
Approximation Algorithms for Diversified
Search Ranking

Nikhil Bansal1, Kamal Jain2, Anna Kazeykina3, and Joseph (Seffi) Naor4

1 IBM Research, Yorktown Heights, NY 10598
nikhil@us.ibm.com

2 Microsoft Research, Redmond, WA 98052
kamalj@microsoft.com

3 Moscow State University, Moscow, Russian Federation
filledesoleil@gmail.com

4 Computer Science Dept., Technion, Haifa, Israel
naor@cs.technion.ac.il

Abstract. In many search query applications, users tend to look at only
the top part of the ranked result list in order to find relevant documents.
Also, a fundamental issue in Web search is ranking search results based
on user logs, since different users may have different preferences and in-
tents with regards to a search query. The setting we consider contains
various types of users, each of which is interested in a subset of the
search results. The goal is to rank the search results of a query pro-
viding highly ranked relevant results. Our performance measure is the
discounted cumulative gain which offers a graded relevance scale of doc-
uments in a search engine result set, and measures the usefulness (gain)
of a document based on its position in the result list. We suggest a gen-
eral approach to developing approximation algorithms for ranking search
results based on discounted cumulative gain that captures different as-
pects of users’ intents. We also take into account that the relevance of
one document cannot be treated independently of the relevance of other
documents in a collection returned by a search engine. For a given search
query we assume that there is a set of known types of users, where each
user type is satisfied by a certain number of search results. We first con-
sider the scenario where users are interested in only a single search result
(navigational queries). We then develop a polynomial time approxima-
tion scheme for this case. We further consider the general case where
each user type is associated with a different requirement on the number
of search results and develop efficient approximation algorithms. Finally,
we consider the problem of choosing the top k out of n search results
and show that for this problem 1− 1/e is indeed the best approximation
factor achievable, thus separating the approximability of the two versions
of the problem.

1 Introduction

Satisfying users querying a search engine has become immensely complex given
the rapid growth of the Internet, its content diversity, and its usage as a primary

source of information. The satisfaction of users with search results has tradition-
ally been characterized by the notion of relevance of a document. Since users
tend to look only at the top part of a ranked result list in order to find relevant
documents, ranking search results is a fundamental problem in Web search. The
goal is to rank the search results of a query providing highly ranked relevant
results. A common performance metric for relevance is the discounted cumula-
tive gain [8, 11] which offers a graded relevance scale of documents in a search
engine result set, and measures the usefulness (gain) of a document based on its
position in the result list. The gain is accumulated cumulatively, starting from
the top of the result list, with the gain of each result discounted at lower ranks.

Recent approaches to ranking search results have placed more emphasis on
inferring relevance and intents of queries from user logs and understanding the
distribution of users running a query. One major issue that arises here is that
most queries have multiple intents5, since different users may have different
preferences, and therefore a ranking system should provide diverse results that
cover a wide spectrum of intents.

It is common practice to partition search queries into three broad categories
[11]. The first one is an informational query, in which users typically try to
assimilate information from multiple web pages. The second one is a navigational
query where a user looks for a particular (single) website among the search
results. The third one is a transactional query which is typically a prelude to a
transaction on the web. Note that the categories differ (among other things) in
the number of search results needed to satisfy a user.

We suggest the following approach for quantifying aggregate user satisfaction.
Assume that for a particular search query a set of search results is obtained.
There are several user types, corresponding to the multiple intents associated
with the query, each of which is a-priori known to be interested in a (known)
subset of the results. For each user type we assume that we know the number of
relevant search results needed to satisfy it. This number depends, among other
things, on the category to which the query belongs. The question is which order
should the search results be ranked in, so that all user types are satisfied, and
the discounted cumulative gain is maximized. As explained later, this problem
turns out to be computationally intractable, and thus we develop approximation
algorithms for it.

So far we have made the common assumption that the relevance of one
document can be treated independently of the relevance of other documents
in the collection returned by a search engine. Carbonell and Goldstein [4] were
among the first to note that documents retrieved by a search engine are not
necessarily informationally independent and are frequently characterized by a
high level of redundancy. Thus, the relevance of a document should be replaced

5 For example, users searching for “cricket” could be interested in different things: the
insect, the sport, the wireless company, . . . , etc. Similarly, even for unambiguous
queries such as for some researcher’s name, say “John Smith”, different users might
have different intents. Some might be interested in his list of publications, some in
his Facebook account, some in his personal web page and so on.

by its marginal relevance with respect to other documents in a collection [4,
17, 14]. In [4] it is suggested to maximize marginal relevance (MMR), which
is a ranking method that maximizes a linear combination of the relevance of
a document and its novelty (a measure of diversity) with respect to already
retrieved documents. User studies have shown that MMR is generally preferred
to a standard ranking algorithm.

Chen and Karger [6] introduced a probabilistic approach to the relevance
problem in which, given a probabilistic metric, the expected value of the met-
ric is optimized. For a variety of metrics used in information retrieval (search
length, reciprocal rank, %no, and instance recall), they showed that the opti-
mization problem is computationally intractable. They empirically studied the
performance of greedy algorithms and suggested the study of more sophisticated
approximation techniques as future work on the topic.

The work of Agrawal et al. [1] is the closest to ours. The authors define
their objective function as maximizing the probability of satisfying an average
user. They observed that the optimized function is submodular and proposed
to use a greedy algorithm to obtain a (1− 1/e)-approximate solution. However,
[1] implicitly assumed that users study all the documents returned by a search
engine with equal attention, while (as we argued) it is more reasonable to assume
the attention decreases while going through the list of results from top to bottom.

1.1 The Model

We assume that there exists a taxonomy of information, and that user intents
are modeled at the topical level of this taxonomy. Let us focus on a single search
query. Denote the search results by e1, . . . , en and suppose that there are m
user types, or intents. For each user type there is a subset of the search results
which are relevant to this type. We model our setting as a hypergraph or an
instance of the hitting set problem. The search results correspond to elements
e1, . . . , en in a universe U and each user type corresponds to a set, or a hyperedge,
containing the elements in which the user type is interested. The collection of sets
is denoted by S = {S1, . . . , Sm}. For each set S there is a coverage requirement,
denoted by k(S), corresponding to the number of relevant search results needed
to satisfy user type S. Recall that k(S) = 1 corresponds to a navigational query,
and k(S) corresponds to an informational query. Given an ordering φ of the
elements e1, . . . , en, set S is covered at the earliest time (position) t(S) in which
k(S) elements from S have already appeared. The goal is to find an ordering
maximizing the discounted cumulative gain (DCG):

DCG =
∑
S

1
log(t(S) + 1)

.

The logarithmic factor in the denominator is to the base e and it is the discount
factor of the gain of each search result. Intuitively, elements that can provide
coverage to many sets should be placed in the beginning of the ordering φ so as
to maximize the objective function. One can consider more general discounting

functions but the logarithmic discounting seems to be most commonly considered
in practice [8, Chapter 8.4.3]. We consider this problem in two settings. First,
when there is an bound on the number of elements k that must be chosen. This
is motivated by the problem of choosing which query results to display on the
first page. Second, when there is no bound on the number of pages to display.

In the case of k(S) = 1, we can further consider a more general model when
one can model correlations between different search results using information
theoretical tools. Given a query q and the set of search results e1, e2, . . . , en,
we define the information function Hq(e1, e2, . . . , en) that captures the overall
knowledge about q that can be obtained from observing all the search results
in the set. For any subset S of search results define Hq(S) to be the function
capturing the information about query q contained in S. We assume that Hq(S)
has the following entropy properties:

1. Hq(∅) = 0;
2. Hq(S) ≤ Hq(T), ∀S ⊆ T (monotonicity);
3. Hq(S ∪ e)−Hq(S) ≥ Hq(T ∪ e)−Hq(T), ∀S ⊆ T, e /∈ T (submodularity).

Given a ranked list of search results, the marginal relevance (MR) of result ei is
defined as

MR(ei) = Hq({e1, . . . , ei})−Hq({e1, . . . , ei−1}).

Since most currently used evaluation metrics in information retrieval make use
of relevance labels assigned to search results, we get a natural generalization
of these metrics by substituting the relevance of ei by its marginal relevance
MR(ei). Then, the generalization of DCG is:

GDCG =
n∑

i=1

Hq({e1, . . . , ei})−Hq({e1, . . . , ei−1})
log(i + 1)

. (1)

Note that GDCG captures the model of Agrawal et al. [1], as well as probabilistic
ranking models.

1.2 Our Results

We first consider the problem of choosing and ordering the top k out of n search
results so as to maximize the DCG, where k is an input to the problem. We show
that for the case in which users are only interested in a single search result,
a natural greedy algorithm achieves an approximation factor of (1 − 1/e) ≈
0.632. Moreover, we show that this is the best approximation factor achievable,
assuming P 6= NP. Our (1− 1/e) approximation also holds for the more general
GDCG measure where each user type can have a monotone submodular utility
function (satisfying the properties stated in Section 1.1) over the set of search
results. Finally, for the case where the users can be interested in an arbitrary
number of search results, i.e. k(S) is arbitrary, we show that the problem is hard
in the following sense. It is at least as hard as the notorious Densest-k-Subgraph
problem for which the best known approximation is only O(n1/3) [10].

Next, we consider the above models in the setting where there is no restriction
on the number of search results that we wish to display. Most of our paper is
devoted to this setting. In particular, the goal is to simply to find an ordering
of all n results maximizing GDCG.

For the case of k(S) = 1 (i.e., navigational queries), we develop an approx-
imation algorithm that yields a polynomial-time approximation scheme (ptas).
That is, the algorithm achieves a (1 + ε) approximation given any arbitrarily
small constant ε > 0, and has running time polynomial in n. This approxima-
tion scheme also generalizes to the more general GDCG setting. (I.e., with the
Informational function Hq(S).)

For the case of arbitrary k(S), we give a linear programming based O(log log n)-
approximation. We also show how to adapt these ideas to obtain a quasi-polynomial
time approximation scheme6. The natural linear programming relaxations for
this problem have a large integrality gap. We go around this by strengthening
the natural relaxation by adding exponentially many so-called knapsack cover
inequalities [5]. Even though the number of constraints is exponential, it can be
solved optimally in polynomial time. Our approximation algorithm is based on
rounding these fractional solutions and exploits various properties of the prob-
lem structure. While our approach is related to the recent work of [3], there are
major differences. In particular, while [3] considers a minimization problem, ours
is a maximization problem. This does not seem amenable to a local term-by-term
analysis as in [3], and we need a much more complex and global analysis.

Our results can be viewed as showing a strong separation between the two
versions of the problem, depending on whether the number of search results to
be displayed is fixed or not.

1.3 Related Work

Our modeling of user types as hyperedges with a covering demand follows the
work of Azar et al. [2]. They defined a model for re-ranking search results where
the goal is to minimize the average time (in a certain sense) of satisfying user
types. Their model generalizes classic problems like minimum sum set cover and
minimum latency. They developed logarithmic approximation factors for their
problem using a linear programming formulation. The approximation factor was
improved to a constant by Bansal et al. [3] who strengthened the linear program
by adding knapsack cover constraints.

Generating a diverse set of search result is a well studied topic and we mention
a few relevant papers. Accounting for different meanings of ambiguous queries
and document redundancy was considered by Zhai et al. [17], who proposed
a generalization of the classic precision and recall metrics. Ziegler et al. [18]
considered the diversification of personalized recommendation lists by reducing
the intralist similarity (the sum of pairwise similarities between items in the
list). Their user study showed that increased diversity of the recommendation

6 A (1 + ε)-approximation algorithm for any constant ε > 0, but with a running time
of npolylog(n).

list improved user satisfaction, but also revealed that human perception can
capture the level of diversification inherent to a list only to some extent. Beyond
that point, increasing diversity remains unnoticed.

Radlinski and Dumais [14] studied the problem in the context of query re-
formulations. They proposed to build a diversified set of related queries and
then provide the top N results retrieved for each query as an input to a stan-
dard ranking algorithm. Relevant studies were also carried out in the domain of
online shopping, relational databases [16], and online learning algorithms [15].

In the field of question answering, Clarke et al. [7] developed a probabilistic
ranking principle by viewing documents as sets of “information nuggets”. They
measured the relevance of a document as the probability that it contains at least
one relevant and new information nugget. Then, they presented a generalization
of the DCG metric and proved that the computation of the ideal gain is NP-hard.

2 Unit Covering Requirements

In this section we consider the case when all the covering requirements k(S)
are equal to 1. We will give an approximation scheme for maximizing GDCG.
However, it will be easier to describe the scheme in the simpler setting of inde-
pendent search results where we maximize DCG. The generalization to GDCG
is quite straightforward.

2.1 Top k out of n Documents

We begin by describing a simple and efficient greedy algorithm for the problem
of maximizing the gain (GDCG) by choosing and ordering k out of n docu-
ments. The greedy algorithm simply chooses at each step the element that that
maximizes the incremental profit. We show that

Statement 1 The greedy algorithm for GDCG is a (1− 1/e)-approximation.

Perhaps not too surprisingly, our analysis is similar to that of the classical
max k-coverage problem defined as follows: We are given a set of elements U =
{e1, . . . , en} and a collection of sets S = {S1, . . . , Sm} defined over U . The goal
is to choose k elements that cover the maximum number of sets. A set S is said
to be covered if some element from S is chosen. This problem is NP-hard and
it is well known that the greedy algorithm, that at any point of time chooses
the element that covers the maximum number of uncovered sets thus far, gives
a (1− 1/e)-approximation.

We prove Statement 1 in Appendix A. It is somewhat surprising that the
greedy algorithm still achieves a (1− 1/e) approximation even in the more gen-
eral setting of using a submodular information function (e.g. Hq(S)) together
with a logarithmic discount function, instead of maximizing cardinality. This
generalization allows for generalizing the approximation to GDCG.

Finally, in Appendix A, we also show that this result is the best possible
unless P=NP.

2.2 No Restriction on the Number of Documents

Here we do not have a restriction on the number of documents we wish to display
and the goal is simply to order the pages so as to maximize DCG. A (1− 1/e)-
approximation follows by setting k = n in the result of the previous subsection.
Here we describe how to adapt it to obtain a polynomial time approximation
scheme (ptas).

The Approximation Scheme. Consider the following algorithm.

– Given the parameter ε > 0, we consider all possible candidate choices for
the ordering of the first g(ε) = (2/ε2)(1/ε) elements. There are at most(

n
g(ε)

)
g(ε)! ≤ ng(ε) such choices. Such a choice is determined by the set of

elements G and permutation π.
– For each choice G of elements above, let SG denote the collection of sets

covered by G. Apply the following algorithm to the system U \G,S \ SG to
obtain the sets A0, A1,
• Initialize: Let T0 = ∅. In general, Ti denotes the sets covered before phase

i begins.
• Phase: For i = 0, 1, . . . , dlog ne, apply the following steps.

1. Consider the max k-coverage instance defined on the universe U \G
and the set collection (S \ SG) \ Ti. Let k = 2i.

2. Apply the greedy algorithm to the instance above and let Ai denote
the k = 2i elements chosen.

3. Let Si denote the sets in S \ Ti that are covered by elements in Ai.
Set Ti+1 = Ti ∪ Si.

• Output: Construct the final ordering by concatenating the lists π(G), A0,A1,. . .
in that order. Within the set Ai the elements can be ordered arbitrarily.

– Over all choices of G and π, output the ordering with the maximum gain.

Analysis. Consider the case when G consists of the first g(ε) elements in the
optimum ordering Πopt, and the elements in G are also ordered as in Πopt. Let
alg1 and opt1 denote the gain obtained by the first g(ε) elements in the respective
orderings and let alg2 = alg − alg1 and opt2 = opt − opt1 denote the respective
gain from the remaining elements (that lie after the first g(ε) elements).

Theorem 1. The above scheme is a polynomial-time approximation scheme.

Proof: Clearly alg1 = opt1. We will show that alg2 ≥ (1−ε)opt2. Let Oi denote
the sets covered by elements that appear in Πopt in positions [2i, 2i+1 − 1] after
the first g(ε) elements (i.e. in absolute positions [g(ε) + 2i, g(ε) + 2i+1 − 1]).
Similarly, let Ti+1 denote the sets covered by elements A0 ∪ . . . , Ai. We claim
the following:

Claim. For any 0 ≤ i ≤ n, after phase i, the number of sets covered by the
algorithm, i.e. |Ti+1|, satisfies

|Ti+1| ≥
i∑

j=0

(1− ej−i)|Oj |. (2)

We move the proof of this claim to Appendix B. Given this claim,

alg2 ≥
∞∑

i=0

(|Ti+1| − |Ti|)
log(g(ε) + 2i+1)

=
∞∑

i=0

(
1

log(g(ε) + 2i+1)
− 1

log(g(ε) + 2i+2)

)
|Ti+1|

≥
∞∑

i=0

(
1

log(g(ε) + 2i+1)
− 1

log(g(ε) + 2i+2)

)
·

i∑
j=0

(1− ej−i)|Oj |

=
∞∑

j=0

∞∑
i=j

(
1− ej−i

)
·
(

1
log(g(ε) + 2i+1)

− 1
log(g(ε) + 2i+2)

)
|Oj |

≥
∞∑

j=0

∞∑
i=j+2 ln(1/ε)

(1− ε2) ·
(

1
log(g(ε) + 2i+1)

− 1
log(g(ε) + 2i+2)

)
|Oj |

=
∞∑

j=0

(1− ε2)
1

log(g(ε) + (2j+1/ε2))
|Oj |. (3)

The last step follows since the terms are telescoping.
To complete the proof, we note that the contribution of Oj to the optimum

ordering is at most |Oj |/(log(g(ε) + 2i + 1)). On the other hand, by (3) the
contribution of Oj to alg2 is at least:

(1− ε2)(1/ log(g(ε) + 2j+1/ε2))|Oj | ≥ (1− ε2)(1/ log((g(ε) + 2j)(2/ε2))|Oj |

= (1− ε2)
1

log(g(ε) + 2j) + log(2/ε2)
|Oj | ≥ (1− ε)

1
log(g(ε) + 2j)

|Oj |.

The last step follows as log(2/ε2) ≤ ε log(g(ε)) ≤ ε log(g(ε) + 2j) by our choice
of g(ε).

The algorithm has a huge running time of n2O(1/ε)
, but this is still a polynomial-

time approximation scheme. It would be an interesting open problem to see if
the dependence of the running time on ε can be made to be singly exponential.

3 General Requirements

In this section we consider the scenario when k(S) can be arbitrary. We first
consider the setting where only k documents can be displayed, and show that
the problem is extremely hard even for very special cases of the problem. We then
consider the case when there is no bound on the number of documents that can
be displayed. We describe an O(log log n)-approximation for maximizing DCG
in this setting. Our algorithm is based on an LP formulation using knapsack
cover inequalities. Finally, we will show how to adapt the algorithm to obtain a
quasi-polynomial time approximation scheme.

3.1 Top k out of n Documents

We show that in this setting, the DCG problem already captures the notoriously
hard densest k-subgraph problem. In the densest k-subgraph problem, we are
given an undirected graph G = (V,E) and the goal is to find a subset of k
vertices V ′ that maximizes the number of induced edges (i.e. edges that have
both end points in V ′). The best known algorithm for the densest k-subgraph
problem essentially achieves a guarantee of only n1/3 [10]. It is an outstanding
open question whether this bound can be improved. To see the connection to
Densest-k-Subgraph, consider the following for a given graph G = (V,E). Define
the elements as the vertices V and sets S as the edges E, where each S has
a covering requirement of k(S) = 2. Clearly, finding k elements that cover the
maximum number of sets for this instance is equivalent to solving the densest
k-subgraph problem. Since the 1/ log(t+1) term in the objective function of the
DCG is bounded between 1 and log(k+1) this implies that the problem is as hard
to approximate as the Densest-k-Subgraph problem within an O(log(k)) factor.
Moreover, note that this is a very special case of our problem, since k(S) = 2
for all sets, and each set has size 2.

3.2 No Restriction on the Number of Documents

Given the discussion above, we note that the approach taken in the previous sec-
tion of solving the max k-coverage problem for geometrically increasing values of
k, and then concatenating the resulting sets, will yield a very poor approxima-
tion. Given this limitation, our approximation algorithm will use quite different
ideas which are based on a linear programming (LP) formulation of the problem.
In particular, we will strongly use the fact that we do not have a bound on the
number of elements we need to choose (i.e., we can avoid the max k-coverage
approach), and also exploit the specific nature of our objective function.

Our approach is based on the recent work of [3], however, there are crucial
differences. Most notably, [3] considers a minimization problem, while here we
are interested in a maximization problem. Our LP formulation, described below,
is based on knapsack cover inequalities first introduced by [5]. It is known that
a naive LP relaxation for our problem that does not use these inequalities can
have a very large integrality gap (we defer this discussion here, and refer the
interested reader to [3]).

An LP Relaxation. Let [n] = {1, 2, . . . , n}, where n = |U |, the number of
elements in the universe. In the following, xet is the indicator variable for whether
element e ∈ U is selected at time t ∈ [n], and ySt is the indicator variable for
whether set S has been covered by time t ∈ [n].

Maximize
∑

1≤t≤|U |

∑
S∈S

(yS,t − yS,t−1)/ log(t + 1)

subject to
∑
e∈U

xet = 1 ∀ t ∈ [n] (4)

∑
t∈[n]

xet = 1 ∀ e ∈ U (5)

∑
e∈S\A

∑
t′<t

xet′ ≥ (k(S)− |A|) · ySt (6)

∀S ∈ S,∀A ⊆ S,∀t ∈ [n]
xet, ySt ∈ [0, 1] ∀ e ∈ U, S ∈ S, t ∈ [n]

If xet and ySt are restricted to take {0, 1} values, then this is easily seen to be a
valid formulation for the problem. Constraints (4) require that only one element
can be assigned to a time slot and constraints (5) require that each element must
be assigned to some time slot. Constraints (6) correspond to the knapsack cover
inequalities and require that if ySt = 1, then for every subset of elements A, at
least k(S)− |A| elements must be chosen from S \A before time t.

The Algorithm. Let (x∗, y∗) denote an optimal (fractional) solution to the
above linear programming formulation and let opt denote its value. Clearly, opt
is an upper bound on an integral optimal solution. Our rounding algorithm
proceeds in O(log n) stages, with the ith stage operating in the time interval
[1, 2i+1 − 1]. In stage i, for i = 0, 1, . . ., we perform one round of randomized
rounding (as described below) on the fractional solution restricted to the interval
[1, 2i+1 − 1] and obtain a set Ai of elements. At the conclusion of these stages,
we output the elements of A0, followed by the elements of A1, and then A2, . . . ,,
with the elements of any set Aj being output in an arbitrary order.

The rounding process for stage i that generates set Ai is the following:

– Let ti = 2i.
– Define the fractional extent to which e is selected before time ti, for each

e ∈ U , to be: ze,i ←
∑

t′≤ti
x∗et′ .

– Define for all e ∈ U , pe,i ← min(1, 8 log2(n + 1)ze,i).
– Pick each element e ∈ U independently with probability pe,i. Let Ai be the

set of these elements. If Ai > 16 log2(n + 1) · 2i, then set Ai = ∅.

Analysis. In the solution (x∗, y∗), for each set S, let t∗(S) denote the earliest
time that S has been allocated to an extent of 1/ log(n + 1), i.e., yt∗(S),S ≥
1/ log(n + 1). The next lemma shows that t∗(S) is a good estimate for the time
when a set is covered.

Lemma 1. opt ≤
∑

S 2/ log(t∗(S) + 1).

Proof: Since any set S is covered to an extent of at most 1/ log(n + 1) by
time t∗(S), this fraction can yield a gain of at most (1/ log(n + 1)) · (1/ log 2) ≤
1/ log(n + 1). This is at most (1/ log(t∗(S) + 1)), since t∗(S) ≤ n (as each set
is covered by time n). The remaining 1− 1/ log(n + 1) portion can yield a total
gain of at most (1−1/ log(n+1)) ·(1/ log(t∗(S)+1)) ≤ (1/ log(t∗(S)+1)). Thus,
the total gain is at most 2/ log(t∗(S) + 1).

Lemma 2. For any set S and any stage i such that ti ≥ t∗S, the probability that
k(S) elements from S are not picked in stage i is at most 1− 2/n2.

Due to space constraints, we move the proof to Appendix C.

Theorem 2. The algorithm above is an O(log log n)-approximation.

Proof: Since |Ai| ≤ 16 log2(n + 1)2i, each element in Ai appears no later than
time 16 log2(n + 1)(2i+1 − 1) in the ordering produced by the algorithm. By
Lemma 2, with probability at least 1 − 2/n2, each set S appears in a set Ai

where i ∈ [t∗(S), 2t∗(S)− 1]. Thus, with probability 1− 2/n2, set S appears in
the ordering of the algorithm by time 64 log2(n + 1)t∗(S)− 1.

Thus, the expected contribution of set S to the algorithm is at least(
1− 1

n2

)
·
(

t∗(S)
log 64 log2(n + 1)

)
= Ω

(
1

log log n
· log(t∗ + 1)

)
.

By Lemma 1, opt can obtain a gain of at most 2/(log(t∗ +1)), and hence we get
an O(log log n)-approximation.

Next, we show that the algorithm can be modified to obtain a quasi-polynomial
time approximation scheme. That is, a (1 + ε)-approximation for any ε > 0, but
with running time O(npolylog(n)).

A Quasi-Polynomial Time Approximation Scheme. We modify the al-
gorithm above to first guess (by trying out all possibilities) the first f(ε) =
(log n)4/ε elements in the ordering of opt. Let us assume that n ≥ 1/ε ≥ 8
(otherwise the problem can be solved trivially in O(1) time).

Given the optimum LP solution, let us define t∗(S) to be the earliest time
when set S is covered to extent ε/ log n. A slight modification of Lemma 1 implies
that opt ≤ (1 + ε)/ log(t∗ + 1).

The analysis of our rounding algorithm guarantees that the expected contri-
bution of set S to the algorithm is at least(

1− 1
n2

)
·
(

t∗(S)
log 64 log2(n + 1)

)
≥ 1− ε2

log t∗(S) + 4(log log(n + 1)
,

since n ≥ 1/ε ≥ 8. If log t∗(S) ≤ (4/ε) log log n), or equivalently t∗(S) ≤ log n4/ε,
the contribution of S to the algorithm is at least (1 − ε) times its contribution
to opt. Thus, we can apply the same idea as the one used for obtaining a ptas
for the case of k(S) = 1, and guess the first f(ε) = (log n)4/ε positions in the
ordering of opt.

4 Conclusions

A natural question is to consider more general forms of discounting in the def-
inition of DCG, beyond just γ(t) = 1/ log(t + 1). In [8, Chapter 8.4.3] it is

mentioned that the choice of the logarithmic discount function is somewhat ar-
bitrary and has no theoretical justification, although it does provide a relatively
smooth (gradual) reduction. It is easily seen that our (1 − 1/e)-approximation
for unit covering requirements works for any monotonically decreasing γ(t). In
the case when there is no limit on the number of documents returned, our ptas
can also be extended to the case where γ(t) satisfies the following property. For
any ε, the inequality γ(2t) ≥ γ(t)/(1 + ε) holds for all but ` = Oε(1) integers t.
In this case our algorithm has running time nO(`). Note that for the logarithmic
function, ` = 2O(1/ε). The above condition is satisfied for any γ(t) of the type
1/polylog(t), but it is not satisfied for a polynomial such as f(t) = 1/tδ.

References

1. R. Agrawal, S. Gollapudi, A. Halverson, and S. Ieong. Diversifying search results.
In WSDM’09, pages 5–14, 2009.

2. Y. Azar, I. Gamzu, and X. Yin. Multiple intents re-ranking. In STOC ’09: Proceed-
ings of the 41st Annual ACM Symposium on Theory of Computing, pages 669–678,
New York, NY, USA, 2009. ACM.

3. N. Bansal, A. Gupta, and R. Krishnaswamy. A constant factor approximation
algorithm for generalized min-sum set cover. In Symposium on Discrete Algorithms
(SODA), 2010.

4. J. Carbonell and J. Goldstein. The use of MMR, diversity-based reranking for
reordering documents and producing summaries. In SIGIR’98, pages 335–336,
1998.

5. R. Carr, L. Fleischer, V. Leung, and C. Phillips. Strengthening integrality gaps
for capacitated network design and covering problems. In Symposium on Discrete
Algorithms (SODA), pages 106–115, 2000.

6. H. Chen and D. R. Karger. Less is more: probabilistic models for retrieving fewer
relevant documents. In SIGIR’06, pages 429–436, 2006.

7. C. L. A. Clarke, M. Kolla, G. V. Cormack, O. Vechtomova, A. Ashkan, S. Bttcher,
and I. MacKinnon. Novelty and diversity in information retrieval evaluation. In
SIGIR’08, pages 659–666, 2008.

8. B. Croft, D. Metzler, and T. Strohman. Search Engines: Information Retrieval in
Practice. Addison Wesley, 2009.

9. U. Feige. A threshold of ln n for approximating set cover. J. ACM, 45(4):634–652,
1998.

10. U. Feige, D. Peleg, and G. Kortsarz. The dense k-subgraph problem. Algorithmica,
29(3):410–421, 2001.

11. C. D. Manning, P. Raghavan, and H. Schuetze. Introduction to Information Re-
trieval. Cambridge University Press, New York, 2008.

12. R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University
Press, 1995.

13. G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher. An analysis of the approx-
imations for maximizing submodular set functions. Mathematical Programming,
14:265–294, 1978.

14. F. Radlinski and S. T. Dumais. Improving personalized web search using result
diversification. In SIGIR’06, pages 691–692, 2006.

15. F. Radlinski, R. Kleinberg, and T. Joachims. Learning diverse rankings with multi-
armed bandits. In ICML’08, pages 784–791, 2008.

16. E. Vee, U. Srivastava, J. Shanmugasundaram, P. Bhat, and S. A. Yahia. Efficient
computation of diverse query results. In ICDE’08, pages 228–236, 2008.

17. C. Zhai, W. W. Cohen, and J. D. Lafferty. Beyond independent relevance: methods
and evaluation metrics for subtopic retrieval. In SIGIR’03, pages 10–17, 2003.

18. C.-N. Ziegler, S. M. McNee, J. A. Konstan, and G. Lausen. Improving recommen-
dation lists through topic diversification. In WWW’05, pages 22–32, 2005.

A Proofs in Section 2.1

We prove statement 1.

Statement 1. The greedy algorithm for GDCG is a (1− 1/e)-approximation.

Proof: We define (d∗1, . . . , d
∗
k) to be the optimal solution of the GDCG problem,

(dG
1 , . . . , dG

k) to be the solution returned by the greedy algorithm and (d̄i
1, . . . , d̄

i
i)

to be the set of elements which maximizes Hq(S) over all sets S such that |S| = i.
Note that we can rewrite (1) in the form

∑∞
i=1 αiHq({d1 ∪ di}), where the

αi-s are certain coefficients. In [13] it is shown that for all i

Hq({dG
1 , . . . , dG

i }) ≥ (1− 1/e)Hq(d̄i
1, . . . , d̄

i
i).

It follows then that

k∑
i=1

αiHq({dG
1 ∪ . . . ∪ dG

i }) ≥ (1− 1/e)
k∑

i=1

αiHq({d̄i
1 ∪ . . . ∪ d̄i

i})

≥ (1− 1/e)
k∑

i=1

αiHq({d∗1 ∪ . . . ∪ d∗i }).

A.1 Hardness of DCG

Theorem 3. We show that assuming P 6= NP, the DCG problem is NP-hard
hard to approximate within a factor of 1 − 1/e − ε for any ε > 0. In fact, the
hard instance is that of the single query case (in the version where we can only
choose k out of n documents).

Proof: Let S1, . . . , Sm be a collection of sets defined over the universe U =
{e1, . . . , en}. The goal is to choose k elements in U that maximize the DCG
function

∑m
j=1 1/ log(t(Sj) + 1), where t(Sj) is the time when Sj is covered

(Sj =∞, if it is not covered by the chosen k elements).
We use the following class of hard max k-coverage instances from Feige [9].

Given any ε > 0, there exists m, k, and a hitting set instance on m sets, where
each element hits exactly m/k sets, and it is NP-hard to distinguish between the
following two cases:

– Good case: There exist k elements such that each element covers m/k disjoint
sets; or

– Bad case: No k elements can cover even m(1− /e + ε) sets.

Note that in the good case, the optimum solution has DCG at least m/ log(k+
1) since each set can be covered by time k. On the other hand, suppose that
there is a solution to DCG with value

m(1 + (10/ log(1/ε)))(1− 1/e)/ log(k + 1).

We claim that in this case the max k-coverage instance has a solution of value
(1−1/e+5ε)m, implying that we are not in the bad case. As (1+(10/ log(1/ε)))
approaches 1 as ε becomes arbitrarily small, this would imply the claimed (1−
1/e) hardness for DCG.

Since each element can cover at most m/k sets, the DCG contribution until
time εk can be at most

εk∑
j=1

m

k

1
log(j + 1)

≤ ε

m

(
1

log(εk)
+

1
2 log2(εk)

)
≤ 2εm

1
log(k + 1)

The last step follows as k � 1/ε. Thus, at least m(1+10/ log(1/ε))(1−1/e)/ log(k+
1) − 2εm/ log(k + 1) ≥ m(1 − 1/e + 5/ log(1/ε))/ log(k + 1) contribution to
DCG must come from sets covered during [εk, k]. However, each such set can
contribute at most 1/(log(εk)) ≤ (1 + 2/ log(1/ε))/ log(k + 1). Thus, at least
m(1 − 1/e + 2/ log(1/ε) ≥ m(1 − 1/e + 2ε) sets must be covered during [εk, k],
implying the claim.

B Proof of Claim 2.2

Claim 2.2. For any 0 ≤ i ≤ n, after phase i, the number of sets covered by the
algorithm, i.e. |Ti+1|, satisfies

|Ti+1| ≥
i∑

j=0

(1− ej−i)|Oj |. (7)

Proof: We prove the lemma by induction. For i = 0, the inequality is trivially
true as the right hand side is 0. For i = 1, the inequality requires that |T2| ≥ (1−
1/e)|O0|. By definition, |T2| = |S0|+ |S1|. We will in fact show that |S0| ≥ |O0|.
This happens since S0 is exactly the number of sets satisfied at time 1 by the
greedy algorithm, and hence |S0| is the maximum number of sets any element
can satisfy. On the other hand, |O0| is also the number of sets that are satisfied
by the first element in Πopt. Let us assume that

|Ti+1| ≥
i∑

j=0

(1− ej−i)|Oj |

holds for i ≥ 1. We show that it also holds for i + 1, which will imply the result
by induction. Let Qi = O0 ∪ . . .∪Oi denote the union of all the sets covered by
the first 2i+1 − 1 elements in the ordering Πopt. Note that |Qi| =

∑i
j=0 |Oj |.

Now, Ai+1 is obtained by applying the greedy algorithm for the max k-
coverage problem with k = 2i+1 on the collection of sets S \ Ti+1. The optimum
solution to this particular max k-coverage problem has value at least |Qi\Ti+1| ≥
|Qi| − |Ti+1|, since one particular solution is the first 2i+1 − 1 elements of Πopt.
By the guarantee for the greedy algorithm for max k-coverage, it follows that

|Si+1| ≥
(

1− 1
e

)
·max(0, |Qi| − |Ti+1|). (8)

Thus, we have,

|Ti+2| = |Si+1|+ |Ti+1| ≥
(

1− 1
e

)
|Qi|+

1
e
|Ti+1|

=
(

1− 1
e

)  i∑
j=0

|Oj |

 +
(

1
e

)
|Ti+1|

≥
(

1− 1
e

)  i∑
j=0

|Oj |

 +
i∑

j=0

(
1
e

) (
1− ej−i

)
|Oj |

=
i+1∑
j=0

(
1− ej−(i+1)

)
|Oj |.

Here, the second step follows from (8), third step follows from the definition of
Qi, and the fourth step follows from the inductive assumption for i, implying
the claimed result.

C Proof of Lemma 2

Lemma 2. For any set S and any stage i such that ti ≥ t∗S , the probability that
k(S) elements from S are not picked in stage i is at most 1− 2/n2.
Proof: Consider any set S, and let Sg = {e ∈ S | ze,i ≥ 1/8 log2(n+1)}. By the
choice of pe,i in the rounding procedure, all elements in Sg are definitely marked
in stage i, and any element e ∈ S \Sg is independently marked with probability
8 log2(n + 1)ze,i. Thus, if |Sg| ≥ k(S), then clearly the lemma holds.

Hence, we consider the case when |Sg| < k(S). Recall that we are consid-
ering a set S and stage i such that t∗S ∈ [1, ti]; since t∗S was the last time t at
which y∗S,t ≤ 1

log(n+1) , it follows that y∗S,ti
> 1

log(n+1) . Hence, setting A = Sg,
constraint (6) implies that∑

e∈S\Sg

ze,i =
∑

e∈S\Sg

∑
t′≤ti

x∗et′ ≥ (k(S)− |Sg|) · y∗Sti
≥ 1

log(n + 1)
(k(S)− |Sg|).

Therefore, the expected number of elements from S \ Sg marked in stage i is∑
e∈S\Sg

8 log2(n + 1)ze,i ≥ 8 log(n + 1)(k(S)− |Sg|).

Since these elements are marked independently of each other, we can use the
following Chernoff bound [12] (Theorem 4.2): if X1, X2, . . . , Xn are independent
{0, 1}-valued random variables with X =

∑
i Xi, such that E[X] = µ, then

Pr[X < µ(1− β)] ≤ exp
(
−β2

2
µ

)
.

For our application, since we have µ ≥ 8 log(n+1)(k(S)−|Sg|) ≥ 8 log(n+1), we
can substitute β = 3

4 and bound the tail probability that fewer than (k(S)−|Sg|)
elements are marked from S \ Sg by

exp
(
− (3/4)2

2
· 8 ln(n + 1)

)
≤ 1/n2.

As the elements in Sg are always picked (unless Ai = ∅), it follows that the
probability that fewer than k(S) elements are marked from S is also at most
1/n2. Finally, by standard Chernoff bounds, the probability that Ai is set to ∅
in the last step of the algorithm is at most 1/n2.

