Corrigé du DM n°1

Exercice I

Dans le plan \mathbb{R}^2 , on note $\mathcal{D}_1 = (AB)$ où A = (5,3) et B = (-4,-3).

(1) Déterminer un paramétrage de la droite \mathcal{D}_1 .

Un point M(x,y) appartient à la droite \mathscr{D}_1 si et seulement s'il existe $t \in \mathbf{R}$ tel que $\overrightarrow{AM} = t\overrightarrow{AB}$, c'est-à-dire

$$\exists t \in \mathbf{R}, \quad \begin{cases} x = 5 - 9t \\ y = 3 - 6t \end{cases} \tag{1}$$

(2) Déterminer une équation cartésienne de \mathcal{D}_1 .

En notant X(t) := 5 - 9t et Y(t) := 3 - 6t, on peut éliminer t en calculant 2X(t) - 3Y(t) = 1. On en déduit qu'une équation cartésienne de \mathcal{D}_1 est 2x - 3y = 1.)

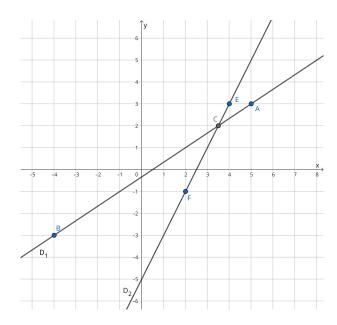
(3) Déterminer l'équation réduite de \mathcal{D}_1 .

L'équation réduite de \mathcal{D}_1 est $y = \frac{2}{3}x - \frac{1}{3}$.

(4) Notons \mathscr{D}_2 la droite définie par le paramétrage (t+4,2t+3) pour t variant dans \mathbf{R} . Déterminer le point d'intersection C de \mathscr{D}_1 et \mathscr{D}_2 .

Il s'agit de déterminer à quelle condition sur $t \in \mathbf{R}$, le point M(t) := (t+4, 2t+3) appartient à \mathscr{D}_1 , c'est-à-dire satisfait l'équation $y = \frac{2}{3}x - \frac{1}{3}$, autrement dit vérifie $2t + 3 = \frac{2}{3}(t+4) - \frac{1}{3}$. En multipliant les deux membres de l'égalité par 3, on obtient la condition 6t + 9 = (2t+8) - 1, qui équivaut à 4t = -2, c'est-à-dire à $t = -\frac{1}{2}$. Le point d'intersection est donc $C := M(-\frac{1}{2}) = (\frac{7}{2}, 2)$.

(5) Sur une figure, représenter les axes, les points A, B, les droites \mathcal{D}_1 et \mathcal{D}_2 , le point C. Préciser la méthode utilisée pour tracer \mathcal{D}_2 .



Il suffit de trouver deux points de \mathscr{D}_2 pour la tracer. Avec t=0 on obtient le point E=M(0)=(4,3) et pour t=-2, le point F=M(-2)=(2,-1).

Exercice II

Dans l'espace \mathbb{R}^3 , notons \mathscr{P}_1 le plan d'équation x-y+z=11 et \mathscr{P}_2 le plan d'équation 2x-y-3z=18. On note \mathscr{D} l'intersection $\mathscr{P}_1\cap\mathscr{P}_2$.

(1) Déterminer un paramétrage M(t)=(X(t),Y(t),Z(t)) pour $t\in \mathbf{R}$ de \mathscr{D} . Quelle est la nature géométrique de \mathscr{D} ?

Le point $M(x,y,z) \in \mathbf{R}^3$ appartient à $\mathscr{P}_1 \cap \mathscr{P}_2$ si et seulement si

$$\begin{cases} x - y + z = 11 \\ 2x - y - 3z = 18 \end{cases}$$

Si on note E_1 et E_2 les deux équations de ce système, on obtient un système en faisant l'opération « $E_2 \longleftarrow E_2 - 2E_1$ » :

$$\begin{cases} x - y + z = 11 \\ y - 5z = -4 \end{cases}$$

Étant donné $z \in \mathbf{R}$, il existe une unique solution y = 5z - 4 à la deuxième équation, et alors x = y - z + 11 = 4z + 7 est l'unique possibilité. On en déduit que M(x,y,z) appartient à $\mathscr{P}_1 \cap \mathscr{P}_2$ si et seulement si y = 5z - 4 et x = 4z + 7. Ainsi, l'intersection \mathscr{D} de \mathscr{P}_1 et \mathscr{P}_2 est exactement l'ensemble des points de la forme (4z + 7, 5z - 4, z) pour $z \in \mathbf{R}$. On peut faire jouer à z le rôle du paramètre t: on obtient ainsi un paramétrage M(t) = (X(t), Y(t), Z(t)) pour $t \in \mathbf{R}$ avec

$$\begin{cases} X(t) = 4t + 7 \\ Y(t) = 5t - 4 \\ Z(t) = t \end{cases}$$

Bien entendu, \mathcal{D} est une droite.

(2) Donner explicitement les coordonnées de deux points distincts A et B de \mathscr{D} .

On peut choisir par exemple A := M(0) = (7, -4, 0) et B := M(1) = (11, 1, 1).

(3) Déterminer l'intersection de la droite \mathscr{D} et du plan \mathscr{P}_3 d'équation 3x - 7y - 5z = -7.

Étant donné $t \in \mathbf{R}$, le point M(t) appartient à \mathscr{P}_3 si et seulement si 3X(t) - 7Y(y) - 5Z(t) = -7. Le calcul donne 3X(t) - 7Y(y) - 5Z(t) = 3(4t+7) - 7(5t-4) - 5t = -28t + 49. La condition cherchée sur t est -28t + 49 = -7, c'est-à-dire 28t = 56, autrement dit t = 2. L'unique point d'intersection de \mathscr{D} et de \mathscr{P}_3 est donc M(2) = (15, 6, 2).

(4) En utilisant les résultats précédents, déterminer l'ensemble des solutions (x,y,z) du système linéaire

$$\begin{cases} x - y + z = 11 \\ 2x - y - 3z = 18 \\ 3x - 7y - 5z = -7 \end{cases}$$

Il s'agit de déterminer l'intersection des trois plans \mathscr{P}_1 , \mathscr{P}_2 et \mathscr{P}_3 . Comme $\mathscr{P}_1 \cap \mathscr{P}_2 = \mathscr{D}$, cela revient à déterminer l'intersection $\mathscr{D} \cap \mathscr{P}_3$, qui est le singleton (15,6,2) d'après la question précédente.

(5) Déterminer l'intersection de la droite $\mathscr D$ avec le plan $\mathscr P_4$ d'équation x+y-9z=5.

En procédant comme à la question (3), on calcule $X(t) + Y(t) - 9Z(t) = 3 \neq 5$. L'intersection de \mathscr{D} et de \mathscr{P}_3 est donc vide.

2

(6) Déterminer l'intersection de la droite \mathscr{D} avec le plan \mathscr{P}_5 d'équation x+y-9z=3.

D'après le calcul de la question précédente, on a X(t)+Y(t)-9Z(t)=3, dont $M(t)\in \mathscr{P}_5$ pour tout $t\in \mathbf{R}$, autrement dit la droite \mathscr{D} est contenue dans le plan \mathscr{P}_5 . On obtient donc $\mathscr{D}\cap \mathscr{P}_5=\mathscr{D}$.