
Realization functors

Joël Riou

2006-07-26

1 Weil cohomologies

1.1 Notations

The main reference for this talk is the book by Yves André :

References

[1] Une introduction aux motifs (motifs purs, motifs mixtes, périodes), Panoramas et synthèses
17 (2004). Société Mathématique de France.

We �x a base �eld k. Let V be the category of smooth and projective varieties over k.

Let F be a �eld of coe�cients. We shall assume that F is of characteristic zero. Let VecGrF

be the category of �nite dimensional Z-graded F -vector spaces (with Koszul rule).

1.2 De�nitions

Weil cohomologies

De�nition 1. A Weil cohomology is a contravariant functor H : V → VecGr≥0
F :

• dim H2(P1) = 1 (the Tate twist (1) is the tensor product with the dual of H2(P1));

• Künneth formula: H(X)⊗H(Y ) ∼→ H(X × Y );

• Poincaré duality: there is a multiplicative trace map H2d(X)(d) → F inducing perfect
pairings Hi(X)⊗H2d−i(X)(d)→ H2d(X)(d)→ F for any X ∈ V that is connected and of
dimension d;

• there is a cycle class map cl : CH?(X) → H2?(X)(?), contravariant in X ∈ V, compatible
with products and normalized with the trace map so that the trace of the cycle class of
0-cycles be given by the degree 1.

Remark 1. If H : Vopp → VecGrF is a symmetric monoidal functor that leads to a Weil cohomol-
ogy, then the cycle class is unique. It follows from the theory of Chern classes and the following
diagram: ⊕

n∈N
CHn(X)Q cl //

⊕
n∈N

H2n(X)(n)

K0(X)Q

∼ ch

OO 77

where ch is the Chern character (which is a morphism of rings).

1We should also require that if X = P1, cl([∞]) is the canonical generator of H2(P1)(1).
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Homological equivalence

De�nition 2. A cycle x ∈ CHd(X)⊗ F is homologically equivalent to zero (with respect to the
Weil cohomology H) if cl x = 0 in H2d(X)(d). This is an adequate equivalence relation on cycles.
We have functors

Motrat → Mothom,F → Motnum,F .

Conjecture 1 (Standard conjecture D). The functor

Mothom,F → Motnum,F

is an equivalence of categories, i.e. a cycle is numerically equivalent to zero if and only if it is
homologically equivalent to zero.

Action of a Chow correspondence on H
Let X and Y be in V. Let dX be the dimension of X. Let α ∈ CHdX (X ×Y ). The cycle class

provides an element
cl α ∈ H2dX (X × Y )(dX) .

We may use the Künneth formula to think of it as a family of elements in

H2dX−p(X)(dX)⊗Hp(Y ) ,

and then use the Poincaré duality to get elements in

Hp(X)∨ ⊗Hp(Y ) ' Hom(Hp(X),Hp(Y )) .

We thus have de�ned the action H(X)→ H(Y ) of the Chow correspondence α.

Let Motrat be the category of Chow motives. The Chow correspondence α ∈ CHdX (X × Y )
corresponds to a morphism

h(X)→ h(Y ) .

We actually get a (covariant) symmetric monoidal functor

rH : Motrat → VecGrF

that extends the functor de�ned on V as there are canonical isomorphisms rH(h(X)) ' H(X) for
all X ∈ V.

The functor rH factors through homological equivalence to give a faithful functor

Mothom,F → VecGrF .

Weil cohomologies and ⊗-functors
We can give a new (equivalent) de�nition of a Weil cohomology :

De�nition 3. A Weil cohomology is a symmetric monoidal functor

r : Motrat → VecGrF

such that the part of r(L) of degree 2 is 1-dimensional 2.

L is the Lefschetz motive : h(P1) = 1⊕L, its ⊗-inverse is the Tate motive T.

Remark 2. We may replace VecGrF by a more general ⊗-category so that Motrat is the coe�cient
category of the universal Weil cohomology Vopp → Motrat.

2We should also require r(h(X)) be in nonnegative degrees.
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1.3 Traces

Strong dualities (Dold, Puppe)
Let T be a ⊗-category.

De�nition 4. Let M be an object of T . We say that M admits a strong dual if there exists an
object N of T and maps η : 1 → M ⊗ N and ε : N ⊗M → 1 such that the following diagrams
commute:

M

LLLLLLLLLLL

LLLLLLLLLLL
η⊗M //// M ⊗N ⊗M

M⊗ε

��

N

LLLLLLLLLLL

LLLLLLLLLLL
N⊗η // N ⊗M ⊗N

ε⊗N

��
M N

In that case, the internal Hom. functor Hom(M,−) exists. We have N 'M∨ = Hom(M,1)
and there is a canonical isomorphism

M∨ ⊗X
∼→ Hom(M,X)

for any X ∈ T .

We say that T is rigid if its objects have strong duals.

Proposition 1. The categories VecGrF and Motrat are rigid.

In the case of Motrat, let X ∈ V, d = dim X. Let M be the motive of X and N = M ⊗ Td.
By de�nition (or by the projective bundle formula for Chow groups), there are isomorphisms

HomMotrat(1,M ⊗N) ' CHd(X ×X) ' HomMotrat(N ⊗M,1) .

We de�ne ε and η to be the morphisms corresponding to the cycle associated to the diagonal ∆X

in X ×X. We see that it makes N = h(X)⊗Td the strong dual of M = h(X).

De�nition of traces
Let T be a rigid ⊗-category.

De�nition 5. Let f : M → M be an endomorphism in T . We de�ne the trace trT f ∈ EndT (1)
of f as the following composition:

1
η→M ⊗N

f⊗N→ M ⊗N ' N ⊗M
ε→ 1

(N is the strong dual of M).

Proposition 2. Let F : T → T ′ be a ⊗-functor between rigid ⊗-categories. Let f : M → M be
an endomorphism in T . Then there is an equality in EndT ′(1) :

F (trT f) = trT ′ F (f) .

Lemma 6. We have some formulas:

tr(f + g) = tr f + tr g tr(g ◦ f) = tr(f ◦ g)

tr(λ · f) = λ · tr f tr(tf) = tr f

Lemma 7. Let V be an object of VecGrF and f : V → V be an endomorphism. Then,

trVecGrF
(f : V → V ) =

∑
n∈Z

(−1)n trF (f : V n → V n) .
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Lefschetz's trace formula

Theorem 8. Let X ∈ V. Let α ∈ CHdX (X × X) (which corresponds to an endomorphism
α : h(X)→ h(X) in Motrat). Let [∆X ] ∈ CHdX (X ×X) be the class of the diagonal. Then there
is an equality of integers:

deg(α · [∆X ]) =
2dX∑
n=0

(−1)n tr(α : Hn(X)→ Hn(X)) .

To prove this, we consider the ⊗-functor rH : Motrat → VecGrF and use the formula

trMotrat(α) = trVecGrF
(H(α)) ∈ F .

We have computed the right hand side in this equality. It remains to compute the left hand side.

Traces in Motrat

Lemma 9. For any map α : h(X)→ h(X) identi�ed as an element α ∈ CHd(X ×X)Q, we have

trMotrat(α) = deg(α · [∆X ]) .

Let M = h(X) and N = h(X)⊗Td, and ε and η like before. The composition

1
η→M ⊗N

α⊗N→ M ⊗N ' N ⊗M

is given by the transposition tα of α in CHd(X ×X)Q. Then, the composition

1
η→M ⊗N

α⊗N→ M ⊗N ' N ⊗M
ε→ 1 .

is given by deg(tα · [∆X ]) = deg(α · [∆X ]).

2 Applications

2.1 Finite �elds

Zeta functions over a �nite �eld
Let k = Fq be a �nite �eld.

Let X be a smooth and projective variety over k.

De�nition 10. The Zeta function of X/Fq is :

Z(X, t) = exp

( ∞∑
n=1

#X(Fqn)
tn

n

)
∈ Q [[t]] .

We can consider the geometric Frobenius F : X → X (the identity on the underlying topological
space and x 7→ xq on the structural sheaf). It is a morphism of Fq-schemes.

Lemma 11. Let Fn : X → X be an iteration of the geometric Frobenius. Then,

trMotrat(F
n : h(X)→ h(X)) = #X(Fqn) .

The set X(Fqn) is in bijection with the set of �xed points of Fn acting on X(Fq). The
di�erential of Fn is zero, so the intersection of the graph GrF n of Fn and ∆X in X × X is
transversal. We thus have the equality

deg([GrF n ] · [∆X ]) = #X(Fqn)

since all the intersection multiplicities are 1, which �nishes the proof thanks to the computation
of the traces in Motrat.
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Zeta functions in general ⊗-categories

De�nition 12. Let f : M → M an endomorphism of an object in a rigid ⊗-category T (for
instance Motrat or VecGrF ). We de�ne

Z(f, t) = exp

( ∞∑
n=1

trT (fn)
tn

n

)
∈ F [[t]] ;

where F = EndT (1)⊗Q is the coe�cient ring.

Note that the previous computations shows that

Z(X, t) = Z(F : h(X)→ h(X), t)

if X is a smooth and projective variety over Fq.

Rationality of Zeta functions

Theorem 13. Let f : M → M be a endomorphism of a motive in Motrat. If H is a Weil
cohomology, then Z(f, t) is a rational function. More precisely, if Pn(t) = det(id−tf : Hn(X)→
Hn(X)) ∈ F [t] for any integer n, then

Z(f, t) =
∏
n∈Z

Pn(t)(−1)n+1
.

Using the realization functor rH : Motrat → VecGrF , we can replace Motrat by VecGrF . By
�dévissage�, one reduces to the case of the multiplication F → F by an element λ where F ∈
VecGrF is in degree zero; it then reduces to the following identity :

Z(λ : F → F, t) = exp

( ∞∑
n=1

(λt)n

n

)
=

1
1− λt

.

Remark 3.
Q [[t]] ∩ F (t) = Q(t) .

Some formal formulas
The geometric Frobenius de�nes a ⊗-endomorphism F of the identity functor on Motrat. We

can de�ne the Zeta function of a motive M over Fq with respect to this endomorphism F : M →M .
There are some formulas :

Z(M ⊗Td, qdt) = Z(M, t) ;

Z(M∨,
1
t
) = (−t)χ(M)

∏
n∈Z

det(Hn(f))(−1)i

· Z(M, t) .

The integer χ(M) is the Euler characteristic of M (i.e. the trace of the identity on M).
Then, one may use the Poincaré duality isomorphism h(X)∨ ' h(X)⊗Td to get the following

functional equation:

Functional equation of the Zeta function

Theorem 14 (Functional equation). Let X be a smooth projective d-dimensional variety over Fq.

Z(X, t) = ε · t−χ(M)q−
dχ(M)

2 Z(X,
1

qdt
) ,

where ε = (−1)r where r is the multiplicity of q
d
2 as an eigenvalue of F acting on H

d
2 (X)).
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2.2 Numerical equivalence

De�nition of numerical equivalence

De�nition 15. Let X ∈ V and A be Z or a �eld F of characteristic zero, then a cycle x of
codimension i on X (of dimension d) with coe�cients in A is numerically equivalent to zero if for
any cycle y of codimension d− i on X, we have

deg(x · y) = 0 ∈ A ;

this is an adequate equivalence relation on cycle. We de�ne Ai
num(X;A) to be the equivalence

classes modulo cycles numerically equivalent to zero.

Exercise 1. For any �eld F of characteristic zero, we have a canonical isomorphism

Ai
num(X)⊗Z F

∼→ Ai
num(X;F ) .

Finite generation

Theorem 16. Assume that there exists a Weil cohomology over a �eld k with some coe�cient
�eld F (of characteristic zero). Then, for any X ∈ V, the Z-module Ai

num(X) is �nitely generated
and torsion free.

There is a surjection of F -vector spaces

Ai
hom(X;F )→ Ai

num(X;F ) ' Ai
num(X)⊗Z F .

We have an obvious injection Ai
hom(X;F ) → H2i(X)(i) of F -vector spaces. So, Ai

num(X) ⊗Q is
�nite dimensional. Use the embedding

Ai
num(X)→ Hom(Ad−i

num(X),Z)

to prove that Ai
num(X) is a �nitely generated group.

2.3 Semi-simplicity

Jannsen's semi-simplicity theorem

Theorem 17. For any characteristic zero coe�cient �eld F , the category Motnum,F of motives
modulo numerical equivalence is a semi-simple abelian category.

The major step is to prove that for any X ∈ V, the algebra

EndMotnum,F
(h(X)) = AdX

num(X ×X;F )

is �nite dimensional and semi-simple. We may extend the coe�cient �eld F so that there exists a
Weil cohomology. Let R ⊂ EndMothom,F

(h(X)) be the Jacobson radical. Let f ∈ R. We want to

prove that f is numerically equivalent to zero. Let g be any element in EndMothom,F
(h(X)).

tr(g ◦ f) = 0 because g ◦ f is nilpotent,
tr(g ◦ f) = deg(f · tg) (variant of the trace formula).
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3 Examples

3.1 �Classical� Weil cohomologies

Classical Weil cohomologies
Let p be the characteristic of the base �eld k. We de�ne the list of classical Weil cohomologies:

cohomology groups coe�. restrictions
étale H?

` (X) Q` ` 6= p, k → ks

Betti H?
B(X) Q σ : k → C

algebraic De Rham H?
DR(X) k p = 0

crystalline H?
cris(X) W (k)

[
1
p

]
p > 0, k perfect

3.2 Realization functors

Realization functors on pure motives

VecGrQ` action of Gal(k/k)

Motrat

r`

88qqqqqqqqqqq

rDR

&&NNNNNNNNNNN
rB //

rcris

��<
<<

<<
<<

<<
<<

<<
<<

<<
< VecGrQ Hodge structure

VecGrk Hodge �ltration

VecGrW (k)[ 1
p ] Frobenius, �ltration

3.3 Review of Hodge theory

Review of Hodge theory

De�nition 18. A pure Q-Hodge structure of weight n ∈ Z is a �nite dimensional Q-vector space
V endowed with a decomposition of the C-vector space

V ⊗Q C =
⊕

p+q=n

V p,q

such that V p,q = V q,p. The Hodge �ltration on V ⊗QC is de�ned by F p(V ⊗QC) =
⊕

p′≥p V p′,q.

Theorem 19 (Classical Hodge theory). Let X be a compact C-analytic variety. If there exists a
Kähler metric on X, then Hn(X,Q) is endowed with a pure Q-Hodge structure of weight n.

3.4 Comparison theorems

Comparison isomorphisms
There are several comparison isomorphisms if one extends scalars:

• r`
∼→ rB ⊗Q Q`, k ⊂ C (Artin);

• rB ⊗Q C ∼→ rDR ⊗k C, k ⊂ C (Serre, Grothendieck);

• rp ⊗Qp BDR ' rDR ⊗k BDR, k/Qp algebraic (Fontaine, Tsuji, Faltings). BDR is a p-adic
period ring 3 which is a discrete valuation �eld with residue �eld Cp;

3There are several such rings...
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• if X is a projective and smooth scheme over a complete valuation ring R (of unequal
characteristic, with perfect residue �eld k), then there is a canonical isomorphism

H?
DR(Xη) ' H?

cris(Xs)⊗W (k)[ 1
p ] K ,

where K is the quotient �eld of R (Berthelot-Ogus).

4 Absolute Hodge cycles, motivated cycles

4.1 Absolute Hodge cycles

Absolute Hodge cycles (Deligne)
We assume that the base �eld k is algebraically closed and of �nite transcendance degree over

Q.

De�nition 20. Let X ∈ V. We de�ne

Hn
A(X) = Hn

DR(X/k)×

(∏
`

Hn
ét(X;Z`)

)
⊗Q ;

it is a k ×Af -module (Af = Ẑ⊗Q).

For any embedding σ : k → C, we have a comparison isomorphism:

Hn(X(C)σ;Q)⊗ (C×Af) ∼← Hn
A(X)⊗k×Af (C×Af) .

De�nition 21. An element x ∈ H2n
A (X)(n) is a Hodge cycle with respect to some embedding

σ : k → C if

• the image of x in H2n
A (X)(n)⊗k×Af (C×Af) lies in the rational subspace H2n(X(C)σ;Q) ;

• the component of x in H2n(X(C)σ;Q)(n) is in Hodge bidegree (0, 0).

The element x is an absolute Hodge cycle if it is a Hodge cycle for all embeddings σ : k → C.

Lemma 22. For any X ∈ V, and x ∈ CHd(X). The family of classes in cohomologies given by
the various cycle classes of x provides an element in H2d

A (X)(d) that is an absolute Hodge cycle.

De�nition 23. In the de�nition of Mot∼, we may replace A?
∼(−) by absolute Hodge cycles in

H2?
A (−)(?) to de�ne a Tannakian 4 category MotAH.

Remark 4. We have an obvious faithful functor

Mothom → MotAH .

If the Tate conjecture or the Hodge conjecture is true, then it is an equivalence.

4.2 Motivated cycles

Improvement: Motivated cycles (André)
Let k be a �eld of characteristic zero and H be a classical Weil cohomology.

Conjecture 2 (Standard conjecture B). Let X ∈ V, d = dim X. Let D be an ample divisor on
D. Then for any i, the upper injective map is surjective:

Ai
hom,Q(X)

��

[D]d−2i

// Ad−i
hom,Q(X)

��
H2i(X)(i) ∼

(hard Lefschetz)
// H2d−2i(X)(d− i)

4One has to change the commutativity constraint, see Sujatha's notes.
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We want to enlarge morphisms in Mothom,Q to force the standard conjecture B (of Lefschetz
type) to be satis�ed in that setting.

De�nition of motivated cycles
We can de�ne a category Cohom like Mot∼ but so as to have

HomCohom(h(X), h(Y )) = H2dX (X × Y )(dX) ' Hom(H(X),H(Y )) .

De�nition 24. There exists a smallest Q-linear pseudoabelian sub-⊗-category Motmot of Cohom
containing Mothom,Q and such that for any X ∈ V and D an ample divisor on X, the upper
injective map is bijective :

Ai
mot(X)

��

[D]d−2i

// Ad−i
mot(X)

��
H2i(X)(i) ∼

(hard Lefschetz)
// H2d−2i(X)(d− i)

where An
mot(X) = HomMotmot(L

n, h(X)) are �motivated cycles�.

Remark 5. The faithful functor Mothom,Q → Motmot is an equivalence of categories if and only
if the standard conjecture B (Lefschetz) is true.

Proposition 3. The category Motmot does not depend on the classical Weil cohomology and there
is an obvious faithful functor Motmot → MotAH.

Proposition 4 (�B ⇒ C�). For any X ∈ V, the Künneth projectors in EndCohom(h(X)) are
de�ned in Motmot.

Proposition 5. Motmot is a neutral Tannakian category. (⇒ unconditional de�nition of the
motivic Galois group).

4.3 Hodge cycles on abelian varieties

Hodge cycles on abelian varieties

Theorem 25 (Deligne). Let A be an abelian variety over an algebraically closed �eld k embedded
in C. Any Hodge cycle is an absolute Hodge cycle.

Theorem 26 (André). Let A be an abelian variety over an algebraically closed �eld k embedded
in C. Any Hodge cycle is a motivated cycle.

5 Mixed realizations

5.1 Abelian category of mixed realizations

Absolute Hodge style's mixed realizations (Jannsen, Deligne)
Let k be a �eld embeddable in C and k be an algebraic closure of k.

De�nition 27 (sketch). The abelian category MRk of mixed realizations is the category whose
objects are families of objects:

• HDR is a k-vector space with a Hodge �ltration and a weight �ltration;

• Hσ (for any embedding σ : k → C) is a mixed Q-Hodge structure;

• H` (for any prime number `) is a Q`-vector space with an action of Gal(k/k);
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with comparison isomorphisms.

Proposition 6. MRk is a Q-neutral Tannakian category.

Problem 28. De�ne objects in such a way that they would have a �geometric origin�.

De�nition 29. Mixed motives are de�ned by Jannsen to be the sub-Tannakian category of MRk

generated by H(U) for any smooth variety U over k.

Problem 30. There is no unconditional good notion of an abelian category of mixed motives.

5.2 Triangulated categories of mixed motives

Triangulated categories of mixed motives

Smk
covariant //

contravariant ((QQQQQQQQQQQQQ DMgm(k) (Voevodsky)

DM (k) (Levine)

Theorem 31 (Levine, Ivorra). • DMgm(k)opp ' DM (k) (k of characteristic zero);

• DMgm(k;Q)opp ' DM (k;Q) (k perfect).

Theorem 32 (Voevodsky). There is a canonical functor

Motrat(k)opp → DMgm(k)

that is fully faithful.

5.3 Contravariant realization functors

Contravariant triangulated realization functors

DMgm(k)opp

(Ivorra)

��

(Huber) // DMRk

�� ''NNNNNNNNNNN
σ : k→C // Db(MHSQ)

Db
c (két;Z`)

⊗Q` //// Db(két,Q`) Db(Veck)

The hard part in these constructions is to get functoriality of complexes computing cohomolo-
gies with respect to �nite correspondences.

Remark 6. These functors obviously lead to �regulators�. If X ∈ Smk, by de�nition,

Hp(X,Z(q)) = HomDMgm(k)(M(X),Z(q) [p]) .

For instance, the étale realization functor gives a map

Hp(X,Z(q))→ Hp
ét,cont(X,Z`(q)) .

Using his de�nition of a motivic category DM (k), Levine constructed a mixed realization
functor

DM (k)→ Db
MRk

that provides Betti, étale, Hodge, etc. realizations.

However, it is not clear whether or not these functors coincide with the ones de�ned on Vo-
evodsky's category.
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5.4 Covariant realization functors

Covariant triangulated realization functors

Theorem 33 (Suslin, Voevodsky). There is a �trivial� covariant étale realization functor

DM(k)→ DMét(k;Z/`ν) ' D(két,Z/`ν) ,

at least if k is virtually of �nite `-cohomological dimension.

Howerer, it is not clear whether this functor is dual to Ivorra's.
Let E : Schopp

k → C(Vec∞F ) with additional data and properties:

• F is of characteristic 0;

• multiplicative structure and Künneth formula;

• Mayer-Vietoris property (Nisnevich descent);

• homotopy invariance and cohomology of P1;

• proper descent.

Theorem 34 (Cisinski, Déglise). Then, there is a representable covariant ⊗-realization functor

DM(k;F )→ D(Vec∞F ) ' VecGr∞F

that maps the motive of a smooth variety X to the dual of E(X).

Vec∞F is the category of F -vector spaces (not necessarily �nite dimentional).
They get

• De Rham realization: DM(k; k)→ D(Veck) (in characteristic zero);

• rigid realization: if R is a complete discrete valuation ring of unequal characteristic with
quotient �eld K and perfect residual �eld k, then they constructs a ⊗-functor

DM(k)→ D(VecK) .

However, their convention on twists prevents them from keeping the Galois action on the étale
realization.

5.5 Generalizations over a base scheme

Motivic coe�cients and realizations
Let S be a noetherian separated scheme.

• Levine actually de�ned DM (S), and a �mixed Hodge modules� realization functor if S is a
smooth variety over C;

• Cisinski and Déglise de�ned DM(S);

• Ivorra de�ned DMgm(S) (it is a full subcategory of DM(S)) and a functor

DMgm(S)opp → D+(S;Z`) ,

and a �moderate� version, for instance, if K is a number �eld

DMgm(K)opp → colimS Db
c (Spec OS ;Z`)

where S go through �nite sets of �nite places of K.

Theorem 35 (Cisinski, Déglise, Ayoub). There exists a six operations formalism for the categories
DM(S). For any f : T → S, there are functors (f?, f?), and for f : T → S �quasi-projective�,
functors (f!, f

!), a map f! → f? which is an isomorphism if f is projective.

Remark 7 (Bloch). These categories do not see �nilpotents�: DM(S) ' DM(Sréd).

11


