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1 Weil cohomologies

1.1 Notations
The main reference for this talk is the book by Yves André :

References

[1] Une introduction auz motifs (motifs purs, motifs mixtes, périodes), Panoramas et synthéses
17 (2004). Société Mathématique de France.

We fix a base field k. Let V be the category of smooth and projective varieties over k.

Let F be a field of coefficients. We shall assume that F' is of characteristic zero. Let VecGrg
be the category of finite dimensional Z-graded F-vector spaces (with Koszul rule).

1.2 Definitions

Weil cohomologies

Definition 1. A Weil cohomology is a contravariant functor H: V — VecGrIZ,O:
e dim H%(P') = 1 (the Tate twist (1) is the tensor product with the dual of H?(P'));
e Kiinneth formula: H(X)® H(Y) = H(X x Y);

e Poincaré duality: there is a multiplicative trace map H?%(X)(d) — F inducing perfect
pairings H*(X) ® H?1(X)(d) — H?*!(X)(d) — F for any X € V that is connected and of
dimension d;

e there is a cycle class map cl: CH*(X) — H?*(X)(x), contravariant in X € V, compatible
with products and normalized with the trace map so that the trace of the cycle class of
0-cycles be given by the degree !.

Remark 1. If H: VPP — VecGrp is a symmetric monoidal functor that leads to a Weil cohomol-
ogy, then the cycle class is unique. It follows from the theory of Chern classes and the following
diagram:

PDCH (X)q . PH™X)(n)

neN neN

NTch

Ko(X)q

where ch is the Chern character (which is a morphism of rings).

We should also require that if X = P!, cl([oo]) is the canonical generator of H2(P1)(1).



Homological equivalence

Definition 2. A cycle € CH%(X) ® F is homologically equivalent to zero (with respect to the
Weil cohomology H) if clz = 0 in H?¢(X)(d). This is an adequate equivalence relation on cycles.
We have functors

MOtrat - 1VIOthom,F - MOtnum,F .

Conjecture 1 (Standard conjecture D). The functor
MOthom,F - 1\/IOtnum,F

is an equivalence of categories, i.e. a cycle is numerically equivalent to zero if and only if it is
homologically equivalent to zero.

Action of a Chow correspondence on H
Let X and Y be in V. Let dx be the dimension of X. Let o € CH®* (X x Y). The cycle class

provides an element
cla € H*x (X x Y)(dx) .

We may use the Kiinneth formula to think of it as a family of elements in
HX=7(X)(dx) ® H(Y) ,
and then use the Poincaré duality to get elements in
HP(X) ® HP(Y) ~ Hom(H?(X), H(Y)) .
We thus have defined the action H(X) — H(Y) of the Chow correspondence a.

Let Mot be the category of Chow motives. The Chow correspondence o € CH%x (X xY)
corresponds to a morphism
hX) — h(Y).

We actually get a (covariant) symmetric monoidal functor

rg: Motpa — VecGrp

that extends the functor defined on V as there are canonical isomorphisms 7z (h(X)) ~ H(X) for
all X e V.
The functor 7y factors through homological equivalence to give a faithful functor

NIOtllom’F — VecGrp .

Weil cohomologies and ®-functors
We can give a new (equivalent) definition of a Weil cohomology :

Definition 3. A Weil cohomology is a symmetric monoidal functor
r: Motay — VecGrp
such that the part of r(L) of degree 2 is 1-dimensional 2.
L is the Lefschetz motive : h(P1) = 1@L, its ®-inverse is the Tate motive T.

Remark 2. We may replace VecGrg by a more general ®-category so that Mot is the coefficient
category of the universal Weil cohomology VPP — Mot .

2We should also require (h(X)) be in nonnegative degrees.



1.3 Traces

Strong dualities (Dold, Puppe)
Let 7 be a ®-category.

Definition 4. Let M be an object of 7. We say that M admits a strong dual if there exists an
object N of 7 and maps n: 1 - M ® N and e: N ® M — 1 such that the following diagrams
commute:

nM N®n
M—MQNQM N—>NQRQM®N
\ iM@E \ ls@N
M N

In that case, the internal Hom. functor Hom(M, —) exists. We have N ~ M"Y = Hom(M, 1)
and there is a canonical isomorphism

MY ® X = Hom(M, X)
for any X € 7.
We say that 7 is rigid if its objects have strong duals.
Proposition 1. The categories VecGrp and Moty are rigid.

In the case of Motyat, let X € V, d = dim X. Let M be the motive of X and N = M @ T%.
By definition (or by the projective bundle formula for Chow groups), there are isomorphisms

Hompger,,, (1, M @ N) ~ CHY(X x X) ~ Homyjor,,, (N ® M,1) .

We define € and 7 to be the morphisms corresponding to the cycle associated to the diagonal Ax
in X x X. We see that it makes N = h(X) ® T¢ the strong dual of M = h(X).

Definition of traces
Let 7 be a rigid ®-category.

Definition 5. Let f: M — M be an endomorphism in 7. We define the trace try f € Endz(1)
of f as the following composition:

152 MoN S MoN~NoMS1

(N is the strong dual of M).

Proposition 2. Let F': T — T’ be a Q-functor between rigid ®-categories. Let f: M — M be
an endomorphism in T. Then there is an equality in Endz/ (1) :

F(try f) =tep F(f) .
Lemma 6. We have some formulas:
t(f+g)=trf+trg  trgof)=tx(fog)
tr(A- f)=A-tr f tr(*f) =tr f

Lemma 7. Let V be an object of VecGrg and f: V — V be an endomorphism. Then,

trVecGrp(f: V — V) = Z(fl)n trF(f: VACEN Vn) )
nez



Lefschetz’s trace formula

Theorem 8. Let X € V. Let a € CH¥(X x X) (which corresponds to an endomorphism
a: h(X) — h(X) in Moty ). Let [Ax] € CHX (X x X) be the class of the diagonal. Then there
is an equality of integers:

2dx
deg(ar- [Ax]) =) (~=1)"tr(a: H*(X) — H"(X)) .

n=0
To prove this, we consider the ®-functor rg: Mot,,; — VecGrg and use the formula
tTMot,ay (@) = trvecary (H () € F.

We have computed the right hand side in this equality. It remains to compute the left hand side.

Traces in Mot,,

Lemma 9. For any map a: h(X) — h(X) identified as an element o € CHY(X x X)q, we have
ErMot,, (@) = deg(ar- [Ax]) .
Let M = h(X) and N = h(X) ® T¢, and ¢ and 7 like before. The composition

12 MeNS MeoN~NoM

is given by the transposition ‘o of o in CHY(X x X)q. Then, the composition

15 MoN YN MoN~NoM 51 .

is given by deg('a - [Ax]) = deg(a - [Ax]).

2 Applications

2.1 Finite fields

Zeta functions over a finite field
Let k = F; be a finite field.

Let X be a smooth and projective variety over k.

Definition 10. The Zeta function of X/F is :

n

2(X,1) = exp (Z #X(Fm;) Q) .

n=1

We can consider the geometric Frobenius F': X — X (the identity on the underlying topological
space and x — ¢ on the structural sheaf). It is a morphism of F,-schemes.

Lemma 11. Let F™: X — X be an iteration of the geometric Frobenius. Then,

ot (F™ 2 h(X) = (X)) = #X (F ) .

The set X(Fgn) is in bijection with the set of fixed points of F™ acting on X (F,;). The
differential of F™ is zero, so the intersection of the graph Grp» of F™ and Ax in X x X is
transversal. We thus have the equality

deg([Gan] . [Ax]) = #X(Fqn)

since all the intersection multiplicities are 1, which finishes the proof thanks to the computation
of the traces in Mot ,¢.



Zeta functions in general ®-categories

Definition 12. Let f: M — M an endomorphism of an object in a rigid ®-category 7 (for
instance Mot or VecGrp). We define

2(4,1) = exp (Ztrﬂf”)if) e P[] ;

where F' = End7 (1) ® Q is the coeflicient ring.

Note that the previous computations shows that
Z(X,t)=Z(F: h(X) — h(X),t)

if X is a smooth and projective variety over F.

Rationality of Zeta functions

Theorem 13. Let f: M — M be a endomorphism of a motive in Moty,.. If H is a Weil
cohomology, then Z(f,t) is a rational function. More precisely, if P, (t) = det(id —tf: H*(X) —
H"™(X)) € F[t] for any integer n, then

Z(f.t) = [[ Pa)""
nez

Using the realization functor rgy: Moty — VecGrg, we can replace Mot,,; by VecGrg. By
“dévissage”, one reduces to the case of the multiplication ' — F' by an element A where F €
VecGrp is in degree zero; it then reduces to the following identity :

Z(\: F — F,t) = exp <Z (A;)"> =1 j/\t )

n=1

Remark 3.
QitNnF(t) =Q(t) .

Some formal formulas
The geometric Frobenius defines a ®-endomorphism F' of the identity functor on Mot,,;. We
can define the Zeta function of a motive M over F, with respect to this endomorphism F': M — M.
There are some formulas :

Z(M® T ¢%t) = Z(M,t);
200%,3) = (<0 T dest (1) 2(M,1)

nez

The integer x (M) is the Euler characteristic of M (i.e. the trace of the identity on M).
Then, one may use the Poincaré duality isomorphism h(X)Y ~ h(X) ® T to get the following
functional equation:

Functional equation of the Zeta function

Theorem 14 (Functional equation). Let X be a smooth projective d-dimensional variety over Fy.

M) Z(X, i) ,

Z(X,t) =¢-txMg~
(X,t)=¢ q o

where ¢ = (—1)" where r is the multiplicity of q% as an eigenvalue of F acting on H%(X)).



2.2 Numerical equivalence
Definition of numerical equivalence

Definition 15. Let X € V and A be Z or a field F of characteristic zero, then a cycle x of
codimension i on X (of dimension d) with coefficients in A is numerically equivalent to zero if for
any cycle y of codimension d — i on X, we have

deg(z-y)=0€ A;

this is an adequate equivalence relation on cycle. We define A!  (X;A) to be the equivalence
classes modulo cycles numerically equivalent to zero.

Exercise 1. For any field F of characteristic zero, we have a canonical isomorphism

(X;F).

Finite generation

Theorem 16. Assume that there exists a Weil cohomology over a field k with some coefficient
field F (of characteristic zero). Then, for any X € V, the Z-module A: . (X) is finitely generated
and torsion free.

There is a surjection of F-vector spaces

tom(XG F) — AL (X F) ~ AL (X)) ®z F

hom num num

We have an obvious injection A!_ (X;F) — H*(X)(i) of F-vector spaces. So, A%, (X)® Q is

hom num
finite dimensional. Use the embedding

%
Anum

(X) — Hom(A% ! (X),Z)

num

A
num

to prove that A°,,, (X) is a finitely generated group.

2.3 Semi-simplicity
Jannsen’s semi-simplicity theorem

Theorem 17. For any characteristic zero coefficient field F', the category Motyum,r of motives
modulo numerical equivalence is a semi-simple abelian category.

The major step is to prove that for any X € V, the algebra

Endyo h(X)) = Adx

num

(X x X; F)

s,

is finite dimensional and semi-simple. We may extend the coefficient field F' so that there exists a
Weil cohomology. Let R C Endwiot,,,,, »(7(X)) be the Jacobson radical. Let f € R. We want to

prove that f is numerically equivalent to zero. Let g be any element in Endwmot,,,, » (2(X)).

tr(go f) = 0 because g o f is nilpotent,
tr(go f) = deg(f-tg) (variant of the trace formula).



3 Examples

3.1 “Classical” Weil cohomologies

Classical Weil cohomologies
Let p be the characteristic of the base field k. We define the list of classical Weil cohomologies:

cohomology groups coefl. restrictions
étale H;(X) Qq L#pk— kg
Betti HE(X) Q o:k—C
algebraic De Rham | H{jg(X) k p=0
crystalline Hro(X) | W(k) % p > 0, k perfect

3.2 Realization functors

Realization functors on pure motives

VecGrq, action of Gal(k/k)
Te
Mot at A VecGrq Hodge structure
TDR
. VecGry, Hodge filtration
VecGr w(k)[L] Frobenius, filtration

3.3 Review of Hodge theory
Review of Hodge theory

Definition 18. A pure Q-Hodge structure of weight n € Z is a finite dimensional Q-vector space
V endowed with a decomposition of the C-vector space

VaqC= @ vre

pt+g=n
such that V7.4 = V9P, The Hodge filtration on V ®q C is defined by #7(V®q C) = D,>, VP,
Theorem 19 (Classical Hodge theory). Let X be a compact C-analytic variety. If there exists a
Kdhler metric on X, then H"(X, Q) is endowed with a pure Q-Hodge structure of weight n.

3.4 Comparison theorems

Comparison isomorphisms
There are several comparison isomorphisms if one extends scalars:

e 7y 5 rg®q Q, k C C (Artin);
e 15 ®q C = rpr ® C, k C C (Serre, Grothendieck);

® 1, ®q, Bor ~ DR ®k BpRr, k/Q, algebraic (Fontaine, Tsuji, Faltings). Bpr is a p-adic
period ring ? which is a discrete valuation field with residue field C,;

3There are several such rings...



e if 2" is a projective and smooth scheme over a complete valuation ring R (of unequal
characteristic, with perfect residue field k), then there is a canonical isomorphism

HBR(%U) = H;ris(%‘s) ®W(k)[ } K ’

1
P

where K is the quotient field of R (Berthelot-Ogus).

4 Absolute Hodge cycles, motivated cycles

4.1 Absolute Hodge cycles

Absolute Hodge cycles (Deligne)
We assume that the base field k is algebraically closed and of finite transcendance degree over

Q.
Definition 20. Let X € V. We define

HR (X) = Hiyg (X/k) x (H HE (X zn) 2Q;
l

it is a k x Af-module (Af = Z ® Q).
For any embedding o: k — C, we have a comparison isomorphism:
H™(X(C)y;Q) ® (C x AT) & H(X) @xar (Cx Af).

Definition 21. An element x € H3"(X)(n) is a Hodge cycle with respect to some embedding
o:k— Cif

e the image of 7 in H3"(X)(n) ®4xar (C x Al) lies in the rational subspace H?"(X(C),; Q) ;
e the component of x in H*"(X(C),;Q)(n) is in Hodge bidegree (0,0).
The element «x is an absolute Hodge cycle if it is a Hodge cycle for all embeddings o: k — C.

Lemma 22. For any X € V, and x € CHY(X). The family of classes in cohomologies given by
the various cycle classes of x provides an element in H3(X)(d) that is an absolute Hodge cycle.

Definition 23. In the definition of Mot., we may replace AX (—) by absolute Hodge cycles in
H32*(—)(x) to define a Tannakian * category Motam.

Remark 4. We have an obvious faithful functor
Motpom — Motan -

If the Tate conjecture or the Hodge conjecture is true, then it is an equivalence.

4.2 Motivated cycles

Improvement: Motivated cycles (André)
Let k be a field of characteristic zero and H be a classical Weil cohomology.

Conjecture 2 (Standard conjecture B). Let X € V, d = dim X. Let D be an ample divisor on
D. Then for any i, the upper injective map is surjective:
[D]d—Qi

Aflom,Q (X) —— Aﬁ;;’Q (X)

| |

H* (X)(Z) (hard L:fschetz) H (X)(d - Z)

40One has to change the commutativity constraint, see Sujatha’s notes.



We want to enlarge morphisms in Motpem g to force the standard conjecture B (of Lefschetz
type) to be satisfied in that setting.

Definition of motivated cycles
We can define a category Cohom like Mot., but so as to have

Homconom (h(X), h(Y)) = H** (X x Y)(dx) ~ Hom(H(X), H(Y)) .

Definition 24. There exists a smallest Q-linear pseudoabelian sub-®-category Mot,.; of Cohom
containing Motyom,q and such that for any X € V and D an ample divisor on X, the upper
injective map is bijective :

i (D} d—i
Amot (X) A (X)

mot

| |

H(X) (i) H2-2(X)(d — i)

-~ S
(hard Lefschetz)

n
where A7 .

(X) = Hompo,,., (L™, h(X)) are “motivated cycles”.

Remark 5. The faithful functor Mothom,q — Motmet 45 an equivalence of categories if and only
if the standard conjecture B (Lefschetz) is true.

Proposition 3. The category Moty does not depend on the classical Weil cohomology and there
is an obvious faithful functor Moty — Motag.

Proposition 4 (“B = C”). For any X € V, the Kinneth projectors in Endconom (R(X)) are
defined in Moty -

Proposition 5. Moty s a neutral Tannakion category. (= unconditional definition of the

motivic Galois group).

4.3 Hodge cycles on abelian varieties

Hodge cycles on abelian varieties

Theorem 25 (Deligne). Let A be an abelian variety over an algebraically closed field k embedded
in C. Any Hodge cycle is an absolute Hodge cycle.

Theorem 26 (André). Let A be an abelian variety over an algebraically closed field k embedded
in C. Any Hodge cycle is a motivated cycle.

5 Mixed realizations

5.1 Abelian category of mixed realizations

Absolute Hodge style’s mixed realizations (Jannsen, Deligne)
Let k be a field embeddable in C and k be an algebraic closure of k.

Definition 27 (sketch). The abelian category MRy, of mixed realizations is the category whose
objects are families of objects:

e Hpp is a k-vector space with a Hodge filtration and a weight filtration;
e H, (for any embedding o: k — C) is a mixed Q-Hodge structure;

e H, (for any prime number £) is a Q-vector space with an action of Gal(k/k);



with comparison isomorphisms.
Proposition 6. MRy is a Q-neutral Tannakian category.
Problem 28. Define objects in such a way that they would have a “geometric origin’.

Definition 29. Mixed motives are defined by Jannsen to be the sub-Tannakian category of MRy
generated by H(U) for any smooth variety U over k.

Problem 30. There is no unconditional good notion of an abelian category of mized motives.

5.2 Triangulated categories of mixed motives

Triangulated categories of mixed motives

Smy, — vt PN (k) (Voevodsky)
Cm
DM (k) (Levine)

Theorem 31 (Levine, Ivorra). e DM, (k)°PP >~ 2.4 (k) (k of characteristic zero);
e DM, (k; Q)PP ~ 9.4 (k; Q) (k perfect).
Theorem 32 (Voevodsky). There is a canonical functor
Motyaq (k)°PP — DMgp (k)

that is fully faithful.

5.3 Contravariant realization functors

Contravariant triangulated realization functors

Huber o k—
DMgm (k)°PP _(Huber) Dumr,, S DP(MHSq)

iavma) l \

DP (ke Zoe) LN DP (ket, Qo) DP(Vecy)

The hard part in these constructions is to get functoriality of complexes computing cohomolo-
gies with respect to finite correspondences.

Remark 6. These functors obviously lead to “regulators”. If X € Smy, by definition,
H?(X,Z(q)) = Homp,,, () (M (X), Z(q) [p]) -
For instance, the étale realization functor gives a map
HP(X,Z(q)) = Hg; cont (X, Ze(q)) -

Using his definition of a motivic category 2.#(k), Levine constructed a mixed realization
functor

that provides Betti, étale, Hodge, etc. realizations.

However, it is not clear whether or not these functors coincide with the ones defined on Vo-
evodsky’s category.

10



5.4 Covariant realization functors
Covariant triangulated realization functors

Theorem 33 (Suslin, Voevodsky). There is a “trivial” covariant étale realization functor
DM(k) — DMg(k; Z/0") ~ D(ket, Z/07) ,
at least if k is virtually of finite £-cohomological dimension.

Howerer, it is not clear whether this functor is dual to Ivorra’s.
Let E: Sch;®” — C(Vecy’) with additional data and properties:

e F'is of characteristic 0;
e multiplicative structure and Kiinneth formula;

e Mayer-Vietoris property (Nisnevich descent);

homotopy invariance and cohomology of P;

proper descent.

Theorem 34 (Cisinski, Déglise). Then, there is a representable covariant ®-realization functor
DM(k; F') — D(Vecy) ~ VecGry

that maps the motive of a smooth variety X to the dual of E(X).

Vec% is the category of F-vector spaces (not necessarily finite dimentional).
They get

e De Rham realization: DM(k; k) — D(Vecy) (in characteristic zero);

o rigid realization: if R is a complete discrete valuation ring of unequal characteristic with
quotient field K and perfect residual field k, then they constructs a ®-functor

DM(k) — D(Vecg) .

However, their convention on twists prevents them from keeping the Galois action on the étale
realization.

5.5 Generalizations over a base scheme

Motivic coefficients and realizations
Let S be a noetherian separated scheme.

e Levine actually defined 2.#(S5), and a “mixed Hodge modules” realization functor if S is a
smooth variety over C;

e Cisinski and Déglise defined DM(.S);
e Ivorra defined DMy, (S) (it is a full subcategory of DM(S)) and a functor
DMy ($)PF — D+ (S5 Z) ,
and a “moderate” version, for instance, if K is a number field
DMy, (K)°PP — colimg DY (Spec Os; Zy)
where S go through finite sets of finite places of K.

Theorem 35 (Cisinski, Déglise, Ayoub). There exists a siz operations formalism for the categories
DM(S). For any f: T — S, there are functors (f*, fx), and for f: T — S “quasi-projective”,
functors (fi, f'), a map fi — f. which is an isomorphism if f is projective.

Remark 7 (Bloch). These categories do not see “nilpotents”: DM(S) ~ DM(Sy¢q).

11



