Ω → AΩ → A′′Ω → 0, a simple dévissage redu
es the 
ase of a �niteabelian group A to the spe
ial 
ase of A = Fp for a prime number p. Then, we are redu
edto the following lemma, whi
h was suggested by Yves André :Lemma 5.2.6 Let p be a prime number. We de�ne LFp ⊂ Fp[[U ]] as the subgroup of series

f =
∑

n≥0 anU
n su
h that for all k ∈ N, ∑p−1

i=0 akp+i = 0. Then,(i) The image of ΩP1 : Fp[[U ]] → Fp[[U ]] is LFp ;22



(ii) If f ∈ LFp , there exists a unique g ∈ LFp su
h that ΩP1(g) = f ;(iii) The 
anoni
al map limFΩ
p → (FΩ

p )0 indu
es a bije
tion limFΩ
p ≃ LFp;(iv) The proje
tive system LFp satis�es Mittag-Le�er 
ondition. In parti
ular, R1 limFΩ

p =
0.Let f =

∑
n≥0 anU

n and g =
∑

b≥0 bnU
n be two elements of Fp[[U ]]. The relation

ΩP1(g) = f is equivalent to the equalities nbn + (n + 1)bn+1 = an for all n ≥ 0. They
an be restated as nbn = (−1)n−1
∑n−1

k=0 ak for all n ∈ N. It follows that f is in the imageof ΩP1 if and only if ∑n−1
k=0 ak = 0 whenever p divides k, i.e., f ∈ LFp . Then, the relation

ΩP1(g) = f determines the 
oe�
ients bn for p not dividing n but says nothing about the
oe�
ients bkp for all k ∈ N. There is a unique possible 
hoi
e for those so as to obtain
g ∈ LFp . We have proved (i) and (ii). (iii) and (iv) immediately follow.Corollary 5.2.7 Let S be a regular s
heme. Let i ∈ Z. If Ki+1(S) is �nite or divisible, then

HomSH(S)(BGL,BGL[−i]) ≃ lim
i
Ki(S)Ω .In parti
ular, if K1(S) is �nite ( e.g., S = Spec(Z)), EndSH(S)(BGL) ≃ limK0(S)Ω, BGLhas no nonzero stably phantom endomorphism in SH(S) and thus BGLnaive ∈ SHnaïve(S)lifts to an obje
t BGL ∈ SH(S) whi
h is de�ned up to a unique isomorphism.Proposition 5.2.8 Let A be a torsionfree abelian group su
h that Hom(Q, A) = 0 ( e.g.,

A = Z). Then, the map limAΩ → (AΩ)0 = A[[U ]] is inje
tive.To prove this, it su�
es to 
he
k that if f ∈ A[[U ]] is su
h than ΩP1(ΩP1(f)) = 0, then
ΩP1(f) = 0. Indeed, let g = ΩP1(f). The equality ΩP1(g) = 0 implies that g is 
onstant, i.e.,
g ∈ A. Then, we have df

dU = g
1+U so that there exists h ∈ A su
h that f = g log(1 + U) + h.This series, whi
h makes sense in (A⊗Z Q)[[U ]] does not lie in A[[U ]] unless g is in the imageof a morphism Q → A. It follows that ΩP1(f) = g = 0.Remark 5.2.9 Thanks to 
orollary 5.2.7, endomorphisms of BGL in SH(Spec(Z)) 
an bedes
ribed as 
ompatible families of series in Z[[U ]]. Proposition 5.2.8 shows that this informa-tion 
an be redu
ed to a single element in Z[[U ]]. However, I do not know to whi
h subgroupof Z[[U ]] these endomorphisms 
orrespond. It obviously 
ontains 1 + U and 1/(1 + U), whi
h
orresponds to the identity Ψ1 and the duality Ψ−1 (see subse
tion 5.3). A

ording to [3℄, thisgroup is stri
tly bigger and even un
ountable!5.3 Adams operations on BGLQThe triangulated 
ategory SH(S) may be lo
alised so as to invert 
ertain or all primes. Forinstan
e, we may de�ne SH(S)Q as the full sub
ategory of SH(S) 
onsisting of obje
ts Asu
h that for any prime p, the multipli
ation by p on A is an isomorphism. The left adjoint

−Q : SH(S) → SH(S)Q to this in
lusion is 
alled the Q-lo
alisation fun
tor. We let BGLQbe the image of BGL by this fun
tor. Then, for any �nitely presented obje
t X of SH(S) 1,1An obje
t X in a triangulated 
ategory T where 
oprodu
ts exist is �nitely presented if the fun
tor
HomT (X,−) from T to the 
ategory of abelian groups 
ommutes with (in�nite) 
oprodu
ts. They 
onstitutea triangulated sub
ategory T

pf of T . In the 
ase T = SH(S), SH(S)pf is the pseudo-abelian hull of the trian-gulated sub
ategory generated by obje
ts of the form (P1)−n
∧ U+ for U ∈ Sm/S (see [35, Proposition 1.2℄).23



the 
anoni
al map HomSH(S)(X,BGL)⊗Z Q → HomSH(S)(X,BGLQ) is a bije
tion and themethods used to obtain 
orollaries 5.2.4 and 5.2.7 give the following result:Corollary 5.3.1 Let S be a regular s
heme. For all i ∈ Z, we have a 
anoni
al isomorphism:
HomSH(S)Q(BGLQ,BGLQ[−i]) ≃ lim(Ki(S) ⊗Z Q)Ω .De�nition 5.3.2 For all k ∈ Z−{0}, we let Ψk ∈ EndSH(S)Q(BGLQ) be the endomorphism
orresponding to the family (k−n(1 +U)k)n≥0 ∈ limQΩ (this family will also be denoted Ψk).We obviously have the relations Ψk◦Ψk′

= Ψkk′ . These Adams operations are 
onstru
tedhere with Q-
oe�
ients, but it su�
es to invert k to de�ne Ψk (there might exist an obstru
-tion to uniqueness in R1 limK1(S)[ 1
k ]Ω, in whi
h 
ase we may, as above, 
onstru
t it �rst on

Spec(Z) and 
hange the base).To obtain a better understanding of the ring of endomorphisms of BGLQ, we fo
us onproje
tive systems AΩ in the 
ase where A is a Q-ve
tor spa
e:De�nition 5.3.3 Let n ≥ 0. We de�ne pn = 1
n! logn(1 + U) ∈ Q[[U ]]. For any Q-ve
torspa
e A, we de�ne an appli
ation σ : AN → A[[U ]] by the formula

σ((an)n∈N) =

∞∑

n=0

anpn .The in�nite sum makes sense be
ause the U -valuation of pn equals n and thus tends to
+∞.Lemma 5.3.4 For any Q-ve
tor spa
e A, the morphism σ : AN → A[[U ]] is an isomorphismof topologi
al groups. If we let s : AN → AN be the shift operator s((an)n≥0) = (an+1)n≥0, wehave the equality σ ◦ s = ΩP1 ◦ σ.The topologies 
onsidered on AN and A[[U ]] are the in�nite produ
t topologies of thedis
rete topology on A. Then, the �rst statement obviously follows from the fa
t that the
U -valuation of pn is n. The se
ond follows from the equalities ΩP1(pn) = pn−1 for all n ≥ 1and ΩP1(p0) = 0.Proposition 5.3.5 For any Q-ve
tor spa
e, we may de�ne Σ: AZ → limAΩ by the formula

Σ((an)n∈Z) = (σ(an, an+1, an+2, . . . ))n≥0 ,i.e., Σ((an)n∈Z) =
∑

n∈Z anπn where πn = (pn+k)k≥0 ∈ limQΩ (with pi set to zero for i < 0).It immediately follows from lemma 5.3.4 whi
h identi�es the proje
tive system AΩ to theproje
tive system
. . .

s
→ AN s

→ AN s
→ AN ,whose proje
tive limit is AZ.
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Remark 5.3.6 If A = K0(S) ⊗Z Q, a variant of proposition 5.1.1 identi�es A[[U ]] to
EndSm/SoppAb(K0(−) ⊗Z Q) ,so that the 
omposition law indu
es a law ⋆ on A[[U ]] (see also remark 5.1.4). The operator

ΩP1 de�nes an endomorphism of the ring (A[[U ]],+,⋆) so that limAΩ inherits a stru
ture ofa topologi
al ring, whi
h is, as a ring, isomorphi
 to EndSH(S)Q(BGLQ).Proposition 5.3.7 If QN is endowed with its obvious ring stru
ture and Q[[U ]] with thelaw ⋆, then σ : QN → Q[[U ]] is an isomorphism of topologi
al rings. The same 
on
lu-sion applies to the isomorphism Σ: QZ ∼
→ limQΩ whose target identi�es to a subring of

EndSH(S)Q(BGLQ) for any nonempty regular s
heme S.We know that the Q-ve
tor spa
e of Q[[U ]] spanned by elements Ψk = (1 +U)k, k ≥ 0, isdense in Q[[U ]]. Hen
e, it remains to prove the 
onsisten
y of the formulas Ψkk′

= Ψk⋆Ψk′with respe
t to the appli
ation of σ−1 : A[[U ]]
∼
→ AN. This springs from the following lemma:Lemma 5.3.8 Let k ∈ Z − {0}. Then,

(1 + U)k = σ((kn)n≥0) , Ψk = Σ((kn)n∈Z) .Let (λn)n≥0 = σ−1(Ψk), where Ψk is identi�ed to (1+U)k. We know that ΩP1(Ψk) = kΨk.Then, lemma 5.3.4 implies that for all n ≥ 0, λn+1 = kλn, so that λn = knλ0. It remains to
ompute λ0. But, as it is the 
onstant term of the series (1 + U)k, we �nally get λ0 = 1.De�nition 5.3.9 For any n ∈ Z, the element πn ∈ limQΩ was introdu
ed in proposition 5.3.5and it is also the image by Σ: QZ → limQΩ of the 
hara
teristi
 fun
tion of {n} ⊂ Z.Thanks to proposition 5.3.7, for any regular s
heme S, πn identi�es to an idempotent of
EndSH(S)Q(BGLQ). As SH(S) has in�nite sums, it is pseudo-abelian (see [44, Proposi-tion II.1.2.9℄) and we may denote BGL

(n)
Q ⊂ BGLQ the image of the proje
tor πn.Theorem 5.3.10 Let S be a regular s
heme. The obvious morphism

⊕

n∈Z

BGL
(n)
Q → BGLQis an isomorphism in SH(S).Let n ≥ 0. We let χ[−n,n] be the 
hara
teristi
 fun
tion of {−n, . . . , n} ⊂ Z. The 
or-responding element of limQΩ via Σ and the asso
iated endomorphism of BGLQ are alsodenoted χ[−n,n]. It is the sum of the orthogonal idempotents πi for −n ≤ i ≤ n. Then, theimage of χ[−n,n] identi�es to ⊕

−n≤k≤n BGL
(k)
Q .To prove that the morphism above is an isomorphism, it su�
es to prove that for any�nitely presented obje
t X ∈ SH(S), the indu
ed map

HomSH(S)(X,
⊕

n∈Z

BGL
(n)
Q ) → HomSH(S)(X,BGLQ)is a bije
tion. Due to previous observations, this map is inje
tive and its image is madeof elements x ∈ HomSH(S)(X,BGLQ) su
h that for a big enough n, χ[−n,n](x) = x. Asthe sequen
e (χ[−n,n])n∈N of elements of QZ tends pointwise to the 
onstant fun
tion 1, thetheorem shall be a 
onsequen
e of the following general lemma:25



Lemma 5.3.11 Let S be a regular s
heme. Let (fn)n∈N be a sequen
e of elements in thegroup lim(K0(S) ⊗Z Q)Ω whi
h 
onverges to an element f . Then, for any �nitely presentedobje
t X in SH(S) and x ∈ HomSH(S)(X,BGLQ), there exists an integer N su
h that for all
n ≥ N , fn(x) = f(x), where fn and f are identi�ed to endomorphisms of BGLQ.Using the fa
t that the triangulated 
ategory SH(S)pf identi�es to the pseudo-abelian hullof the 
ategory SW (S)ft [45, page 591℄, we may assume that X = (P1)∧−k ∧ Y where Y is aspa
e of �nite type (e.g., Si ∧ U+ where i ≥ 0 and U ∈ Sm/S). Then, we are redu
ed to anunstable lemma:Lemma 5.3.12 Let S be a regular s
heme. Let (τn)n∈N be a sequen
e of elements in the group
K0(S)Q[[U ]] whi
h 
onverges to an element τ . Then, for any spa
e of �nite type X ∈ H•(S)and y ∈ HomH•(S)(X,Z × Gr), there exists N ≥ 0 su
h that for all n ≥ N , τn(y) = τ(y).Variants of lemma 5.1.2 and remark 5.1.3 show that the lemma is true if Y = U+ with
U ∈ Sm/S. It holds more generally if X is a pointed smooth S-s
heme, for the obviousmap HomH•(S)(X,Z ×Gr) → HomH•(S)(X+,Z×Gr) is a split monomorphism, whi
h, aftertensoring with Q, 
ommutes to τ and the τn.The general 
ase follows. As X is of �nite type, any x ∈ HomH•(S)(Y,Z×Gr) will fa
torthrough a disjoint union of �nite Grassmann varieties. Then, there exists a pointed smooth
S-s
heme U , u ∈ HomH•(S)(U,Z × Gr) and f : Y → U in H•(S) su
h that y = f⋆(u). Bythe previous 
ase, there exists an integer N su
h that τn(u) = τ(u) for n ≥ N . Hen
e,
τn(y) = τn(f⋆u) = f⋆τn(u) = f⋆τ(u) = τ(y) for n ≥ N .Remark 5.3.13 One may �nd some inspiration from lemma 5.3.11 so as to de�ne a topologyon groups of morphisms HomT (E,F) in a triangulated 
ategory T (where 
oprodu
ts exist):the weakest one su
h that for any morphism x : X → E with X ∈ T pf , the 
omposition with
x indu
es a 
ontinuous map HomT (E,F) → HomT (X,F) where the target is endowed withthe dis
rete topology. Then, the lemma would say that in the 
ase of EndSH(S)(BGLQ), thistopology is the same as the one introdu
ed in remark 5.3.6.Proposition 5.3.14 For any n ∈ Z, the dire
t fa
tor BGL

(n)
Q of BGLQ is preserved by Ψkfor all k ∈ Z − {0} and Ψk a
ts on it by multipli
ation by kn.It follows from the following equalities in EndSH(S)(BGLQ):

Ψk ◦ πn = πn ◦ Ψk = knπn ,whi
h 
an be proved using their interpretations in the 
ommutative subring QZ (see proposi-tion 5.3.7).Corollary 5.3.15 For all k ∈ Z−{0,±1} and n ∈ Z, the endomorphism Ψk−knid of BGLQhas a kernel whi
h is BGL
(n)
Q .Using easy 
omputations in QZ, we get the existen
e of an automorphism φn,k of BGLQsu
h that φn,k ◦ (Ψk − knid) = id − πn. Hen
e, the kernel of Ψk − knid is the same as thekernel of id − πn, whi
h is BGL

(n)
Q by de�nition.In other words, the de
omposition of theorem 5.3.10 
an be thought as a de
ompositionof BGLQ into a sum of eigenspa
es BGL

(n)
Q for the Adams operations.26



Remark 5.3.16 For any a ∈ Ki(S)Q, the 
onstant family a(1+U) belongs to limKi(S)ΩQ (it
an be interpreted as the natural transformationK0(−)Q → Ki(−)Q given by the multipli
ationby a). It indu
es a morphism µa : BGLQ → BGLQ[−i]. If a ∈ Ki(S)(r), one easily sees that
µa maps BGL

(n)
Q to BGL

(n+r)
Q [−i] for all n ∈ Z. Hen
e, we get a map

Ki(S)(r) → HomSH(S)(BGL
(n)
Q ,BGL

(n+r)
Q [−i])whi
h is easily shown to be a bije
tion for all n ∈ Z and r ∈ Z.It S is a regular s
heme of �nite Krull dimension, the γ-�ltration on Ki(X) has �nitelymany steps for all X ∈ Sm/S (see [42, �2℄); it 
an be used to prove that BGLQ is not onlythe dire
t sum of the BGL

(n)
Q but also their in�nite produ
t in SH(S). This allows to givea des
ription of morphisms BGLQ → BGLQ[−i] as in�nite matri
es (am,n)(m,n)∈Z2 where

am,n ∈ Ki(S)(m−n) 
orresponds to µam,n : BGL
(n)
Q → BGL

(m)
Q [−i].De�nition 5.3.17 Let S be a regular s
heme. We set HÁ = BGL

(0)
Q ∈ SH(S)Q.Using the periodi
ity isomorphism Hom•(P

1,BGLQ) ≃ BGLQ, we get 
anoni
al iso-morphisms BGL
(n)
Q ≃ HÁ ∧ (P1)∧n for all n ∈ Z.Remark 5.3.18 By its �de�nition� as an eigenspa
e of Adams operations on the obje
t BGLQwhi
h represents rationalized algebrai
 K-theory, this obje
t HÁ represents motivi
 
ohomologyas it was �rst introdu
ed by Beilinson (see [7℄).6 Riemann-Ro
h theorems6.1 Adams-Riemann-Ro
hThe Adams-Riemann-Ro
h theorem [14, Theorem 7.6℄ says that if f : X → S is a proje
tivemorphism between regular s
hemes, then for all k ∈ Z − {0} and x ∈ K0(X) ⊗Z Q:

Ψk(f⋆x) = f⋆(Ψ
kx · (θkΩf )−1) ,where f⋆ : K0(X) → K0(S) is the dire
t image in K-theory and θkΩf is Bott's 
annibalisti

lass asso
iated to the virtual 
otangent bundle. It 
an be stated as a 
ommutative square:

K0(X)
Ψk(−)·(θkΩf )−1

//

f⋆

��

K0(X)

f⋆

��

K0(S)
Ψk

// K0(S)We shall obtain that for a proje
tive and smooth morphism between regular s
hemes,this diagram 
an be re�ned as a 
ommutative diagram in SH(S), where K0(S) is repla
edby BGLQ,S (we add the subs
ript S as a remainder of the base s
heme) and K0(X) by
Rf⋆BGLQ,X where Rf⋆ : SH(X) → SH(S) is the fun
tor 
onstru
ted in [37, Proposition 4.4℄.The proof will pro
eed by showing that the diagram in SH(S) 
ommutes if and only if therelation stated at the level of K0 in the standard Adams-Riemann-Ro
h theorem is true not27



only for f : X → S but for all morphisms fT : XT → T dedu
ed from f by base 
hange alongsmooth morphisms T → S.One may expe
t that the homotopi
 version of Adams-Riemann-Ro
h we state below(see theorem 6.1.2.1) has both sense and truthfulness for more general proje
tive morphismsbetween regular s
hemes. However, the assumption that f is proje
tive and smooth shall beused at several steps and thus should be 
onsidered as important in this method.6.1.1 Pushforwards on BGLProposition 6.1.1.1 Let f : X → S be a proje
tive and smooth morphism between regulars
hemes. There exists a morphism Rf⋆BGLX
f⋆
→ BGLS in SH(S) su
h that for any n ∈ Z,

i ∈ N, T ∈ Sm/S, the map indu
ed after applying the fun
tor HomSH(S)((P
1)∧n∧Si∧T+,−)identi�es to the usual pushforward in K-theory f⋆ : Ki(XT ) → Ki(T ) where XT = X ×S T .Lemma 6.1.1.2 Let f : X → S be a proje
tive and smooth morphism between regulars
hemes. There exists a morphism Rf⋆(Z × GrX)

f⋆
→ Z × GrS in H•(S) su
h that afterthe appli
ation of HomH•(S)(S

i ∧ T+,−) for all T ∈ Sm/S, we get the usual pushforward in
K-theory f⋆ : Ki(XT ) → Ki(T ) where XT = X ×S T .We have to use an homotopi
al des
ription of these pushforwards in a way whi
h shouldbe stri
ly fun
torial in T ∈ Sm/S. We use Thomason's model [43, Lemma 3.5.3℄: for anyregular s
heme X, we 
onsider the 
ompli
ial biWaldhausen 
ategory C(X) of perfe
t boundedabove 
omplexes of �at OX-modules 2. For any (regular) base s
heme S, it is easy to turnthis 
onstru
tion into a presheaf CS of 
ompli
ial biWaldhausen 
ategories over Sm/S, with
CS(X) equivalent to C(X) for all X ∈ Sm/S. Then, the asso
iated presheaf of K-theoryspa
es KCS is a model of algebrai
 K-theory (i.e., it is 
anoni
ally isomorphi
 to Z × Gr in
H•(S), see Proposition 3.1.5). At this stage, it is obvious that KCX is a
y
li
 for the fun
tor
f⋆, i.e., we have a 
anoni
al isomorphism Rf⋆KCX ≃ f⋆KCX in H•(S).We shall 
onstru
t the expe
ted morphism f⋆ : Rf⋆(Z×GrX) → Z×GrS as a morphism
f⋆KCX → KCS. The details follow. We 
hoose a �nite open 
over U = {U1, . . . , Un} of Xsu
h that all the indu
ed morphisms fi : Ui → S are a�ne (as we assumed S separated, anya�ne open 
over of X has this property). For any nonempty subset I of {1, . . . , n}, we set
UI = ∩i∈IUi and denote fI : UI → S the restri
tion of f to these subs
hemes.For any T ∈ Sm/S, we 
onsider the base 
hange fT : XT → T of f along T → S andintrodu
e the morphisms fI,T : UI ×S T → T dedu
ed from fI for all nonempty subsets I of
{1, . . . , n}. These morphisms fI,T are a�ne and �at. For anyM ∈ C(XT ), we de�ne (f•,T )⋆Mas the total 
omplex of the �e
h type bi
omplex:

· · · → 0 → ⊕1≤i≤n(fi,T )⋆M → ⊕1≤i<j≤n(fi,j,T )⋆M → . . . ,where the �rst a priori non trivial obje
t lies in 
ohomologi
al degree 0. As f is �at, the obje
t
(f•,T )⋆M is a bounded 
omplex of �at OT -modules and from standard results in 
oherent
ohomology (see [20, Théorème 3.2.1℄), (f•,T )⋆M represents RfT ⋆M in the derived 
ategory
D(T,OT ) and is perfe
t. Hen
e, we have de�ned a fun
tor (f•,T )⋆ : C(XT ) → C(T ) for any
T ∈ Sm/S. This 
onstru
tion 
ommutes up to 
anoni
al isomorphisms with the inverse imagefun
tors (i.e., the presheaf stru
ture on CS) asso
iated to morphisms T ′ → T in Sm/S. It2Note that we have to �x suitable 
ardinality bounds so as to get (essentially) small 
ategories.28



is an easy game to modify the de�nitions so as to get stri
t 
ompatibilities. Finally, we mayapply the K-theory fun
tor to obtain the expe
ted morphism f⋆KCX
f⋆
→ KCS of presheavesof pointed sets on Sm/S.The 
ompatibility between pushforwards and external produ
ts implies that we may usethe morphism from lemma 6.1.1.2 to de�ne a morphism Rf⋆BGLX → BGLS up to stablyphantom maps (i.e., in SHnaïve(S)). In the statement of proposition 6.1.1.1, there is nouniqueness 
laim. However, we shall see in the sequel that it will be the 
ase after tensoringwith Q.6.1.2 Statement of the theoremTheorem 6.1.2.1 Let f : X → S be a proje
tive and smooth morphism between regulars
hemes. Then, the following diagram in SH(S) 
ommutes:

Rf⋆BGLQ,X

f⋆

��

Rf⋆(θk(Ωf )−1·Ψk(−))
// Rf⋆BGLQ,X

f⋆

��

BGLQ,S
Ψk

// // BGLQ,Swhere both verti
al maps are the pushforward morphism 
onstru
ted in proposition 6.1.1.1(tensored with Q), the lower map is Ψk ∈ EndSH(S)(BGLQ,S) (see de�nition 5.3.2) and theupper map is obtained by applying Rf⋆ to the endomorphism of BGLQ,X 
orresponding to Ψkmultiplied by the inverse of Bott's 
annibalisti
 
lass 3.Corollary 6.1.2.2 Let f : X → S be a proje
tive and smooth morphism between regulars
hemes. Then, the following diagram 
ommutes for any i ∈ Z:
Ki(X)

Ψk(−)·(θkΩf )−1

//

f⋆

��

Ki(X)

f⋆

��

Ki(S)
Ψk

// Ki(S)Corollary 6.1.2.2 is dedu
ed from the statement of theorem 6.1.2.1 by applying fun
tors
HomSH(S)(S

i ∧ T+,−). Conversely, I 
laim that two morphisms Rf⋆BGLQ,X → BGLQ,Sin SH(S) are equal as soon as they indu
e equal maps after the appli
ation of fun
tors
HomSH(S)((P

1)∧−n ∧ T+,−) for all n ∈ N and T ∈ Sm/S. This will be the goal of the-orem 6.1.3.2 in the paragraph whi
h follows. Then, theorem 6.1.2.1 shall follow from the
lassi
al Adams-Riemann-Ro
h theorem (i.e., the 
ase i = 0 in 
orollary 6.1.2.2).6.1.3 Morphisms Rf⋆BGLQ,X → BGLQ,SDe�nition 6.1.3.1 For all (i, j) ∈ Z2, we de�ne a fun
tor πi,j : SH(S) → Sm/SoppAb by
(πi,jE)(U) = HomSH(S)((P

1)∧j ∧ Si−2j ∧ U+,E) ;they are the fun
tors �presheaves of stable homotopy groups�.3It makes sense as previous results show that EndSH(X)(BGLQ,X) is a module over K0(X) ⊗Z Q.29



Theorem 6.1.3.2 Let f : X → S be a proje
tive and smooth morphism between regulars
hemes. Let τ : Rf⋆BGLQ,X → BGLQ,S be a morphism in SH(S) su
h that for all n ∈ Z,
π2n,n(τ) = 0 4. Then, τ = 0.We use the theory of stable homotopi
 fun
tors (see [6℄ and also [37, Remarque 4.6℄).Thus, we have a dire
t image fun
tor with proper support Rf! : SH(X) → SH(S) whi
hhas a right adjoint f !. As f is proje
tive, we have a 
anoni
al isomorphism Rf!

∼
→ Rf⋆.Then, by adjun
tion, the morphism τ : Rf⋆BGLQ,X → BGLQ,S 
orresponds to a morphism

τ̃ : BGLQ,X → f !BGLQ,S .Lemma 6.1.3.3 We let f : X → S be a proje
tive and smooth morphism between regulars
hemes.(i) There exists a 
anoni
al isomorphism f !BGLQ,S ≃ BGLQ,X in SH(X).(ii) For any ve
tor bundle E over X, we have a 
anoni
al isomorphism BGLQ,X ∧ Th E ≃
BGLQ,X in SH(X).By de�nition of f !, for any E ∈ SH(S), we have an isomorphism f !E ≃ f⋆E∧ThTf where

Tf is the relative tangent bundle of f and ThTf its Thom spa
e. As f⋆BGLQ,S identi�es to
BGLQ,X , (i) will follow from (ii).To prove (ii), we 
onsider the isomorphism Th E ≃ P(E⊕OX)/P(E) 5 and the 
lass ξ of thefundamental sheaf O(1) in K0(P(E ⊕OX)). We may set v = ξr− [∧1E ]ξr−1 +[∧2E ]ξr−2 + · · ·+
(−1)r[∧rE ] ∈ K0(P(E ⊕ OX)) where r is the rank of E . The 
lass v vanishes when restri
tedto P(E). Hen
e, v a
tually de�nes an element in K̃0(Th E). In this paragraph, K̃0(Y ) is theredu
ed K-theory of a pointed spa
e Y , i.e., HomH•(S)(Y,Z × Gr), whi
h identi�es to thekernel of the map K0(Y ) → K0(S) given by the base-point. Even if we use the same notation,it should not be 
onfused with the kernel of rk: K0(X) → Zπ0(X), whi
h makes sense for
X ∈ Sm/S.Using the multipli
ative stru
ture on Z×Gr, we may 
onsider the external produ
t with
v in H•(S):

Z × Gr → RHom•(Th E ,Z × Gr) ,whi
h is seen to be an isomorphism thanks to 
omputations using the proje
tive bundleformula. Using this morphism termwise, we get the expe
ted isomorphism
BGLX

∼
→ RHom•(Th E ,BGLX)in SHnaïve(X) 6. As Th E is invertible for the ∧-produ
t on SH(X) (see proposition 4.1.1),property (ii) follows.4One may noti
e that π2n,n(τ ) = 0 implies π2(n+1),n+1(τ ) = 0.5We, relu
tantly, do not follow Grothendie
k's 
onvention. Here, P(E) is the proje
tivisation of the sym-metri
 algebra of the dual of E .6This 
onstru
tion may also be dedu
ed from a more universal pairing (Z × Gr) ∧ BGL → BGL whi
hshould be 
onstru
ted �rst in SH(Spec(Z)). However, when one want to ta
kle the trouble of stably phantomsmorphisms, one has to use di�erent arguments than those appearing in this arti
le. To do this, we 
an use [36,Lemma A.6℄ whi
h we used there to obtain another proof of the 
onstru
tion of BGL, see 
orollary 5.2.7. Thismethod 
an be 
ontinued in order to obtain an asso
iative and 
ommutative pairing BGL∧BGL → BGL in

SH(S) (see [21, Theorem 2.2.1℄). 30



Lemma 6.1.3.4 Let ψ : E → F be a morphism in SH(S). We assume that F is su
h thatfor any U ∈ Sm/S, ve
tor bundle E on U and n ∈ Z, the 
anoni
al map F̃2n,n(ThU E) →
F2n,n(P(E ⊕ OU )) is inje
tive 7. We also assume that π2n,n(ψ) = 0 for all n ∈ Z. Then, forany ve
tor bundle E on U ∈ Sm/S and any n ∈ Z, the map HomSH(X)((P

1)∧n∧ThU (−E), ψ)vanishes (see de�nition 4.1.2).Using Jouanolou's tri
k, we may assume that U is a�ne. Then, the virtual bundle −Eidenti�es to a di�eren
e F − Ok
U where F is a genuine ve
tor bundle and k ∈ N. Then, wewant to prove that for any n ∈ Z, the morphism HomSH(S)((P

1)∧n ∧ThU F , ψ) vanishes. As,
ThU F = P(F⊕OU )/P(F), the result follows from the se
ond assumption for U = P(F⊕OU )and the inje
tivity stated in the �rst assumption.Now, we shall prove theorem 6.1.3.2. We may apply lemma 6.1.3.4 to τ : Rf⋆BGLQ,X →
BGLQ,S . Then, as f!E ≃ f♯(E ∧ ThX(−Tf)) for any E ∈ SH(X), we obtain the vanishingof the maps HomSH(S)(f!((P

1)∧n ∧ U+), τ) for all n ∈ Z and U ∈ Sm/X. By adjun
tion, itimplies that the maps HomSH(X)((P
1)∧n∧U+, τ̃) vanish. As we know that τ̃ 
an be identi�edto an endomorphism of BGLQ,X (see lemma 6.1.3.3), we 
an use the results of se
tion 5 toassert that τ̃ = 0. Finally, by adjun
tion, τ = 0.6.2 Motivi
 Eilenberg-Ma
 Lane spe
tra6.2.1 Morphisms Z × Gr → K(Z(n), 2n)De�nition 6.2.1.1 Let k be a perfe
t �eld. For any n ≥ 0, we denote K(Z(n), 2n) the motivi
Eilenberg-Ma
 Lane spa
e de�ned in [45, �6.1℄. For i ≥ 0. we let K(Z(n), 2n − i) be its ithloop spa
e.By de�nition, for any n ≥ 0 and i ≥ 0, the group HomH(k)(X,K(Z(n), 2n−i)) identi�es tothe motivi
 
ohomology group H2n−i(X,Z(n)). The 
omparison with (higher) Chow groups[46℄ implies that for any n ≥ 0, there is a 
anoni
al isomorphism π0K(Z(n), 2n) ≃ CHn(−)in Sm/koppAb where CHn(−) is the presheaf X 7−→ CHn(X).Theorem 6.2.1.2 Let k be a perfe
t �eld. Let n ≥ 0. Then, the fun
tor π0 indu
es a bije
tion:

HomH(k)(Z × Gr,K(Z(n), 2n))
∼
→ HomSm/koppSets(K0(−), CHn(−)) .Moreover, the graded algebra (HomSm/koppSets(K̃0(−), CHn(−))n∈N identi�es to the polyno-mial algebra Z[c1, c2, . . . ] where ci lies in degree i and 
orresponds to the ith Chern 
lass

ci : K̃0(−) → CH i(−).The �rst statement follows from the fa
t that whenever d ≤ d′ and r ≤ r′, the in
lusion
Grd,r ⊂ Grd′,r′ indu
es a split monomorphisms M(Grd,r) ⊂ M(Grd′,r′) on motives. Thisfa
t follows from the 
ellularity of Grd,r, Grd′,r′ and Grd′,r′ −Grd,r (see [24, �3℄ for a similarstatement). Then, any obje
t representing a 
ohomology whi
h fa
tors through the 
ategoryof motives will satisfy property (K) with any number of operands (see de�nition 1.2.2) andwe may use theorem 1.1.6.The se
ond part arises from the 
omputation of Chow groups of Grassmann varieties Grd,rfor d, r ≥ 0 (see [19℄) and the passage to the limit r → ∞ and d → ∞ as it was done for thealgebrai
 K-theory.7We use standard impli
it 
onvention. More pre
isely, this map is the result of the appli
ation of the fun
tor
HomSH(S)((P

1)∧n
∧ −,F) to the 
anoni
al morphism P(E ⊕ OU )+ → ThU E in H•(S).31



6.2.2 Additive morphismsThe proof of theorem 6.2.1.2 applies not only to natural transformations K0(−) → CHn(−)but also to natural transformations involving several operands, e.g., K0(−) × K0(−) →
CHn(−). Hen
e, H-group morphisms Z × Gr → K(Z(n), 2n) 
orrespond to morphisms
K0(−) → CHn(−) in Sm/koppAb (see proposition 2.2.3). The group of these morphisms isdes
ribed in the following proposition:Proposition 6.2.2.1 Let k be a perfe
t �eld. For any n ≥ 0, the map given by the evaluationat [O(1)] in K0(P

n) indu
es an isomorphism:
HomSm/koppAb(K0(−), CHn(−))

∼
→ lim

r∈N
CHn(Pr) ≃ CHn(Pn) ≃ Z .We denote χn : K0(−) → CHn(−) the 
anoni
al generator given by this isomorphism. It is
hara
terised by the fa
t that χn([L]) = [D]n anytime L is a line bundle on X ∈ Sm/S and

D is the divisor of a rational se
tion of L.The proof of the inje
tivity of the map
HomSm/koppAb(K0(−), CHn(−))

∼
→ lim

r∈N
CHn(Pr)is similar to that of proposition 5.1.1. The group limr∈NCHn(Pr) is easily identi�ed to thegroup Z, generated by the 
ompatible family made of nth powers of 
lasses in hyperplanes in

Pr for all r ∈ N. For the surje
tivity, i.e., the existen
e of χn, we shall use the following lemma,whi
h is a 
onsequen
e of the theory of symmetri
 polynomials (hint: use [1, VI 4.3-4.4℄):Lemma 6.2.2.2 Let n ≥ 1. There exists a unique fun
torial homomorphism
χn : (1 +A[[t]]+,×) → (A,+)for all 
ommutative rings A su
h that for any x ∈ A,

χn(1 + xt) = xn ,and χn vanishes on the subgroup 1 + tn+1A[[t]].Note that by looking at the universal situation, we know that χn(
∑

i≥0 ait
i) is given by apolynomial in a1, . . . , an and it is homogeneous of total degree n if we set deg ai = i.For any X ∈ Sm/k, u ∈ K0(X), we 
onsider the Chern polynomial ct(u) ∈ CH⋆(X)[[t]]and apply the 
onstru
tion of the lemma to this series : χn(ct(u)) ∈ CHn(X). This 
onstru
tsa natural transformation K0(−) → CHn(−) to whi
h we give the same name χn. This �nishesthe proof of the proposition in the 
ase n ≥ 1; the remaining 
ase n = 0 is trivial.Remark 6.2.2.3 As we have seen it, the natural transformation χn : K0(−) → CHn(−) isgiven by a polynomial involving Chern 
lasses. It 
an be 
omputed indu
tively using Newtonrelations:

χk − c1χk−1 + · · · + (−1)k−1ck−1χ1 + (−1)kkck = 0 .For instan
e, χ1 = c1, χ2 = c21 − 2c2, χ3 = c31 − 3c1c2 + 3c3.32



The following similar result gives a 
omputation of the group of H-group morphisms
Z × Gr → K(Z(n), 2n) in H•(k).Corollary 6.2.2.4 Let k be a perfe
t �eld, n ≥ 0, i ≥ 0. For any 0 ≤ j ≤ min(i, n) and
x ∈ H2j−i(k,Z(j)), we de�ne a natural transformation x · χn−j : K0(−) → H2n−i(−,Z(n))of presheaves of abelian groups on Sm/k, obtained as the 
omposition of χn−j and the multi-pli
ation by x on motivi
 
ohomology. Then, the group of natural transformations K0(−) →
H2n−i(−,Z(n)) identi�es to the dire
t sum of the groups H2j−i(k,Z(j)) for 0 ≤ j ≤ min(i, n),as follows:

HomSm/koppAb(K0(−),H2n−i(−,Z(n))) ≃

min(i,n)⊕

j=0

H2j−i(k,Z(j)) · χn−j .6.2.3 Stable morphismsThe motivi
 Eilenberg-Ma
 Lane spe
trum HZ is obtained from the sequen
e of obje
ts
K(Z(n), 2n) (see [45, �6.1℄). We may des
ribe its image in SHnaïve(k) by saying that thedi�erent Eilenberg-Ma
 Lane spa
es are related by the 
anoni
al isomorphism K(Z(n), 2n) ≃
RHom•(P

1,K(Z(n + 1), 2n + 2) indu
ed by the external produ
t with the 
lass of the 1-
odimensional 
y
le [∞] in CH1(P1). This 
onstru
tion generalises to give a P1-spe
trum
HA for any 
oe�
ient abelian group A.In order to study morphisms BGL → HZ[−i] for i ≥ 0, we use the following de�nition.De�nition 6.2.3.1 Let n ≥ 1 and i ≥ 0. Let τ : K0(−) → H2n−i(−,Z(n)) be an additivenatural transformation, i.e., a morphism in Sm/koppAb. We de�ne a natural transformation
ΩP1(τ) : K0(−) → H2n−2−i(−,Z(n− 1)) whi
h shall be 
hara
terised by the 
ommutativity ofthe following diagram for all X ∈ Sm/k:

K0(X)
u⊠−

//

Ω
P1 (τ)

��

K0(P
1 ×X)

τ

��

H2n−2−i(X,Z(n − 1))
[∞]⊠−

// H2n−i(P1 ×X,Z(n))where u = [O(1)] − 1 ∈ K0(P
1) and [∞] is the 
lass of a rational point in CH1(P1) =

H2(P1,Z(1)).Lemma 6.2.3.2 Let k be a perfe
t �eld. For any n ≥ 1, we have ΩP1(χn) = nχn−1.By the splitting prin
iple, it su�
es to 
he
k that ΩP1(χn) and nχn−1 
oin
ide on elementsof the form [L] ∈ K0(X) where L is a line bundle on some X ∈ Sm/k. Let D be the divisorof a rational se
tion of L. Considering CH⋆(X × P1) both as an algebra over CH⋆(X) and
CH⋆(P1), we get:

[∞] ⊠ ΩP1(χn)([L]) = χn(u⊠ [L])

= χn([O(1) ⊠ L]) − χn(OP1 ⊠ L)

= ([∞] + [D])n − [D]n = n[∞][D]n−1

= [∞] ⊠ (nχn−1([L])) ,33



whi
h proves the expe
ted result: ΩP1(χn)([L]) = nχn−1([L]).This lemma leads to a des
ription of the proje
tive system
(Hom+

H•(S)(Z × Gr,K(Z(n), 2n)))n∈Ndedu
ed from the bonding morphisms on BGL and HZ; it identi�es to a proje
tive systemwhi
h we shall denote Z!:
· · · → Z

5
→ Z

4
→ Z

3
→ Z

2
→ Z

1
→ Z .We generalise this de�nition:De�nition 6.2.3.3 Let A be an abelian group. We de�ne a proje
tive system A! of abeliangroups indexed by N by saying that in degree n ∈ N, (A!)n = A and the transition map

(A!)n → (A!)n−1 is the multipli
ation by n on A.De�nition 6.2.3.4 If X• = (· · · → Xn
fn−1
→ Xn−1 → · · · → X1

f0
→ X0) is a proje
tive systemof abelian groups indexed by N, we de�ne a new proje
tive system sX• = (· · · → Xn

fn−1
→

Xn−1 → · · · → X1
f0
→ X0 → 0).Proposition 6.2.3.5 Let A be an abelian group. We let HA be the motivi
 Eilenberg-Ma
Lane spe
trum with 
oe�
ients in A. Then, for any i ∈ Z, the proje
tive system

(Hom+
H•(k)(Z × Gr,K(A(n), 2n − i))n∈Nasso
iated to the P1-spe
tra BGL and HA[−i] identi�es to

i∏

j=0

sjH2j−i(k,A(j))! .For i ≥ 0, it follows from A-valued variants of 
orollary 6.2.2.4 and lemma 6.2.3.2. If
i < 0, K(A(n), 2n− i) identi�es to RHom•(G

∧−i
m ,K(A(n), 2n)) and both proje
tive systemsvanish.Then, we observe that for any abelian group A, limA! ≃ Hom(Q, A) and R1 limA! ≃

Ext(Q, A), and that the shift fun
tor s does not 
hange lim and R1 lim of proje
tive systems.Thus, we get the following theorem:Theorem 6.2.3.6 Let k be a perfe
t �eld. Let A be an abelian group. Let i ∈ Z. There is a
anoni
al short exa
t sequen
e:
0 →

i+1∏

j=0

Ext(Q,H2j−i−1(k,A(j))) → HomSH(k)(BGL,HA[−i])

→
i∏

j=0

Hom(Q,H2j−i(k,A(j))) → 0 ,where the group on the right side identi�es to morphisms in SHnaïve(k) and the group on theleft to stably phantom morphisms. 34



Corollary 6.2.3.7 (Existen
e of nonzero stably phantom morphisms) Let k be a per-fe
t �eld. There exists an isomorphism
HomSH(k)(BGL,HZ[1]) ≃ Ext(Q,Z) ≃ Ẑ/Z ,and all these morphisms f : BGL → HZ[1] are stably phantom, i.e., for any morphism in

SH(k) of the form g : (P1)∧−n ∧W → BGL where n ∈ Z and W ∈ H•(k), the 
omposition
f ◦ g vanishes (see [37, Dé�nition 6.6℄).Remark 6.2.3.8 Most of the results appearing in this arti
le have homologues in the 
lassi
alhomotopy theory and are 
oherent with �
omplex points fun
tors� from A1-homotopy 
ategoriesto usual (topologi
al) homotopy 
ategories. In parti
ular, the spe
trum BGL(C) obtained asthe image of BGL by the �
omplex points fun
tors� SH(C) → SHtop represents topologi
al
omplex K-theory (see [37, Remarque 2.16℄). Then, if Htop

Z ∈ SHtop is the 
lassi
al Eilenberg-Ma
 Lane spe
trum, we get the same 
omputation of the group HomSHtop(BGL(C),Htop
Z [1]).The example of stably phantom morphisms in SHtop whi
h we hereby get may be 
onsideredas simpler than those 
onstru
ted by Christensen [8, Proposition 6.10℄.De�nition 6.2.3.9 Let k be a perfe
t �eld. We let ch : BGL → HQ be the 
anoni
al generatorof HomSH(k)(BGL,HQ) ≃ Q. This is the Chern 
hara
ter. Using Bott periodi
ity (BGL ≃

RHom•(P
1,BGL)), we dedu
e from it a sequen
e of morphisms chi : BGLQ → HQ(i)[2i]where HQ(i) = HQ ∧ (P1)∧i[−2i]. The total Chern 
hara
ter is ∏

i chi:
cht : BGLQ →

∏

i∈Z

HQ(i)[2i](the in�nite produ
t on the right is also a dire
t sum).Remark 6.2.3.10 Remark 5.3.18 may be 
ontinued as follows. One easily sees that the Chern
hara
ter ch : BGLQ → HQ vanishes on BGL
(i)
Q (see theorem 5.3.10) for i 6= 0 so that itfa
tors through its dire
t fa
tor HÁ (see de�nition 5.3.17) as BGLQ → HÁ ch(0)

→ HQ. Itfollows from known results (see [29℄) that ch(0) : HÁ → HQ is an isomorphism; equivalently,
cht : BGLQ → ⊕i∈ZHQ(i)[2i] is an isomorphism.6.3 Grothendie
k-Riemann-Ro
hFor simpli
ity, we only 
onsider the 
ase of a proje
tive and smooth morphism f : X → S in
Sm/k where k is a perfe
t �eld. We let d be the relative dimension of f . The �restri
tion� of
HQ ∈ SH(k) to X and S provides obje
ts in SH(X) and SH(S) whi
h shall also be denoted
HQ; they satisfy f⋆HQ ≃ HQ. To f is atta
hed a morphism of motives Z(d)[2d] →M(X) in
DM(S) (see [22, �I.4.4℄) whi
h indu
es a morphism f⋆ : RHom•(X+,HQ) → HQ(−d)[−2d] in
SH(S). This morphism indu
es the pushforward maps

f⋆ : Hp(X ×S T,Z(q)) → Hp−2d(T,Z(q − d)) ,for all T ∈ Sm/S. 35



Theorem 6.3.1 Let k be a perfe
t �eld. Let f : X → S be a proje
tive and smooth morphismin Sm/k. Then, the following diagram 
ommutes in SH(S):
Rf⋆BGLQ

f⋆

��

Rf⋆(ch·TdTf )
//
∏

i∈Z Rf⋆HQ(i)[2i]

f⋆

��

BGLQ
ch

//
∏

i∈Z HQ(i)[2i]The proof is similar to that of theorem 6.1.2.1. This statement is equivalent to the usualGrothendie
k-Riemann-Ro
h theorem for morphisms fT : X ×S T → T for all T ∈ Sm/S(whi
h is known to be true, see [13, Chapter 15℄). The reason for this is the variant oftheorem 6.1.3.2: a morphism τ : BGLQ → HQ(i)[2i] vanishes if and only if it vanishes afterthe appli
ation of fun
tors π2n,n : SH(S) → Sm/SoppAb for all n ∈ Z.Corollary 6.3.2 Let k be a perfe
t �eld. Let f : X → S be a proje
tive and smooth morphismin Sm/k. For any j ∈ N, the following diagram 
ommutes:
Kj(X)

cht·TdTf
//

f⋆

��

∏
i∈ZH

2i−j(S,Q(i))

f⋆

��

Kj(S)
cht

//
∏

i∈ZH
2i−j(S,Q(i))This gives another proof of some results by Gillet [16℄ on higher Riemann-Ro
h theorems.Referen
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