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Abstract

The Latent Block Model (LBM) designs in a same exercise a clustering of the rows and the columns of a
data array. Typically the LBM is expected to be useful to analyze huge data sets with many observations
and many variables. But it encounters several numerical issues with big data set: maximum likelihood is
jeopardized by spurious maxima and selecting a proper model is challenging since there are a lot of models
are in competition. In this communication, we analyze these numerical issues. In particular, we make use of
Bayesian inference to avoid spurious solutions and propose an efficient way to scan the model set. Moreover,
we advocate the exact Integrated Completed Likelihood (ICL) criterion to select a proper and consistent
LBM. The methods and algorithms will be ilustrated with pharmacovigilance data involving large arrays of
data.
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1. Introduction
Clustering is an essential tool to discover hidden structure and knowledge from data by detecting groups
of observations that are similar within a group and dissimilar from one group to another one. This is an
unsupervised learning method, as the group membership is not known and has to be jointly discovered with
the group characteristics. Mixture models is a flexible probabilistic approach to deal with clustering. A
finite parametric mixture model assumes that the observations come from K several distinct populations
called components, each one having is own distribution, but the group membership (which unit belongs to
which component) is unknown. A frequent assumption is that the component distributions belongs to the
same parametric family ϕ(x;α), so that the components only differ by a parameter value. Hence, the mixing
density is

f(x) =

K∑
k=1

πkϕ(x;αk)

where π1, . . . , πK are the mixing weights. When x ∈ Rd is multidimensional, the observations form a matrix
with n rows (the observations) and d columns (the variables). The challenge of modern data is now to learn
from data with large n and d, and the question is not only to cluster the observations, but also to cluster
simultaneously the observations and the variables, leading to a tremendous parsimonious data representation.
This is called co-clustering and has many applications in many fields such as recommendation systems (where
the rows are the customers and the columns the goods, and we want to cross groups of customers and groups
of goods), text mining (to co-cluster words and documents), genomics (to co-cluster genes and experimental
conditions) for example. As for clustering there are many ways to perform co-clustering, and we will focus
here on the latent block model (LBM), as it provides some challenging features on theoretical as well as
methodological aspects. We first present the model and describe keys features (estimation, consistency and
model selection). LBM is applied to deal with pharmacovigilance data. We propose a way to scan the model
set and extend MLBM to cluster simultaneously two distinct sets of variables observed on the same statistical
units

2. Latent Block Model



Figure 1: n×d = 450×600 observations (left) and their reorganization according to the underlying
structure in 4× 5 blocks (right)

The latent block model is a probabilistic model for co-clustering. It defines on a data matrix X = (xij) of n
rows and d columns a block clustering structure as the Cartesian product of a row partition z by a column
partition w with three main assumptions:

- row assignments (or labels) zi, i = 1, . . . , n, are independent from column assignments (or labels) wj ,
j = 1, . . . , d : p(z,w) = p(z)p(w);

- row labels are independent, with a common multinomial distribution: zi ∼M(1,π = (π1, . . . , πg)); in
the same way, column labels are i.i.d. multinomial variables: wj ∼M(1,ρ = (ρ1, . . . , ρm)).

- conditionally to row and column assignments (z1, . . . , zn) × (w1, . . . ,wd), the observed data Xij are
independent, and their (conditional) distribution ϕ(., α) belongs to the same parametric family, which
parameter α only depends on the given block:

Xij |{zikwj` = 1} ∼ ϕ(., αk`)

where zik is the indicator membership variable of whether row i belongs to row-group k and wj` is the
indicator variable of whether column j belongs to column-group `.

Hence, the complete parameter set is θ = (π,ρ,α), with α = (α11, . . . , αgm). With these assumptions, the
likelihood of the complete data is

p(x, z,w;θ) = p(z;θ)p(w,θ)p(x|z,w;θ) =
∏
i,k

πzik
k

∏
j,`

ρ
wj`

`

∏
i,j,k,`

ϕ (xij ;αk`)
zikwj`

The labels are usually unobserved, and the observed likelihood is obtained by marginalization over all the
label configurations:

p(x;θ) =
∑

z∈Z,w∈W

∏
i,k

πzik
k

∏
j,`

ρ
wj`

`

∏
i,j,k,`

ϕ (xij ;αk`)
zikwj`


LBM deals with matrix of homogeneous data, such as binary (Govaert and Nadif, 2008), Gaussian (Lomet,
2012), categorical (Keribin et al., 2015) or count (Govaert and Nadif, 2010) data. It involves a double missing
data structure z for rows and w for columns, and the observed likelihood can not factorize as a product of the
mixing density as for simple mixture models. This implies that the likelihood (and its logarithm) is rapidly
not tractable event for few observations and few blocks, as the marginalization involves kn × dm terms. Due
to this particularity, its study is very interesting, on a theoretical as well as a methodological point of view.

Estimation Recall first that the model is generically identifiable (identifiability up to a set a null measure):
this was proved the for binary and categorical data (Keribin et al., 2015), and can be easily extended for
distribution ϕ(x;α) whose simple mixtures are identifiable. Even if the observed likelihood is intractable for
LBM, the maximum likelihood estimation with the EM algorithm could be thought to be feasible, as it does
not involve the observed likelihood, but the complete which does not suffer the same difficulty. The E-step



requires to compute the expectation of the complete log-likelihood, conditionally to the observations and a
given current parameter value θ(c):

Q(θ|θ(c)) =
∑
i,k

s
(c)
ik log πk +

∑
j,`

t
(c)
j` log ρ` +

∑
i,j,k,`

e
(c)
i,j,k,` logϕ(xij ;αk`)

where
s
(c)
ik = P (zik = 1|θ(c),x), t

(c)
j` = P (wj` = 1|x; θ(c)), e

(c)
i,j,k,` = P (zikwj` = 1|x; θ(c)).

Unfortunately, computing s
(c)
ik , t

(c)
j` and e

(c)
i,j,k,` is again intractable, as it involves a marginalization that can

not be factorized. However, the estimation can be performed either with numerical approximations (such
as variational methods (VEM) imposing that the conditional joint distribution of the labels knowing the
observations factorizes), or with a Bayesian approach (VBayes algorithm or Gibbs sampling).
VEM (Govaert and Nadif, 2008) presents several drawbacks such as its sensibility to starting values or its
marked tendency to provide solutions with empty clusters, i.e. with fewer clusters than required after a
maximum a posteriori classification rule. A possible way to attenuate the dependence of VEM to its initial
values is to use a stochastic version of EM which incorporates a stochastic step between the E and M steps:
the missing data are simulated according to their current conditional distribution. But a Gibbs sampling
scheme is required to simulate the couple (z,w) as the joint conditional distribution cannot be exactly
computed. Hence, SEM-Gibbs is not increasing the log-likelihood at each iteration, but it generates an
irreducible Markov chain with a unique stationary distribution which is expected to be concentrated around
the ML parameter estimate.
If SEM-Gibbs can bring an answer for the initialization, the problem of empty clusters still remains. Keribin
et al. (2015) proposed to use Bayesian inference as a regularization tool for LBM and consider proper and
independent non informative prior distributions for categorical LBM. However, as VEM, V-Bayes algorithm
could be expected to be highly dependent on its initial values. Thus they recommended to initialize V-Bayes
with the solution derived from the Gibbs sampler, which is easy to implement with conjugate priors.

Consistency Now, what are the asymptotic properties of the maximum likelihood estimator (MLE) and
the variational estimator (VE)? This is a quite difficult theoretical question that has been recently solved.
This was first studied on the Stochastic Block Model (SBM) which is a LBM with the same units in rows and
columns, used to model graphs. In this case, there is only one set of latent variables z. Celisse et al. (2012)
proved in a seminal work that under the true parameter value, the conditional distribution of the assignments
of a binary SBM converges to a Dirac of the real assignments. At the price of the strong assumption of the
existence of an estimator of α converging at rate at least n−1, they obtained the consistency of MLE and
VE. Mariadassou and Matias (2015) presented a unified frame for LBM and SBM for observations coming
from an exponential family, but cannot get rid off the previous assumption for consistency. Bickel et al.
(2013) used a different approach: in the complete model where the labels are known, the consistency of the
MLE is immediate. In case of a binary SBM, they showed that this property can be transferred to the MLE.
Recently, Mariadassou et al. (2016) solved the consistency and the asymptotic normality of the MLE and
VE for observations coming from an exponential family.

Model selection It remains to discuss model selection for LBM to choose a relevant number of blocks.
This is an important challenge, especially for large data. BIC suffers of one drawback for LBM, as it needs
the computation of the log-likelihood, which can only be approximated and whose quality cannot be assessed.
On the other hand, the Integrated Completed Likelihood (ICL) criteria (Biernacki et al., 2000) defined as
the logarithm of the integrated complete likelihood

ICL = log p(x, z,w|g,m) = log

∫
p(x, z,w|θ; g,m)p(θ; g,m)dθ

is easily computed in exact and closed form using conjugate properties and is more appropriate for clustering
as it favors well separated components. It is then well adapted for model selection in this case and the
selected model has the maximum ICL. Notice that following Biernacki et al. (2000), the missing data (z,w)



are replaced by their most probable inferred values ẑ, ŵ.

3. An application
The pharmacovigilance system aims at detecting as soon as possible potential associations between some
drugs and adverse effects. An individual report consists in the list of prescribed drugs and observed effects.
They are collected in a data matrix where rows represent the individual reports and columns are partitioned in
two parts, one to report the drugs prescription and one to report the observed effects. The drug-columns are
indicator memberships of whether this drug was prescribed and the effect-columns are indicator memberships
of the presence of the effect. To give an idea, the World Health Organization data basis contained 3.7 millions
of reports in 2004.
Several explanatory methods of automatic signal generation have been developed for over twenty years based
on disproportionality measures see Marbac et al. (2016) for references. They are based on aggregated data
(contingency table of drugs and effects), which suppose some homogeneity in the individuals. But it is
reasonable to believe that the studied population is heterogeneous. Moreover, these matrices are so large
that some drugs and adverse effects must be selected beforehand. LBM on contingency table can be considered
in order to select subgroups of adverse effects and drugs with links.
The conditional density ϕ(x, α) for contingency table is Poisson, and following Govaert and Nadif (2010), the
parameter αk` for block (k, `) is written as αk` = µiνjγk` where µi denotes a row effect (two proportional
rows will be in the same group), νj a column effect and γk` an interaction for block (k, `). Moreover, some
identifiability conditions are needed: ∑

i

µi =
∑
j

νj =
∑
ij

xij .

This assures that E(
∑

j xij) = µi and E(
∑

i xij) = νj and naturally leads to estimate µi and νj beforehand
by

∑
i xij and

∑
j xij . Gibbs and V-Bayes algorithms are used with the following priors

π ∼ D(a, . . . , a), ρ ∼ D(a, . . . , a), λk` ∼ Γ(α, β), (1)

D(a, . . . , a) denoting a Dirichlet distribution and Γ(α, β) a Gamma distribution. The choice of hyperpa-
rameter values is important in Bayesian inference. Experiments on simulated data show that a = 4, as for
categorical data, has a beneficial effect on spurious solutions, and then is hold in the following. The choice
of α and β is more delicate. Simulations clearly advocate for δ = 1. All β ≤ 1 is also adequate. We then
choose δ = 1 and β = 0.01 to provide a distribution which is also weakly informative.

How to scan the model set ICL depends on a couple (g,m) and the set is much wider to explore than
in the simple standard mixture model. We then propose a forward algorithm (Robert et al., 2016) that we
call Bi-KM1. From a g×m partition, the (g+ 1)×m partition is analyzed. The algorithm is started from g
different initializations, each being defined by a random split in two parts of one of the g components. The
same is done for the g × (m + 1) partition, and the model with the best ICL is kept. Although this search
algorithm is sub-optimal, it is much more efficient that a random initialization on each model.
We compare it on simulated Poisson P(λ) count data with the greedy search (GS) of Wyse et al. (2014). In GS
algorithm, labels are initialized with high values of g and m. Then, it randomly selects a row and allocates it
to the row-class which improve ICL the most, taking into account the possible disappearance of a class. This
process is also independently performed on the columns. Thus, the algorithm empties gradually the classes
until convergence. Note that this procedure does not try to estimate the parameters of the underlying model
as Bi-KM1 does, but only tries to define a partition. Both methods use the same priors and advocate the same
hyperparameter values α and β, but have distinct preferences for a. For Bi-KM1, a = 4 avoids empty clusters
while a = 0.1 for GS facilitates it. We use both algorithms with their predilection values on simulated data
with different sizes (50× 50, 100× 100, 500× 500) and three degrees of separation (easy, medium, difficult).
In each cases, 100 matrices are generated. As GS is highly depending on the starting state, we take the best
result after 10 random initializations. On the other hand, thanks to the Gibbs initialization, Bi-KM1 does
not need to be initialized several times. For easy and medium cases, both algorithms are comparable, as
they output same ICL values. But for the difficult case, Bi-KM1 outperforms GS for big sizes while GS has
slightly better results for small data: this could be explained by the sensitivity to initialization of GS which
is more pregnant for bigger sizes.



Pharmacovigilance data Data collected between 2000 and 2010 by AFFSAPS 1, represents 219 340
individual reports and involves 2142 drugs and 4216 adverse effects. In a first attempt to run standard
explanatory methods, none of the reference couples (drugs, effects) already reported by the Observational
Medical Outcomes Partnership (OMOP) are detected, neither does Poisson LBM. This could be explained
by the fact that the reference set is not exhaustive, or by the weakness of the signal in the french database, or
by some co-prescription artefact. In order to reinforce the signal, we construct a reduced contingency table
with the individuals that only took one drug and have only one effect, discarding co-prescription artefact:
this represents around 20% of the reports and concerns 1482 drugs and 2239 adverse effects. ICL on LBM
Poisson selects 19 × 20 blocks. Signals detected by LBM on the complete contingency table are grouped in
blocks of the reduced contingency table with highest intensity parameter. However, OMOP reference signals
are not grouped in general in the same blocks.

4. Multiple Latent Block Model
The contingency table provides a summary of individual reports and a way to deal with large data, but
with limitations. A new trend is to directly proceed the individual data. For example, Marbac et al. (2016)
recently used logistic regression, but effect by effect. As so far, individual reports in pharmacovigilance are
not directly analyzed on the whole, especially because of the amount of data. This direct analysis could get
rid of the co-prescription artefact.
Individual data can be seen as a two binary matrices (one for the drugs, the other for the effects) sharing the
same row units. We propose to use a new approach that adapts a LBM model to co-cluster rows and columns
of two binary tables by imposing the same row clusters and call it Multiple Latent Block Model (MLBM).
Let note x = (xij)n×J the matrix of drugs (J different drugs), and y = (yik)n×K the matrix of the adverse
effects (K studied effects): xij = 1 whether individual i reports a prescribed drug j, 0 otherwise; yik = 1
whether individual i reports an adverse effect k, 0 otherwise. We define a latent structure of G row-groups,
H drug-groups, and L effect-groups and assume that:

- row zi, i = 1, . . . , n, drugs vj , j = 1, . . . , J and effects wk, k = 1, . . . ,K assignments are independent

- row labels are i.i.d. multinomial variables zi ∼ M(1,π); drug labels are i.i.d. multinomial variables
vj ∼M(1,ρ) and effect labels are i.i.d. multinomial variables wk ∼M(1, τ ).

- conditionally to row, drug and effect assignments (z,v,w), the observed data x are independent with
a (conditional) binary distribution ϕ which parameter only depends on the given block.

The parameter to estimate is θ = c(π,ρ, τ ,α,β) and MLBM has the following density:

p(x,y;θ) =
∑

z∈Z,v∈V,w∈W

∏
i,g

πzig
g

∏
j,h

ρvk`

h

∏
k,`

τwk`

`

∏
i,j,g,h

ϕ (xij ;αgh)
zigvjh

∏
i,k,g,`

ϕ (yik;βg`)
zigwk`


MLBM is generically identifiable and all the methodological principles (algorithms, ICL for model selection,
scan of the model set) can be easily extended to MLBM (Robert et al., 2015). We test on simulated data with
n = 20 000, J = 200,K = 400 and 300 reference signals (drug, advers effect). Several difficulties arise: (i) the
data are now sparse (98% of 0 in the AFFSAPS data) and the B(1, 1) prior for the binary parameter proposed
by Keribin et al. (2015) is not pertinent anymore. In fact, a B(2, 100) prior, which density mode is around
0.02, is much more adapted. (ii) the performances are affected by the data size and the three dimensions
of the model set. To make up for this problem, we propose a two steps analysis: (S1) we first use simple
Poisson LBM on the contingency table to extract a (Hmin, Lmin) couple for the number of drug-clusters and
effect-clusters that we can be thought to have also meaning in the individual representation. (S2) We then
use MLBM with starting model size (2, Hmin, Lmin). Assignments for the columns are initialized with results
of (S1) and a kmeans is performed to cluster the rows. Then, we run the extension of Bi-KM1 adapted for
three dimensions.
Result of (S1) gives (Hmin = 27, Lmin = 29) and we note that although the model generating the data is
not LBM, the algorithm tends to group signals in the same clusters. The highest intensity clusters own

1We warmly thank research team B3PHI from Inserm UMR 1181, Villejuif, to give us access to this data



signal proportion varying from 13% to 50%, while these proportions would be of 0.3% at random, so that the
concentration of signal is real in these particular blocks. (S2) Bi-KM1 selects the (G = 50, H = 32, L = 40)
model, with more groups for drugs and effects. We focus on couple of blocks of high intensity (high values
for αgh and βg`). They own generally only few drugs and effects in the corresponding groups, and are quasi-
systematically associated with signals. Moreover, the process tend to split individuals that took a drug with
effect from those who took the drug without effect. In case of real data, it could helps to define risk profile.

5. Conclusions
LBM uses a probabilistic approach to perform co-clustering, with well known properties and efficient algo-
rithms. We propose a new algorithm Bi-KM1 to scan for model selection, hence reducing time processing.
Dealing with french pharmacovigilance data, we test LBM on the summarized contingency table, then extend
LBM to cluster two distinct sets of variables to directly treat the individual reports. On simulated data of
20 000 reports, 200 drugs and 400 effects, MLBM give promising results. A challenging problem arises with
real individual data, as their size does not allow to read drug and effect matrices simultaneously. Methods
and algorithms must then be adapted to continue to take advantage of this model.
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