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The main reference for this talk is the book by Yves André :

Une introduction aux motifs (motifs purs, motifs mixtes,
périodes), Panoramas et synthèses 17 (2004). Société
Mathématique de France.

We �x a base �eld k. Let V be the category of smooth and
projective varieties over k.

Let F be a �eld of coe�cients. We shall assume that F is of
characteristic zero. Let VecGrF be the category of �nite
dimensional Z-graded F -vector spaces (with Koszul rule).
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Weil cohomologies

De�nition

A Weil cohomology is a contravariant functor H : V → VecGr
≥0
F :

I dimH2(P1) = 1 (the Tate twist (1) is the tensor product with
the dual of H2(P1));

I Künneth formula: H(X )⊗ H(Y )
∼→ H(X × Y );

I Poincaré duality: there is a multiplicative trace map
H2d (X )(d)→ F inducing perfect pairings
H i (X )⊗ H2d−i (X )(d)→ H2d (X )(d)→ F for any X ∈ V that
is connected and of dimension d ;

I there is a cycle class map cl : CH?(X )→ H2?(X )(?),
contravariant in X ∈ V, compatible with products and
normalized with the trace map so that the trace of the cycle
class of 0-cycles be given by the degree 1.

1We should also require that if X = P
1, cl([∞]) is the canonical generator of

H
2(P1)(1).
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Remark

If H : Vopp → VecGrF is a symmetric monoidal functor that leads to
a Weil cohomology, then the cycle class is unique. It follows from
the theory of Chern classes and the following diagram:M

n∈N

CHn(X )Q cl //
M
n∈N

H2n(X )(n)

K0(X )Q

∼ ch

OO 88

where ch is the Chern character (which is a morphism of rings).
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Homological equivalence

De�nition

A cycle x ∈ CHd (X )⊗ F is homologically equivalent to zero (with
respect to the Weil cohomology H) if cl x = 0 in H2d (X )(d). This is
an adequate equivalence relation on cycles. We have functors

Motrat → Mothom,F → Motnum,F .

Conjecture (Standard conjecture D)

The functor
Mothom,F → Motnum,F

is an equivalence of categories, i.e. a cycle is numerically equivalent
to zero if and only if it is homologically equivalent to zero.
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Action of a Chow correspondence on H

Let X and Y be in V. Let dX be the dimension of X . Let

α ∈ CHdX (X × Y ). The cycle class provides an element

clα ∈ H2dX (X × Y )(dX ) .

We may use the Künneth formula to think of it as a family of
elements in

H2dX−p(X )(dX )⊗ Hp(Y ) ,

and then use the Poincaré duality to get elements in

Hp(X )∨ ⊗ Hp(Y ) ' Hom(Hp(X ),Hp(Y )) .
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We thus have de�ned the action H(X )→ H(Y ) of the Chow
correspondence α.

Let Motrat be the category of Chow motives. The Chow
correspondence α ∈ CHdX (X × Y ) corresponds to a morphism

h(X )→ h(Y ) .

We actually get a (covariant) symmetric monoidal functor

rH : Motrat → VecGrF

that extends the functor de�ned on V as there are canonical
isomorphisms rH(h(X )) ' H(X ) for all X ∈ V.
The functor rH factors through homological equivalence to give a
faithful functor

Mothom,F → VecGrF .
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Weil cohomologies and ⊗-functors

We can give a new (equivalent) de�nition of a Weil cohomology :

De�nition

A Weil cohomology is a symmetric monoidal functor

r : Motrat → VecGrF

such that the part of r(L) of degree 2 is 1-dimensional 2.

L is the Lefschetz motive : h(P1) = 1⊕L, its ⊗-inverse is the Tate
motive T.

Remark

We may replace VecGrF by a more general ⊗-category so that
Motrat is the coe�cient category of the universal Weil cohomology
Vopp → Motrat.

2We should also require r(h(X )) be in nonnegative degrees.
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Strong dualities (Dold, Puppe)

Let T be a ⊗-category.

De�nition

Let M be an object of T . We say that M admits a strong dual if
there exists an object N of T and maps η : 1→ M ⊗ N and
ε : N ⊗M → 1 such that the following diagrams commute:

M

KKKKKKKKKKK

KKKKKKKKKKK
η⊗M //// M ⊗ N ⊗M

M⊗ε

��

N

JJJJJJJJJJJ

JJJJJJJJJJJ
N⊗η // N ⊗M ⊗ N

ε⊗N

��
M N

In that case, the internal Hom. functor Hom(M,−) exists. We have
N ' M∨ = Hom(M, 1) and there is a canonical isomorphism

M∨ ⊗ X
∼→ Hom(M,X )

for any X ∈ T .

We say that T is rigid if its objects have strong duals.
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Proposition

The categories VecGrF and Motrat are rigid.

In the case of Motrat, let X ∈ V, d = dimX . Let M be the motive
of X and N = M ⊗ Td . By de�nition (or by the projective bundle
formula for Chow groups), there are isomorphisms

HomMotrat(1,M ⊗ N) ' CHd (X × X ) ' HomMotrat(N ⊗M, 1) .

We de�ne ε and η to be the morphisms corresponding to the cycle
associated to the diagonal ∆X in X × X . We see that it makes
N = h(X )⊗ Td the strong dual of M = h(X ).
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De�nition of traces

Let T be a rigid ⊗-category.

De�nition

Let f : M → M be an endomorphism in T . We de�ne the trace
trT f ∈ EndT (1) of f as the following composition:

1
η→ M ⊗ N

f⊗N→ M ⊗ N ' N ⊗M
ε→ 1

(N is the strong dual of M).

Proposition

Let F : T → T ′ be a ⊗-functor between rigid ⊗-categories. Let
f : M → M be an endomorphism in T . Then there is an equality in
EndT ′(1) :

F (trT f ) = trT ′ F (f ) .
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Lemma

We have some formulas:

tr(f + g) = tr f + tr g tr(g ◦ f ) = tr(f ◦ g)

tr(λ · f ) = λ · tr f tr(t f ) = tr f

Lemma

Let V be an object of VecGrF and f : V → V be an endomorphism.
Then,

trVecGrF (f : V → V ) =
X
n∈Z

(−1)n trF (f : V n → V n) .
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Lefschetz's trace formula

Theorem

Let X ∈ V. Let α ∈ CHdX (X × X ) (which corresponds to an
endomorphism α : h(X )→ h(X ) in Motrat). Let
[∆X ] ∈ CHdX (X ×X ) be the class of the diagonal. Then there is an
equality of integers:

deg(α · [∆X ]) =

2dXX
n=0

(−1)n tr(α : Hn(X )→ Hn(X )) .

To prove this, we consider the ⊗-functor rH : Motrat → VecGrF and
use the formula

trMotrat(α) = trVecGrF (H(α)) ∈ F .

We have computed the right hand side in this equality. It remains to
compute the left hand side.
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Traces in Motrat

Lemma

For any map α : h(X )→ h(X ) identi�ed as an element
α ∈ CHd (X × X )Q, we have

trMotrat(α) = deg(α · [∆X ]) .

Let M = h(X ) and N = h(X )⊗ Td , and ε and η like before. The
composition

1
η→ M ⊗ N

α⊗N→ M ⊗ N ' N ⊗M

is given by the transposition tα of α in CHd (X × X )Q. Then, the
composition

1
η→ M ⊗ N

α⊗N→ M ⊗ N ' N ⊗M
ε→ 1 .

is given by deg(tα · [∆X ]) = deg(α · [∆X ]).
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Zeta functions over a �nite �eld

Let k = Fq be a �nite �eld.

Let X be a smooth and projective variety over k.

De�nition

The Zeta function of X/Fq is :

Z(X , t) = exp

 
∞X
n=1

#X (Fqn )
tn

n

!
∈ Q [[t]] .
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We can consider the geometric Frobenius F : X → X (the identity
on the underlying topological space and x 7→ xq on the structural
sheaf). It is a morphism of Fq-schemes.

Lemma

Let F n : X → X be an iteration of the geometric Frobenius. Then,

trMotrat(F
n : h(X )→ h(X )) = #X (Fqn ) .

The set X (Fqn ) is in bijection with the set of �xed points of F n

acting on X (Fq). The di�erential of F n is zero, so the intersection
of the graph GrFn of F n and ∆X in X × X is transversal. We thus
have the equality

deg([GrFn ] · [∆X ]) = #X (Fqn )

since all the intersection multiplicities are 1, which �nishes the proof
thanks to the computation of the traces in Motrat.
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Zeta functions in general ⊗-categories

De�nition

Let f : M → M an endomorphism of an object in a rigid ⊗-category
T (for instance Motrat or VecGrF ). We de�ne

Z(f , t) = exp

 
∞X
n=1

trT (f n)
tn

n

!
∈ F [[t]] ;

where F = EndT (1)⊗ Q is the coe�cient ring.

Note that the previous computations shows that

Z(X , t) = Z(F : h(X )→ h(X ), t)

if X is a smooth and projective variety over Fq.
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Rationality of Zeta functions

Theorem

Let f : M → M be a endomorphism of a motive in Motrat. If H is a
Weil cohomology, then Z(f , t) is a rational function. More precisely,
if Pn(t) = det(id−tf : Hn(X )→ Hn(X )) ∈ F [t] for any integer n,
then

Z(f , t) =
Y
n∈Z

Pn(t)
(−1)n+1

.

Using the realization functor rH : Motrat → VecGrF , we can replace
Motrat by VecGrF . By �dévissage�, one reduces to the case of the
multiplication F → F by an element λ where F ∈ VecGrF is in
degree zero; it then reduces to the following identity :

Z(λ : F → F , t) = exp

 
∞X
n=1

(λt)n

n

!
=

1

1− λt
.

Remark

Q [[t]] ∩ F (t) = Q(t) .
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Some formal formulas

The geometric Frobenius de�nes a ⊗-endomorphism F of the
identity functor on Motrat. We can de�ne the Zeta function of a
motive M over Fq with respect to this endomorphism F : M → M.
There are some formulas :

Z(M ⊗ Td , qd t) = Z(M, t) ;

Z(M∨,
1

t
) = (−t)χ(M)

Y
n∈Z

det(Hn(f ))(−1)i · Z(M, t) .

The integer χ(M) is the Euler characteristic of M (i.e. the trace of
the identity on M).
Then, one may use the Poincaré duality isomorphism
h(X )∨ ' h(X )⊗ Td to get the following functional equation:
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Functional equation of the Zeta function

Theorem (Functional equation)

Let X be a smooth projective d-dimensional variety over Fq.

Z(X , t) = ε · t−χ(M)q−
dχ(M)

2 Z(X ,
1

qd t
) ,

where ε = (−1)r where r is the multiplicity of q
d
2 as an eigenvalue

of F acting on H
d
2 (X )).



Realization functors

Joël Riou

Weil cohomologies

Notations
De�nitions
Traces

Applications

Finite �elds
Numerical equivalence
Semi-simplicity

Examples

�Classical� Weil
cohomologies
Realization functors
Review of Hodge theory
Comparison theorems

Absolute Hodge cycles,
motivated cycles

Absolute Hodge cycles
Motivated cycles
Hodge cycles on
abelian varieties

Mixed realizations

Abelian category of
mixed realizations
Triangulated categories
of mixed motives
Contravariant
realization functors
Covariant realization
functors
Generalizations over a
base scheme

De�nition of numerical equivalence

De�nition

Let X ∈ V and A be Z or a �eld F of characteristic zero, then a
cycle x of codimension i on X (of dimension d) with coe�cients in
A is numerically equivalent to zero if for any cycle y of codimension
d − i on X , we have

deg(x · y) = 0 ∈ A ;

this is an adequate equivalence relation on cycle. We de�ne
Ai
num(X ;A) to be the equivalence classes modulo cycles numerically

equivalent to zero.

Exercise

For any �eld F of characteristic zero, we have a canonical
isomorphism

Ai
num(X )⊗Z F

∼→ Ai
num(X ;F ) .
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Finite generation

Theorem

Assume that there exists a Weil cohomology over a �eld k with
some coe�cient �eld F (of characteristic zero). Then, for any
X ∈ V, the Z-module Ai

num(X ) is �nitely generated and torsion free.

There is a surjection of F -vector spaces

Ai
hom(X ;F )→ Ai

num(X ;F ) ' Ai
num(X )⊗Z F .

We have an obvious injection Ai
hom(X ;F )→ H2i (X )(i) of F -vector

spaces. So, Ai
num(X )⊗ Q is �nite dimensional. Use the embedding

Ai
num(X )→ Hom(Ad−i

num(X ),Z)

to prove that Ai
num(X ) is a �nitely generated group.
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Jannsen's semi-simplicity theorem

Theorem

For any characteristic zero coe�cient �eld F , the category
Motnum,F of motives modulo numerical equivalence is a semi-simple
abelian category.

The major step is to prove that for any X ∈ V, the algebra

EndMotnum,F (h(X )) = AdX
num(X × X ;F )

is �nite dimensional and semi-simple. We may extend the coe�cient
�eld F so that there exists a Weil cohomology. Let

R ⊂ EndMothom,F (h(X )) be the Jacobson radical. Let f ∈ R. We
want to prove that f is numerically equivalent to zero. Let g be any
element in EndMothom,F (h(X )).

tr(g ◦ f ) = 0 because g ◦ f is nilpotent,
tr(g ◦ f ) = deg(f · tg) (variant of the trace formula).
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Classical Weil cohomologies

Let p be the characteristic of the base �eld k. We de�ne the list of
classical Weil cohomologies:

cohomology groups coe�. restrictions

étale H?
` (X ) Q` ` 6= p, k → ks

Betti H?
B(X ) Q σ : k → C

algebraic De Rham H?
DR(X ) k p = 0

crystalline H?
cris(X ) W (k)

h
1
p

i
p > 0, k perfect
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Realization functors on pure motives

VecGrQ` action of Gal(k/k)

Motrat

r`

88qqqqqqqqqqq

rDR

&&NNNNNNNNNNN
rB //

rcris

��;
;;

;;
;;

;;
;;

;;
;;

;;
VecGrQ Hodge structure

VecGrk Hodge �ltration

VecGr
W (k)

h
1
p

i
Frobenius, �ltration
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Review of Hodge theory

De�nition

A pure Q-Hodge structure of weight n ∈ Z is a �nite dimensional
Q-vector space V endowed with a decomposition of the C-vector
space

V ⊗Q C =
M
p+q=n

V p,q

such that V p,q = V q,p. The Hodge �ltration on V ⊗Q C is de�ned
by F p(V ⊗Q C) =

L
p′≥p V

p′,q.

Theorem (Classical Hodge theory)

Let X be a compact C-analytic variety. If there exists a Kähler
metric on X, then Hn(X ,Q) is endowed with a pure Q-Hodge
structure of weight n.
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Comparison isomorphisms

There are several comparison isomorphisms if one extends scalars:

I r`
∼→ rB ⊗Q Q`, k ⊂ C (Artin);

I rB ⊗Q C
∼→ rDR ⊗k C, k ⊂ C (Serre, Grothendieck);

I rp ⊗Qp BDR ' rDR ⊗k BDR, k/Qp algebraic (Fontaine, Tsuji,
Faltings). BDR is a p-adic period ring 3 which is a discrete
valuation �eld with residue �eld Cp;

I if X is a projective and smooth scheme over a complete
valuation ring R (of unequal characteristic, with perfect residue
�eld k), then there is a canonical isomorphism

H?
DR(Xη) ' H?

cris(Xs)⊗W (k)
h
1
p

i K ,

where K is the quotient �eld of R (Berthelot-Ogus).

3There are several such rings...
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Absolute Hodge cycles (Deligne)

We assume that the base �eld k is algebraically closed and of �nite
transcendance degree over Q.

De�nition

Let X ∈ V. We de�ne

Hn
A(X ) = Hn

DR(X/k)×

 Y
`

Hn
ét(X ;Z`)

!
⊗ Q ;

it is a k × Af -module (Af = Ẑ⊗ Q).
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For any embedding σ : k → C, we have a comparison isomorphism:

Hn(X (C)σ;Q)⊗ (C× Af) ∼← Hn
A(X )⊗k×Af (C× Af) .

De�nition

An element x ∈ H2n
A (X )(n) is a Hodge cycle with respect to some

embedding σ : k → C if

I the image of x in H2n
A (X )(n)⊗k×Af (C×Af) lies in the rational

subspace H2n(X (C)σ;Q) ;

I the component of x in H2n(X (C)σ;Q)(n) is in Hodge bidegree
(0, 0).

The element x is an absolute Hodge cycle if it is a Hodge cycle for
all embeddings σ : k → C.
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Lemma

For any X ∈ V, and x ∈ CHd (X ). The family of classes in
cohomologies given by the various cycle classes of x provides an
element in H2d

A (X )(d) that is an absolute Hodge cycle.

De�nition

In the de�nition of Mot∼, we may replace A?
∼(−) by absolute

Hodge cycles in H2?
A (−)(?) to de�ne a Tannakian 4 category MotAH.

Remark

We have an obvious faithful functor

Mothom → MotAH .

If the Tate conjecture or the Hodge conjecture is true, then it is an
equivalence.

4One has to change the commutativity constraint, see Sujatha's notes.
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Improvement: Motivated cycles (André)

Let k be a �eld of characteristic zero and H be a classical Weil
cohomology.

Conjecture (Standard conjecture B)

Let X ∈ V, d = dimX. Let D be an ample divisor on D. Then for
any i , the upper injective map is surjective:

Ai
hom,Q(X )

��

[D]d−2i

// Ad−i
hom,Q(X )

��
H2i (X )(i)

∼

(hard Lefschetz)

// H2d−2i (X )(d − i)

We want to enlarge morphisms in Mothom,Q to force the standard
conjecture B (of Lefschetz type) to be satis�ed in that setting.
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De�nition of motivated cycles

We can de�ne a category Cohom like Mot∼ but so as to have

HomCohom(h(X ), h(Y )) = H2dX (X ×Y )(dX ) ' Hom(H(X ),H(Y )) .

De�nition

There exists a smallest Q-linear pseudoabelian sub-⊗-category
Motmot of Cohom containing Mothom,Q and such that for any X ∈ V
and D an ample divisor on X , the upper injective map is bijective :

Ai
mot(X )

��

[D]d−2i

// Ad−i
mot(X )

��
H2i (X )(i)

∼

(hard Lefschetz)

// H2d−2i (X )(d − i)

where An
mot(X ) = HomMotmot(L

n, h(X )) are �motivated cycles�.
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Remark

The faithful functor Mothom,Q → Motmot is an equivalence of
categories if and only if the standard conjecture B (Lefschetz) is
true.

Proposition

The category Motmot does not depend on the classical Weil
cohomology and there is an obvious faithful functor
Motmot → MotAH.

Proposition (�B ⇒ C �)

For any X ∈ V, the Künneth projectors in EndCohom(h(X )) are
de�ned in Motmot.

Proposition

Motmot is a neutral Tannakian category. (⇒ unconditional
de�nition of the motivic Galois group).
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Hodge cycles on abelian varieties

Theorem (Deligne)

Let A be an abelian variety over an algebraically closed �eld k
embedded in C. Any Hodge cycle is an absolute Hodge cycle.

Theorem (André)

Let A be an abelian variety over an algebraically closed �eld k
embedded in C. Any Hodge cycle is a motivated cycle.
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Absolute Hodge style's mixed realizations (Jannsen, Deligne)

Let k be a �eld embeddable in C and k be an algebraic closure of k.

De�nition (sketch)

The abelian category MRk of mixed realizations is the category
whose objects are families of objects:

I HDR is a k-vector space with a Hodge �ltration and a weight
�ltration;

I Hσ (for any embedding σ : k → C) is a mixed Q-Hodge
structure;

I H` (for any prime number `) is a Q`-vector space with an
action of Gal(k/k);

with comparison isomorphisms.
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Proposition

MRk is a Q-neutral Tannakian category.

Problem

De�ne objects in such a way that they would have a �geometric
origin�.

De�nition

Mixed motives are de�ned by Jannsen to be the sub-Tannakian
category of MRk generated by H(U) for any smooth variety U over
k.

Problem

There is no unconditional good notion of an abelian category of
mixed motives.
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Triangulated categories of mixed motives

Smk
covariant //

contravariant ((QQQQQQQQQQQQQ DMgm(k) (Voevodsky)

DM (k) (Levine)

Theorem (Levine, Ivorra)

I DMgm(k)opp ' DM (k) (k of characteristic zero);

I DMgm(k;Q)opp ' DM (k;Q) (k perfect).

Theorem (Voevodsky)

There is a canonical functor

Motrat(k)opp → DMgm(k)

that is fully faithful.
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Contravariant triangulated realization functors

DMgm(k)opp

(Ivorra)

��

(Huber) // DMRk

�� &&NNNNNNNNNNN
σ : k→C // Db(MHSQ)

D
b
c (két;Z`)

⊗Q` // // Db(két,Q`) D
b(Veck)

The hard part in these constructions is to get functoriality of
complexes computing cohomologies with respect to �nite
correspondences.

Remark

These functors obviously lead to �regulators�. If X ∈ Smk , by
de�nition,

Hp(X ,Z(q)) = HomDMgm(k)(M(X ),Z(q) [p]) .

For instance, the étale realization functor gives a map

Hp(X ,Z(q))→ Hp
ét,cont(X ,Z`(q)) .



Realization functors

Joël Riou

Weil cohomologies

Notations
De�nitions
Traces

Applications

Finite �elds
Numerical equivalence
Semi-simplicity

Examples

�Classical� Weil
cohomologies
Realization functors
Review of Hodge theory
Comparison theorems

Absolute Hodge cycles,
motivated cycles

Absolute Hodge cycles
Motivated cycles
Hodge cycles on
abelian varieties

Mixed realizations

Abelian category of
mixed realizations
Triangulated categories
of mixed motives
Contravariant
realization functors
Covariant realization
functors
Generalizations over a
base scheme

Using his de�nition of a motivic category DM (k), Levine
constructed a mixed realization functor

DM (k)→ D
b
MRk

that provides Betti, étale, Hodge, etc. realizations.

However, it is not clear whether or not these functors coincide with
the ones de�ned on Voevodsky's category.
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Covariant triangulated realization functors

Theorem (Suslin, Voevodsky)

There is a �trivial� covariant étale realization functor

DM(k)→ DMét(k;Z/`ν) ' D(két,Z/`ν) ,

at least if k is virtually of �nite `-cohomological dimension.

Howerer, it is not clear whether this functor is dual to Ivorra's.
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Let E : Schoppk → C(Vec∞F ) with additional data and properties:

I F is of characteristic 0;

I multiplicative structure and Künneth formula;

I Mayer-Vietoris property (Nisnevich descent);

I homotopy invariance and cohomology of P1;

I proper descent.

Theorem (Cisinski, Déglise)

Then, there is a representable covariant ⊗-realization functor

DM(k;F )→ D(Vec∞F ) ' VecGr∞F

that maps the motive of a smooth variety X to the dual of E(X ).

Vec
∞
F is the category of F -vector spaces (not necessarily �nite

dimentional).
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They get

I De Rham realization: DM(k; k)→ D(Veck) (in characteristic
zero);

I rigid realization: if R is a complete discrete valuation ring of
unequal characteristic with quotient �eld K and perfect residual
�eld k, then they constructs a ⊗-functor

DM(k)→ D(VecK ) .

However, their convention on twists prevents them from keeping the
Galois action on the étale realization.
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Motivic coe�cients and realizations

Let S be a noetherian separated scheme.

I Levine actually de�ned DM (S), and a �mixed Hodge modules�
realization functor if S is a smooth variety over C;

I Cisinski and Déglise de�ned DM(S);

I Ivorra de�ned DMgm(S) (it is a full subcategory of DM(S))
and a functor

DMgm(S)opp → D
+(S ;Z`) ,

and a �moderate� version, for instance, if K is a number �eld

DMgm(K)opp → colimS D
b
c (SpecOS ;Z`)

where S go through �nite sets of �nite places of K .
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Theorem (Cisinski, Déglise, Ayoub)

There exists a six operations formalism for the categories DM(S).
For any f : T → S, there are functors (f ?, f?), and for f : T → S
�quasi-projective�, functors (f!, f

!), a map f! → f? which is an
isomorphism if f is projective.

Remark (Bloch)

These categories do not see �nilpotents�: DM(S) ' DM(Sréd).
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