École universitaire Paris-Saclay Année universitaire 2025/2026 L1 MP/MI, LDD STAPS MEU 102 Algèbre et géométrie MP/MI/STAPS

Feuille d'exercices n°4

Exercice I

(1) Les vecteurs-colonnes V_1, V_2, V_3 suivants forment-ils une famille libre de $M_{3,1}(\mathbf{R})$? (Ne pas faire de calculs trop compliqués.)

$$V_1 = \begin{pmatrix} 2 \\ 7 \\ 5 \end{pmatrix} \qquad V_2 = \begin{pmatrix} 3 \\ 2 \\ -3 \end{pmatrix} \qquad V_3 = \begin{pmatrix} 5 \\ 9 \\ 2 \end{pmatrix}$$

(2) En utilisant l'algorithme du pivot de Gauss à la matrice augmentée suivante, où b_1, b_2, b_3 sont des réels arbitraires, déterminer une condition nécessaire et suffisante pour que le système correspondant soit compatible :

$$\begin{pmatrix}
2 & 3 & b_1 \\
7 & 2 & b_2 \\
5 & -3 & b_3
\end{pmatrix}$$

(3) Soit $X := \begin{pmatrix} x \\ y \\ z \end{pmatrix}$. Déterminer une condition nécessaire et suffisante sur x, y et z pour que $X \in \text{Vect}(V_1, V_2, V_3)$.

Exercice II

Pour quelle(s) valeur(s) éventuelles(s) du paramètre $a \in \mathbf{R}$ est-ce que les vecteurs suivants V_1 et V_2 forment une famille libre de $M_{2,1}(\mathbf{R})$:

$$V_1 = \begin{pmatrix} 1 \\ 2 \end{pmatrix} \qquad V_2 = \begin{pmatrix} a \\ -6 \end{pmatrix}$$

Exercice III

Déterminer deux équations linéaires homogènes en les variables x_1,x_2,x_3,x_4 définissant ${\rm Vect}(V_1,V_2)$ avec :

$$V_1 = \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \end{pmatrix} \qquad V_2 = \begin{pmatrix} 2 \\ 3 \\ 4 \\ 5 \end{pmatrix}$$

Exercice IV

Les vecteurs suivants forment-ils une famille libre dans $M_{3,1}(\mathbf{R})$:

$$V_1 = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$
 $V_2 = \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix}$ $V_3 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$

Exercice V

Pour quelle(s) valeur(s) éventuelles(s) du paramètre $a \in \mathbf{R}$ est-ce que les vecteurs suivants V_1, V_2, V_3 forment une famille libre de $M_{3,1}(\mathbf{R})$:

$$V_1 = \begin{pmatrix} 1 \\ a \\ -a \end{pmatrix} \qquad V_2 = \begin{pmatrix} -3 \\ 2 \\ 4 \end{pmatrix} \qquad V_3 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

Exercice VI

Pour quelle(s) valeur(s) éventuelles(s) du paramètre $a \in \mathbf{R}$ est-ce que les vecteurs suivants V_1, V_2, V_3 forment une famille libre de $M_{3,1}(\mathbf{R})$:

$$V_1 = \begin{pmatrix} a \\ 2a \\ 0 \end{pmatrix} \qquad V_2 = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} \qquad V_3 = \begin{pmatrix} a \\ 3-a \\ 1 \end{pmatrix}$$

Exercice VII

Dans $M_{3,1}(\mathbf{R})$, on note F l'ensemble des vecteurs-colonnes vérifiant dont les coordonnées vérifient la relation $x_1 + x_2 + x_3 = 0$. Déterminer une base de F. Quelle est la dimension de F?

(Une base de F est une famille libre (V_1, \ldots, V_d) d'éléments de F de cardinal maximum. On a alors $\mathrm{Vect}(V_1, \ldots, V_d) = F$ et $\dim F = d$.)

Exercice VIII

Dans $M_{3,1}(\mathbf{R})$, on considère les vecteurs suivants :

$$V_1 = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \qquad V_2 = \begin{pmatrix} 2 \\ 4 \\ 7 \end{pmatrix} \qquad V_3 = \begin{pmatrix} 1 \\ 2 \\ 4 \end{pmatrix} \qquad V_4 = \begin{pmatrix} 6 \\ 5 \\ 12 \end{pmatrix}$$

- (1) Les vecteurs (V_1, V_2, V_3, V_4) forment-ils une famille génératrice de $M_{3,1}(\mathbf{R})$?
- (2) Quelle est la dimension d de $Vect(V_1, V_2, V_3, V_4)$?
- (3) Parmi les quatre vecteurs V_1, V_2, V_3, V_4 , déterminer une sous-famille de d vecteurs qui soit libre.

Exercice IX

- (1) Quelle est la dimension du sous-espace vectoriel F de $M_{4,1}(\mathbf{R})$ formé des vecteurs-colonnes X tels que $\begin{pmatrix} 1 & 1 & -1 & -1 \end{pmatrix} \cdot X = 0$?
- (2) Déterminer une base de F.

Exercice X

On considère
$$\mathscr P$$
 l'ensemble des $X=\left(\begin{array}{c}x\\y\\z\end{array}\right)\in M_{3,1}(\mathbf R)$ tels que $2x+3y+5z=8.$

Déterminer des vecteurs-colonnes X_0, V_1, \ldots, V_d dans $M_{3,1}(\mathbf{R})$ tels que les éléments de $\mathscr P$ sont exactement les vecteurs de la forme $X_0 + t_1 V_1 + \cdots + t_d V_d$ (pour un unique d-uplet (t_1, \ldots, t_d)).

Exercice XI

On considère \mathscr{P}_0 l'ensemble des $X=\left(egin{array}{c} w\\x\\y\\z\end{array}\right)\in M_{4,1}(\mathbf{R})$ tels que les équa-

tions suivantes soient vérifiées :

$$\begin{cases} w + 2x + 3y + 5z = 0 \\ w - 2x - y + z = 0 \end{cases}$$

- (1) Déterminer des vecteurs-colonnes V_1 et V_2 dans $M_{4,1}(\mathbf{R})$ tels que $\mathscr{P}_0 = \mathrm{Vect}(V_1,V_2)$. Quelle est la dimension de \mathscr{P}_0 ?
- (2) On note $\mathscr P$ l'ensemble des $X=\left(egin{array}{c} w\\x\\y\\z\end{array}\right)\in M_{4,1}(\mathbf R)$ tels que w+2x+3y+

5z=1 et w-2x-y+z=1. Déterminer un vecteur-colonne X_0 tel que tout élément de $\mathscr P$ s'écrive de façon unique $X_0+t_1V_1+t_2V_2$.

Exercice XII

Considérons les vecteurs suivants, où b_1 , b_2 , b_3 sont des réels arbitraires :

$$V_1 := \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \qquad V_2 := \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix} \qquad V_3 := \begin{pmatrix} 7 \\ 8 \\ 10 \end{pmatrix} \qquad B := \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$$

- (1) Mettre sous forme échelonnée réduite la matrice $M=(V_1 \ V_2 \ V_3 \mid B)$.
- (2) Montrer que la famille (V_1, V_2, V_3) est génératrice de $M_{3,1}(\mathbf{R})$.
- (3) Écrire explicitement les vecteurs suivants comme combinaisons linéaires de $V_1,\,V_2$ et V_3 :

$$\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \qquad \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \qquad \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

- (4) La famille (V_1, V_2, V_3) est-elle libre?
- (5) Quelle est la dimension de $Vect(V_1, V_2)$?