Steenrod operations

Joël Riou

Université Paris-Sud 11

June 14 & 16, 2011

Slides available at http://www.math.u-psud.fr/~riou/

Goals:

Construct stable operations

$$P^i: H^{p,q}(\mathcal{X}) \to H^{p+2i,q+i}(\mathcal{X})$$

for all spaces $\mathcal{X} \in \mathcal{H}(k)$ where $H^{p,q}$ denotes motivic cohomology with $\mathbb{Z}/2\mathbb{Z}$ coefficients.

- Study the motivic Steenrod algebra (generated over $H^{\star,\star}(k)$ by these P^i and the Bockstein) and its dual.
- Construct operations Q_i : $H^{p,q} o H^{p+2^{i+1}-1,q+2^i-1}$ such that $Q_i \circ Q_i = 0$ (\Rightarrow definition of Margolis homology).
- Understand the action of the Steenrod algebra on Thom classes.

We fix a (perfect) base field k. We assume its characteristic is not two.

Definition

For $p \geq q \geq 0$, the motivic sphere $S^{p,q}$ is $S^{p-q} \wedge \mathbf{G}_{\mathsf{m}}^{\wedge q} \in \mathcal{H}_{\bullet}(k)$.

We have a tautological class in $\widetilde{H}^{p,q}(S^{p,q})$ that induces isomorphisms:

$$\widetilde{H}^{a,b}(\mathcal{X})\stackrel{\sim}{ o} \widetilde{H}^{a+p,b+q}(S^{p,q}\wedge \mathcal{X})$$

Definition

A stable cohomological operation of bidegree (a,b) is family of natural transformations $\widetilde{H}^{i,j}(\mathcal{X}) \to \widetilde{H}^{i+a,j+b}(\mathcal{X})$ for $X \in \mathcal{H}_{\bullet}(k)$ such that the action on $\widetilde{H}^{i-p,j-q}$ is determined by the action on $\widetilde{H}^{i,j}$ through the identifications

$$\widetilde{H}^{i-p,j-q}(\mathcal{X}) = \widetilde{H}^{i,j}(S^{p,q} \wedge \mathcal{X})$$

Lemma

One can (re)construct a unique stable operation for the datum of the action on $\widetilde{H}^{2n,n}$ for $n\geq 0$ provided they are compatible with the identification $\widetilde{H}^{2n,n}(\mathcal{X})\stackrel{\sim}{\to} \widetilde{H}^{2(n+1),n+1}(S^{2,1}\wedge \mathcal{X})$. (Note that $S^{2,1}\simeq \mathbf{P}^1$.)

(Let Λ be $\mathbf{Z}/2\mathbf{Z}$.) For all $(p,q) \in \mathbf{Z}^2$, we have motivic Eilenberg-Mac Lane spaces $K(\Lambda(q),p) \in \mathcal{H}_{\bullet}(k)$, i.e.,

$$\widetilde{H}^p(\mathcal{X},\Lambda(q))=\widetilde{H}^{p,q}(\mathcal{X})\simeq \mathsf{Hom}_{\mathcal{H}_{\bullet}(k)}(\mathcal{X},K(\Lambda(q),p))$$

Yoneda's lemma \Rightarrow a natural transformation $\widetilde{H}^{i,j}(\mathcal{X}) \to \widetilde{H}^{i+a,j+b}(\mathcal{X})$ for $X \in \mathcal{H}_{\bullet}(k)$ is the same as a morphism $K(\Lambda(j),i) \to K(\Lambda(j+b),i+a)$ in $\mathcal{H}_{\bullet}(k)$.

Then, a stable cohomology operation is the same a family of maps $f_n \colon K(\Lambda(n), 2n) \to K(\Lambda(n+b), 2n+a)$ in $\mathcal{H}_{\bullet}(k)$ such that the following diagram commute:

$$K(\Lambda(n),2n) \xrightarrow{f_n} K(\Lambda(n+j),2n+i)$$

$$\downarrow \sim \qquad \qquad \downarrow \sim$$

$$\Omega_{\mathbf{P}^1}K(\Lambda(n+1),2n+2) \xrightarrow{\Omega_{\mathbf{P}^1}(f_{n+1})} \Omega_{\mathbf{P}^1}K(\Lambda(n+j+1),2n+2+i)$$

This is essentially the way we shall define the operations P^{i} .

Main source:

Vladimir Voevodsky. Reduced power operations in motivic cohomology. Publications Mathématiques de l'IHÉS 98 (2003), pages 1-57.

1 Construction of Steenrod operations

2 Properties of the Steenrod operations

3 The Steenrod algebra and its dual

4 Applications

Definition

Let $X \to S$ be a smooth morphism in Sm/k. $c_{\text{equi}}(X/S,0)$ is the free Λ -module generated by integral closed subschemes Z in X such that $Z \to S$ is a finite morphism and a surjection over a connected component of S. (There is a fonctoriality associated to a base change $S' \to S$.)

Definition

Let $X \in Sm/k$. $\Lambda_{tr}(X)$ is the sheaf of groups over Sm/k (for the Nisnevich topology) defined by $\Lambda_{tr}(X)(U) = c_{equi}(U \times_k X/U, 0)$.

For any $i \geq 0$, K_i is the underlying sheaf of sets of the sheaf of abelian groups $\Lambda_{\rm tr}({\bf A}^i)/\Lambda_{\rm tr}({\bf A}^i-\{0\})$. This is the Eilenberg-Mac Lane space $K(\Lambda(i),2i)\in \mathcal{H}_{\bullet}(k)$.

Definition

Let E be a vector bundle of rank r on $X \in Sm/k$. We denote $Th_X E = E/E - \{0\} \simeq \mathbf{P}(E \oplus \mathscr{O}_X)/\mathbf{P}(E)$ the Thom space of X.

Proposition

 $\widetilde{H}^{\star,\star}(\mathsf{Th}_X\,E)$ is a free $H^{\star,\star}(X)$ -module of rank 1 generated by the Thom class $t_E=\xi^r+c_1(E)\xi^{r-1}+\cdots+c_r(E)\in\ker(H^{\star,\star}(\mathsf{P}(E\oplus\mathscr{O}_X))\to H^{\star,\star}(\mathsf{P}(E)))\simeq \widetilde{H}^{\star,\star}(\mathsf{Th}_X\,E)$ where $\xi=c_1(\mathscr{O}(1))\in H^{2,1}(\mathsf{P}(E\oplus\mathscr{O}_X))$.

Definition

The Euler class of E in $H^{2r,r}(X)$ is the image of t_E by the restriction map $\widetilde{H}^{\star,\star}(\operatorname{Th}_X E) \to H^{\star,\star}(X)$ induced by the zero section $X \to \operatorname{Th}_X E$. This class is the highest Chern class $c_r(E)$.

Lemma

If $E \to F$ is an admissible monomorphism of vector bundles on X, the image of t_F by the restriction map $\widetilde{H}^{*,*}(\operatorname{Th}_X F) \to \widetilde{H}^{*,*}(\operatorname{Th}_X E)$ induced by the obvious morphism $\operatorname{Th}_X E \to \operatorname{Th}_X F$ is $t_E \cdot c_r(F/E)$ where r is the rank of F/E.

Lemma

If $E \to F$ is an admissible monomorphism of vector bundles on X, the image of t_F by the restriction map $\widetilde{H}^{\star,\star}(\operatorname{Th}_X F) \to \widetilde{H}^{\star,\star}(\operatorname{Th}_X E)$ induced by the obvious morphism $\operatorname{Th}_X E \to \operatorname{Th}_X F$ is $t_E \cdot c_r(F/E)$ where r is the rank of F/E.

Proof.

Let e be the rank of E. We denote $\xi = c_1(\mathcal{O}(1))$ on various projective bundles. Because of the relations $c_i(E \oplus \mathcal{O}_X) = c_i(E)$, we have the following identity in $\mathcal{H}^{\star,\star}(\mathbf{P}(E \oplus \mathcal{O}_X))$:

$$\xi^{e+1} + c_1(E)\xi^e + \cdots + c_e(E)\xi = 0$$
 i.e., $t_E \xi = 0$.

Multiplicativity of the Chern polynomial for E and F/E gives:

$$t_F = (\xi^e + c_1(E)\xi^{e-1} + \dots + c_e(E)) \cdot (\xi^r + c_1(F/E)\xi + \dots + c_r(F/E))$$

This is in $H^{\star,\star}(\mathbf{P}(F \oplus \mathscr{O}_X))$. Restricted to $\mathbf{P}(E \oplus \mathscr{O}_X)$, we obtain :

$$t_E \cdot ((...) \cdot \xi + c_r(F/E)) = t_E \cdot c_r(F/E)$$

The last proposition says that $\operatorname{Th}_X E$ and $S^{2r,r} \wedge X_+$ have the same cohomology. More precisely, they have the same *motive*. The following corollary is even more precise as it states something relative to X:

Corollary

Let $X \in Sm/k$. (We denote a: $X \to Spec\ k$ the projection.) Let E be a vector bundle over X of rank r. We define the sheaf of sets $KM(Th_X\ E)$ induced by the sheaf of abelian groups over Sm/X associated to the presheaf

$$U \longmapsto c_{equi}(U \times_X E/U, 0)/c_{equi}(U \times_X (E - \{0\}), 0))$$

Then, the Thom class t_E induces an isomorphism in $\mathcal{H}_{\bullet}(X)$:

$$KM(\operatorname{Th}_X E) \stackrel{\sim}{\to} KM(\operatorname{Th}_X \mathbf{A}^r) = a^* K_r$$
.

("KM" should be thought as a composition of two adjoint functors. M is the "motive" functor from spaces to motives, and K is its right adjoint, that forgets transfers and abelian groups structures on sheaves.) Roughly, the only difficulty here is how t_E induces a map. Then, it is quite obvious that it is an isomorphism.

Data:

- G is a finite group;
- $r: G \to \mathfrak{S}_n$ is a morphism, i.e., essentially a (left-)action of G on a finite set X with n elements ;
- $U \in Sm/k$ is equipped with a free (left-)action of G.

To this, we shall attach a cohomological operation for all $i \ge 0$:

$$P \colon \widetilde{H}^{2i,i}(\mathcal{X}) \to \widetilde{H}^{2in,in}(\mathcal{X} \wedge (G \backslash U)_+)$$
.

Then, we will apply it to the case U is the open subset of a big enough (faithful) linear representation $G \to \operatorname{GL}(V)$ on which G acts freely, so that $G \setminus U$ is an approximation of the geometric classifying space $\mathbf{B}_{\operatorname{gm}}G$. When we understand the motive of $\mathbf{B}_{\operatorname{gm}}G$, we will be able to define the expected Steenrod operations.

We linearise the action of G on $X=\{1,\ldots,n\}$ as a k-linear action of G on $V=k^n\simeq \bigoplus_{x\in X} k\cdot e_x$ with $g.e_x=e_{g.x}$. This defines an action of G on the affine space \mathbf{A}^n .

Proposition

The quotient scheme $G \setminus (U \times \mathbf{A}^n)$ of $U \times \mathbf{A}^n$ by the product action of G is a vector bundle ξ of rank n over $G \setminus U$.

Assume for simplicity that $U = \operatorname{Spec} A$ is affine. We have a right-action of G on A (denoted g^*f for $f \in A$). We equip $M = A \otimes_k V$ with a semilinear left-action $g.(a \otimes v) = (g^{-1*}a) \otimes (g.v)$.

The subgroup $M_0 = M^G$ of elements fixed by G is a module over the algebra A^G of functions over U fixed under the action of G. By definition, $G \setminus U = \operatorname{Spec} A^G$. The theory of faithfully flat descent implies that the canonical map of A-modules

$$M_0 \otimes_{A^G} A \to M$$

is an isomorphism. As the A^G -algebra A is faithfully flat, properties of M_0 over A^G reflects those on M over A. This implies that M_0 is a projective module of rank n over A^G . Then, $G \setminus (U \times \mathbf{A}^n) = \operatorname{Spec} \mathbf{S}_{A^G}^* M_0^{\vee}$, so that ξ is a vector bundle (which is is self-dual).

For all $i, j \geq 0$, we have a canonical pairing in the category of pointed sheaves over Sm/k:

$$K_i \wedge K_j \rightarrow K_{i+j}$$

We know that $K_n(Y) = c_{\text{equi}}(Y \times \mathbf{A}^n/Y, 0)/c_{\text{equi}}(Y \times (\mathbf{A}^n - \{0\})/Y, 0)$. The pairing is induced by the obvious product map:

$$c_{\mathsf{equi}}(Y \times \mathbf{A}^i/Y, 0) \times c_{\mathsf{equi}}(Y \times \mathbf{A}^j/Y, 0) o c_{\mathsf{equi}}(Y \times \mathbf{A}^{i+j}/Y, 0)$$

given by the external product of cycles followed by the base change by the diagonal $Y \to Y \times Y$.

Corollary

For any $i \ge 0$, we have a "raising to the power n" map:

$$K_i \rightarrow K_{in}$$

that is \mathfrak{S}_n -equivariant for the trivial action on K_i and the action on $K_{in} \simeq KM(\mathsf{Th}_k \ V^{\oplus i})$ where $V = k^n$ is the permutation representation as before.

Composing this morphism $K_i \to K_{in}$ with the "constant function morphism" $K_{in} \to \mathbf{Hom}(U, K_{in})$, we get a morphism:

$$K_i \rightarrow \mathbf{Hom}(U, K_{in})$$

The \mathfrak{S}_n -equivariance property stated before implies that this factors through the subsheaf of $\mathbf{Hom}_G(U,K_{in})$ of G-equivariant morphisms. More precisely, the image of an element on $K_i(Y)$ induced by an element of $c_{\text{equi}}(Y\times \mathbf{A}^i/Y,0)$ shall be an element in the group on the right:

$$c_{\mathsf{equi}}(Y \times G \setminus (U \times \mathbf{A}^{in})/Y \times G \setminus U, 0) \overset{\sim}{ o} c_{\mathsf{equi}}(Y \times U \times \mathbf{A}^{in}/Y \times U, 0)^G$$

This isomorphism comes from the étale descent of cycles. Then on the left, we recognise $c_{\text{equi}}(Y \times \xi^{\oplus i}/Y \times G \setminus U, 0)$. If $a \colon G \setminus U \to \operatorname{Spec} k$ is the projection, we have defined the first morphism in the following composition in $\mathcal{H}_{\bullet}(k)$:

$$K_i o a_\star \mathit{KM}(\mathsf{Th}_{G \setminus U} \, \xi^{\oplus i}) o \mathsf{R} a_\star \mathit{KM}(\mathsf{Th}_{G \setminus U} \, \xi^{\oplus i}) \simeq \mathsf{R} a_\star a^\star \mathit{K}_{in} \simeq \mathsf{R} \, \mathsf{Hom}(G \setminus U, \mathit{K}_{in})$$

We have defined the total operation:

$$K_i \to \mathsf{R}\,\mathsf{Hom}(G \backslash U, K_{in}) \stackrel{\mathsf{id}\,\mathsf{est}}{\longleftrightarrow} P \colon K_i \wedge (G \backslash U)_+ \to K_{in}$$

This morphism $P \colon K_i \wedge (G \setminus U)_+ \to K_{in}$ in $\mathcal{H}_{\bullet}(k)$ induces a cohomology operation:

$$P \colon \widetilde{H}^{2i,i}(\mathcal{X}) \to \widetilde{H}^{2in,in}(\mathcal{X} \wedge (G \backslash U)_+)$$

for all $\mathcal{X} \in \mathcal{H}_{\bullet}(k)$.

Lemma

The composition

$$K_i \to K_i \wedge (G \backslash U)_+ \stackrel{P}{\longrightarrow} K_{in}$$

where the first map is induced by a rational point of U is the "raising to the power n" morphism.

(To prove this lemma, one may for instance replace $\it U$ by the orbit of the given rational point, in which case it is obvious.)

It means that if $x \in \widetilde{H}^{2i,i}(\mathcal{X})$, then $u^{\star}P(x) = x^n \in \widetilde{H}^{2in,in}(\mathcal{X})$ where u is the map $\mathcal{X} \to \mathcal{X} \land (G \backslash U)_+$ induced by a rational point of U.

Let $\mathscr X$ and $\mathscr Y$ be two objects of $\mathcal H_{\bullet}(k)$, $x\in \widetilde H^{2i,i}(\mathscr X)$ and $y\in \widetilde H^{2j,j}(\mathscr Y)$. Then,

$$P(x \cup y) = \Delta^*(P(x) \cup P(y))$$

in $\widetilde{H}^{2(i+j)n,(i+j)n}(\mathscr{X}\wedge\mathscr{Y}\wedge(G\backslash U)_+)$ where

$$\Delta \colon \mathscr{X} \wedge \mathscr{Y} \wedge (G \backslash U)_{+} \to \mathscr{X} \wedge \mathscr{Y} \wedge (G \backslash U)_{+}^{2}$$

is induced by the diagonal of $G \setminus U$.

It follows from a very direct computation.

The Bockstein β is the cohomology operation that naturally fits into the following long exact sequences coming from the short exact sequence $0 \to \mathbf{Z}/2\mathbf{Z} \to \mathbf{Z}/4\mathbf{Z} \to \mathbf{Z}/2\mathbf{Z} \to 0$:

$$\cdots \to \widetilde{H}^{\star,\star}(\mathcal{X},\mathbf{Z}/2) \to \widetilde{H}^{\star,\star}(\mathcal{X},\mathbf{Z}/4) \to \widetilde{H}^{\star,\star}(\mathcal{X},\mathbf{Z}/2) \stackrel{\beta}{\longrightarrow} \widetilde{H}^{\star+1,\star}(\mathcal{X},\mathbf{Z}/2) \to \ldots$$

In particular, $\beta x = 0$ if and only if x lifts as a cohomology class with coefficients $\mathbb{Z}/4\mathbb{Z}$. (Also, $\beta \circ \beta = 0$ and $\beta(xy) = x\beta(y) + (\beta x)y$.)

Theorem

If $G = \mathbf{Z}/2\mathbf{Z}$ and n = 2, for any cohomology class $x \in \widetilde{H}^{2i,i}(\mathcal{X})$, we have:

$$\beta(P(x))=0$$

A rough idea of the proof is that there is a way to lift P as:

$$\widetilde{P} \colon K_{i,\mathbf{Z}/2} o \mathsf{R}\,\mathsf{Hom}(\mathit{G} ackslash \mathit{U}, K_{i,\mathbf{Z}/4})$$
 ,

the main remark is that in some sense, somewhere,

 $(x+2y)^2 \equiv x^2 + 2(xy+yx) \mod 4$ and xy+yx can be interpreted as a transfer of a certain cycle xy for the an action of $\mathbb{Z}/2$ by transposition.

The motive of B_{gm} μ_{ℓ}

The geometric classifying space of a linear algebraic group G is the colimit $\mathbf{B}_{\mathrm{gm}}G=\mathrm{colim}\,G\backslash U_n$ where U_n is the open subset of $V^{\oplus n}$ on which G acts freely and V is some faithful linear representation of G.

For $G = \mu_{\ell}$, we take $V = \mathbf{A}^1$ on which $\mu_{\ell} \subset \mathbf{G}_{\mathrm{m}}$ acts by multiplication. Then, $U_n = \mathbf{A}^n - \{0\}$.

Proposition

 $\mathbf{B}_{gm}\mu_{\ell}$ is the complement of the zero section of the line bundle $\mathscr{O}(-\ell)$ on \mathbf{P}^{∞} .

We have a projection $\mu_{\ell} \setminus (\mathbf{A}^n - \{0\}) \to \mathbf{G}_m \setminus (\mathbf{A}^n - \{0\}) = \mathbf{P}^{n-1}$. Because of the short exact sequence

$$0 o \mu_\ell o \mathbf{G}_{\mathsf{m}} \overset{x \longmapsto x^\ell}{\longrightarrow} \mathbf{G}_{\mathsf{m}} o 0$$
 ,

we see that this projection is a $\mathbf{G}_m/\mu_\ell \overset{\sim}{\to} \mathbf{G}_m$ -torsor, which is obtained from the tautological \mathbf{G}_m -torsor $\mathbf{A}^n - \{0\} \to \mathbf{P}^{n-1}$ (punctured universal line $\mathscr{O}(-1)$) by covariant functoriality associated to the morphism $\mathbf{G}_m \overset{x \longmapsto x^\ell}{\longrightarrow} \mathbf{G}_m$. Then, we get the punctured $\mathscr{O}(-1)^{\otimes \ell} = \mathscr{O}(-\ell)$.

Let $X \in Sm/k$. Let L be a line bundle on X. We let $L - \{0\}$ be the punctured bundle, i.e., the complement of the zero section $s: X \to L$. Then, we have a distinguished triangle in $DM_-^{eff}(k)$:

$$M(L-\{0\}) \rightarrow M(X) \rightarrow M(X)(1)[2] \stackrel{+}{\longrightarrow}$$

where the map $M(X) \to M(X)(1)[2]$ is the multiplication by $c_1(L)$.

Proof.

It comes from the distinguished triangle $M(L - \{0\}) \to M(L) \to \widetilde{M}(\operatorname{Th}_X L) \stackrel{+}{\longrightarrow}$ and the isomorphism $\widetilde{M}(\operatorname{Th}_X L) \simeq M(X)(1)[2]$ induced by the Thom class. Then, the composition $M(X) \stackrel{\sim}{\to} M(L) \to \widetilde{M}(\operatorname{Th}_X L)$ is identified with the multiplication with the Euler class of L, i.e., $c_1(L)$.

Assume now that the line bundle L on X is such that $c_1(L) = 0 \in H^{2,1}(X)$ (for a certain coefficient ring Λ), then there exists a class $u \in H^{1,1}(L - \{0\}, \Lambda)$ (well defined modulo the image of $H^{1,1}(X, \Lambda)$), such that the projection $L - \{0\} \to X$ and the classes 1 and u induce an isomorphism:

$$M(L-\{0\}) \stackrel{\sim}{\rightarrow} M(X) \oplus M(X)(1)[1]$$

The distinguished triangle reduces to a split short exact sequence in $DM_{-}^{eff}(k)$:

$$0 \to M(X)(1)[1] \stackrel{\delta}{\longrightarrow} M(L - \{0\}) \to M(X) \to 0$$

Then, applying the cohomological functor $H^{1,1}$, we obtain a class $u \in H^{1,1}(L-\{0\})$ (unique modulo $H^{1,1}(X)$) such that $\delta^\star(u)=1 \in H^{0,0}(X)$. This u defines a map $M(L-\{0\}) \to M(X)(1)[1]$ which is a retraction of δ because δ is compatible with certain M(X)-comodule structures (this is related to saying that δ^\star is $H^{\star,\star}(X)$ -linear, at least up to signs).

Corollary

For $\Lambda = \mathbf{Z}/\ell\mathbf{Z}$, we have a class $u \in H^{1,1}(\mu_{\ell} \setminus (\mathbf{A}^n - \{0\}))$ such that the projection to \mathbf{P}^{n-1} and the classes 1 and u induce an isomorphism in $DM_{-}^{eff}(k; \mathbf{Z}/\ell\mathbf{Z})$:

$$M(\mu_{\ell} \setminus (\mathbf{A}^n - \{0\})) \stackrel{\sim}{\to} M(\mathbf{P}^{n-1}) \oplus M(\mathbf{P}^{n-1})(1)[1]$$

(Note that $c_1(\mathscr{O}(-\ell)=\ell c_1(\mathscr{O}(-1))$ which is zero modulo ℓ .) The class u from the previous proposition is made unique here by the condition that for one (or any) rational point x of $U_n=\mathbf{A}^n-\{0\}$, the restriction $x_{|[u]}$ is zero. This follows from the isomorphism $k^\times/k^{\times\ell}\simeq H^{1,1}(k)\stackrel{\sim}{\to} H^{1,1}(\mathbf{P}^{n-1}(k))$.

Proposition

For any $n \ge 0$, we have an isomorphism

$$M(\mathbf{P}^{n-1}) \stackrel{\sim}{\to} \bigoplus_{i=0}^{n-1} \Lambda(i)[2i]$$

that is induced by the classes $1, v, \ldots, v^{n-1}$ with $v = c_1(\mathcal{O}(1)) \in H^{2,1}(\mathbf{P}^{n-1})$.

Corollary

The obvious maps $M(\mathbf{P}^{n-1}) \to M(\mathbf{P}^n)$ and $M(\mu_{\ell} \setminus (\mathbf{A}^n - \{0\})) \to M(\mu_{\ell} \setminus (\mathbf{A}^{n+1} - \{0\}))$ are split monomorphisms.

This is so as to ensure there is no technical difficulties when taking colimits:

Corollary

The classes $1, v, v^2, \ldots$ induce an isomorphism:

$$M(\mathbf{P}^{\infty}) \stackrel{\sim}{\to} \oplus_{i \geq 0} \Lambda(i)[2i]$$

and the classes 1, u and the projection $\mathbf{B}_{gm}\mu_\ell \to \mathbf{P}^\infty = \mathbf{B}_{gm}\mathbf{G}_m$ induce an isomorphism:

$$M(\mathsf{B}_{\mathsf{gm}}\mu_\ell)\stackrel{\sim}{ o} M(\mathsf{P}^\infty) \oplus M(\mathsf{P}^\infty)(1)[1]$$

It follows that if we want to understand the cohomology algebra of $\mathbf{B}_{\mathrm{gm}}\mu_{\ell}$, we have to compute $u^2 \in H^{2,2}(\mathbf{B}_{\mathrm{gm}}\mu_{\ell})$.

Obviously, if $\ell \neq 2$, we have $u^2 = 0$. From now, we assume $\ell = 2$.

We define $\tau \in H^{0,1}(k) \simeq \mu_2(k)$ the element corresponding to $-1 \in k$ and $\rho \in H^{1,1}(k) \simeq k^\times/k^{\times 2}$ the class of -1. Note that $\beta(\tau) = \rho$.

Proposition

In $H^{2,2}(\mathbf{B}_{gm}\mathbf{Z}/2\mathbf{Z})$, we have $u^2 = \tau v + \rho u$.

Proof.

For degree reasons, it follows from the decomposition of the motive of $\mathbf{B}_{\mathrm{gm}}\mathbf{Z}/2\mathbf{Z}$, that u^2 writes uniquely as $u^2=xv+yu+z$ with $x\in H^{0,1}(k)$, $y\in H^{1,1}(k)$ and $z\in H^{2,2}(k)$. The elements u,v and u^2 vanish when restricted to a suitable base-point of $\mathbf{B}_{\mathrm{gm}}\mathbf{Z}/2\mathbf{Z}$. This shows that z=0.

The restriction to the cohomology of $\{\pm 1\}\setminus U_1=\{\pm 1\}\setminus G_m\simeq \operatorname{Spec} k[t,t^{-1}]$ corresponds to removing the term xv. We use the fact that $H^{2,2}(\operatorname{Spec} k[t,t^{-1}))\hookrightarrow H^{2,2}(\operatorname{Spec} k(t,t^{-1}))=K_2^M(k(t,t^{-1}))$. The image of u in $K_1^M(k(t,t^{-1}))$ can be identified with $\{t\}$. Then, the result follows from $\{t,t\}=\{t,t\}-\{-t,t\}=\{-1,t\}=\{-1\}\cdot\{t\}$. Thus, $y=\rho$. (If $k\subset \mathbf{C}$), the coefficient $x\in \mu_2(k)$ is either 0 or τ . One can see the difference by taking complex points and using the structure of the cohomology algebra modulo 2 of the group $\mathbf{Z}/2\mathbf{Z}$, in which $u^2\neq 0$.

In $H^{2,1}(\mathbf{B}_{gm}\mathbf{Z}/2\mathbf{Z})$, we have $\beta u = v$.

Proof.

For degree reasons, we have either $\beta u = 0$ or $\beta u = v$.

$$H^{1,1}(L - \{0\}, \mathbf{Z}/4\mathbf{Z}) \xrightarrow{\delta^*} H^{0,0}(X, \mathbf{Z}/4\mathbf{Z}) \xrightarrow{\cdot c_1(L)} H^{2,1}(X, \mathbf{Z}/4\mathbf{Z})$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$H^{1,1}(L - \{0\}, \mathbf{Z}/2\mathbf{Z}) \xrightarrow{\delta^*} H^{0,0}(X, \mathbf{Z}/2\mathbf{Z}) \xrightarrow{} 0$$

Assuming $\beta u=0$, there is a lifting \tilde{u} of u in $H^{1,1}(L-\{0\},\mathbf{Z}/4)$ (we take $X=\mathbf{P}^{n-1}$ for $n\geq 2$ and $L=\mathscr{O}(-2)$). Then $\delta^*\tilde{u}=\pm 1$, then the image of \tilde{u} in $H^{2,1}(\mathbf{P}^{n-1},\mathbf{Z}/4\mathbf{Z})$ is $\pm c_1(\mathscr{O}(-2))=\pm 2c_1(\mathscr{O}(1))\neq 0$ (modulo 4). We get a contradiction with the exactness of the first line. Then $\beta u=v$.

Corollary

For any $X \in \mathcal{H}_{\bullet}(k)$, we have canonical isomorphisms of bigraded groups:

$$\begin{split} \widetilde{H}^{\star,\star}(\mathcal{X} \wedge (\mathbf{B}_{gm}\mathbf{Z}/2\mathbf{Z})_{+}) & \simeq & \lim_{n} \widetilde{H}^{\star,\star}(\mathcal{X} \wedge (\{\pm 1\} \setminus (\mathbf{A}^{n} - \{0\}))_{+}) \\ & \simeq & \widetilde{H}^{\star,\star}(\mathcal{X})[u,v]/(u^{2} - \tau v - \rho u) \end{split}$$

Let $d \ge 0$. The construction P (for i = d and n = 2) for the action of $\mathbb{Z}/2\mathbb{Z}$ on $\mathbb{A}^n - \{0\}$ for all $n \ge 1$ defines then a morphism for all $\mathcal{X} \in \mathcal{H}_{\bullet}(k)$:

$$P \colon \widetilde{H}^{2d,d}(\mathcal{X}) \to \widetilde{H}^{4d,2d}(\mathcal{X} \wedge (\boldsymbol{B}_{gm}\boldsymbol{Z}/2\boldsymbol{Z})_{+}) \; .$$

Definition

We define cohomological operation $P^i: \widetilde{H}^{2d,d} \to \widetilde{H}^{2d+2i,d+i}$ (for $i \leq d$) and $B^i: \widetilde{H}^{2d,d} \to \widetilde{H}^{2d+2i+1,d+i}$ (for $i \leq d-1$) by the following relation for all $x \in \widetilde{H}^{2d,d}(\mathcal{X})$:

$$P(x) = \sum_{i \le d} P^{i}(x)v^{d-i} + \sum_{i \le d-1} B^{i}(x)uv^{d-1-i}$$

(We set $P^i = 0$ for i > d and $B^i = 0$ for $i \ge d$.)

Proposition

- $\blacksquare B^i = \beta P^i;$
- $\beta B^i = 0.$

Proof.

Let $x \in \widetilde{H}^{2d,d}(\mathcal{X})$. We know that $\beta P(x) = 0$; $v = \beta(u)$, then $\beta(v^k) = 0$ and $\beta(uv^k) = v^{k+1}$:

$$\beta P(x) = \beta \left(\sum_{i} P^{i}(x) v^{d-i} + \sum_{i} B^{i}(x) u v^{d-1-i} \right)$$
$$= \sum_{i} (\beta P^{i}(x) + B^{i}(x)) v^{d-i} + \sum_{i} \beta B^{i}(x) u v^{d-1-i}$$

We also define $\operatorname{Sq}^{2i} = P^i$ and $\operatorname{Sq}^{2i+1} = B^i$. The operation Sq^j shifts the first degree by j and the second degree by $\lfloor \frac{j}{2} \rfloor$.

Theorem

There is no nontrivial cohomology operation

$$\widetilde{H}^{2d,d} \to \widetilde{H}^{p,q}$$

for q < d and for q = d, there are no nontrivial operation for p < 2d. The operations $\widetilde{H}^{2d,d} \to \widetilde{H}^{2d,d}$ are given by the multiplication by an element in $\mathbf{Z}/2\mathbf{Z}$.

Corollary

$$Sq^{j} = 0 \text{ for } j < 0.$$

Corollary

For
$$x \in \widetilde{H}^{2d,d}(\mathcal{X})$$
, $P(x) = \sum_{i=0}^{d} P^{i}(x)v^{d-i} + \sum_{i=0}^{d-1} B^{i}(x)uv^{d-1-i}$.

We let $t \in \widetilde{H}^{2,1}(S^{2,1})$ $(S^{2,1} \simeq \mathbf{A}^1/(\mathbf{A}^1 - \{0\}))$ be the tautological class. Then, for all $i \geq 0$ and $x \in \widetilde{H}^{2d,d}(\mathcal{X})$, $P^i(x \cup t) = P^i(x) \cup t$ and $B^i(x \cup t) = B^i(x) \cup t$.

Lemma

In
$$\widetilde{H}^{4,2}(\mathbf{A}^1/(\mathbf{A}^1-\{0\})\wedge(\mathbf{B}_{gm}\mathbf{Z}/2\mathbf{Z})_+)$$
, we have $P(t)=t\cup v$.

This lemma implies the proposition using the formulas $P(x \cup t) = P(x) \cup P(t) = P(x) \cup t \cup v$ and identifying the different terms. To prove it, we shall use:

Lemma

We let $\delta: (\mathbf{B}_{gm}\mathbf{Z}/2\mathbf{Z})_+ \wedge (\mathbf{A}^1/\mathbf{A}^1 - \{0\}) \to \mathsf{Th}_{\mathbf{B}_{gm}\mathbf{Z}/2\mathbf{Z}} \xi$ be the map on Thom spaces induces by the obvious inclusion $\mathscr{O} \to \xi$ of vector bundles on $\mathbf{B}_{gm}\mathbf{Z}/2\mathbf{Z}$. Then, $P(t) = \delta^* t_{\xi}$.

This is a very simple computation.

Lemma

In
$$\widetilde{H}^{4,2}(\mathbf{A}^1/(\mathbf{A}^1-\{0\})\wedge(\mathbf{B}_{gm}\mathbf{Z}/2\mathbf{Z})_+)$$
, we have $P(t)=t\cup v$.

We use:

Lemma

If $E \to F$ is an admissible monomorphism of vector bundles on X, the image of t_F by the restriction map $\widetilde{H}^{\star,\star}(\mathsf{Th}_X F) \to \widetilde{H}^{\star,\star}(\mathsf{Th}_X E)$ induced by the obvious morphism $Th_X E \to Th_X F$ is $t_E \cdot c_r(F/E)$ where r is the rank of F/E.

When we apply it to δ : $(\mathbf{B}_{gm}\mathbf{Z}/2\mathbf{Z})_+ \wedge (\mathbf{A}^1/\mathbf{A}^1 - \{0\}) \rightarrow \mathsf{Th}_{\mathbf{B}_{gm}\mathbf{Z}/2\mathbf{Z}}\xi$, we get:

$$P(t) = \delta^{\star} t_{\xi} = t \cup c_{1}(\xi/\mathscr{O})$$

Lemma

The bundle ξ/\mathscr{O} identifies to the inverse image of $\mathscr{O}(\pm 1)$ by the projection $\mathbf{B}_{gm}\mathbf{Z}/2\mathbf{Z} \to \mathbf{P}^{\infty}$.

It follows that $c_1(\xi/\mathscr{O}) = v$.

Lemma

The bundle ξ/\mathscr{O} identifies to the inverse image of $\mathscr{O}(\pm 1)$ by the projection $\mathbf{B}_{gm}\mathbf{Z}/2\mathbf{Z} \to \mathbf{P}^{\infty}$.

For any k-linear representation V of $\mathbb{Z}/2\mathbb{Z}$, one may attach a "vector bundle on $\mathbb{B}_{gm}\mathbb{Z}/2\mathbb{Z}$ ". On $\{\pm 1\}\setminus (\mathbb{A}^n-\{0\})$, it is $\{\pm 1\}\setminus (\mathbb{A}^n-\{0\}\times V)$ as we did before in the case of a permutation representation. We have a short exact sequence of representations of $\mathbb{Z}/2\mathbb{Z}$:

$$0 \to k \stackrel{+}{\longrightarrow} (k^2, \tau) \stackrel{-}{\longrightarrow} \chi \to 0$$
.

where τ inverts the two factors and χ is the nontrivial (selfdual) character of **Z**/2**Z**. To this exact sequence is attached the exact sequence of vector bundles:

$$0 \to \mathscr{O} \to \xi \to \xi/\mathscr{O} \to 0$$
.

Then ξ/\mathscr{O} is attached to the character χ . In terms of the \mathbf{G}_m -torsors associated to ξ/\mathscr{O} and the inverse image of $\mathscr{O}(-1)$, the result follows from the isomorphism $\{\pm 1\}\setminus ((\mathbf{A}^n-\{0\})\times \mathbf{G}_m)\stackrel{\sim}{\to} (\{\pm 1\}\setminus (\mathbf{A}^n-\{0\}))\times_{\mathbf{P}^{n-1}}(\mathbf{A}^n-\{0\}))$ that maps the class of $[\nu,\lambda]$ to $([\nu],\lambda\nu)$.

We proved this:

Proposition

We let $t \in \widetilde{H}^{2,1}(S^{2,1})$ $(S^{2,1} \simeq \mathbf{A}^1/(\mathbf{A}^1 - \{0\}))$ be the tautological class. Then, for all $i \geq 0$ and $x \in \widetilde{H}^{2d,d}(\mathcal{X})$, $P^i(x \cup t) = P^i(x) \cup t$ and $B^i(x \cup t) = B^i(x) \cup t$.

This shows that the definition we gave of the operations P^i and B^i on $\widetilde{H}^{2d,d}$ are compatible for different d. We have thus defined *stable* cohomology operations for all $i \geq 0$:

$$P^i : \widetilde{H}^{p,q}(\mathcal{X}) \to \widetilde{H}^{p+2i,q+i}(\mathcal{X})$$

$$B^i \colon \widetilde{H}^{p,q}(\mathcal{X}) \to \widetilde{H}^{p+2i+1,q+i}(\mathcal{X})$$

for all $(p,q) \in \mathbf{Z}$ and $\mathcal{X} \in \mathcal{H}_{\bullet}(k)$. It follows that these operations are additive. (We also know that $B^i = \beta P^i$, i.e., $\operatorname{Sq}^{2j+1} = \beta \operatorname{Sq}^{2j}$.)

Proposition

$$P^0 = \operatorname{Sq}^0$$
 is the identity and $B^0 = \operatorname{Sq}^1 = \beta$.

 $P^0 = Sq^0$ is the identity and $B^0 = Sq^1 = \beta$.

We know that on $\widetilde{H}^{2d,d}$, P^0 is the multiplication by some $c_d \in \mathbb{Z}/2\mathbb{Z}$. The fact that P^0 is a stable operation show that $c_d = c_0$. For obvious reasons, $c_0 = 1$ (using the formula $P(t) = t \cup v$, one may also observe that $c_1 = 1$). It follows that P^0 is the identity. Then, $B^0 = \beta P^0 = \beta$.

Proposition

If $x \in \widetilde{H}^{\star,\star}(\mathscr{X})$ and $y \in \widetilde{H}^{\star,\star}(\mathscr{Y})$, we have:

$$P^{k}(x \cup y) = \sum_{i+j=k} P^{i}(x) \cup P^{j}(y) + \tau \sum_{i+j=k-1} B^{i}(x) \cup B^{j}(y)$$

$$B^{k}(x \cup y) = \sum_{i+j=k} P^{i}(x) \cup B^{j}(y) + \sum_{i+j=k} B^{i}(x) \cup P^{j}(y) + \rho \sum_{i+j=k-1} B^{i}(x) \cup B^{j}(y)$$

If $x \in \widetilde{H}^{\star,\star}(\mathscr{X})$ and $y \in \widetilde{H}^{\star,\star}(\mathscr{Y})$, we have:

$$P^{k}(x \cup y) = \sum_{i+j=k} P^{i}(x) \cup P^{j}(y) + \tau \sum_{i+j=k-1} B^{i}(x) \cup B^{j}(y)$$

$$B^{k}(x \cup y) = \sum_{i+j=k} P^{i}(x) \cup B^{j}(y) + \sum_{i+j=k} B^{i}(x) \cup P^{j}(y) + \rho \sum_{i+j=k-1} B^{i}(x) \cup B^{j}(y)$$

One may assume $x \in \widetilde{H}^{2d,d}(\mathcal{X})$ and $y \in \widetilde{H}^{2d',d'}(\mathcal{Y})$. Then:

$$P(x) \cdot P(y) = \left(\sum_{i=0}^{d} P^{i}(x) v^{d-i} + \sum_{i=0}^{d-1} B^{i}(x) u v^{d-i-1}\right) \cdot \left(\sum_{j=0}^{d'} P^{j}(y) v^{d'-j} + \sum_{j=0}^{d-1} B^{j}(x) u v^{d-j-1}\right)$$

Then, one uses the computation $u^2 = \tau v + \rho u$ and the identification with:

$$P(xy) = \sum_{k=0}^{d+d'} P^k(xy) v^{d+d'-k} + \sum_{k=0}^{d+d'-1} B^k(xy) u v^{d+d'-1-k}$$

If $x \in \widetilde{H}^{2d,d}(\mathcal{X})$, then $P^d(x) = x^2$.

We use the following lemma for i=d, n=2, $U=\mathbf{A}^{?}-\{0\}$ and $G=\{\pm 1\}$:

Lemma

The composition

$$K_i \to K_i \wedge (G \backslash U)_+ \stackrel{P}{\longrightarrow} K_{in}$$

where the first map is induced by a rational point of U is the "raising to the power n" morphism.

The restriction map $\widetilde{H}^{\star,\star}(\mathcal{X} \wedge (\mathbf{B}_{\mathrm{gm}}\mathbf{Z}/2)_{+}) \to \widetilde{H}^{\star,\star}(\mathcal{X})$ sends P(x) to x^{2} . Moreover, the images of u and v vanish, to that P(x) is also sent to $P^{d}(x)$.

Corollary

If
$$x \in \widetilde{H}^{p,q}(\mathcal{X})$$
 with $d \ge q$ and $d > p - q$, then $P^d(x) = 0$.

Proof.

Using suspensions with S^1 or \mathbf{G}_{m} , one may assume $x \in \widetilde{H}^{2d-1,d}(\mathcal{X})$. Let $\widetilde{x} = s \wedge x \in \widetilde{H}^{2d,d}(S^1 \wedge \mathcal{X})$ where $s \in H^{1,0}(S^1)$ is the tautological class. We have to show that $\widetilde{x}^2 = 0$. This class is induced by a morphism in $\mathcal{H}_{\bullet}(k)$ that factors through the diagonal:

$$S^1 \wedge \mathcal{X} \to S^2 \wedge \mathcal{X}^{\wedge 2}$$

which is the \land -product of two morphisms, but the first one $S^1 \to S^2$ is the zero map because the Riemann sphere is simply connected.

Then.

Let $X \in Sm/k$. Let L be a line bundle on X. Let $c_1(L) \in H^{2,1}(X)$ be its first Chern class.

$$P(c_1(L)) = c_1(L)^2 + c_1(L)v$$

In other words.

$$P^{0}(c_{1}(L)) = c_{1}(L) \quad P^{1}(c_{1}(L)) = c_{1}(L)^{2} \quad B^{0}(c_{1}(L)) = 0$$

This follows from the preceding results for P^0 , P^1 and B^0 .

Corollary

Let $X \in Sm/k$. The sub- \mathbf{F}_2 -algebra of $H^{2*,*}(X) = CH^*(X)/2$ generated by Chern classes of vector bundles on X is stable under the operations P^n and killed by the operations B^n .

Corollary

Let $X \in Sm/k$. The sub- \mathbf{F}_2 -algebra of $H^{2*,*}(X) = CH^*(X)/2$ generated by Chern classes of vector bundles on X is stable under the operations P^n and killed by the operations B^n .

It is true for 1 and first Chern classes of line bundles. Consider the vector bundle $V = L_1 \oplus \cdots \oplus L_d$ on $(\mathbf{P}^k)^d$ (for k big enough) where L_i is the inverse image of $\mathcal{O}(1)$ by the ith projection on \mathbf{P}^k . Define $x_i = c_1(L_i)$. $c_k(V)$ identifies to a symmetric polynomial involving the d variables x_1, \ldots, x_d . Using the previous formulas, $P^n(c_k(V))$ may also be identified with a symmetric polynomial involving x_1, \ldots, x_d . Then, there exists a polynomial $f \in \mathbf{F}_2[c_1, \ldots, c_d]$ such that

$$P^{n}(c_{k}(V)) = f(c_{1}(V), \ldots, c_{d}(V))$$

Standard arguments shows that if this is true for this specific V on $(\mathbf{P}^k)^d$ (which is true by definition), then it is true for all bundles of rank d on schemes in Sm/k.

We use the identification

$$\widetilde{H}^{\star,\star}(\mathcal{X}\wedge (\mathsf{B}_{\mathsf{gm}}\mathsf{Z}/2\mathsf{Z})_+)\simeq \widetilde{H}^{\star,\star}(\mathcal{X})\otimes_{H^{\star,\star}(k)}H^{\star,\star}(\mathsf{B}_{\mathsf{gm}}\mathsf{Z}/2\mathsf{Z})$$
:

Corollary

$$P(v) = v^2 \otimes 1 + v \otimes v \text{ and } P(u) = u \otimes v + v \otimes v.$$

(The second formula does not make sense as it is. If $x \in \widetilde{H}^{p,q}(\mathcal{X})$ with $p \leq 2q$, one may identify x to a class $\widetilde{x} \in \widetilde{H}^{2q,q}(S^{2q-p} \wedge \mathcal{X})$. Then, $P(\widetilde{x})$ makes sense, and we define $P(x) \in \widetilde{H}^{\star,\star}(\mathcal{X} \wedge (\mathbf{B}_{\mathrm{gm}}\mathbf{Z}/2\mathbf{Z})_+)$ from $P(\widetilde{x})$ by using the suspension isomorphism in the opposite direction.)

The computation of P(v) follows from the formula for $P(c_1(L))$ and the identity $v = c_1(\mathcal{O}(1))$.

We may write P(u) as:

$$P(u) = P^{0}(u) \otimes v + P^{1}(u) \otimes 1 + \beta u \otimes u = u \otimes v + v \otimes u$$

because $P^1(u) = 0$.

Proposition

For all $i, k \geq 0$, the following relations hold in $H^{\star,\star}(\textbf{P}^{\infty}) \subset H^{\star,\star}(\textbf{B}_{gm}\textbf{Z}/2\textbf{Z})$:

$$P^{i}(v^{k}) = {k \choose i} v^{k+i}, \quad B^{i}(v^{k}) = 0$$

for all $i, k \geq 0$. In $H^{\star,\star}(\mathbf{B}_{gm}\mathbf{Z}/2\mathbf{Z})$, we have:

$$P^{i}(uv^{k}) = {k \choose i}uv^{k+i}, \quad B^{i}(uv^{k}) = {k \choose i}v^{k+i+1}$$

Proof.

The first series of identities follows from:

$$P(v^{k}) = P(v)^{k} = (v^{2} \otimes v + v \otimes v)^{k} = \sum_{i=0}^{k} {k \choose i} v^{k+i} \otimes v^{k-i} = \sum_{i=0}^{k} P^{i}(v^{k}) v^{k-i}$$

The other series come from the multiplication formulas.

We defined $P \colon \widetilde{H}^{2d,d}(\mathcal{X}) \to \widetilde{H}^{4d,2d}(\mathcal{X} \wedge \mathbf{B}_{\mathrm{gm}}\mathbf{Z}/2\mathbf{Z}_{+})$. One may iterate it so as to obtain a map:

$$\textit{P} \circ \textit{P} \colon \widetilde{\textit{H}}^{2d,d} \to \widetilde{\textit{H}}^{8d,4d}\big(\mathcal{X} \wedge \big(\textbf{B}_{gm}\textbf{Z}/2\textbf{Z} \times \textbf{B}_{gm}\textbf{Z}/2\textbf{Z}\big)_{\!+}\big)$$

One may identify the target group as a bigraded component of

$$\widetilde{\textit{H}}^{\star,\star}(\mathcal{X}) \otimes_{\textit{H}^{\star,\star}(\textit{k})} \textit{H}^{\star,\star}(\textbf{B}_{gm}\textbf{Z}/2\textbf{Z}) \otimes_{\textit{H}^{\star,\star}(\textit{k})} \textit{H}^{\star,\star}(\textbf{B}_{gm}\textbf{Z}/2\textbf{Z})$$

Theorem

Let $x \in \widetilde{H}^{2d,d}(\mathcal{X})$. Then, $(P \circ P)(x)$ is invariant under the exchange of the two copies of $H^{*,*}(\mathbf{B}_{gm}\mathbf{Z}/2\mathbf{Z})$ in the tensor product.

Theorem

Let $x \in \widetilde{H}^{2d,d}(\mathcal{X})$. Then, $(P \circ P)(x)$ is invariant under the exchange of the two copies of $H^{*,*}(\mathbf{B}_{gm}\mathbf{Z}/2\mathbf{Z})$ in the tensor product.

The sketch of proof is that $P \circ P$ can be identified with the construction P for the action of $G = \mathbf{Z}/2\mathbf{Z} \times \mathbf{Z}/2\mathbf{Z}$ on $\{1,2\} \times \{1,2\}$ (n=4). This action can be extended to an action of the semidirect product $G \rtimes \mathbf{Z}/2\mathbf{Z}$ where $\mathbf{Z}/2\mathbf{Z}$ acts on G and $\{1,2\} \times \{1,2\}$ by permutation of the two factors. Then, we can apply the construction P to this action of $G \rtimes \mathbf{Z}/2\mathbf{Z}$ which refines the class $(P \circ P)(x)$ and look at the commutative diagram:

$$\begin{split} \widetilde{H}^{\star,\star} \big(\mathcal{X} \wedge \mathbf{B}_{gm} \big(G \rtimes \mathbf{Z}/2 \big)_{+} \big) & \stackrel{\mathsf{res}}{\longrightarrow} \widetilde{H}^{\star,\star} \big(\mathcal{X} \wedge \mathbf{B}_{gm} \, G_{+} \big) \\ & \hspace{0.5cm} \Big| \text{ interior automorphism} \sim \mathsf{Id} \hspace{0.5cm} \Big| \hspace{0.5cm} \mathsf{switch of two factors } \mathbf{Z}/2\mathbf{Z} \\ \widetilde{H}^{\star,\star} \big(\mathcal{X} \wedge \mathbf{B}_{gm} \big(G \rtimes \mathbf{Z}/2 \big)_{+} \big) & \stackrel{\mathsf{res}}{\longrightarrow} \widetilde{H}^{\star,\star} \big(\mathcal{X} \wedge \mathbf{B}_{gm} \, G_{+} \big) \end{split}$$

Corollary (Adem relations)

Assume a and b are integers satisfying 0 < a < 2b. If a is even and b odd,

$$\operatorname{Sq}^{a}\operatorname{Sq}^{b} = \sum_{j=0}^{\left\lfloor\frac{a}{2}\right\rfloor} \binom{b-1-j}{a-2j}\operatorname{Sq}^{a+b-j}\operatorname{Sq}^{j} + \sum_{\substack{j=1\\ odd}}^{\left\lfloor\frac{a}{2}\right\rfloor} \binom{b-1-j}{a-2j}\rho\operatorname{Sq}^{a+b-j-1}\operatorname{Sq}^{j}$$

If a and b are odd,
$$\operatorname{\mathsf{Sq}}^{\mathsf{a}}\operatorname{\mathsf{Sq}}^{\mathsf{b}} = \sum_{\substack{j=0 \ \mathit{odd}}}^{\left\lfloor\frac{\mathsf{a}}{2}\right\rfloor} \binom{b-1-j}{\mathsf{a}-2j}\operatorname{\mathsf{Sq}}^{\mathsf{a}+b-j}\operatorname{\mathsf{Sq}}^{\mathsf{j}}$$

If a and b are even,
$$\operatorname{Sq}^a\operatorname{Sq}^b=\sum_{j=0}^{\left\lfloor\frac{a}{2}\right\rfloor} \tau^{j \bmod 2} \binom{b-1-j}{a-2j}\operatorname{Sq}^{a+b-j}\operatorname{Sq}^j$$

If a is odd and b is even,

$$\operatorname{Sq}^{a}\operatorname{Sq}^{b} = \sum_{\substack{j=0\\ \text{even}}}^{\left\lfloor\frac{a}{2}\right\rfloor} \binom{b-1-j}{a-2j}\operatorname{Sq}^{a+b-j}\operatorname{Sq}^{j} + \sum_{\substack{j=1\\ \text{odd}}}^{\left\lfloor\frac{a}{2}\right\rfloor} \binom{b-1-j}{a-1-2j}\rho\operatorname{Sq}^{a+b-j-1}\operatorname{Sq}^{j}$$

Some remarks:

- All monomials in the right member are of the form $Sq^i Sq^j$ with $i \ge 2j$.
- The first equation implies the second by applying β .
- Similarly, the third implies the fourth.
- If $\rho=0$ (i.e., -1 is a square in k, for instance if $k=\mathbf{C}$), then we get exactly the same formulas as in topology (through the identification $\tau=1$) where they reduce to: $\operatorname{Sq}^a\operatorname{Sq}^b=\sum_{i=0}^{\left\lfloor\frac{a}{2}\right\rfloor}\binom{b-1-j}{a-2i}\operatorname{Sq}^{a+b-j}\operatorname{Sq}^j$.
- If $\rho \neq$ 0, the formulas are a little bit more complicated.

Here are some details about the proof of the "corollary". We have $P(P(x)) = \sum_{j=0}^{2d} P^j(P(x)) \otimes v^{2d-j} + \sum_{j=0}^{2d-1} B^j(P(x)) \otimes uv^{2d-1-j}$ and $P(x) = \sum_{i=0}^d P^i(x)v^{d-i} + \sum_{i=0}^{d-1} B^i(x)uv^{d-1-i}$. Using previous formulas, we get:

$$P(P(x)) = \sum_{j=0}^{2d} \sum_{i=0}^{d} \sum_{k=0}^{j} {d-i \choose j-k} P^{k} P^{i}(x) \otimes v^{d+j-k-i} \otimes v^{2d-j}$$

$$+ \sum_{j=0}^{2d-1} \sum_{i=0}^{d} \sum_{k=0}^{j} {d-i \choose j-k} B^{k} P^{i}(x) \otimes v^{d+j-k-i} \otimes uv^{2d-1-j}$$

$$+ \sum_{j=0}^{2d} \sum_{i=0}^{d-1} \sum_{k=0}^{j} {d-1-i \choose j-k} P^{k} B^{i}(x) \otimes uv^{d+j-k-i-1} \otimes v^{2d-j}$$

$$+ \tau \sum_{j=0}^{2d} \sum_{i=0}^{d-1} \sum_{k=0}^{j-1} {d-1-i \choose j-1-k} B^{k} B^{i}(x) \otimes v^{d+j-k-i-1} \otimes v^{2d-j}$$

$$+ \sum_{i=0}^{2d-1} \sum_{i=0}^{d-1} B^{j}(B^{i}(x)uv^{d-1-i}) \otimes uv^{2d-1-j}$$

☐ Adem relations

$$P(P(x)) = \sum_{j=0}^{2d} \sum_{i=0}^{d} \sum_{k=0}^{j} \binom{d-i}{j-k} P^{k} P^{i}(x) \otimes v^{d+j-k-i} \otimes v^{2d-j}$$

$$+ \sum_{j=0}^{2d-1} \sum_{i=0}^{d} \sum_{k=0}^{j} \binom{d-i}{j-k} B^{k} P^{i}(x) \otimes v^{d+j-k-i} \otimes uv^{2d-1-j}$$

$$+ \sum_{j=0}^{2d} \sum_{i=0}^{d-1} \sum_{k=0}^{j} \binom{d-1-i}{j-k} P^{k} B^{i}(x) \otimes uv^{d+j-k-i-1} \otimes v^{2d-j}$$

$$+ \tau \sum_{j=0}^{2d} \sum_{i=0}^{d-1} \sum_{k=0}^{j-1} \binom{d-1-i}{j-k} B^{k} B^{i}(x) \otimes v^{d+j-k-i-1} \otimes v^{2d-j}$$

$$+ \sum_{j=0}^{2d-1} \sum_{i=0}^{d-1} \sum_{k=0}^{j-1} \binom{d-1-i}{j-k} P^{k} B^{i}(x) \otimes v^{d+j-k-i} \otimes uv^{2d-1-j}$$

$$+ \sum_{j=0}^{2d-1} \sum_{i=0}^{d-1} \sum_{k=0}^{j-1} \binom{d-1-i}{j-k} B^{k} B^{i}(x) \otimes uv^{d+j-k-i-1} \otimes uv^{2d-1-j}$$

$$+ \rho \sum_{j=0}^{2d-1} \sum_{i=0}^{d-1} \sum_{k=0}^{j-1} \binom{d-1-i}{j-k} B^{k} B^{i}(x) \otimes v^{d+j-k-i-1} \otimes uv^{2d-1-j}$$

Let $p, q \ge 0$. The coefficient of $uv^p \otimes v^q$ in P(P(x)) is:

$$\alpha_{p,q} = \sum_{i=0}^{d-1} {d-i-1 \choose p-(d-i-1)} P^{3d-p-q-i-1} B^i(x)$$

It must be the same as the coefficient of $v^q \otimes uv^p$:

$$\beta_{p,q} = \sum_{i=0}^{d-1} {d-i \choose q-(d-i)} B^{3d-p-q-i-1} P^{i}(x)$$

$$+ \sum_{i=0}^{d-1} {d-1-i \choose q-(d-i)} P^{3d-p-q-i-1} B^{i}(x)$$

$$+ \rho \sum_{i=0}^{d-1} {d-1-i \choose q-(d-i)} B^{3d-p-q-i-2} B^{i}(x)$$

Assume a=2a' and b=2b'+1 are such that 0 < a < 2b (i.e., $a' \leq 2b'$). We would like a formula for

$$\alpha_{p,q} = \sum_{i=0}^{d-1} {d-i-1 \choose p-(d-i-1)} P^{3d-p-q-i-1} B^i(x)$$

We fix $s \ge 0$ and set $p = 2^s - 1$, $d = 2^s + b'$, $q = 2^{s+1} + 2b' - a'$.

Lemma

Then,
$$\alpha_{p,q} = P^{a'}B^{b'}(x) = \operatorname{Sq}^{a}\operatorname{Sq}^{b}(x)$$
.

This expression $P^{a'}B^{b'}$ is the term corresponding to i=b' (because p=d-b'-1), we have to show the other coefficients are zero. For obvious reasons, the coefficient $\binom{d-i-1}{p-(d-i-1)}=0$ if i< b'. We shall show that for this specific choice of p, this is even if i>b' also.

Introducing $\delta=p-(d-i-1)$, we have to show that $\binom{p-\delta}{\delta}\equiv 0\mod 2$ if $0<\delta\leq \frac{p}{2}$.

Lemma

Assume $i, j \ge 0$, then $\binom{i+j}{i} \equiv 1 \mod 2$ if and only if there is no carry when computing the sum i+j in the binary numeral system.

It follows from the computation of the 2-adic valuation of n!:

$$v_2(n!) = \sum_{k \geq 1} \left\lfloor \frac{n}{2^k} \right\rfloor$$

We may also say that if $i, j \ge 0$, $\binom{i}{j} \equiv 1 \mod 2$ if and only if there is no carry when computing i - j in \mathbf{Z}_2 (includes the case j > i...).

For instance, it follows from the lemma that $\binom{i}{j} \equiv \binom{2i}{2j} \mod 2$.

Assume $p=2^s-1$ and $0<\delta\leq\frac{p}{2}$. To compute the parity of ${p-\delta\choose\delta}$, we want to look at possible carry when doing the difference $(p-\delta)-\delta$. But, all the digits of p are 1. Then, for any nonzero digit of δ , the corresponding digit of $p-\delta$ is zero. This shows that a carry will occur, so that ${p-\delta\choose\delta}\equiv 0\mod 2$.

We come back to $\beta_{p,q} = \alpha_{p,q}$.

$$\beta_{p,q} = \sum_{i=0}^{d-1} {d-i \choose q-(d-i)} B^{3d-p-q-i-1} P^{i}(x)$$

$$+ \sum_{i=0}^{d-1} {d-1-i \choose q-(d-i)} P^{3d-p-q-i-1} B^{i}(x)$$

$$+ \rho \sum_{i=0}^{d-1} {d-1-i \choose q-(d-i)} B^{3d-p-q-i-2} B^{i}(x)$$

In the first sum, it suffices to take into account those i such that $q-(d-i) \leq d-i$, i.e, $2i \leq 2d-q=a'=\frac{a}{2}$, then:

$$\begin{pmatrix} d-i \\ q-(d-i) \end{pmatrix} = \begin{pmatrix} d-i \\ 2d-2i-q \end{pmatrix} \equiv \begin{pmatrix} 2d-2i \\ 4d-4i-2q \end{pmatrix} = \begin{pmatrix} 2^{s+1}+b-1-2i \\ a-4i \end{pmatrix}$$

Given a and b, for s big enough, this is $\equiv \binom{b-1-2i}{a-4i}$.

Using the correspondence j = 2i, we showed that

$$\sum_{i=0}^{d-1} {d-i \choose q-(d-i)} B^{3d-p-q-i-1} P^i(x) = \sum_{j=0 \atop j = 0}^{\frac{d}{2}} {b-1-j \choose a-2j} \operatorname{Sq}^{a+b-j} \operatorname{Sq}^j(x)$$

Similarly, with j = 2i + 1,

$$\sum_{i=0}^{d-1} {d-1-i \choose q-(d-i)} P^{3d-p-q-i-1} B^i(x) = \sum_{\substack{j=0 \\ \text{odd}}}^{\frac{d}{2}} {b-2-j \choose a-2j} \operatorname{Sq}^{a+b-j} \operatorname{Sq}^j(x)$$

Then, one may believe that there is a mistake, but when j is odd, we have:

$$\binom{b-1-j}{a-2j} = \binom{b-2-j}{a-2j} + \binom{b-2-j}{a-2j-1} \equiv \binom{b-2-j}{a-2j} \mod 2$$

because b-2-j is even and a-2j-1 is odd.

Finally, we get:

$$\beta_{\rho,q} = \sum_{j=0}^{\frac{a}{2}} \binom{b-1-j}{a-2j} \operatorname{Sq}^{a+b-j} \operatorname{Sq}^{j}(x) + \rho \sum_{\substack{j=0 \\ \text{odd}}}^{\frac{a}{2}} \binom{b-1-j}{a-2j} \operatorname{Sq}^{a+b-j-1} \operatorname{Sq}^{j}(x)$$

This equals $\alpha_{p,q} = \operatorname{Sq}^a \operatorname{Sq}^b(x)$.

This shows the first expected relation for $x \in \widetilde{H}^{2d,d}(\mathcal{X})$ for d of the form $2^s + b'$ and s big enough, which is sufficient using suspensions.

This third relation is similar but uses a combination of two different equalities of coefficients of P(P(x)).

Let I be a sequence of integers $(\varepsilon_0, r_1, \varepsilon_1, r_2, \dots)$ that is ultimately zero and such that $\varepsilon_i \in \{0, 1\}$. We define:

$$P^{I} = \beta^{\varepsilon_0} P^{s_1} \beta^{\varepsilon_1} P^{s_2} \dots$$

where $s_i = \sum_{k \geq i} (\varepsilon_k + r_k) 2^{k-i}$ (note that $s_i \geq 2s_{i+1} + \varepsilon_i$). These elements are called "admissible monomials".

Definition (Steenrod algebra)

We denote $H^{\star,\star}=H^{\star,\star}(k)$. This algebra acts by multiplication on motivic cohomology: then any element in $H^{\star,\star}$ defines a stable cohomology operation. We denote $A^{\star,\star}$ the algebra of stable cohomology operations generated by $H^{\star,\star}$, β and P^n $(n\geq 1)$.

We consider $A^{\star,\star}$ as a (left-)module over $H^{\star,\star}$.

Proposition

 $A^{\star,\star}$ is a free $H^{\star,\star}$ -module with a basis consisting of the admissible monomials.

Relations obtained until now shows that the module generated by the admissible monomials P^l is an algebra. The proof that they constitute a basis is similar to the topological situation:

"One may detect a nontrivial linear combination $\sum_{l} a_{l}P^{l}$ by looking at its action on $H^{*,*}((\mathbf{B}_{gm}\mathbf{Z}/2)^{n})$ for a big enough n."

We denote $A_{\star,\star}$ the $H^{\star,\star}$ -module dual to $A^{\star,\star}$. The component $A_{\rho,q}$ maps $A^{i,j}$ into $H^{i-\rho,j-q}$.

This $H^{*,*}$ -module is free with a basis given by elements $\theta(I)^{*}$ dual of the basis of admissible monomials P^{I} .

The fact that we are in bigraded situation (and the distribution of bidegrees) implies that these modules behaves as if they were free of finite type.

For $C \in A^{\star,\star}$ and $\alpha \in A_{\star,\star}$, the element $\alpha(C) \in H^{\star,\star}$ is denoted $\langle \alpha, C \rangle$.

Let $X \in Sm/k$. We define

$$\lambda \colon H^{\star,\star}(X) \to A_{\star,\star} \otimes_{H^{\star,\star}} H^{\star,\star}(X)$$

the unique map (additive but not $H^{\star,\star}$ -linear) such that for any $x \in H^{\star,\star}(X)$, if $\lambda(x) = \sum_i \alpha_i \otimes y_i$, then, for any $C \in A^{\star,\star}$, we have:

$$C(x) = \sum_{i} \langle \alpha_i, C \rangle y_i$$

(Note that $\lambda(x) = \sum_{I} \theta(I)^* \otimes P^I(x)$.)

Then, $\lambda(x) \in A_{\star,\star} \otimes_{H^{\star,\star}} H^{\star,\star}(X)$ reflects the action of $A^{\star,\star}$ on this class x.

For $k \geq 0$, we define $\xi_k \in A_{2^{k+1}-2,2^k-1}$ (resp. $\tau_k \in A_{2^{k+1}-1,2^k-1}$) as those of the $\theta(I)^*$ that are dual to the admissible monomials $M_k = P^{2^{k-1}} \dots P^2 P^1 \in A^{*,*}$ (resp. $M_k \beta$).

Proposition

For " $X = \mathbf{B}_{gm}\mathbf{Z}/2\mathbf{Z}$ ", we have:

$$\lambda(v) = \sum_{k=0}^{\infty} \xi_k \otimes v^{2^k}$$
 $\lambda(u) = \xi_0 \otimes u + \sum_{k=0}^{\infty} \tau_k \otimes v^{2^k}$

Here, X is not in Sm/k, but is a colimit of such. In this particular case, it makes sense to define $\lambda(u)$ or $\lambda(v)$ as series.

To show that $\lambda(v) = \sum_{k=0}^{\infty} \xi_k \otimes v^{2^k}$, we have to show that the only (admissible or not!) monomials N involving the P^n and β such that $N(v) \neq 0$ are the monomials $M_k = P^{2^{k-1}} \dots P^2 P^1$, $k \geq 0$ and that $M_k(v) = v^{2^k}$.

We have $P^1(v) = v^2 \in H^{4,2}(\mathbf{B}_{gm}\mathbf{Z}/2)$, $P^2P^1(v) = P^2(v^2) = v^4$, etc. A simple induction shows that $M_k(v) = v^{2^k}$.

Assume that a monomial $N = \beta N'$ or $N = P^n N'$ (n > 0) is such that $N(v) \neq 0$. Then, $N'(v) \neq 0$. By induction, we must have $N' = M_k$ for some $k \geq 0$. We have, $M_k(v) = v^{2^k}$. Then, $\beta M_k(v) = 0$. For degree reasons, $P^n M_k(v) = 0$ if $n > 2^k$. If $0 < n < 2^k$, we have

$$N(v) = P^{n}(v^{2^{k}}) = {2^{k} \choose n} v^{2^{k+n}} = 0$$

Then, we must have $n = 2^k$, and $N = M_{k+1}$.

For u, N can be the empty word, which corresponds to the identity $P^0=M_0$. Otherwise, the last letter must be β , and the previous argumentation shows that $N=M_k\beta$.

Let us have a look at these formulas again:

Proposition

$$\lambda(v) = \sum_{k=0}^{\infty} \xi_k \otimes v^{2^k} \qquad \lambda(u) = \xi_0 \otimes u + \sum_{k=0}^{\infty} \tau_k \otimes v^{2^k}$$

We define a comultiplication:

$$\Psi^{\star} \colon A^{\star,\star} \to A^{\star,\star} \otimes_{H^{\star,\star}} A^{\star,\star}$$

(both copies of $A^{\star,\star}$ are equipped with the left-module structure.) in such a way that for any $C \in A^{\star,\star}$, $\Psi^{\star}(C) = \sum_i D_i \otimes E_i$ is the unique element such that for all motivic cohomology classes x and y:

$$C(xy) = \sum_{i} D_i(x) E_i(y)$$

 Ψ^{\star} is co-associative, cocommutative (this reflects associativity and commutativity of the multiplication of cohomology classes) and $H^{\star,\star}$ -linear.

Uniqueness of $\Psi^{\star}(C)$ is deduced from the fact that " $A^{\star,\star}$ acts faithfully on $H^{\star,\star}(\mathbf{B}_{\mathrm{gm}}\mathbf{Z}/2\mathbf{Z}^{\mathrm{high}})$ ".

For the existence, we use the following lemmas:

Lemma

$$\Psi^{\star}\beta = \beta \otimes \operatorname{Id} + \operatorname{Id} \otimes \beta$$

$$\Psi^{\star}P^{n} = \sum_{i+j=n} P^{i} \otimes P^{j} + \tau \sum_{i+j=n-1} B^{i} \otimes B^{j}$$

Lemma

If
$$\Psi^\star(C)=\sum_i A_i\otimes B_i$$
 and $\Psi^\star(D)=\sum_j E_j\otimes F_j$, then
$$\Psi^\star(CD)=\sum_{i,j} A_i E_j\otimes B_i F_j$$

Lemma

In $A_{\star,\star} \simeq A_{\star,\star} \otimes_{H^{\star,\star}} H^{\star,\star}$, we have:

$$\lambda(1) = \xi_0$$

This also means that $\langle \xi_0, C \rangle = C(1)$ for all $C \in H^{\star,\star}$. This follows from the fact that 1 is killed by all monomials excepted Id.

Lemma

 $\xi_0 \colon A^{\star,\star} \to H^{\star,\star}$ is the counit of Ψ^{\star} , i.e., the composition:

$$A^{\star,\star} \xrightarrow{\Psi^{\star}} A^{\star,\star} \otimes_{H^{\star,\star}} A^{\star,\star} \xrightarrow{\operatorname{Id} \otimes \xi_0} A^{\star,\star} \otimes_{H^{\star,\star}} H^{\star,\star} \xrightarrow{\simeq} A^{\star,\star}$$

is the identity.

We shall dualisize the comultiplication Ψ^* on $A^{*,*}$.

We define a $H^{\star,\star}$ -bilinear pairing $\langle \alpha \otimes \beta, C \otimes D \rangle = \langle \alpha, C \rangle \cdot \langle \beta, D \rangle$ on $(A_{\star,\star} \otimes_{H^{\star,\star}} A_{\star,\star}) \times (A^{\star,\star} \otimes_{H^{\star,\star}} A^{\star,\star})$.

Definition

We define a product law on $A_{\star,\star}$. It is characterized by the relation:

$$\langle \alpha \beta, C \rangle = \langle \alpha \otimes \beta, \Psi^* C \rangle$$

for $\alpha, \beta \in A_{\star,\star}$ and $C \in A^{\star,\star}$.

Proposition

 $A_{\star,\star}$ is a commutative $H^{\star,\star}$ -algebra. Its unit is ξ_0 . For any $X \in Sm/k$, the map

$$\lambda \colon H^{\star,\star}(X) \to A_{\star,\star} \otimes_{H^{\star,\star}} H^{\star,\star}(X)$$

is a morphism of H*,*-algebras.

Proposition

Let
$$C \in A^{\star,\star}$$
. Then: $C(v^{2^j}) = \sum_{i \geq 0} \left\langle \xi_i^{2^j}, C \right\rangle v^{2^{i+j}}$

It is equivalent to saying that:

$$\lambda(v^{2^j}) = \sum_{i \geq 0} \xi_i^{2^j} \otimes v^{2^{i+j}}$$

We already know the case j = 0:

$$\lambda(v) = \sum_{i>0} \xi_i \otimes v^{2^i}$$

Then, we use $\lambda(v^{2^j}) = \lambda(v)^{2^j}$.

Theorem

The ring $A_{\star,\star}$ is the commutative $H^{\star,\star}$ -algebra generated by elements $\tau_k \in A_{2^{k+1}-1,2^k-1}$ $(k \ge 0)$ and $\xi_k \in A_{2^{k+1}-2,2^k-1}$ $(k \ge 1)$ subjected to the following relations for all $k \ge 0$:

$$\tau_k^2 = (\tau + \rho \tau_0) \xi_{k+1} + \rho \tau_{k+1}$$

The relations follows from the analysis of the coefficient of $v^{2^{k+1}}$ in:

$$\lambda(u)^{2} = \lambda(u^{2}) = \lambda(\tau)\lambda(v) + \lambda(\rho)\lambda(u)$$

and the identities $\lambda(\tau) = \tau + \rho \tau_0$ and $\lambda(\rho) = \rho$. Remember that:

$$\lambda(v) = \sum_{k=0}^{\infty} \xi_k \otimes v^{2^k}$$
 $\lambda(u) = \xi_0 \otimes u + \sum_{k=0}^{\infty} \tau_k \otimes v^{2^k}$

To prove the theorem, we have to show that the elements

$$\omega(I) = \prod_{k \ge 0} \tau_k^{\varepsilon_k} \prod_{k \ge 1} \xi_k^{r_k} \in A_{\star,\star}$$

for sequences $I=(\varepsilon_0,r_1,\varepsilon_1,\dots)$ as above constitute a basis of $A_{\star,\star}$ as a $H^{\star,\star}$ -module.

Lemma

We use the lexicographic order (starting from the right) on such sequences I. Then $\langle \omega(I), P^I \rangle = 1$ and for I < J, $\langle \omega(J), P^I \rangle = 0$.

Then, matrix $\langle \omega(I), P^J \rangle$ of the coefficients of the $\omega(I)$ in the basis on the $\theta(J)^*$ is upper triangular with 1 in the diagonal.

When proving that the $\omega(I)$ generate $A_{\star,\star}$, one uses the fact that for a fixed bidegree (p,q), there exists only finitely many J such that there exists $x \neq 0 \in H^{i,j}$ (we use the bound $i \leq j$) such that the bidegree of $x\theta(J)^{\star}$ is (p,q).

Denote $J = (\tilde{\varepsilon}_0, \tilde{r}_1, \dots)$. We do an induction on the total degree of $\omega(J)$ to show that $\langle \omega(J), P^I \rangle = 0$ if I < J.

Assume that the last nonzero coefficient of J is $\tilde{r}_k \neq 0$. Introduce J' such that $\omega(J) = \omega(J')\xi_k$:

$$\langle \omega(J), P' \rangle = \langle \omega(J') \otimes \xi_k, \Psi^*(P') \rangle$$

Expand $\Psi^{\star}(P^I)$ as a sum of $C \otimes D$ where D is a monomial involving β or P^i :

$$\langle \omega(J') \otimes \xi_k, C \otimes D \rangle = \langle \omega(J'), C \rangle \langle \xi_k, D \rangle$$

If this is nonzero, we must have $D = M_k = P^{2^{k-1}} \dots P^2 P^1$.

As I < J, I is of the form $I = (\varepsilon_0, r_1, \varepsilon_1, \dots, \varepsilon_{k-1}, r_k, 0, \dots)$.

We know how to expand Ψ^*P^I , where $P^I=\beta^{\varepsilon_0}P^{s_1}\beta^{\varepsilon_1}\dots P^{s_k}$. Basically,

 $\Psi^{\star}P^{s_{k-j}}=P^{s_{k-j}-2^j}\otimes P^{2^j}+\text{other terms}.$

We see there shall be a term $C \otimes M_k$ only if $r_k \geq 1$. Then, $C = P^{I'}$ with $I' = (\varepsilon_0, r_1, \varepsilon_1, \dots, \varepsilon_{k-1}, r_k - 1, 0, \dots)$, then:

$$\left\langle \omega(J), P' \right\rangle = \left\langle \omega(J'), P'' \right\rangle = 0$$
 by induction

Similar arguments for the case when the last coefficient of J is a $\tilde{\varepsilon}_{?}$ and for $\langle \omega(I), P^I \rangle$.

- Comultiplication on A+++
 - $A^{*,*}$ has a right-module structure over $H^{*,*}$: it is $H^{*,*}$ -bimodule- $H^{*,*}$.
 - \blacksquare A_{++} is $H^{*,*}$ -bimodule- $H^{*,*}$.

Lemma

If $\alpha \in A_{\star,\star}$ and $x \in H^{\star,\star}$, $\alpha.x = \lambda(x)\alpha$.

For all $C \in A^{\star,\star}$, we have to check:

$$\langle \alpha.x, C \rangle = \langle \alpha, Cx \rangle = \langle \lambda(x)\alpha, C \rangle$$

Assume $\Psi^*C = \sum_i D_i \otimes E_i$. Then, $Cx = \sum_i D_i(x) \cdot E_i \in A^{*,*}$.

$$\langle \lambda(x)\alpha, C \rangle = \sum_{i} \langle \lambda(x) \otimes \alpha, D_{i} \otimes E_{i} \rangle = \sum_{i} D_{i}(x) \langle \alpha, E_{i} \rangle$$
$$= \left\langle \alpha, \sum_{i} D_{i}(x) \cdot E_{i} \right\rangle = \langle \alpha, Cx \rangle$$

Note that the two structures of modules on $A_{\star,\star}$ are induced by the ring morphisms $H^{\star,\star} \to A_{\star,\star}$: $x \longmapsto x\xi_0$ and $x \longmapsto \lambda(x)$.

We introduce $A^{\star,\star} \otimes_{r,H^{\star,\star},1} A^{\star,\star}$ as a left- $H^{\star,\star}$ -module. This comes from the $H^{\star,\star}$ -bimodule structure on the first $A^{\star,\star}$ and the left-module structure on the second.

Lemma

Tensor products $P^I \otimes P^J$ of admissible monomials give a basis of $A^{*,*} \otimes_{r,H^{*,*},I} A^{*,*}$ as a left- $H^{*,*}$ -module. Similarly, $A_{*,*} \otimes_{r,H^{*,*},I} A_{*,*}$ is a free $H^{*,*}$ -module.

Lemma

There is a $H^{*,*}$ -bilinear (on the left) perfect pairing between $A_{\star,\star} \otimes_{r,H^{\star,\star},l} A_{\star,\star}$ and $A^{*,*} \otimes_{r,H^{\star,\star},l} A^{*,*}$:

$$\langle \alpha \otimes \beta, C \otimes D \rangle = \langle \alpha, C \langle \beta, D \rangle \rangle = \langle \lambda (\langle \beta, D \rangle) \cdot \alpha, C \rangle$$

It is well defined and the basis dual to the $P^I \otimes P^J$ is the basis of the $\theta(I)^* \otimes \theta(J)^*$.

We define a comultiplication $\Psi_{\star}\colon A_{\star,\star}\to A_{\star,\star}\otimes_{\mathsf{r},H^{\star,\star},\mathsf{l}}A_{\star,\star}$ so that for all $\alpha\in A_{\star,\star}$ and $C\otimes D\in A^{\star,\star}\otimes_{\mathsf{r},H^{\star,\star},\mathsf{l}}A^{\star,\star}$, we have :

$$\langle \Psi_{\star} \alpha, C \otimes D \rangle = \langle \alpha, CD \rangle$$

One can check that Ψ_{\star} is a ring morphism and that it is $H^{\star,\star}$ -linear.

Proposition

$$\Psi_{\star}(\xi_k) = \sum_{i=0}^k \xi_{k-i}^{2^i} \otimes \xi_i \qquad \Psi_{\star}(au_k) = \sum_{i=0}^k \xi_{k-i}^{2^i} \otimes au_i + au_k \otimes 1$$

Proposition

$$\Psi_{\star}(\xi_k) = \sum_{i=0}^k \xi_{k-i}^{2^i} \otimes \xi_i \qquad \Psi_{\star}(au_k) = \sum_{i=0}^k \xi_{k-i}^{2^i} \otimes au_i + au_k \otimes 1$$

For the first identity, we have to show $\langle \xi_k, CD \rangle = \sum_{i=0}^k \left\langle \xi_{k-i}^{2^i} \otimes \xi_i, C \otimes D \right\rangle$. One may assume that $\langle \xi_i, D \rangle \in \{0, 1\}$. Then, we have to show:

$$\langle \xi_k, CD \rangle = \sum_{i=0}^k \left\langle \xi_{k-i}^{2^i}, C \right\rangle \langle \xi_i, D \rangle$$

Using formulas for F(v) and $F(v^{2^{?}})$, we compute

$$CD(v) = C(\sum_{i \geq 0} \langle \xi_i, D \rangle v^{2^i}) = \sum_i \sum_j \left\langle \xi_j^{2^i}, C \right\rangle \langle \xi_i, D \rangle v^{2^{i+j}} = \sum_k \left\langle \xi_k, CD \right\rangle v^{2^k}$$

The other identity follows from the computation of CD(u).

We let $I \subset A_{\star,\star}$ be the ideal generated by the ξ_i for $i \geq 1$. We showed that $\Psi_{\star}(I) \subset A_{\star,\star} \otimes I + I \otimes A_{\star,\star}$. Then, we have an induced comultiplication:

$$\overline{\Psi}_{\star} \colon A_{\star,\star}/I \to A_{\star,\star}/I \otimes_{\mathsf{d},H^{\star,\star},\mathsf{g}} A_{\star,\star}/I$$

We let $B^{*,*} \subset A^{*,*}$ the orthogonal I^{\perp} of $I \subset A_{*,*}$. If follows that $B^{*,*}$ is a subring of $A^{*,*}$ (that contains $H^{*,*}$).

If
$$C, D \in B^{\star,\star}$$
 and $\alpha \in I$, $\langle \alpha, CD \rangle = \langle \Psi_{\star}(\alpha), C \otimes D \rangle = 0$, and $CD \in B^{\star,\star}$.

Definition

For $i \geq 0$, we let $Q_i \in A^{2^{i+1}-1,2^i-1}$ be the element dual to τ_i from the basis of $A_{\star,\star}$ consisting of monomials $\omega(I)$. We have $Q_i \in B^{\star,\star}$.

 Q_i is also the dual of the class of $\tau_i \in A_{\star,\star}/I$ in the basis consisting of monomials involving the τ_i (of degree at most 1 in each variable).

More generally, for any finite subset I of \mathbf{N} , we define $Q_I \in B^{\star,\star}$ as the dual of $\tau_I = \prod_{i \in I} \tau_i$ in the basis of such monomials.

Proposition

If I and J are two finite subsets of N, then Q_IQ_J is:

- Q_{I⊔J} is I and J are disjoint.
- 0 otherwise.

We know that
$$\overline{\Psi}_{\star}\tau_i=1\otimes au_i+ au_i\otimes 1$$
, then $\overline{\Psi}_{\star} au_K=\sum_{l'\sqcup J'=K} au_{l'}\otimes au_{J'}$.

Then, we use:

$$Q_{I}Q_{J}=\sum_{K}\left\langle \overline{\Psi}_{\star} au_{K},Q_{I}\otimes Q_{J}
ight
angle Q_{K}$$

Corollary

- $Q_iQ_i=0$
- $Q_iQ_i=Q_iQ_i$.
- $\mathbf{Q}_I = \prod_{i \in I} Q_i$.

Definition (Margolis homology)

For any $\mathcal{X} \in \mathcal{H}_{\bullet}(k)$, we denote $\widetilde{MH}_{i}^{p,q}(\mathcal{X})$ the homology at $\widetilde{H}^{p,q}(\mathcal{X})$ of the complex:

$$\ldots \stackrel{Q_i}{\longrightarrow} \widetilde{H}^{p-2^{i+1}+1,q-2^{i+1}+1}(\mathcal{X}) \stackrel{Q_i}{\longrightarrow} \widetilde{H}^{p,q}(\mathcal{X}) \stackrel{Q_i}{\longrightarrow} \widetilde{H}^{p+2^{i+1}-1,q+2^i-1}(\mathcal{X}) \stackrel{Q_i}{\longrightarrow} \ldots$$

Proposition

$$Q_0 = \beta$$
.

For degree reasons, $Q_0 = x\beta$ for $x \in \mathbb{Z}/2\mathbb{Z}$. We know $Q_0 \neq 0$. Then, x = 1.

For $n \ge 0$, we introduce its digits in base 2: $n = \sum_{i \ge 0} \varepsilon_i 2^i$. We set $\sigma(n) = \sum_i \varepsilon_i$.

Then, I set (personal notation) $Q(n) = \prod_i Q_i^{\varepsilon_i}$. For instance, $Q_i = Q(2^i)$. (Similarly, $\tau(n) = \prod_i \tau_i^{\varepsilon_i}$.)

Proposition

For any $i \geq 0$, $\Psi^{\star}(Q_i) \in B^{\star,\star} \otimes_{H^{\star,\star}} B^{\star,\star}$. More precisely,

$$\begin{array}{lcl} \Psi^{\star}(Q_{i}) & = & \displaystyle\sum_{n+n'=2^{i}} \rho^{\sigma(n)+\sigma(n')-1}Q(n)\otimes Q(n') \\ \\ & = & \displaystyle1\otimes Q_{i} + Q_{i}\otimes 1 + \displaystyle\sum_{\substack{n+n'=2^{i}\\ n,n'>1}} \rho^{i-\nu_{2}(n)}Q(n)\otimes Q(n') \end{array}$$

Lemma

For all $n, n' \geq 0$, we have $\tau(n)\tau(n') = \rho^s \tau(n+n')$ in $A_{\star,\star}/I$ where s is the number of carries when computing n+n' in base 2 (this number is $\sigma(n) + \sigma(n') - \sigma(n+n')$).

Follows from $\tau_i^2 = \rho \tau_{i+1}$.

Definition (Milnor basis)

We identify sequences $I=(\varepsilon_0,r_1,\varepsilon_1,\dots)$ as before and tuples $(\varepsilon_\bullet,r_\bullet)$. To these are attached elements $\omega(I)=\tau_\bullet^{\varepsilon_\bullet}\xi_\bullet^{r_\bullet}$ which constitute a basis of $A_{\star,\star}$ as a $H^{\star,\star}$ -module. We denote $\rho(\varepsilon_\bullet,r_\bullet)\in A^{\star,\star}$ the elements of the dual basis. Note that $\rho(\varepsilon_\bullet,0)=Q_{\{i,\varepsilon_i\neq 0\}}=\prod_i Q_i^{\varepsilon_i}\in B^{\star,\star}$. We also define $\mathscr{P}^{r_\bullet}=\rho(0,r_\bullet)$.

One can write
$$\Psi^{\star}(Q_i) = \sum_{\substack{(\varepsilon_{\bullet}, r_{\bullet}) \\ (\varepsilon'_{\bullet}, r'_{\bullet})}} c_{(\varepsilon_{\bullet}, r_{\bullet}), (\varepsilon'_{\bullet}, r'_{\bullet})} \rho(\varepsilon_{\bullet}, r_{\bullet}) \otimes \rho(\varepsilon'_{\bullet}, r'_{\bullet})$$
 with

$$c_{(\varepsilon_{\bullet},r_{\bullet}),(\varepsilon_{\bullet},r_{\bullet})} = \left\langle \tau_{\bullet}^{\varepsilon_{\bullet}} \xi_{\bullet}^{r_{\bullet}} \otimes \tau_{\bullet}^{\varepsilon_{\bullet}'} \xi_{\bullet}^{r_{\bullet}'}, \Psi^{\star}(Q_{i}) \right\rangle = \left\langle \tau_{\bullet}^{\varepsilon_{\bullet}} \tau_{\bullet}^{\varepsilon_{\bullet}'} \xi_{\bullet}^{r_{\bullet}+r_{\bullet}'}, Q_{i} \right\rangle$$

 Q_i is orthogonal to the ideal generated by ξ_i for $i \geq 0$. Then, the nonzero coefficients may appear only for $r_{\bullet} = r'_{\bullet} = 0$. Denote $n = \sum_i \varepsilon_i 2^i$ and $n' = \sum_i \varepsilon_i' 2^i$, we have:

$$\left\langle \tau(\textit{n})\tau(\textit{n}'),\textit{Q}_{\textit{i}}\right\rangle = \rho^{\sigma(\textit{n})+\sigma(\textit{n}')-1}\left\langle \tau(\textit{n}+\textit{n}'),\textit{Q}(2^{\textit{i}})\right\rangle = 0 \text{ unless } \textit{n}+\textit{n}'=2^{\textit{i}}$$

We showed that:

$$\Psi^{\star}(Q_i) = \sum_{n+n'=2^i} \rho^{\sigma(n)+\sigma(n')-1} Q(n) \otimes Q(n')$$

which implies:

$$\Psi^{\star}(Q_i) = 1 \otimes Q_i + Q_i \otimes 1 + \sum_{\substack{n+n'=2^i \ n,n'>1}}
ho^{i-
u_2(n)} Q(n) \otimes Q(n')$$

It gives formulas for the computation of $Q_i(xy)$ in terms of images of x and y by compositions of some Q_j (for j < i).

Proposition

$$\rho(\varepsilon_{\bullet}, r_{\bullet}) = Q_{\{i, \varepsilon_{i} \neq 0\}} \mathscr{P}^{r_{\bullet}}$$

(where
$$\mathscr{P}^{r_{\bullet}} = \rho(0, r_{\bullet})$$
)

This means $\rho(\varepsilon_{\bullet}, r_{\bullet}) = \rho(\varepsilon_{\bullet}, 0)\rho(0, r_{\bullet})$.

Proposition

For any $n \ge 1$, we denote $q_n \in A^{\star,\star}$ the element in the Milnor basis $\rho(-,-)$ that is dual to $\xi_n \in A_{\star,\star}$. Then, $Q_n = [\beta, q_n] = \beta q_n + q_n \beta$.

We have to show $q_n\beta=Q_n+\beta q_n$. Q_n and βq_n belong to the Milnor basis (they are the duals of τ_n and $\tau_0\xi_n$). We consider pairings

$$\langle \omega(I), q_n \beta \rangle = \langle \Psi_{\star}(\omega(I)), q_n \otimes \beta \rangle$$

Let $J\subset A_{\star,\star}$ the ideal generated by τ_k , $k\geq 1$ and ξ_k , $k\geq 1$. (Then $A_{\star,\star}/J=H^{\star,\star}[\tau_0]/(\tau_0^2)$.) As $\langle J,\beta\rangle=0$, it suffices to examine $\Psi_\star(\omega(I))$ in the quotient $A_{\star,\star}\otimes_{r,H^{\star,\star},I}A_{\star,\star}/J$. There we have:

$$\overline{\Psi}_{\star}(\xi_k) = \xi_k \otimes 1 \qquad \overline{\Psi}_{\star}(\tau_k) = \xi_k \otimes \tau_0 + \tau_k \otimes 1$$

Then, the only $\omega(I)$ such that $\overline{\Psi}_{\star}(\omega(I))$ contains a term $\xi_n \otimes \tau_0$ are $\tau_0 \xi_n$ and τ_n and then the coefficient is 1.

Proposition

For any
$$n \ge 0$$
, $P^n = \mathscr{P}^{(n,0,0,...)}$.

This means that in the Milnor basis, P^n is dual to ξ_1^n .

We already know that $\langle \omega(J), P^n \rangle = 0$ if $(n, 0, \dots) < J$. It remains only the cases $J = (k, 0, \dots)$ with k < n. But then,

$$\left\langle \xi_1^k, P^n \right\rangle \in H^{2(n-k), n-k} = 0$$
 unless $k = n$

We want to understand to some extend the action of the Steenrod algebra on Thom classes of vector bundles.

Some remarks:

- An operation $\mathscr{P}^{r_{\bullet}}$ (dual in the Milnor basis of some monomial involving the ξ_i) is in $A^{2n,n}$ for some n.
- The operation Q_i is in $A^{p,q}$ for p > 2q.

Proposition

The operations Q_i and more generally the operations $\rho(\varepsilon_{\bullet}, r_{\bullet})$ for $\varepsilon_{\bullet} \neq 0$ vanish on $H^{2\star,\star}(X) = CH^{\star}(X)/2$ and on $\widetilde{H}^{2\star,\star}(\operatorname{Th}_X V)$ (with V a vector bundle of rank r on $X \in Sm/k$).

In particular, such operations kill the Thom class $t_V \in \widetilde{H}^{2r,r}(\operatorname{Th}_X V)$ of any vector bundle.

Now, we focus on the action of operations $\mathscr{P}^{r_{\bullet}}$ on Thom classes t_V and we shall start with the case of line bundles.

Proposition

Let $X \in Sm/k$. If L is a line bundle on X. Then, $\lambda(c_1(L)) = \sum_{i>0} \xi_i \otimes c_1(L)^{2^i}$.

We already did this computation in the universal case of $v = c_1(\mathcal{O}(1))$ on \mathbf{P}^{∞} .

Corollary

Let $X \in Sm/k$. If L is a line bundle on X. We let $t_L \in \widetilde{H}^{2,1}(\operatorname{Th}_X L)$ be the Thom class. Then,

$$\lambda(t_L) = \sum_{i \geq 0} \xi_i \otimes \left(c_1(L)^{2^i - 1} t_L \right) \in A_{\star,\star} \otimes_{H^{\star,\star}} \widetilde{H}^{\star,\star}(\mathsf{Th}_X L)$$

We can do the computation in $\mathbf{P}(L \oplus \mathcal{O}_X)$ where $t_L = \xi + c_1(L)$ with $\xi = c_1(\mathcal{O}(1))$. It suffices to show:

$$\xi^{2^i} + c_1(L)^{2^i} = c_1(L)^{2^i-1}(\xi + c_1(L))$$

i.e., $\xi^{2^i}=c_1(L)^{2^i-1}\xi$, which follows from the identity $\xi^2+c_1(L)\xi=0$ (definition of Chern classes of the bundle $L\oplus \mathscr{O}$).

Proposition

Let $r_{\bullet} = (r_1, r_2, ...)$ a sequence of integers as above. We have a monomial $\xi_{\bullet}^{r_{\bullet}}$. Let $d \ge 0$. We denote $P \in \mathbf{F}_2[x_1, ..., x_d]$ the symmetric polynomial

$$P = \sum_{\substack{(j_1, \dots, j_d) \in \mathbb{N}^d \\ \xi_{j_1} \dots \xi_{j_d} = \xi_{\bullet}^{f_{\bullet}}}} \prod_{i=1}^d x_i^{2^{j_i} - 1}$$

We denote $R \in \mathbf{F}_2[c_1, \ldots, c_d]$ the unique polynomial such that if we substitute to c_i the ith elementary symmetric function of the x_i we get P. Then, for any vector bundle V of rank d on $X \in Sm/k$, we have:

$$\mathscr{P}^{r_{\bullet}}(t_{V}) = R(c_{1}(V), \ldots, c_{d}(V)) \cdot t_{V}$$

(Note that the formula will stabilise for big enough d, for example $d \ge \sum_i (2^i - 1)r_i$.) As we did before, using the splitting principle, one may assume that $V = L_1 \oplus \cdots \oplus L_d$ for line bundles L_i .

 $V = L_1 \oplus \cdots \oplus L_d$. We set $x_i = c_1(L_i)$. We have to show:

$$\mathscr{P}^{r_{ullet}}(t_V) = \left(\sum_{\substack{(j_1, \dots, j_d) \in \mathbf{N}^d \ \xi_{j_1} \dots \xi_{j_d} = \xi_{ullet}^{r_{ullet}}}} \prod_{i=1}^d x_i^{2^{j_i} - 1} \right) \cdot t_V$$

From the computation of $\lambda(t_{L_i})$, we get:

$$\lambda(t_V) = (\prod_{i=1}^d \sum_{j=0}^\infty \xi_j \otimes x_i^{2^j-1}) \cdot t_V$$

The class $\mathscr{P}'^{\bullet}(t_V)$ is the coefficient of the monomial ξ'^{\bullet} in this expansion, which gives the expected result.

Here is general formula again: $P = \sum_{\substack{(j_1,\dots,j_d) \in \mathbb{N}^d \\ \xi_{j_1}\dots\xi_{j_d} = \xi_{\bullet}^{\ell_{\bullet}}}} \prod_{i=1}^d x_i^{2^{j_i}-1}.$

Corollary

 $P^n(t_V) = C_n(V) \cdot t_V$ where $C_n(V) = C_n(c_1(V), \dots, c_d(V))$ is the polynomial in the symmetric functions corresponding to $\prod_{I \subset \{1,\dots,d\}} \prod_{i \in I} x_i$.

Corollary

Remember q_n is the operation dual to ξ_n . Then, $q_n(t_V) = s_{2^n-1}(V) \cdot t_V$ where $s_j \colon K_0(X) \to \bigoplus_i H^{2i,i}(X)$ is the additive natural transformation such that $s_j(c_1(L)) = c_1(L)^j$ for line bundles L.

Here, we have $P = \sum_{i=1}^{d} x_i^{2^{i}-1}$.