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1. Weak topology

1.1 Duality, examples

Definition 1.1.1 Let X ,Y be 2 normed vector spaces.
• B(X ,Y ) := {T : X → Y linear and continuous}.
• B(X) := B(X ,X).
• X∗ := B(X ,R).
• ∀x∗ ∈ X∗ ∀x ∈ X ⟨x∗,x⟩ := x∗(x) =: ⟨x,x∗⟩.

Lemma 1.1.1 Let X be a Banach space and x∗ ∈ X∗. Then

∥x∗∥X∗ := sup{⟨x,x∗⟩ ; x ∈ X , ∥x∥= 1}< ∞.

Theorem 1.1.2 Let X be a normed vector space.
Then (X∗,∥.∥X∗) is a Banach space.

Let us now give few duality spaces that should be known. First are the Hilbert spaces.

Theorem 1.1.3 Riesz representation theorem Let H be an Hilbert space, equipped with the scalar
product (., .). Then H∗ = H, in the sense that for any x∗ ∈ H∗, there exists h ∈ H such that

⟨x∗,x⟩= (h,x) for x ∈ H.

Then we present the spaces of sequences.
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Definition 1.1.2 We define for 1 ≤ p <+∞

ℓp = ℓp(N) := {u := (un)n∈N ∈ RN, ∥u∥p :=
( ∞

∑
n=0

|un|p
) 1

p
<+∞}.

When p =+∞, we have

ℓ∞ = ℓ∞(N) := {u := (un)n∈N ∈ RN, ∥u∥∞ := sup
n∈N

|un|<+∞}

and

c0 = c0(N) := {u := (un)n∈N ∈ ℓ∞(N), lim
n→∞

un = 0}.

Theorem 1.1.4 The space (c0)
∗ can be identified to ℓ1 and, for 1 ≤ p < ∞, (ℓp)∗ is isomorphic to

ℓp′ , that is
• for any x∗ ∈ (c0)

∗, we can find u = (un)n ∈ ℓ1 such that

⟨x∗,v⟩=
∞

∑
n=0

unvn for v = (vn)n ∈ c0;

• for p ∈ [1,∞) and for any x∗ ∈ (ℓp)∗, we can find u = (un)n ∈ ℓp′ - 1
p +

1
p′ = 1 - such that

⟨x∗,v⟩=
∞

∑
n=0

unvn for v = (vn)n ∈ ℓp.

We write (c0)
∗ = ℓ1 and (ℓp)∗ = ℓp′ for short.

When we deal with functions, we need to be a bit more careful. The Lp spaces, p ∈ [1,∞) are
similar:

Theorem 1.1.5 Let (E,µ) be a measured space and 1 ≤ p < ∞. Then the dual of Lp(E,µ) is
identified to Lp′(E,µ), in the sense that for any x∗ ∈ (Lp(E,µ))∗, there exists f ∈ Lp′(E,µ) such
that

⟨x∗,g⟩=
∫

E
f gdµ for g ∈ Lp(E,µ).

■ Remark 1.1 We recall that the Lp spaces the quotient of functions whose p-power is integrable by
the set of functions that are zero except on a set of µ-measure zero. By notation abuse, we use the
same notation for an element in Lp(E,µ) and one of its representative function. ■

Definition 1.1.3 — Radon measures. Let µ be a R-Borel measure on Rn. We define its variation
|µ| as

|µ|(F) := sup
AF

∑
A∈AF

|µ(A)|,
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where the supremum is taken over all finite collections of pairwise disjoint Borel measurable
subsets of F .

We call M (Rn) the space of R-Borel measure on Rn such that ∥µ∥M := |µ|(Rn)<+∞.

Proposition 1.1.6 The space M (Rn) is complete. Moreover, any element µ ∈ M (Rn) is Radona,
that is, for any Borel B ⊂ Rn and any ε > 0, there exists a compact K ⊂ B and an open U ⊃ B
such that |µ|(U \K)< ε .

aresult still holds if we replace R by a complete separable metric space

Theorem 1.1.7 — Riesz representation theorem. Let C0(Rn) be the space of continuous
function vanishing at ∞, that is f ∈C0(Rn) if for any ε > 0, there exists a compact K = K f ,ε ⋐Rn

such that | f | ≤ ε on Rn \K.
Then the dual of the Banach space C0(Rn) can be identified to M (Rn)a, that is, for any

x∗ ∈ (C0(Rn))∗, there exists µ ∈ M (Rn) such that

⟨x∗, f ⟩=
∫
Rn

f (x)dµ(x) for f ∈C0(Rn).

astill hold if R is replaced by a is a locally compact Hausdorff space

Exercise 1.1 Prove Theorem 1.1.2, that is that X∗ is complete.

Exercise 1.2 Show that (c0)
∗ = ℓ1.

1.2 Hahn-Banach theorem
1.2.1 Analytic Hahn-Banach theorem.

Let us start with a small easy result.

Proposition 1.2.1 Let X be a Banach space, and S ⊂ X be a dense subset. Let T : S → X be
linear and such that

∃C > 0 ∀x,y ∈ S ∥T (x)−T (y)∥ ≤C∥x− y∥.

Then there exists a unique S ∈ B(X) such that T (x) = S(x) for all x ∈ S .
In particular, if V ⊂ X is a dense subspace and ∥T (x)∥ ≤C∥x∥ for all x ∈V , then there exists

a unique S ∈ B(X) such that T (x) = S(x) for all x ∈V .

When V ⊂ X is not a dense subspace, we prefer to use the Hahn-Banach theorem.

Theorem 1.2.2 — Helly, Hahn-Banach. Let E be a vector space over R. Let p : E → R be such
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that

p(λx) = λ p(x) ∀λ ∈ R+ ∀x ∈ E,

p(x+ y)≤ p(x)+ p(y) ∀x,y ∈ E.

Let V ⊂ X be a subspace, and ℓ : V → R be a linear form such that

∀x ∈V |ℓ(x)| ≤ p(x).

Then there exists a ℓ∗ : E → R such that ℓ(x) = ℓ∗(x) for all x ∈V , and |ℓ∗(x)| ≤ p(x) ∀x ∈ E.

Some important consequences deserve to be highlighted.

Corollary 1.2.3 — Hahn-Banach 1920’s. Let X be a Banach space, and V ⊂ X be a subspace.
Let ℓ : V → R be linear and such that

∀x ∈V |ℓ(x)| ≤ ∥x∥.

Then there exists a ℓ∗ ∈ X∗ such that ℓ(x) = ℓ∗(x) for all x ∈V , and ∥ℓ∗∥X∗ ≤ 1.

Corollary 1.2.4 Let X be a Banach space.

∀x ∈ X ∃x∗ ∈ X∗

{
∥x∗∥X∗ = 1,
⟨x∗,x⟩= ∥x∥.

Corollary 1.2.5 Let X ,Y be Banach spaces, and T ∈ B(X ,Y ). Define T ∗ : Y ∗ → X∗ by

⟨T ∗(y∗),x⟩= ⟨y∗,T (x)⟩ ∀x ∈ X ∀y∗ ∈ Y ∗.

Then T ∗ ∈ B(Y ∗,X∗) with ∥T ∗∥= ∥T∥.

1.2.2 Geometric Hahn-Banach theorem
We need to notion of “separation”.

Definition 1.2.1 Let X be a Banach space, x∗ ∈ X∗, α ∈ R.
• Pα,x∗ := {x ∈ X ; ⟨x∗,x⟩= α} is called a hyperplane.
• Two sets A,B ⊂ X are called separated if there exists a hyperplane Pα,x∗ such that{

⟨x∗,x⟩ ≥ α ∀x ∈ A,
⟨x∗,x⟩ ≤ α ∀x ∈ B.

• Two sets A,B ⊂ X are called strictly separated if there exists a hyperplane Pα,x∗ and an
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ε > 0 such that:{
⟨x∗,x⟩ ≤ α − ε ∀x ∈ A,
⟨x∗,x⟩ ≥ α + ε ∀x ∈ B.

Theorem 1.2.6 — Hahn-Banach 1920’s. Let A,B ⊂ X be non-empty convex sets such that
A∩B = /0. Assume that B is open. Then A and B are separated.

Corollary 1.2.7 Let A,B ⊂ X be non-empty closed convex sets such that A∩B = /0. Assume that
B is compact. Then A and B are strictly separated.

An important tool of the proof of the Hahn-Banach theorem is the Minkowski jauge.

Lemma 1.2.8 — Minkowski gauge. Let A ⊂ X be a convex non-empty open set. Assume 0 ∈ A.
Define

ρ(x) := inf{α > 0 ; α
−1x ∈ A} ∀x ∈ X .

Then, for all x,y ∈ X and β > 0,
• ρ(βx) = βρ(x).
• ρ(x+ y)≤ ρ(x)+ρ(y).
• There exists M > 0, such that for all x ∈ X , ρ(x)≤ M∥x∥.
• A = {x ∈ X ; ρ(x)< 1}.

Definition 1.2.2 Let Y ⊂ X be a subspace.

Y⊥ := {x∗ ∈ X∗ ; ⟨x∗,y⟩= 0 ∀y ∈ Y}.
Y⊥⊥ := {x ∈ X ; ⟨x,y∗⟩= 0 ∀y∗ ∈ Y⊥}.

Theorem 1.2.9 Let Y ⊂ X be a subspace. Then Y = Y⊥⊥. In particular, if Y⊥ = {0} then Y is
dense.

Exercise 1.3 Prove Corollary 1.2.5.

Exercise 1.4 Prove Theorem 1.2.9.

Exercise 1.5 Find an example of a two-dimensional Banach space X and a functional on one of
its closed one-dimensional subspaces which has infinitely many extensions to a functional on X
of the same norm.
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Exercise 1.6 Show that (ℓ∞)∗ ⊋ ℓ1. (Hint: think about limits)

1.3 Weak and weak-∗ convergence

1.3.1 Weak convergence

Definition 1.3.1 Let X be a Banach space.
We write BX for the closed ball {x ∈ X ; ∥x∥ ≤ 1} and SX for the sphere {x ∈ X ; ∥x|= 1}.

Lemma 1.3.1 Let Y ⊊ X be a closed subspace. Then

∀ε > 0 ∃x ∈ X ∥x∥= 1 and dist(x,Y )≥ 1− ε.

■ Remark 1.2 When X is an Hilbert, and Y ⊂ X is a subspace, ∃x ∈ SX such that dist(x,Y ) = 1. One
can construct such x by considering unit vector in Y⊥. ■

Theorem 1.3.2 Let X be a Banach space. If BX is compact, then dim(X)< ∞.

Proof of the lemma. Let ε > 0. Pick x0 ∈ Y c and define d := dist(x0,Y ). Take now y0 ∈ Y such that
∥x0 − y0∥ ≤ d

1−ε
. Finally, define x = x0−y0

∥x0−y0∥ , and observe that, for y ∈ Y

∥x− y∥= 1
∥x0 − y0∥

∥∥∥x0 − y0 +∥x0 − y0∥y∈Y

∥∥∥≥ 1
∥x0 − y0∥

d ≥ 1− ε.

The lemma follows. □

Proof of the theorem. Assume dimX = ∞. Then it means that there exists a countable fam-
ily of linearly independent vectors {x1, . . . ,xn . . .}. We constructthe family of subspaces Xn :=
Span{x1, . . . ,xn}, which satisfies Xn ⊊ Xn+1. Using the lemma, for any n ∈N, we can find yn ∈ SXn+1

- a unit vector in Xn+1 - such that dist(yn+1,Xn) >
1
2 . It gives that for any n,m ∈ N, n ̸= m,

∥yn − ym∥ ≥ 1
2 . Since the infinite collection of open sets B(xn,

1
2)∩BX is non-overlapping and

included in X , BX cannot be compact. □

Sometimes, the norm topology is too strong and it is difficult to have convergence in norm. So
we are looking at weaker topologies, where there are less open and close sets, where the convergence
is easier, and hence where a set is more likely to be compact.

Definition 1.3.2 Given ε > 0, x ∈ X , n ∈ N, x∗1, ...,x
∗
n ∈ X∗, we define

Vε,x,x∗1,...,x
∗
n

:= {y ∈ X ; |⟨y− x,x∗j⟩|< ε ∀ j = 1, ...,n}.

These sets form a base for the weakest topology associated with X∗. This topology is called the
weak topology and is denoted by Tw. If a sequence (xn)n∈N converges to x in (X ,Tw), we write
xn

w−→
n→∞

x or simply xn ⇀ x.

Exercise 1.7 A weakly open set is open (and a weakly closed set is closed).
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Exercise 1.8 Show that for any α > 0 and any x∗ ∈ X∗, the set Uα,x∗ := {x ∈ X , < x,x∗ >< α}
is open.

Exercise 1.9 Show that the weak topology and the norm topology are the same for finite
dimensional Banach spaces.

Lemma 1.3.3 Let (xn)n∈N ∈ XN and x ∈ X .

xn
w−→

n→∞
x ⇐⇒ ∀x∗ ∈ X∗ ⟨xn − x,x∗⟩ →

n→∞
0.

Proposition 1.3.4 Tw is Hausdorff.

Proof of the lemma.
( =⇒ ) Let xn ⇀ x, and let x∗ ∈ X∗. By definition of weak convergence, we have

∀ε > 0, ∃N ∈ N, ∀n ≥ N, xn ∈Vε,x,x∗

⇐⇒∀ε > 0, ∃N ∈ N, ∀n ≥ N, | ⟨xn − x,x∗⟩ |< ε

⇐⇒ ⟨xn − x,x∗⟩ → 0.

( ⇐= ) Assume that ⟨xn − x,x∗⟩ → 0 for all x∗ ∈ X∗.
Let ε > 0, N ∈ N, and x∗1, . . . ,x

∗
N ∈ X∗. By assumption,

〈
xn − x,x∗j

〉
→ 0 for all j = 1, . . . ,N. In

particular,

∃M ∈ N,∀n ≥ M, max
j=1..N

|
〈
xn − x,x∗j

〉
|< ε

∃M ∈ N,∀n ≥ M, xn ∈Vε,x,x∗1,...,x
∗
N

So we proved that xn ⇀ x. □

Proof of the proposition. Let x,y ∈ X , x ̸= y. We want to find Ux,Uy open such that x ∈Ux, y ∈Uy,
and Ux ∩Uy = /0.

By Hahn-Banach, the two points are strictly separated, i.e. there exists α ∈R, ε > 0, and x∗ ∈ X∗

such that

⟨x∗,x⟩ ≤ α − ε < α + ε ≤ ⟨x∗,y⟩ .

We take Ux = {z ∈ X , ⟨x∗,z⟩< α}, and Uy = {z ∈ X , ⟨x∗,z⟩> α}, which are not intersecting, and
are open by Exercise 1.8. □

Theorem 1.3.5 — Mazur 1930’s. Let X be a Banach space and E ⊂ X be a convex set. Then the
closure of E in (X ,Tw) is equal to its closure in X .

Proof . Let E be closed and convex. We want to show that Ec is open. So take x ∈ Ec. By
Hahn-Banach, E and x are strictly separated, so ∃α,x∗ such that

⟨x,x∗⟩< α < ⟨e,x∗⟩ ∀e ∈ E.

So x ∈Ux∗,α := {z ∈ X , ⟨z,x∗⟩< α} ⊂ Ec, and Ux∗,α is open by Exercise 1.8. □
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Corollary 1.3.6 Let (xn)n∈N ∈ XN and x ∈ X be such that xn
w−→

n→∞
x.

• There exists (yn)n∈N ∈ (convex{x j ; j ∈ N})N such that yn −→
n→∞

x.

• In particular, ∥x∥ ≤ liminf
n→∞

∥xn∥.

Proof . First point. Let E = convex{x j, j ∈ N}. We have that x ∈ Ew
= E by Mazur’s theorem. So

there exists a sequence yn ∈ E such that yn → x.

Second point. Let ℓ := liminfn→∞ ∥xn∥. We can extract a subsequence (xnk)k of (xn)n such that
∥Xnk∥ ≤ ℓ+ 1

k . Of course, we still have xnk ⇀ x, so the first point shows that

x ∈ convex{xnk , k ∈ N} ⊂ (ℓ+
1
k
)BX .

In particular ∥x∥ ≤ ℓ+ 1
k . The result being true for all k, we have ∥x∥ ≤ ℓ as desired. □

1.3.2 Weak-∗ convergence

The weak topology is nice, but we can sometimes have a even smaller topology: if the space under
consideration is already a dual (X∗), then we can test the topology against elements of X instead
of elements of X∗∗. Note that it will give a smaller topology because each element of X can be
identified to an element of X∗∗ via the following inclusive map.

i : X → X∗∗

x 7→ [x∗ 7→ ⟨x∗,x⟩].

Definition 1.3.3 Given ε > 0, x∗ ∈ X∗, n ∈ N, x1, ...,xn ∈ X , we define

Vε,x∗,x1,...,xn := {y∗ ∈ X∗ ; |⟨y∗− x∗,x j⟩|< ε ∀ j = 1, ...,n}.

These sets form a base for the weakest topology associated with {x∗ 7→ ⟨x∗,x⟩ ; x ∈ X}. This
topology is called the weak* topology and is denoted by Tw∗ . If a sequence (x∗n)n∈N converges

to x∗ in (X∗,Tw∗), we write x∗n
w∗
−→
n→∞

x∗ or simply x∗n
∗−⇀ x∗.

Exercise 1.10 Show that the weak-∗ closure of a convex set is convex.

Lemma 1.3.7 Let X be a Banach space, and assume that y∗,x∗1, . . . ,x
∗
n ∈ X∗ are such that

n⋃
j=1

Kerx∗j ⊂ Kery∗. Then y ∈ Span{x∗1, . . . ,x
∗
n}.

Proof . Define the map

F : X → Rn+1

x 7→ (⟨x,y∗⟩ ,⟨x,x∗1⟩ , . . . ,⟨x,x∗n⟩)
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By assumption, (1,0 . . . ,0) /∈ Im(F), so by the Hahn-Banach theorem in Rn+1, we can separate
{(1,0, . . . ,0)} from ℑ(F), i.e. ∃α ∈ R, ∃λ = (λ0, . . . ,λn) ∈ Rn+1 such that

⟨λ ,(1,0, . . . ,0)⟩< α < ⟨λ ,F(x)⟩ ∀x ∈ X

⇐⇒ λ0 < α < λ0 ⟨x,y∗⟩+
n

∑
j=1

λ j
〈
x,x∗j

〉
∀x ∈ X .

We have that ⟨λ ,F(0)⟩= 0, meaning that λ0 < α < 0. So

⟨y∗,x⟩=−
n

∑
j=1

λ j

λ0

〈
x∗j ,x

〉
∀x ∈ X ,

i.e. y∗ ∈ Span{x∗j , j = 1, . . . ,n}. □
The lemma has two interesting consequences.

Proposition 1.3.8 Let X be a Banach space.
(X∗,Tw∗) = (X∗,Tw) ⇐⇒ X = X∗∗.

Proof .
( ⇐= ) If X = X∗∗ contains the same elements, i.e. the map i is bijective, it means that {⟨x∗,x⟩}x∈X =
{⟨x∗,x∗∗⟩}, and hence the neighborhood defining the weak and weak-∗ topologies are the same.

( =⇒ ) The map x∗∗ ∈ (X∗)∗ is weakly continuous. Indeed, the pre-image of open sets of R
are weakly open. For instance, (x∗∗)−1(−1,1) = V1,0,x∗∗ . By assumption, x∗∗ is then weakly-∗
continuous, meaning that ∃ε > 0, ∃x1, . . . ,xn ∈ X such that Vε,0,x1,...,xn ⊂ (x∗∗)−1(−1,1).

By Lemma 1.3.7, it suffices to show that
⋃n

j=1 Kerx j ⊂ Kerx∗∗, where we see x j as elements
of X∗∗ via the injection i. Indeed, once the inclusion of kernel is proved, we will have that x∗∗ ∈
Span{i(x1), dots, i(xn)}, i.e. the map i is onto.

So let y∗ ∈
⋃n

j=1 Kerx j, i.e.
〈
x j,y∗

〉
= 0 for all j = 1, . . . ,n. As a consequence

|
〈
x j, ty∗

〉
|= 0 ∀ j = 1, . . . ,n∀t ∈ R

⇐⇒ ty∗ ∈Vε,0,x1,...,x j ∀t ∈ R

By the choice of Vε,0,x1,...,x j , we have then that |tx∗∗(y∗)|< 1 for all t ∈ R, which forces x∗∗(y∗) = 0,
i.e. y∗ ∈ Kerx∗∗. □

Lemma 1.3.9 — w∗ Hahn-Banach. Let B ⊂ X∗ be w∗-closed and convex.
For x∗0 ̸∈ B, we have that

∃x0 ∈ X ∃α ∈ R ∀y∗ ∈ B ⟨x∗0,x0⟩< α ≤ ⟨x0,y∗⟩.

Proof . By assumption, Ec is w∗-open, which mean that for x∗0 ∈ Ec, there exists ε > 0, x1, . . . ,xn ∈ X
such that Vε,x∗0,x1,...,xn ⊂ Ec.

E is convex by assumption, and it is easy to check that Vε,x∗0,x1,...,xn is (open and) convex. So by
Hahn-Banach, there exists x∗∗0 ∈ X∗∗ and α > 0 such that

⟨x∗∗0 ,x∗⟩ ≤ α ≤ ⟨x∗∗0 ,y∗⟩ ∀x∗ ∈V, ∀y∗ ∈ E.
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We want to prove that x∗∗0 can be identified as an element of X , and for this, we will use Lemma 1.3.7
again. We want to prove that

⋃n
j=1 Kerx j ⊂ Kerx∗∗.

Let x∗ ∈
⋃n

j=1 Kerx j.〈
x0 + tx∗,x j

〉
=
〈
x∗0,x j

〉
∀ j = 0, . . . ,n∀t ∈ R

⇐⇒ x∗0 + tx∗ ∈V ∀t ∈ R

So by construction of x∗∗0 ,

α ≥ ⟨x∗∗,x∗0 + tx∗⟩= ⟨x∗∗0 ,x∗0⟩+ t ⟨x∗∗0 ,x∗⟩ ∀t ∈ R
⇐⇒ ⟨x∗∗0 ,x∗⟩= 0

⇐⇒ x∗ ∈ Kerx∗∗0 .

The lemma follows by noting that ⟨x∗∗0 ,x∗0⟩< α , since we have ⟨x∗∗0 ,x∗⟩ ≤ α for x∗ in a neighborhood
of x∗0. □

The last lemma has an important consequence.

Theorem 1.3.10 — Goldstine. For any Banach space X , i(BX) is dense in (BX∗∗ ,Tw∗).

Proof . By contradiction, assume that BX∗∗ \ i(BX)
w∗ ̸= 0. So there exists x∗∗0 ∈ BX∗∗ \ i(BX)

w∗
. By

the w∗ Hahn-Banach, there exists x∗0 ∈ X∗ and α > 0 such that

⟨x,x∗0⟩< α ≤ ⟨x∗0,x∗∗0 ⟩ ∀x ∈ BX .

So

∥x∗0∥X∗ := sup
x∈BX

⟨x,x∗0⟩< ⟨x∗0,x∗∗0 ⟩ ≤ ∥x∗0∥X∗

since x∗∗0 ∈ BX∗∗ . The theorem follows. □

Let us move to the bigger results.

Theorem 1.3.11 (BX∗ ,Tw∗) is metrisable if and only if X is separable.

■ Remark 1.3 If a topology is metrisable, then the compacity is equivalent to the sequential
compacity. ■

Proof .
( =⇒ ) Let d be a distance that generate the weak-∗ topology on BX∗ . For n ∈N∗, we define the open
neiborhoods Un

Un := {x∗ ∈ BX∗ , d(x∗,0)<
1
n
}.

The set is an open neighborhood of 0, so by equivalence of the topologies, for each n ∈ N∗, there
exists εn > 0, Nn ∈ N, and xn,1, . . . ,xn,Nn ∈ X such that

Vε,0,xn,1,...,xn,Nn
⊂Un.
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Define Y := Span{xn, j, n ∈N∗, j = 1, . . . ,Nn}, and we want to show that Y is dense, that is Y⊥ = {0}.
So let y∗ ∈ Y⊥, which means that

⟨y∗,x⟩= 0 ∀y ∈ Y

⇐⇒
〈
y∗,xn, j

〉
= 0 ∀n ∈ N∗, j = 1, . . . ,Nn

=⇒ y∗ ∈Vε,0,xn,1,...,xn,Nn
⊂Un ∀n ∈ N∗

=⇒ d(y∗,0)<
1
n

∀n ∈ N∗ =⇒ d(y∗,0) = 0 =⇒ y∗ = 0.

The first implication follows.

( ⇐= ) Let X be separable, meaning that we can find a dense sequence (x j) j∈N∗ in BX . Define

∥|x∗|∥ :=
∞

∑
j=1

2− j|
〈
x∗,x j

〉
|.

∥|.|∥ is a norm on X∗, with ∥|x∗|∥ ≤ ∥x∗∥X∗ for all x∗ ∈ X∗.
We want to prove the equality of the weak-∗ topology and the topology induced by ∥|.|∥.

First, let ε > 0, x∗0 ∈ BX∗ , and y1, . . . ,yn ∈ X . WLOG, we can take yk ∈ BX instead. We need to
find δ > 0 such that x∗ ∈Vε,x∗0,y1,...,yn whenever ∥|x∗− x∗0|∥< δ . So let δ to be defined later, and take
x∗ such that ∥|x∗− x∗0|∥< δ , then we have |

〈
x∗− x∗0,x j

〉
|< 2 jδ . Pick j1, . . . , jn such that

∥x jk − yk∥<
ε

4

and then choose δ > 0 such that 2 jk δ < ε/2 for each k = 1, . . . ,n. We have now

| ⟨x∗− x∗0,yk⟩ | ≤ |
〈
x∗− x∗0,x jk

〉
|+ |

〈
x∗− x∗0,yk − x jk

〉
|

< 2 jk δ +∥x∗− x∗0∥∥x jk − yk∥

<
ε

2
+2

ε

4
< ε,

i.e. x∗ ∈Vε,x∗0,y1,...,yn as desired.

Second, we let δ > 0 and x∗0 ∈,BX∗ , and we want to find a weak-∗ neighborhood of x∗0 that is
included in B∥|.|∥(x∗0,δ ). For x∗ ∈ BX∗ , we have

∥|x∗− x∗0|∥=
∞

∑
j=1

2− j|
〈
x∗− x∗0,x j

〉
| ≤

N

∑
j=1

2− j|
〈
x∗− x∗0,x j

〉
|+

∞

∑
j=N+1

2− j.2 since x∗,x∗0 ∈ BX∗

≤ max
j=1,...,N

|
〈
x∗− x∗0,x j

〉
|+2−N .

Pick N ∈ N such that 2−N < δ/2, and ε = δ/2. So if x∗ ∈Vε,x∗0,x1,...,xn , we have

∥|x∗− x∗0|∥<
δ

2
+

δ

2
= δ ,

i.e. Vε,x∗0,x1,...,xn ⊂ B∥|.|∥(x∗0,δ ) as desired. □

1.3.3 Banach-Anaoglu Theorem
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Theorem 1.3.12 (Banach-Alaoglu 1940) (BX∗ ,Tw∗) is compact.

We immediately have the following corollary

Corollary 1.3.13 — Banach-Anaoglu. Let X be a separable Banach space. Then (BX∗ ,τw∗) is
sequentially compact, meaning that any bounded sequence x∗n ∈ X∗ has a weakly-∗ converging
subsequence.

■ Remark 1.4 The proof of the Banach-Anaoglu theorem in the general (non-separable) case require
the axiom of choice. Although we will not prove it, the corollary doesn’t require the axiom of choice.
■

Proof . Let φ be the map

φ : (BX∗ ,τw∗) → RX

x∗ 7→ (⟨x∗,x⟩)x∈X .

Let A = ℑ(φ), which is included in ∏x∈X [−∥x∥,∥x∥] since ∥x∗∥ ≤ 1.
By Tychonoff’s theorem, ∏x∈X [−∥x∥,∥x∥] is compact. So the theorem will be proved once we

show that
1. A is closed,
2. φ is a homeomorphism between (BX∗ ,τw∗) and A.

Indeed, it is a simple exercise to see that closed subsets of compacts sets and compacts, and compacts
sets are preserved by homeomorphism.

We prove (1). Let λ = (λx)x∈X ∈ A. We want to show that λ ∈ A, i.e.
(a) x → λx is linear,
(b) |λx| ≤ ∥x∥ for all x ∈ X .

For ε > 0 and x1, . . . ,xn ∈ X , define the basic neighborhoods of λ in the (cartesian) product topology

Uε,x1,...,xn := {(µx)x∈X ∈ /RX , |µx j −λx j |< ε for j = 1, . . . ,n}.

Since λ ∈ A, we have Uε,x1,...,xn ∩A ̸= /0.
Point (b) is now easy. Let x ∈ X , and take ε > 0. There exists Uε,x ∩A ̸= /0, that is, there exists

x∗ ∈ B∗ such that | ⟨x∗,x⟩−λx|< ε . So

|λx| ≤ |⟨x∗,x⟩ |+ ε ≤ ∥x∥+ ε

since ∥x∗∥ ≤ 1. Since the inequality is true for all ε > 0, we deduce |λx| ≤ ∥x∥ as desired.
Point (a) is slightly more technical. Let x0,y0 ∈X , α ∈R∗, and ε > 0. We have that Uminε,ε/|α|,x0,y0,x0+αy0 ∩

A ̸= /0, so there is a x∗ ∈ BX∗ such that
| ⟨x∗,x0⟩−λx0 |< ε

| ⟨x∗,y0⟩−λy0 |< ε/|α|
| ⟨x∗,x0 +αy0⟩−λx0+αy0 |< ε

As a consequence,

|λx0+αy−0−λx0 −αλy0 | ≤ |λx0+αy0 −⟨x∗,x0 +αy0⟩ |+ |λx0 −⟨x∗,x0⟩ |+ |α||λy0 −⟨x∗,y0⟩ | ≤ 3ε
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Since the inequality is true for all ε > 0, we have λx0+αy−0 = λx0 −+αλy0 as desired.

We prove (2). First, note that φ is a bijection from BX∗ to A. Indeed,

φ(x∗) = φ(y∗) ⇐⇒ ⟨x∗− y∗,x⟩= 0 ∀x ∈ X ⇐⇒ x∗ = y∗.

So BX∗ = φ−1(A). We want to show that φ−1 is continuous from A to (BX∗ ,τw∗), i.e. for all U ∈ BX∗

(basic) open set, φ(U) is open. So we wantto show that ∀ε > 0, ∀x∗0 ∈ BX∗ , ∀n ∈ N, ∀x1, . . .xn ∈ X ,
φ(Vε,x∗0,x1,...,xn ∩BX∗) is open in A.

So let λ ∈ φ(Vε,x∗0,x1,...,xn ∩BX∗). It means that λ = φ(y∗0) for some y∗0 ∈ BX∗ ∩Vε,x∗0,x1,...,xn , and
we can also find δ > 0 such that

|
〈
y∗0 − x >∗

0,x j
〉
| ≤ (1−δ )ε ∀ j = 1, . . . ,n. (1.1)

We choose Uεδ/2,λ ,x1,...,xn := {(µx)x∈X , |µx j −λx j |< εδ/2 for j = 1 . . .n} as our neighborhood of λ ,
and our theorem will be proved if we can show that Uεδ/2,λ ,x1,...,xn ∩A ⊂ φ(Vε,x∗0,x1,...,xn ∩BX∗).

Take then µ = (µx)x∈X ∈Uεδ/2,λ ,x1,...,xn ∩A, which means in particular that there exists y∗ ∈ BX∗

such that µ = φ(y∗) and we want to show that y∗ ∈Vε,x∗0,x1,...,xn . Indeed, for j ∈ {1, . . . ,n}, one has

|
〈
y∗− x∗0,x j

〉
|= |µx j −λx j +λx j −

〈
x∗0,x j

〉
| ≤ |µx j −λx j |+ |

〈
y∗0 − x∗0,x j

〉
|

< ε
δ

2
+(1− δ )ε < ε.

The theorem follows. □

Exercise 1.11 Let X be separable and Y ⊂ X be a subspace. let x∗ ∈ X∗. Prove that there exists
y∗ ∈ Y⊥ such that

dist(x∗,Y⊥) := inf{x∗− z∗, z∗ ∈ Y⊥}= ∥x∗− y∗∥.

1.4 Reflexivity
Definition 1.4.1 A Banach space X is called reflexive if the canonical embedding

i : X → X∗∗

x 7→ [x∗ 7→ ⟨x∗,x⟩],

is a bijection.

■ Example 1.1 Rd , Hilbert spaces, Lp for 1 < p < ∞. ■

Proposition 1.4.1 Let X be reflexive, and K ⊂ X be a convex closed and bounded subset. Then K
is weakly compact.

Theorem 1.4.2 X is reflexive if and only if BX is weakly compact.
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Corollary 1.4.3 Let X be a Banach space. The following holds:
1. if X is isomorphic to a Banach space Y , then X reflexive if and only if Y is reflexive.
2. if X is reflexive, then every closed subspace of X is reflexive;
3. X is reflexive if and only if X∗ is reflexive;

Proof of the Proposition. If X is reflexive, then (BX∗∗,τw∗) = (BX ,τw). So by Banach Anaoglu,
(BX ,τw) is compact, and thus RBX is also weakly compact. Since K is bounded, K ⊂ RBX for some
R > 0. And since K is closed, Mazur’s theorem gives that K is weakly closed. As a consequence, K
is a weakly closed subset of a compact set, so it is weakly compact. □

Proof of the Theorem.
( =⇒ ) is a direct consequence of the Banach Anaoglu theorem.

( ⇐= ) Assume that (BX ,τw) is compact. Then (i(BX),τw∗) is also compact, and in partial it
is weakly-∗ closed. But since i(BX) is weakly-∗ dense in BX∗∗ (Goldstine theorem), we have

BX∗∗ = i(BX)
w∗

= i(BX). Moreover, we also have that i(RBX) = RBX∗∗, so i is indeed bijective. □

Proof of the Corollary.
Proof of (1): Let T : X →Y is an isomorphism, and X be reflexive. Take a neighborhood Vε,T (x0),y∗1,...,y

∗
n
⊂

Y . We have that

T−1(Vε,T (x0),y∗1,...,y
∗
n
) = {x ∈ X , |

〈
T (x)−T (x0),y∗j

〉
|< ε for all j = 1, . . . ,n}

= {x ∈ X , |
〈
x− x0,T ∗(y∗j)

〉
|< ε for all j = 1, . . . ,n} by def of T ∗

=Vε,x0,T ∗(y∗1),...,T
∗(Y ∗

n )

so T : (X ,τw)→ (Y,τw) is continuous.
Now, since T is a isomorphism, we have (BY ,τw) =

(
T (T−1(BY )),τw

)
. Since T is an iso-

morphism, T−1(BY ) is bounded and so it is a subset of a weakly compact of the form RBX - the
w-compacity of BX coming from the fact that X is reflexive. Bythe weak continuity of T , T−1(BY )
is weakly closed. T−1(BY ) is weakly closed in the weakly compact set RBX , so T−1(BY ) is weakly
compact. But since T is weakly continuous, its image BY = T (T−1(BY )) is also weakly compact.
We conclude with the theorem, that implies that Y is reflexive.

Proof of (2): If X is reflexive, then BX is weakly compact. But BX0 is closed and convex subset of
BX , so by Mazur’s theorm, BX0 is weakly closed in the weakly compact set BX . Therefore, BX0 is
weakly compact, which means that X0 is reflexive (by the theorem again).

Proof of (3): If X is reflexive, the weak and weak-∗ topology of X∗ coincide, and BX∗ is weakly
compact by the Banach-Anaoglu theorem. The above theorem shows that X∗ is reflexive. On the
contrary, if X∗ is reflexive, then X∗∗ is too by what we just proved. But then i(X) is a closed subspace
of the reflexive space X∗∗, which means that i(X)≈ X is reflexive by (1). □

Proposition 1.4.4 In a reflexive Banach space X , every bounded sequence (xn)n∈N ∈ XN has a
weakly converging subsequence (xnk)k∈N.

■ Remark 1.5 The above proposition is a simple consequence of the Banach-Anaoglu theorem when
X is separable, but we also want the result in non-separable spaces. ■
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Corollary 1.4.5 Let X be reflexive, and K ⊂ X be convex, closed set. Then

∀x ∈ X ∃y ∈ K ∥x− y∥= dist(x,K) =: inf{∥x− z∥ ; z ∈ K}.

Proof of the Proposition. Let (xn)n∈N be a bounded sequence. Define Y := Span{xn, n ∈ N} ⊂ X ,
which is a closed and separable subspace of X . In particular, Y is reflexive of the previous corollary.

Assume that Y ∗ is separable, and conclude. If Y ∗ is separable, (BY ∗∗ ,τw∗) is metrizable, but (BY ∗∗ ,τw∗)=
(BY ,τw), so (BY ,τw) is metrizable and compact (by Banach-Anaoglu and reflexivity), meaning that
the sequence (xn)n∈N has a convergent subsequence.

Show that Y ∗ is separable. Pick (yn)n∈N be dense in Y =Y ∗∗. Take then by the Hahn-Banach theorem
a (y∗n)n∈N ∈ (SY ∗)N such that ⟨y∗n,yn⟩ ≥ ∥yn∥.

It suffices to show that Span{y∗n, n ∈ N} = Y ∗. We set Z = Span{y∗n, n ∈ N}, and we want to
prove that ⊥Z = {0}. So let z ∈ Z⊥. We have ⟨z,yn⟩= 0 for all n ∈ N. Given k ∈ N, by density of
{yn}n there exists nk ∈ N such that ∥z− ynk∥ ≤ 1

k . So

∥ynk∥ ≤
〈
y∗nk

,ynk

〉
=
〈
y∗nk

,ynk − z
〉
≤ ∥y∗n∥∥ynk − z∥ ≤ 1

k

since ∥y∗nk
∥= 1 and ∥ynk − z∥ ≤ 1

k . We deduce that

∥z∥ ≤ ∥ynk∥+∥ynk − z∥ ≤ 2
k
.

The inequality being true for all k ∈ N∗, we conclude that z = 0. The proposition follows. □

Proof of the Corollary. Let x ∈ X , and let d := dist(x,K). We can always find yn ∈ KN such that
∥x−yn∥ ≤ d+ 1

n . Obviously, the sequence yn is bounded by ∥x∥+d+1, so by the proposition, there
exists y ∈ X such that yn ⇀ y. Let is check that y does the job.

Since K is convex and closed, so it is weakly closed by Mazur’s theorem, and y ∈ K. We have
∥x− y∥ ≥ d since y ∈ K, and ∥x− y∥ ≤ liminf∥x− yn∥ = d by the corollary of Mazur’s theorem.
Hence, ∥x− y∥= d as desired. □

We have seen that in reflexive spaces, we have projections on closed convex sets. Finding a
non-reflexive space where projections on convex sets don’t exist is a hard question, so we shall forget
about it. Another question is whether the projection is unique, like projections in Hilbert spaces. The
answer is no in general, but it is true for some particular Banach spaces.

Definition 1.4.2 A Banach space X is called uniformly convex if

∀ε > 0 ∃δ > 0 ∀x,y ∈ BX ∥x− y∥ ≥ ε =⇒
∥∥∥x+ y

2

∥∥∥≤ 1−δ .

■ Example 1.2 The Lp and ℓp spaces, when p ∈ (1,∞). ■

■ Remark 1.6 Being a uniformly convex space is actually a property of the norm of the Banach
space, and not of the topology. ■

Theorem 1.4.6 A uniformly convex Banach space is reflexive.
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Theorem 1.4.7 Let X be uniformly convex, and K ⊂ X be convex and closed set. Then

∀x ∈ X ∃!y ∈ K ∥x− y∥= d(x,K).

We write PK(x) := y.

Proof of the first theorem. Let X be a uniformly convex space. Assume by contradiction that X is not
reflexive, that is

∃x∗∗ ∈ SX∗∗ , ∃ε > 0, ∀x ∈ BX : ∥i(x)− x∗∗∥> ε.

By uniform convexity, pick a δ > 0 such that

∀x,y ∈ X , ∥x− y∥ ≥ ε =⇒
∥∥∥x+ y

2

∥∥∥≥ 1−δ .

Take now x∗ ∈ SX∗ such that ⟨x∗∗,x∗⟩> 1−δ/2.
Define the weak-∗ neighborhoof of x∗∗

V :=Vδ/2,x∗∗,x∗ = {y∗∗ ∈ X∗∗, | ⟨y∗∗− x∗∗,x∗⟩ |< δ/2}

By definition of the weak-∗ topology, V is weak-∗ open, so by Goldstine’s lemma i(BX)∩V ̸= and
there exists x ∈ BX such that i(x) ∈V . Define the second set

W := (i(x)+ εBX∗∗)c.

Since BX∗∗ is weak-∗ closed (by theBanach-Anaoglu theorem), the set W is weak-∗ open, and a
weak-∗ neighborhood of x∗∗. Thus, by Goldstine’s lemma again, i(BX)∩V ∩W ̸= /0 and there exists
y ∈ BX such that i(y) ∈V ∩W .

In one hand, we have the following estimates:

| ⟨x∗, i(x)− x∗∗⟩ |< δ/2 since i(x) ∈V ;

| ⟨x∗, i(y)− x∗∗⟩ |< δ/2 since i(y) ∈V ;

which altogether gives

| ⟨x∗, i(x+ y)−2x∗∗⟩ |< δ

or, by our choice of x∗

1− δ

2
< | ⟨x∗,x∗∗⟩ |< δ

2
+ | ⟨x∗, i([x+ y]/2⟩ | ≤ δ

2
+
∥∥∥x+ y

2

∥∥∥
since x∗ ∈ SX∗ . But in the other hand, by the construction of W , we have ∥x− y∥ ≥ ε , so by uniform
converxity, ∥(x+ y)/2∥ ≤ 1−δ . We conclude that

1− δ

2
<

δ

2
+1−δ ,

whence the contradiction and the fact that X is reflexive. □
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Proof of the second theorem. By Corollary 1.4.5, we have existence. By contradiction, assume that
we don’t have uniqueness, that is

∃x ∈ X , ∃y1,y2 ∈ K, ∃ε > 0 :
{

∥x− y1∥= ∥x− y2∥= dist(x,K) =: d
∥y1 − y2∥> ε.

Set z1 =
x−y1
∥x−y1∥ and z2 =

x−y2
∥x−y2∥ , which are both unit vector in X . First, we have,

∥z1 − z2∥=
1
d
∥y1 − y2∥>

ε

d
,

so by the uniform convexity, ∃δ > 0 such that ∥z1 + z2∥ ≥ 2(1− δ ). We deduce that, since (y1 +
y2)/2 ∈ K by convexity,

d ≤
∥∥∥x− y1 + y2

2

∥∥∥= d
2
∥z1 − z2∥ ≤ d(1−δ )< dist(x,K),

hence the contradiction. □

Exercise 1.12 Find a reflexive space X which is not uniformly convex.

Exercise 1.13 Let X be uniformly convex, and (xn)n ∈ XN be a sequence that converges weakly
to x ∈ X . Show that the following are equivalent:

• ∥xn∥→ ∥x∥,
• ∥xn − x∥→ 0.





2. Bounded operators

2.1 Baire’s theorem and its consequence

Theorem 2.1.1 (Baire 1899) Let X be a complete metric space, and (On)n∈N be a family of open
sets in X .

On = X ∀n ∈ N =⇒
⋂

n∈N
On = X .

or, equivalently, if (Fn)n∈N are closed sets with empty interior, then
⋃

n∈N
Fn has empty interior.

Theorem 2.1.2 — Uniform Boundedness Principle, Banach-Steinhaus 1923. Let X ,Y be
Banach spaces, and (Tn)n∈N ∈ B(X ,Y )N. Assume that

∀x ∈ X ∃Cx > 0 ∀n ∈ N ∥Tnx∥ ≤Cx∥x∥.

Then
∃C > 0 ∀x ∈ X ∀n ∈ N ∥Tnx∥ ≤C∥x∥.

Corollary 2.1.3 Let X be a Banach space and B⊂X . Then B is bounded if and only if {⟨x∗,x⟩ ; x∈
B} is bounded for all x∗ ∈ X∗.

Theorem 2.1.4 (open mapping)
Let X ,Y be Banach spaces and T ∈ B(X ,Y ) be surjective.
There exists δ > 0 such that B(0,δ )⊂ T (B(0,1)).
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Corollary 2.1.5 Let X ,Y be Banach spaces and T ∈ B(X ,Y ) be bijective. Then T−1 ∈ B(Y,X).

Theorem 2.1.6 (closed graph)
Let X ,Y be Banach spaces, and T : X → Y be linear.
Then G(T ) := {(x,T (x)) ; x ∈ X} is closed in X ×Y if and only if T ∈ B(X ,Y ).

Exercise 2.1 If a sequence converges weakly, then it is bounded.

Exercise 2.2 Let X be a Banach space and Y ⊂ X be a closed subspace.
• Show that (X/Y )∗ is isomorphic to Y⊥.
• Show that X/Y is reflexive whenever X is reflexive.

2.2 Complex Interpolation
We consider first a baby version of the complex interpolation.

Definition 2.2.1 If M is a N ×N matrix, we define the norm of M seen as an operator from
(RN ,∥.∥p) to itself as

∥M∥p,p := sup
a∈RN

∥Ma∥p

∥a∥p
.

Exercise 2.3 Check that ∥M∥∞,∞ = sup
i

N

∑
j=1

|mi j| and ∥M∥1,1 = sup
j

N

∑
i=1

|mi j|.

Lemma 2.2.1 — Schur. We have

∥M∥p,p ≤ ∥M∥1/p′

1,1 ∥M∥1/p
∞,∞.

Proof . It is a simple consequence of the Hölder inequality. Indeed,

|(Ma)i|=
∣∣∣ N

∑
j=1

mi ja j

∣∣∣≤ N

∑
j=1

|mi j||a j| ≤

(
N

∑
j=1

|mi j|

) 1
p
(

N

∑
j=1

|m ji||a j|p
)1− 1

p

,

hence

∥Ma∥p
p =

N

∑
i=1

|(Ma)i|p ≤ ∥M∥p/p′
∞,∞

N

∑
i=1

N

∑
j=1

|mi j||a j|p ≤ ∥M∥p/p′
∞,∞ ∥M∥1,1∥a∥p

p.

The lemma follows. □
The Schur lemma is a special case of the more general statement

∥M∥p,p ≤ ∥M∥1−θ
q,q ∥M∥θ

r,r,
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where 1 ≤ q < p < r ≤ ∞ and θ ∈ (0,1) are linked by the relation
1
q
=

1−θ

p
+

θ

r
.

Lemma 2.2.2 — Three lines lemma. Let S be the strip {z ∈ C, 0 < ℜ(z)< 1}. Suppose that
F : S := {}→ C is a bounded continuous function, holomorphic on S, with the bounds

sup
ν∈R

|F(iv)| ≤ A0 and sup
ν∈R

|F(1+ iv)| ≤ A1.

Then for any θ ∈ (0,1), we have that

sup
ν∈R

|F(θ + iν)| ≤ A1−θ

0 Aθ
1 .

■ Remark 2.1 An inspection of the proof would show that the a priori boundedness of F can be
relaxed. But it cannot be completely removed, as the function F(z) = exp(exp(π(z−1))) is bounded
on the lines ℜ(z) = 0 and ℜ(z) = 1 but unbounded on ℜ(z) = 1

2 . ■

Theorem 2.2.3 — Riesz-Thorin interpolation theorem. Let (Ω,F ,µ) and (Ω′,F ′,µ ′) be two
measured spaces and let 1 ≤ p0, p1,q0,q1 ≤ ∞. Let T be a C-linear operator on Lp0(Ω)∩Lp1(Ω)
that satisfies

∥T f∥Lq0 (Ω′) ≤ A0∥ f∥Lp0 (Ω) for f ∈ Lp0(Ω)∩Lp1(Ω)

and

∥T f∥Lq1 (Ω′) ≤ A1∥ f∥Lp1 (Ω) for f ∈ Lp0(Ω)∩Lp1(Ω).

Let θ ∈ (0,1) and set pθ , qθ such that

1
pθ

=
1−θ

p0
+

θ

p1
,

1
qθ

=
1−θ

q0
+

θ

q1
.

Then T ∈ B(Lpθ ,Lqθ ) in the sense that

∥T f∥Lqθ (Ω′) ≤ A1−θ

0 Aθ
1∥ f∥Lpθ (Ω) for f ∈ Lp0(Ω)∩Lp1(Ω) (2.1)

and T extends uniquely to a bounded operator on Lpθ (Ω).

Corollary 2.2.4 The previous theorem extends to R-linear operators, as long as one replace the
constant A1−θ

0 Aθ
1 in (2.1) by 2A1−θ

0 Aθ
1 . Moreover, the constant in (2.1) can be kept unchanged if

1 ≤ pi ≤ qi < ∞ for i ∈ {0,1}.

Proof of the lemma. WLOG, we can assume that A0,A1 > 0. Let ε > 0 set set

Gε(ζ ) = F(ζ )Aζ−1
0 A−ζ

1 eεζ 2 ∀ζ ∈ S.

For ζ = θ + iν ∈ S |eεζ 2 |= |eε(θ 2−ν2)| ≤ eε , so Gε is a bounded and continuous on S and holomorphic
on S. We apply the maximum principle on the cube QR = S∩{ζ ∈ C, |ℑζ | ≤ R}, and we have that
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supQR
|Gε | ≤ max∂QR |Gε |.

If ζ = iν with |ν | ≤ R, we have |Gε(ζ )| ≤ 1. If ζ = 1+ iν with |ν | ≤ R, we have |Gε(ζ )| ≤ eε .
If ζ = θ ± iR, then Gε(ζ ) ≤ C sup0≤x≤1 Aθ−1

0 Aθ
1 e1−R2

, where C is the bound of F on S. So for a
fixed ε > 0, we can always find R0 such that R ≥ R0, Ce−εR2 ≤ 1, which means that

sup
ζ∈S

|Gε(x)| ≤ eε ,

that is, for ζ ∈ S,

|F(ζ )| ≤ |A1−ζ

0 Aζ

1 eε(1−ζ 2)|,

that is, for ν ∈ R, θ ∈ (0,1), and ε > 0

|F(θ + iν)| ≤ A1−θ

0 Aθ
1 eε(1+ν2−θ 2

.

We fix ν and we take ε → 0, we obtain then that |F(θ + iν)| ≤ A1−θ

0 Aθ
1 . The lemma follows. □

Proof of the theorem. WLOG, we can assume that A0,A1 > 0.

Case 1: p0 = p1 = ∞. Then, for all f ∈ L∞(Ω), one has T ( f ) ∈ Lq0(Ω′)∩Lq1(Ω′). Therefore,

∥T ( f )∥qθ

qθ
=
∫

Ω′
|T f |

(1−θ)qθ
q0

q0 |T f |
θqθ
q1

q1dµ
′.

But notice that the definition of qθ implies that

(1−θ)qθ

q0
+

θqθ

q1
= 1,

meaning that by defining r = q0
(1−θ)qθ

and its Hölder conjugate r′ = q1
θqθ

, and by using the Hölder
inequality to the previous identity, we have

∥T ( f )∥qθ

qθ
≤
(∫

Ω′
|T f |q0dµ

′
) 1

r
(∫

Ω′
|T f |q1dµ

′
) 1

r′

= ∥T ( f )∥(1−θ)qθ

q0 ∥T ( f )∥θqθ

q1

as desired.

Case 2: min{p0, p1} < ∞. In this case, pθ < ∞. Let a = ∑
N
k=1 αk1Ak and b = ∑

M
ℓ=1 βℓ1Bℓ

be two
simple integrable functions on Ω and Ω′ respectively. We want to prove that∣∣∣∣∫

Ω′
T (a).bdµ

′
∣∣∣∣≤ A1−θ

0 Aθ
1∥a∥pθ

∥b∥q′
θ
.

Indeed, by duality and the density of the simple functions in Lpθ (Ω) and Lq′
θ (Ω), we will obtain that

T extends uniquely to a bounded operator inB(Lpθ ,Lqθ ), with norm smaller than A1−θ

0 Aθ
1 .

We shall modify a and b a bit by defining pz and qz as

1
pz

=
1− z

p0
+

z
p1

and
1
q′z

=
1− z

q′0
+

z
q′1
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and then

fz(ω) = 1a̸=0|a(ω)|pθ/pz
a(ω)

|a(ω)|
=

N

∑
k=1

|αk|pθ/pz
αk

|αk|
1Ak(ω),

g′z(ω
′) = 1b̸=0|b(ω ′)|q′θ/q′z

b(ω)

|b(ω)|
=

M

∑
ℓ=1

|βℓ|qθ/qz
βℓ

|βℓ|
1Bℓ

.

Obviously, since a, b are simple functions, we have g′z ∈ Lq′0 ∩Lq′1 , and fz ∈ Lp0 ∩Lp1 , the latter
implying in turn that T ( fz) ∈ Lq0 ∩Lq1 . We define then

F(z) =
∫

Ω′
T ( fz)(ω

′).qz(ω
′)dµ

′(ω ′) =
N

∑
k=1

M

∑
ℓ=1

|αk|pθ/pz
αk

|αk|
|βℓ|qθ/qz

βℓ

|βℓ|

∫
Bℓ

T (1Ak)dµ
′,

which is holomorphic in C (sum of exponential functions) so obviously holomorphic on S = {ℜ(z)∈
(0,1)} and continuous on S. Moreover, it is easy to check that F is bounded on the strip S, and for
ν ∈ R, that

|F(iν)| ≤ A0∥ fiν∥p0∥giν∥q′0
≤ A0∥a∥pθ/p0

pθ
∥b∥q′

θ
/q′0

q′
θ

and

|F(iν)| ≤ A1∥ fiν∥p1∥giν∥q′1
≤ A1∥a∥pθ/p1

pθ
∥b∥q′

θ
/q′1

q′
θ

.

By the 3 lines lemma, we have

|F(θ)|=
∣∣∣∣∫

Ω′
T (a)(ω ′).b(ω ′)dω

′
∣∣∣∣≤ A1−θ

0 Aθ
1∥a∥pθ

∥b∥q′
θ
.

The theorem follows. □

Proof of the corollary. If T is a real linear map, then we define the complex linear map as

TC(u+ iv) := T (u)+ iT (v).

By the triangle inequality, we immediately have ∥T∥p→q ≤ ∥TC∥p→q ≤ 2∥T∥p→q, which gives the
first part of the corollary.

We want to prove that if 1 ≤ pi ≤ qi < ∞ the constant stays the same. It suffices to prove that
∥T∥p→q = ∥TC∥p→q when T when p ≤ q. First, observe that if z = a+ iv, we have

|z|= 1
∥γ∥q

(E|aγ1 +bγ2|q)
1
q ,

where γ,γ1,γ2 are some independent real valued standard Gaussian random variable Indeed, if
|z|= |a+ ib|= 1, then aγ1 +bγ2 is also a real valued standard Gaussian random variable on a space
(Ω̃, µ̃), and so (E|aγ1 +bγ2|q)

1
q = ∥γ∥q. The general case follows by scaling.
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Using this identity, we have now

∥γ∥q
Lq(Ω̃)

∥TC(u+ iv)∥q
Lq(Ω′) = ∥γ∥q

q

∫
Ω′
|T (u)+ iT (v)|q dµ

′ =
∫

Ω′
E|γ1T (u)+ γ2T (v)|q dµ

′

=
∫

Ω̃

(∫
Ω′
|T (γ1u+ γ2v)|q dµ

′
) q

q

dµ̃ ≤ ∥T∥q
p→q

∫
Ω̃

(∫
Ω

|γ1u+ γ2v|p dµ

) q
p

dµ̃

≤ ∥T∥q
p→q

(∫
Ω

[
|γ1u+ γ2v|qµ

] p
q

dµ

) q
p

= ∥T∥q
p→q∥γ∥q

q∥u+ iv∥q
Lp(Ω)

where the last but one inequality is by the generalized Minkowski inequality. The corollary follows.
□

Let us give an example of application.

Definition 2.2.2 On Rd , we defined the normalized Lebesgue measure dm = (2π)−d/2dx, and
then the Fourier transform

f̂ (ξ ) = F ( f )(ξ ) :=
∫
Rd

f (x)exp(−ix ·ξ )dm(x), ξ ∈ Rd .

Corollary 2.2.5 For p ∈ [1,2], we have

∥ f̂∥Lp′ (Rd) ≤ ∥ f∥Lp(Rd).

Proof . The Plancherel theorem says that the Fourier transform F is an isometry on L2(Rd ,dm). It is
easy to check that ∥ f̂∥∞ ≤ ∥ f∥L1(Rd ,dm). So the corollary of the Riesz-Thorin interpolation theorem
gives the result. □



3. Spectral theory

3.1 Spectral theorem for compact symmetric operators

Definition 3.1.1 Let H be a Hilbert space.
• B(H) := {T : H → H linear and continuous}.
• K(H) := {T ∈ B(H) ; T (BH) is compact}.

Let T ∈ B(H).
• N(T ) = {h ∈ H ; T (h) = 0}.
• ρ(T ) = {λ ∈ R ; λ I −T is a bijection}.
• σ(T ) = ρ(T )c is called the spectrum of T .
• EV (T ) = {λ ∈ σ(T ) ; N(λ I −T ) ̸= {0}}.
• T is called self-adjoint if

⟨T (h),g⟩= ⟨h,T (g)⟩ ∀g,h ∈ H.

Theorem 3.1.1 Let T ∈ B(H) be self-adjoint. Define

m := inf{⟨T (h),h⟩ ; h ∈ H, ∥h∥= 1}
M := sup{⟨T (h),h⟩ ; h ∈ H, ∥h∥= 1}.

Then m,M are finite, and σ(T )⊂ [m,M].
Moreover ∥T∥= max{|m|, |M|}, and

T ∈ K(H) =⇒ m,M ∈ EV (T ).

Corollary 3.1.2 Let T ∈ K(H) be self-adjoint. Then

σ(T )⊂ {0} =⇒ T = 0.
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Lemma 3.1.3 Let T ∈ K(H). Then σ(T )\{0}= EV (T )\{0}.

Theorem 3.1.4 — Hilbert 1906. Let H be a separable Hilbert space, and T ∈ K(H) be self-adjoint.
Then there exists an orthonormal basis (en)n∈N, and a sequence (λn)n∈N ∈ RN such that

T (en) = λnen ∀n ∈ N.

3.2 Compact operators on Banach spaces.
Definition 3.2.1 A bounded linear operator T ∈ B(X) is called compact if T (BX) is compact. We
write T ∈ K(X).

Exercise 3.1 If (M,d) is a complete metric space, then M is precompact if and only if M is
totally bounded, that is

∀ε > 0, ∃N ∈ N, ∃(x1, . . . ,xN) ∈ M : M ⊂
N⋃

i=1

B(x j,ε).

Proposition 3.2.1 Let (Tn)n∈N ∈ B(X)N and T ∈ B(X) be such that R(Tn) is finite dimensional,
and ∥Tn −T∥B(X) →

n→∞
0. Then T ∈ K(X).

Proof . First, any finite finite rank operator is compact. Indeed, if dimTn(X)< ∞, then T (BX) is a
closed and bounded subset of the finite dimensional set Tn(X), so T (BX) is compact.

We want to prove that T (BX) is totally bounded. So let ε > 0 and pick n such that ∥T −Tn∥< ε/3.
But since Tn is totally bounded, there exists x1, . . . ,xn such that Tn(BX)⊂

⋃N
j=1 B(Tn(x j),ε/3). So

for all x ∈ BX , we pick j such that ∥Tn(x)−Tn(x j)∥< ε/2 and we have

∥T (x)−T (x j)∥ ≤ ∥T (x)−Tn(x)∥+∥Tn(x)−Tn(x j)∥+∥Tn(x j)−T (x j)∥ ≤ ε,

meaning that T (BX)⊂
⋃N

i=1 B(T (x j),ε), T (BX) is totally bounded, and then that T is compact. □

■ Remark 3.1 With the same proof, we can show that a limit of compact operators is still a compact
operator. ■

■ Remark 3.2 Every limit of finite rank operator is compact, but is every compact operator a limit
of finite rank operator. The answer is no in general (the counterexample is complicated), but it is
true if X is Hilbert or more generally have a (Schauder) basis. ■

■ Example 3.1 Given f ∈ L2, let T ( f ) ∈ L2(0,1) be the weak solution of −T ( f )′′+T ( f ) = f , that
exists with the Lax-Milgram theorem. Using the compactness in the Sobolev embedding, we can
show that T ∈ K(L2). ■

Proposition 3.2.2 Let X be reflexive and separable, and T ∈ B(X).
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Then T ∈ K(X) if and only if

∀(xn)n∈N ∈ XN ∀x ∈ X xn
w−→

n→∞
x =⇒ ∥T (xn − x)∥ →

n→∞
0.

Proof . Let X be reflexive and separable.

( =⇒ ) Let T ∈ K(X), and then take (xn)n∈N ∈ XN, x ∈ X such that xn ⇀ x.
We want to prove that T (xn)→ T (x). Assume by contradiction that there exists ε > 0 and a

subsequence ∃(xnk)k∈N such that ∥T (xnk −T (x)∥> ε for all k ∈ N.
The sequence T (xnk) is bounded, since xn ⇀ x. Therefore T (xnk) is precompact (i.e. relatively

compact) and there exists a subsequence T (xnkl
) and y ∈ X such that ∥T (xnkl

− y∥→ 0 as l → ∞. In
particular, T (xnkl

⇀ y, that is

∀x∗ ∈ X∗,
〈

T (xnkl
),x∗

〉
→ ⟨y,x∗⟩ as l → ∞

which is equivalet to

∀x∗ ∈ X∗,
〈

xnkl
,T ∗(x∗)

〉
→ ⟨y,x∗⟩ as l → ∞.

On the other hand,
〈

xnkl
,T ∗(x∗)

〉
→ ⟨x,T ∗(x∗)⟩, since xn ⇀ x. We deduce that y = T (x) and thus

∥T (xnkl
−T (x)∥→ 0 as l → ∞,

which contradicts our earlier statement.

( ⇐= ) Let (yn)n∈N ∈ T (BX . For n ∈ N, pick xn ∈ BX such that ∥T (xn)− yn∥ < 1
n . By Banach

Anaoglu’s theorem (X is reflexive and separable), we can find a subsequence (xnk)k∈N such that
xnk ⇀ x, and by assumption, we have then ∥T (xnk)−T (x)∥→ 0 as k → ∞. We have now

∥ynk −T (x)∥ ≤ ∥ynk −T (xnk)∥+∥T (xnk)−T (x)∥→ 0.

We deduce that T (BX) is sequentially compact, so compact (X separable). □

The above proposition (the converse) is false if we do not assume reflexivity, as shown by the
following result.

Lemma 3.2.3 If u(k) ⇀ u ∈ ℓ1(N), then u(k) → u ∈ ℓ1(N), that is weakly convergent sequences
in ℓ1(N) are strongly convergent.

Proof . Let u(k) be a sequence in ℓ1(N) which converges weakly to 0. Assume by contradiction that
u(k) does not converges to 0, meaning that (up to a subsequence) ∥u(k)∥> ε for all k ∈ N.

Take k1 = 1. There exists N1 such that ∑n>N1 |u
(k1)
n |< ε/5, so there exists δ1, . . . ,δn ∈ {−1,1}

such that ∑
N1
n=1 δnu(k1)

n > 4ε/5 > 3ε/5. Moreover, for any choice of δn, n ≥ N1, we have

∑
n∈N

δnu(k1)
n > ε/5.

Now, since u(k) ⇀ 0, there exists k2 > k1 such that ∑k≤N1 |u
(k2)
n |< ε/5. Take similarly N2 > N1

such that ∑n>N2 |u
(k2)
n | < ε/5 and there exists δN1+1, . . .δN2 ∈ {−1,1} such that ∑

N2
n=N1+1 δnu(k1)

n >

3ε/5, and we also have that ∑n∈N δnu(k2)
n > ε/5 for any choice of δn, n > N2.
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By repeating the process, we find a subsequence u(kl) and an element δ = (δn) ∈ {−1,1}N ⊂
ℓ∞(N) such that〈

ukl ,δ
〉
ℓ1,ℓ∞

= ∑
n∈N

δnukl
n > ε/5 for all l ∈ N,

meaning that ukl doesn’t converge weakly to 0, whence the contradiction. □

Proposition 3.2.4 Let X be separable, and T ∈ K(X).
Then T ∗ ∈ K(X∗).

Proof . X is separable, meaning that we want to prove that T ∗(BX∗) is sequentially (pre-)compact.
So let (x∗n)n∈N ∈ BN

X∗ . By the Banach-Anaoglu theorem, there exists a subsequence x∗nk
and a

limit x∗ ∈ X∗ such that x∗nk

∗−⇀ x∗. We want to show that T ∗(x∗nk
)→ T (x∗). Indeed, we have

∥T ∗(x∗nk
)−T ∗(x∗)∥X∗ = sup

x∈BX

〈
x∗nk

− x∗,T (x)
〉
= sup

y∈T (BX )

〈
x∗nk

− x∗,y
〉

If the right-hand above tends to 0, then we obtain T ∗(x∗nk)→ T ∗(x∗), which proves that T ∗ ∈ K(X∗).

So we just need to prove the following claim:

If K is totally bounded, if z∗k ∈ BX∗ is such that ⟨z∗k ,y⟩ → 0 for all y ∈ K, then sup
y∈K

⟨z∗k ,y⟩ → 0.

The argument is standard. Let ε > 0. By the total boundedness, we can find y1, . . . ,yN such that
K ⊂

⋃N
j=1 B(y j,ε/2∥∥), and then we can find k0 ∈ N such that k ≥ k0 implies |

〈
z∗k ,y j

〉
| ≤ ε/2 for

all j = 1, . . . ,N. For all y ∈ K and all k ≥ k0, we can find y j such that ∥y j − y∥< ε/2 and then

| ⟨z∗k ,y⟩ | ≤ |
〈
z∗k ,y− y j

〉
|+ |

〈
z∗k ,y j

〉
| ≤ ε.

The claim and then the proposition follow. □

3.3 Fredholm theory
Definition 3.3.1 Let T ∈ B(X).

• N(T ) = {x ∈ X ; T (x) = 0}.
• ρ(T ) = {λ ∈ R ; λ I −T is a bijection}.
• σ(T ) = ρ(T )c is called the spectrum of T .
• EV (T ) = {λ ∈ σ(T ) ; N(λ I −T ) ̸= {0}}.
• σap(T ) := {λ ∈ R ; ∃(xn)n∈N ∈ SNX ∥λxn −T (xn)∥ →

n→∞
0}.

Proposition 3.3.1 Let T ∈ B(X) and λ ∈ R.
The following assertions are equivalent.

1. λ ̸∈ σap(T ).
2. ∃C > 0 ∀x ∈ X ∥λx−T (x)∥ ≥C∥x∥.
3. N(λ −T ) = {0} and R(λ −T ) is closed.
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Proof . (1) =⇒ (2). By contraposition, assume that (2) is false. Then,

∀n ∈ N∗, ∃xn ∈ X , ∥λxn −T (xn)∥<
1
n
∥xn∥.

The xn cannot be 0, so by setting yn = xn/∥xn∥ ∈ SX , we have

∀n ∈ N∗, ∃yn ∈ SX , ∥λyn −T (yn)∥<
1
n
,

i.e. λ ∈ σap(T ).

(2) =⇒ (3). Let x ∈ N(λ −T ), so 0 = ∥Λx−T x∥ ≥C∥x∥. Thus x = 0 and N(λ −T ) = {0}.
Let (xn)n ∈ XN such that yn := λxn−T (xn) converges to some y ∈ X , in particular yn is a Cauchy

sequence So

∥xn − xm∥ ≤
1
C
∥λ (xn − xm)−T (xn − xm)∥→ 0.

So xn is a Cauchy sequence, meaning ∥xn − x∥ → 0, so by continuity of λ −T , ∥λxn −T (xn)−
(λx−T (x))∥→ 0. This proves that y = λx−T (x) ∈ R(λ −T ) and R(λ −T ) is closed.

(3) =⇒ (1). R(λ −T ) is a closed subspace of a Banach space, so it is a Banach space. So, as
N(λ −T ) = {0}, the map λ −T is a bijection from X to R(λ −T ). By the open mapping theorem,
(λ −T )−1 ∈ B(R(λ −T ),X).

Assume by contradiction that λ ∈ σap(T ), so ∃(xn)n ∈ SNX such that ∥Λxn − T xn∥ → 0. We
deduce that

1 = ∥xn∥= ∥(λ −T )−1(λ −T )(xn)∥ ≤ ∥λ −T∥∥(λ −T )(xn)∥→ 0,

hence the contradiction. □

Theorem 3.3.2 Let X be a separable Banach space. Let T ∈ K(X) and λ ∈ R∗. Then N(λ −T )
has finite dimension, and R(λ −T ) has finite codimension. We say that λ −T is a Fredholm
operator.

■ Remark 3.3 This starts the Fredholm theory. One of the main result in this theory is the
Atiyah–Singer index theorem, that states that, for an elliptic differential operator on a compact
manifold, the analytical index (related to the dimension of the space of solutions) is equal to the
topological index (defined in terms of some topological data). ■

Proof . Without loss of generality, λ = 1.

Step 1: dimN(I −T )<+∞.
N(I −T ) is a Banach space. N(I −T ) is closed, so it is a Banach space. Moreover,

∀x ∈ BN(I−T ), x = T (x) ∈ T (BX)

So BN(I−T ) is a closed subset in the compact set T (BX), so BN(I−T ) is compact and N(I−T ) is finite
dimensional.

Step 2: R(I −T ) is closed.
Let (un)n ∈ XN, f ∈ X such that un −T (un)→ f .
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Define for n ∈ N, dn = dist(un,N(I −T )), and then pick vn ∈ N(I −T ) such that ∥un − vn∥ ≤
dn +

1
n .

Step 2(a): Assume for now that ∥un − vn∥ is bounded. Since T is compact, we can find a
subsequence un j and g ∈ X such that T (un j − vn j)→ g as j → ∞.

Then, since vn j ∈ N(I −T ), we have

un j − vn j = un j −T (vn j) = un j −T (un j)+T (un j − vn j)→ f +g as j → ∞.

We deduce that, using vn j ∈ N(I −T ) again

(I −T )( f +g) = lim
j→∞

(I −T )(un j − vn j) = lim
j→∞

(I −T )un j = f .

We prove that f ∈ R(I −T ) and thus that R(I −T ) is closed, assuming that ∥un − vn∥ is bounded.

Step 2(b): We want to prove that ∥un − vn∥ is bounded.
Assume by contradiction that ∥un − vn∥ is unbounded, meaning that up to taking a subsequence,

we can assume that ∥un − vn∥→ ∞. Moreover, up to another subsequence, and since T is compact,
we can assume that

T
( un − vn

∥un − vn∥

)
→ y

Define wn := un−vn
∥un−vn∥ . In one hand, we have

∥(I −T )wn∥=
∥(I −T )un∥
∥un − vn∥

→ ∥ f∥
∞

= 0.

On the other hand, since vn ∈ N(I −T ),

dist(wn,N(I −T )) = dist
( un

∥un − vn∥
,N(I −T )

)
=

dn

∥un − vn∥
≥ dn

dn +
1
n

→ 1.

This two facts are contradictory, indeed, by the first fact

(I −T )y = lim
n→∞

T (I −T )wn = 0,

meaning that y ∈ N(I −T ). So we have

0= dist(y,N(I−T )= lim
n→∞

dist(T (wn),N(I−T ))= lim
n→∞

dist(wn−wn+T (wn),N(I−T ))= lim
n→∞

dist(wn,N(I−T )≥ 1,

since (I −T )wn → 0 and dist(wn,N(I −T ))≥ 1. The contradiction follows.

Step 3: Main idea of the rest of the proof Assume that we have

∃n0 ∈ N : X = N((I −T )n0)⊕R((I −T )n−0). (S)

Then (I−T )n−0 can be written as I−Sn0 , where Sn0 is a compact operator. So by step 1, dimN((I−
T )n0)<+∞. By (S), we have then that codimR((I −T )n0)<+∞, and thus

R((I −T ))⊃ R((I −T )n0)
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has finite codimension.

So we now want to prove (S). To that objective, we write

Kn := N((I −T )n) and Mn := R((I −T )n).

Of course, for n ∈ N, we have Mn+1 ⊂ Mn, and Kn ⊂ Kn+1. We want to prove

∃n0 ∈ N : ∀n ≥ n0, Kn = Kn0 (S1)

and

∃n0 ∈ N : ∀n ≥ n0, Mn = Mn0 . (S2)

Note that if Kn0 = Kn0+1, we have Kn = Kn0 for n ≥ n0. Indeed, assume that Kn0+1 = Kn0 , and take
y∈Kn0+2, then T (y)∈Kn0+1 =Kn0 , so T n0+1(y) = 0, i.e. y∈Kn0+1 =Kn0 . Similarly, if Mn0 =Mn0+1,
then Mn = Mn0 for all n ≥ n0.

Step 4: (S1) + (S2) =⇒ (S). Let n0 such that Kn = Kn0 and Mn = Mn0 for all n ≥ n0. We want to
prove that Kn0 ∩Mn0 = {0} and Kn0 +Mn0 = X .

Let x ∈ Kn0 ∩Mn0 . There exists y ∈ X such that x = (I −T )n0y and (I −T )n0(x) = 0, meaning
that (I −T )2n0y = 0. Thus y ∈ K2n0 = Kn0 and x = (I −T )n0 = 0. We deduce that Kn0 ∩Mn0 = {0}.

Let x ∈ X . Since M2n0 = Mn0 , there exists y ∈ X such that (I − T )n0x = (I − T )2n−0y. So
(I −T )n0(x− (I −T )n−0y) = 0, meaning that x− (I −T )n−0y ∈ Kn0 . So

x = (I −T )n0y+[x− (I −T )n0y] ∈ Mn0 +Kn0 .

Step 4 follows.

Step 5: Proof of (S1). By contradiction, assume that (S1) is false, and so for n ∈ N, Kn ⊊ Kn+1.
We have T (Kn) ⊂ T (Kn+1), and we want to prove that T (Kn) ⊊ T (Kn+1). Assume again by

contradiction that T (Kn) = T (Kn+1). Then for any xn ∈ Kn+1, there is a yn−1 ∈ Kn such that
T (xn) = T (yn−1), so

xn = xn −T (xn)︸ ︷︷ ︸
∈(I−T )Kn+1⊂Kn

+T (yn−1)︸ ︷︷ ︸
∈Kn

∈ Kn,

hence Kn+1 = Kn, which contradicts Kn ⊊ Kn+1.
We have now T (Kn)⊊ T (Kn+1) for n ∈ N. By Riesz lemma, there exists (xn)n ∈ SNX such that

xn ∈Kn+1 and dist(T (xn),T (Kn))>
1
2 . Let n,m∈N, n>m, T (xm)∈ T (Kn), so ∥T (xn)−T (xm)∥≥ 1

2 .
Thus T (xn) does not have a converging subsequence, which contradicts the fact that T is compact.

Step 6: Proof of (S2). Assume by contradiction that (S2) is false, that is Mn+1 ⊊ Mn for all n ∈ N.
By Riesz’s lemma, there exists (xn)n ∈ SNX such that xn ∈ Mn and dist(xn,Mn+1)>

1
2 . So for n,m ∈N,

n > m,

∥T (xn)−T (xm)∥= ∥xm +T (xm)− xm︸ ︷︷ ︸
∈Mm+1

− xn︸︷︷︸∈ Mn ⊂ Mm+1 +(I −T )(xn)︸ ︷︷ ︸
∈Mn+1⊂Mm+1

≥ dist(xm,Mn+1)≥
1
2
.

This contradicts T ∈ K(X). The Theorem follows. □
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Corollary 3.3.3 Let X be a separable Banach space, T ∈ K(X), and λ ∈ R∗. The following
assertions are equivalent.

1. λ ∈ ρ(T ).
2. N(λ −T ) = {0}.
3. R(λ −T ) = X .

Proof . WLOG, λ = 1. We want to show that
1. N(I −T ) = {0} =⇒ R(I −T ) = X ,
2. R(I −T ) = X =⇒ N(I −T ) = {0}.
(1). By the proof of theorem, we have (S), that is there exists n0 ∈ N such that

X = N((I −T )n0)⊕R((I −T )n−0).

Let x∈N((I−T )n0). Then (I−T )(I−T )n0−1x= 0. But since N(I−T )= {0}, we have (I−T )n0−1x,
and inductively, x = 0. It means that N((I −T )n0) = {0} and so X = R((I −T )n−0)⊂ R(I −T ).

Let us show (2) from (1) by duality. Assume that R(I −T ) = X . Let x∗ ∈ N(I −T ∗) and x ∈ X ,
so ∃y ∈ X such that x = (I −T )y.

⟨x,x∗⟩= ⟨(I −T )y,x∗⟩= ⟨y,(I −T )∗x∗⟩= 0.

Thus, N(I −T ∗) = {0} and by (1) - since T ∗ is compact - R(I −T ∗) = X∗.
Let x ∈ N(I −T ), x∗ ∈ X∗. There exists y∗ ∈ X∗ such that x∗ = (I −T ∗)y∗.

⟨x,x∗⟩= ⟨x,(I −T ∗)y∗⟩= ⟨(I −T )x,y⟩= 0,

so x = 0 and N(I −T ) = {0}. □

Corollary 3.3.4 Let X be a separable Banach space, and T ∈K(X). Then σ(T )\{0}=EV (T )\{0},
and EV (T )\{0} is either finite or a sequence that tends to 0.

Proof . By the previous corollary, if λ ∈ σ(T )\{0}, then N(I−T )⊋ {0}, i.e. λ ∈ EV (T ). Assume
that σ(T )\{0} has an infinite number of values. Let a sequence λn ∈ σ(T )\{0}, λn ̸= λm when
n ̸= m, and let xn ∈ SX be eigenvectors, i.e. such that T (xn) = λnxn. We claim that (xn)n is a linearly
independent family.

Indeed, assume by induction that {x1, . . . ,xn} is a independent family, and xn+1 = ∑
n
j=1 α jx j,

and then by contradiction,

n

∑
j=1

λn+1α jx j = λn+1xn+1 = T (xn+1) =
n

∑
j=1

α jT (x j) =
n

∑
j=1

α jλ jx j,

i.e.

n

∑
j=1

(λn+1 −λ j)α jx j = 0.

By linear independence, (λn+1−λ j)α j = 0, and then α j = 0 since λn+1 ̸= λ j, and then 0= xn+1 ∈ SX ,
hence the contradiction.
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We repeat the overused argument from the proof of the theorem. Let Yn = Span{x1, . . . ,xn}, and
we have Yn ⊊ Yn+1. By Riesz’s lemma, ∃yn ∈ SX such that yn ∈ Yn and dist(yn,Yn−1)≥ 1

2 . For any

n ∈ N, ∃α
(n)
j such that yn = ∑

n
j=1 α

(n)
j x j. So for all n > m,

∥T (yn)−T (ym)∥=
∥∥∥ n

∑
j=1

α
(n)
j λ jx j −|

m

∑
j=1

α
(m)
j λ jx j

∥∥∥
=
∥∥∥λnyn +

n−1

∑
j=1

α
(n)
j λ jx j −|

m

∑
j=1

α
(m)
j λ jx j︸ ︷︷ ︸

∈Yn−1

∥∥∥
=

1
2
|λn|.

If λn does not converges to 0, then T would not be compact. □





A. Complements

A.1 Tychonoff’s theorem

Proposition A.1.1 Let X be a non-empty topological space. The following are equivalent:
• X is compact,
• If C is a collection of closed sets such that any finite subcollection has non-empty in-

tersection - we say that C has the finite intersection property - then C has non-empty
intersection.

Exercise A.1 Prove the above proposition.

Lemma A.1.2 — Zorn. Suppose that a partially ordered set D has the property that every chain
in D - i.e. any totally ordered subset of D - has an upper bound (in D). Then D has a maximal
element.

Proof . It is actually equivalent to the axiom of choice! □

Definition A.1.1 — Product topology. Let I be a nonempty set, and let {(Xi,τi)}i∈I is a collection
of topological spaces.

• The cartesian product of the family {Xi}i∈I is the set X := ∏i∈I Xi, whose elements are
the functions x that maps i ∈ I to an element x(i) ∈ Xi.

• The coordinate mappings are the elements pi : X → Xi such that pi(x) = x(i).
• The product topology of X = ∏i∈I Xi is the smallest topology generated by the open sets

p−1
i (Ui), where i ∈ I and Ui are open sets of Xi.

■ Remark A.1 If I = {1, . . . ,n} has a finite number of elements, then the product topology is the
one generated by the sets U1 ×·· ·×Un, where U j is open in X j.

But if I is infinite, the topology is generated by the sets ∏i∈I Ui, where Ui ⊂ Xi is open, and
Ui = Xi except for a finite number of values of I. In this sense, it is very relatable to the weak and
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weak-∗ topology. ■

Theorem A.1.3 — Tychonoff. The product of any family of compact spaces is a compact space.

Proof . Let (Xi,τi) be a compact topological space, and define X = ∏i∈I Xi. Without loss of generality,
we can assume that Xi ̸= /0 for each i ∈ I, (otherwise X = /0 and there is nothing to prove).

We want to prove that X is compact via the characterization given in Proposition A.1.1.

Step 1: We consider first the set D of all collections of subsets of X (closed or not) that contains C
and that has the finite intersection property. D ∋ C , so it is not empty, and we place a partial order
on D (the inclusion). We want to show that it has a maximal element with Zorn’s lemma.

Therefore, we take a totally ordered T, and we want to show that the upper bound B :=
⋃

T ∈TT
is in D, i.e. that B ∈D has the finite intersection property. Take then T1, . . . ,Tk ∈B, each Tj belongs
to some T j ∈ T. Since T is totally ordered, the collection {T j} has a maximal element Tmax ∈ T
for which T1, . . . ,Tk ∈ Tmax. But Tmax has the finite intersection property, so

⋂
j=1..k Tk ̸= /0. We

conclude that B has the finite intersection property.
By Zorn’s lemma, D has at least one maximal element M .

Step 2: We define for each i ∈ I the collection Xi = {pi(M), M ∈ M } of sets of Xi. Since M
has the finite intersection property, Xi has it too, and since Xi is compact, there exists yi ∈ Yi :=⋃

M∈M pi(M)⊂ Xi. We want to show that the element y = {yi}i∈I ∈ M for all M ∈ M .
First, note that by maximality of M ,

any finite intersection of elements of M belongs to M. (A.1)

Then, if Ui is an open set in Xi that contains yi, the fact that yi ∈ pi(M) for all M ∈ M implies
that pi(M)∩Ui ̸= /0, and hence M ∩ p−1

i (Ui) ̸= /0 for all M ∈ M . Thanks to (A.1), it means that
M ∪{p−1

i (Ui), i ∈ I} has the finite intersection property, hence by maximality,

p−1
i (Ui) ∈ M for all i ∈ I. (A.2)

Finally, let U be a basic neighborhood of y in X . By definition of the product topology, U has the
form U = ∏

k
i=1 p−1

i j
(Ui j), where i j ∈ I and Ui j ∈ τik . Since M has the finite intersection property,

and by (A.2), we have M∩U = M∩ p−1
i1 (Ui1)∩·· ·∩ p−1

ik (Uik) ̸= /0 for all M ∈ M . Since this is true
for all basic neighborhood of y, we have y ∈ M as desired.

Conclusion. From step 2, we have

x ∈
⋂

M∈M

M ⊂
⋂

C∈C

C =
⋂

C∈C

C

since C ⊂ M and elements of C are closed. As a consequence, for all collection of closed sets with
the finite intersection property, we have

⋂
C∈C C ̸= /0. The theorem follows. □
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