École universitaire Paris-Saclay Année universitaire 2024/2025 Licence de mathématiques MEU 102 Algèbre et géométrie MP/MI/STAPS

Feuille d'exercices n°1

Pour tous les exercices de cette feuille, même si ce n'est pas explicitement demandé, il peut être utile de représenter graphiquement les différents objets mathématiques considérés sur une figure.

Exercice I

On note $\mathscr C$ le sous-ensemble de $\mathbf R^2$ défini par l'équation cartésienne xy=1. Parmi les points suivants, quels sont ceux qui appartiennent à $\mathscr C$:

Exercice II

On considère la droite ${\mathscr D}$ dont un paramétrage (X(t),Y(t)) pour $t\in {\bf R}$ est donné par

$$\begin{cases} X(t) = 2 + 3t \\ Y(t) = -1 + 2t \end{cases}$$

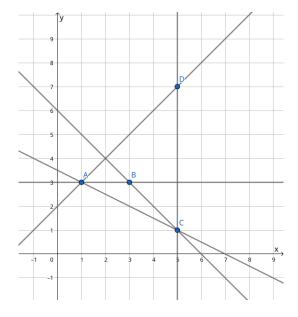
(1) Parmi les points suivants, quels sont ceux qui appartiennent à $\mathcal D$:

- (2) Déterminer une équation cartésienne (E) satisfaite par tous les points de \mathscr{D} .
- (3) D'après le cours, $\mathscr D$ est la droite d'équation (E). Redémontrez rigoureusement cette égalité par double inclusion.

Exercice III

- (1) Représenter graphiquement dans le plan la droite $\mathscr D$ d'équation « 5x-2y=10 ».
- (2) Déterminer l'équation réduite de \mathcal{D} .
- (3) Donner les coordonnées de deux points distincts appartenant à \mathscr{D} .

Exercice IV



Déterminer un paramétrage des droites (AB), (AC), (BC), (AD), (CD).

Exercice V

Pour chacune des cinq droites considérées dans l'exercice IV, déterminer

- une équation cartésienne;
- l'équation réduite.

Exercice VI

- (1) Avec les notations de l'exercice IV, déterminer les points d'intersections des droites :
 - -(AB) et (BC);
 - -(AB) et (CD);
 - -(AD) et (BC);
 - -(AC) et (BD).
- (2) Si on note E le point d'intersection de (AB) et (CD) et F celui de (AC) et (BD), déterminer une équation de la droite (EF).

Exercice VII

- (1) Représenter graphiquement la droite \mathcal{D} d'équation 3x + 4y = 12.
- (2) Déterminer une équation cartésienne de la parallèle \mathscr{D}' à \mathscr{D} passant par le point A=(1,2).
- (3) Déterminer un paramétrage de \mathcal{D}' .

Exercice VIII

On note \mathcal{D}_1 la droite d'équation 3x + y = -3 et \mathcal{D}_2 celle d'équation x - y = -5. Déterminer $\mathcal{D}_1 \cap \mathcal{D}_2$.

Exercice IX

On note \mathcal{D}_1 la droite d'équation x+4y=8 et \mathcal{D}_2 celle d'équation 3x+2y=14. Déterminer $\mathcal{D}_1\cap\mathcal{D}_2$.

Exercice X

Déterminer l'ensemble des couples $(x,y)\in {\bf R}^2$ qui sont solutions du système d'équations suivant :

$$\begin{cases} 4x - 3y = 10 \\ 3x + 2y = -1 \end{cases}$$

Exercice XI

Déterminer l'ensemble des couples $(x,y)\in {\bf R}^2$ qui sont solutions du système d'équations suivant :

$$\begin{cases} 3x + 5y = 3 \\ 3x + 5y = -5 \end{cases}$$

Exercice XII

Déterminer l'ensemble des couples $(x,y)\in {\bf R}^2$ qui sont solutions du système d'équations suivant :

$$\begin{cases} 4x + 5y = -4 \\ 6x + 7y = -5 \end{cases}$$

Exercice XIII

- (1) Déterminer une équation cartésienne de la droite $\mathscr D$ contenant le point A=(2,3) et de vecteur directeur v=(2,1).
- (2) Déterminer une équation cartésienne de la droite \mathscr{D}' contenant le point B=(-1,6) et de vecteur directeur v=(5,-2).
- (3) Déterminer $\mathcal{D} \cap \mathcal{D}'$.

Exercice XIV

Supposons que \mathscr{D}_1 et \mathscr{D}_2 soient deux droites sécantes d'équations cartésiennes $F_1(x,y)=0$ et $F_2(x,y)=0$ respectivement, où $F_1(x,y)$ et $F_2(x,y)$ sont des applications $\mathbf{R}^2\to\mathbf{R}$ de la forme $F_1(x,y)=a_1x+b_1y+c_1$ et $F_2(x,y)=a_2x+b_2y+c_2$. On note A le point d'intersection de \mathscr{D}_1 et de \mathscr{D}_2 . (1) Soit $(\lambda,\mu)\in\mathbf{R}^2-\{(0,0)\}$. On pose $F_3(x,y):=\lambda F_1(x,y)+\mu F_2(x,y)$. Montrer que « $F_3(x,y)=0$ » est l'équation cartésienne d'une droite \mathscr{D}_3 passant par A.

(2) Dans le cas particulier où $A=(x_A,y_A),\, F_1(x,y)=x-x_A$ et $F_2(x,y)=y-y_A$, montrer que réciproquement, si \mathscr{D}_3 est une droite passant par A, alors elle admet une équation de la forme $\lambda F_1(x,y)+\mu F_2(x,y)=0$ comme dans la question précédente.

Exercice XV

On considère la droite \mathscr{D}_1 donnée par le paramétrage $M_1(t)=(t+2,t+3)$ et la droite \mathscr{D}_2 donnée par le paramétrage $M_2(t)=(2t,2t+1)$.

Les droites \mathcal{D}_1 et \mathcal{D}_2 sont-elles égales?

Exercice XVI

On considère la droite $\mathscr D$ donnée par le paramétrage M(t)=(2+t,3-t). Déterminer un paramétrage de la droite $\mathscr D'$ parallèle à $\mathscr D$ et passant par le point (1,1).

Exercice XVII

On fixe deux paramètres $(a,b)\in {\bf R}^2.$ On considère le système d'équations, d'inconnues réelles x et y :

$$\begin{cases} 4x + 3y = a \\ 3x + 2y = b \end{cases}$$

(1) Déterminer un système d'équations équivalent au précédent et qui soit de la forme :

$$\begin{cases} 4x + 3y &= a \\ y &= \beta \end{cases}$$

- où β est un nombre réel à déterminer.
- (2) Montrer que le système possède une unique solution (x,y), à exprimer en fonction de a et b.