
TORSORS ON THE COMPLEMENT OF A SMOOTH DIVISOR

KĘSTUTIS ČESNAVIČIUS

Abstract. We complete the proof of the Nisnevich conjecture in equal characteristic: for a smooth
algebraic variety X over a field k, a k-smooth divisor D Ă X, and a reductive X-group G whose
base change GD is totally isotropic, we show that each generically trivial G-torsor on XzD trivializes
Zariski semilocally on X. In mixed characteristic, we show the same when k is a replaced by a
discrete valuation ring O, the divisor D is the closed O-fiber of X, and either G is quasi-split or G
is only defined over XzD but descends to a quasi-split group over FracpOq (a Kisin–Pappas type
variant). Our arguments combine Gabber–Quillen style presentation lemmas with excision and
reembedding dévissages to reduce to analyzing generically trivial torsors over a relative affine line.
We base this analysis on the geometry of the affine Grassmannian, and we we give a new proof for
the Bass–Quillen conjecture for reductive group torsors over Ad

R in equal characteristic. As for the
affine Grassmannian itself, we show that for totally isotropic G it is the presheaf quotient LG{L`G.
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1. The corrected statement of the Nisnevich conjecture and our main results

In [Nis89, Conjecture 1.3], Nisnevich proposed a common generalization of the Quillen conjecture
[Qui76, (2) on page 170] that had grown out of Serre’s problem about vector bundles on affine
spaces and of the Grothendieck–Serre conjecture [Ser58, page 31, Remarque], [Gro58, pages 26–27,
Remarques 3] about Zariski local triviality of generically trivial torsors under reductive groups. In
its geometric case, the Nisnevich conjecture predicts that, for a reductive group scheme G over a
smooth variety X over a field k and a k-smooth divisor D Ă X, every generically trivial G-torsor on
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XzD trivializes Zariski locally on X. Recent counterexamples of Fedorov [Fed22b, Proposition 4.1]
show that this fails for anisotropic G, so, to bypass them, one considers the following isotropicity
condition whose relevance for problems about torsors has been observed already in [Rag89].

Definition 1.1 ([Čes22a, Definition 8.1]). Let S be a scheme and let G be a reductive S-group scheme.
We say that G is totally isotropic at a point s P S if each factor rGi in the canonical decomposition

Gad
OS, s

–
ś

i
rGi with rGi :“ ResRi{OS, s

pGiq (1.1.1)

of [SGA 3III new, exposé XXIV, proposition 5.10 (i)] has a proper parabolic subgroup; here i is a type
of connected Dynkin diagrams, Ri is a finite étale OS, s-algebra, and Gi is an adjoint semisimple
Ri-group with simple geometric Ri-fibers of type i. If this holds for all s, then G is totally isotropic.

Intuitively, G is totally isotropic if its simple factors are isotropic. Recall from [SGA 3III new,
exposé XXVI, corollaire 6.12] that, since OS, s and each Ri are semilocal, it is equivalent to require
in Definition 1.1 that each rGi contains Gm,OS, s

as a subgroup, equivalently, each Gi contains an
Ri-fiberwise proper parabolic Ri-subgroup, equivalently, each Gi contains Gm,Ri as an Ri-subgroup.
For instance, every quasi-split, so also every split, group is totally isotropic, as is any torus.

With the total isotropicity in place, the Nisnevich conjecture becomes the following statement.

Conjecture 1.2 (Nisnevich). For a regular semilocal ring R, an r P R that is a regular parameter
in the sense that r R m2 for each maximal ideal m Ă R, and a reductive R-group scheme G such that
GR{prq is totally isotropic, every generically trivial G-torsor over Rr1r s is trivial, that is,

KerpH1pRr1r s, Gq Ñ H1pFracpRq, Gqq “ t˚u.

For instance, in the case when r is a unit, the total isotropicity condition holds for every reductive
R-group G and we recover the Grothendieck–Serre conjecture. The condition also holds in the
case when G is a torus, and this case follows from the known toral case of the Grothendieck–Serre
conjecture, see [Čes22b, Section 3.4.2 (1)]. In [Fed22b], Fedorov settled the Nisnevich conjecture in
the case when R contains an infinite field and G itself is totally isotropic. Other than this, some low
dimensional cases are known, see [Čes22b, Section 3.4.2]—for instance, the case when R is local of
dimension ď 3 and G is either GLn or PGLn is a result of Gabber [Gab81, Chapter I, Theorem 1].

We settle the Nisnevich conjecture in equal characteristic and in some mixed characteristic cases.

Theorem 1.3. Let R be a regular semilocal ring, let r P R be a regular parameter in the sense that
r R m2 for each maximal ideal m Ă R, and let G be a reductive Rr1r s-group. In the following cases,

KerpH1pRr1r s, Gq Ñ H1pFracpRq, Gqq “ t˚u,

in other words, in the following cases every generically trivial G-torsor over Rr1r s is trivial:

(1) (§8.2) if R contains a field and G extends to a reductive R-group G with GR{prq totally isotropic;

(2) (§5.4) if R is geometrically regular1 over a Dedekind subring O containing r and G either
lifts to a quasi-split reductive R-group or descends to a quasi-split reductive Or1r s-group.

1For a ring A, recall that an A-algebra B is geometrically regular if it is flat and the base change of each of its
A-fibers to any finite field extension of the corresponding residue field of A is regular, see [SP, Definition 0382]. For
instance, R could be a semilocal ring of a smooth algebra over a discrete valuation ring O with r as a uniformizer.
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The mixed characteristic case (2) is new already for vector bundles, that is, for G “ GLn. In contrast,
at least for local R, the vector bundle case of the equicharacteristic (1) is due to Bhatwadekar–Rao
[BR83, Theorem 2.5], with exceptions when the ground field is finite that have since been removed.
When r P Rˆ, Theorem 1.3 recovers the equal and mixed characteristic cases of the Grothendieck–
Serre conjecture settled in [FP15], [Pan20], [Čes22a], and we reprove these cases along the way.

The case of (2) in which G descends to an Or1r s-group but need not extend to a reductive R-group was
inspired by Kisin–Pappas [KP18, Section 1.4, especially, Lemma 1.4.6], who used such a statement
for some 2-dimensional R under further assumptions on G.

The geometric version of Theorem 1.3 (1) is the following statement announced in the abstract.

Theorem 1.4. For a field k, a smooth k-scheme X, a k-smooth divisor D Ă X, and a reductive
X-group scheme G such that GD is totally isotropic, every generically trivial G-torsor E over XzD
is trivial Zariski semilocally on X, that is, for every x1, . . . , xm P X that lie in a single affine open,
there is an affine open U Ă X containing all the xi such that E|UzD is trivial.

Theorem 1.4 follows by applying Theorem 1.3 (1) to the semilocal ring of X at x1, . . . , xm (built via
prime avoidance, see [SP, Lemma 00DS]) and spreading out. Even when X is affine, the stronger
statement that E extends to a G-torsor over X is false: for G “ GLn, this had been a question of
Quillen [Qui76, (3) on page 170] that was answered negatively by Swan in [Swa78, Section 2]. Even
for GLn, Theorem 1.4 typically fails if D is singular or if X is singular, see [Lam06, pages 34–35].

We use Theorem 1.3 to reprove the following equal characteristic case of the generalization of the
Bass–Quillen conjecture to torsors under reductive group schemes [Čes22b, Conjecture 3.6.1].

Theorem 1.5 (§9.1). For a regular ring R containing a field and a totally isotropic reductive R-group
scheme G, every generically trivial G-torsor over AdR descends to a G-torsor over R, equivalently,

H1
ZarpR,Gq

„
ÝÑ H1

ZarpAdR, Gq or, if one prefers, H1
NispR,Gq

„
ÝÑ H1

NispAdR, Gq.

The equivalence of the three formulations follows from the Grothendieck–Serre conjecture, more
precisely, by Theorem 1.3, a G-torsor over AdR is generically trivial, if and only if it is Zariski
locally trivial, if and only if it is Nisnevich locally trivial. The generic triviality assumption is
needed because, for instance, for every separably closed field k that is not algebraically closed,
there are nontrivial PGLn-torsors over A1

k, see [CTS21, Theorem 5.6.1 (vi)]. The total isotropicity
assumption is needed because of [BS17, Proposition 4.9], where Balwe and Sawant show that a
Bass–Quillen statement cannot hold beyond totally isotropic G. For earlier counterexamples to
generalizations of the Bass–Quillen conjecture beyond totally isotropic reductive groups, see [Par78]
and [Fed16, Theorem 3 (ii) (whose assumptions can be met thanks to Remark 2.6 (i))].

Theorem 1.5 was established by Stavrova in [Sta22, Corollary 5.5] by a different method, and in
the case when R contains an infinite field already in the earlier [Sta19, Theorem 4.4]. Prior to
that, the case when R is smooth over a field k and G is defined and totally isotropic over k was
settled by Asok–Hoyois–Wendt: they used methods of A1-homotopy theory of Morel–Voevodsky to
verify axioms of Colliot-Thélène–Ojanguren [CTO92] that were known to imply the statement, see
[AHW18, Theorem 3.3.7] for infinite k and [AHW20, Theorem 2.4] for finite k. As was explained in
[Li21], one could also check these axioms directly, without A1-homotopy theory. For regular R of
mixed characteristic, Theorem 1.5 is only known in sporadic cases, for instance, when G is a torus,
see [CTS87, Lemma 2.4], as well as [Čes22b, Section 3.6.4] for an overview.

We obtain Theorem 1.3 by refining the Grothendieck–Serre type strategies used in [Fed22b] and
[Čes22a]. In fact, we use the geometry of the affine Grassmannian GrG through self-contained inputs
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from the survey [Čes22b] that mildly generalized corresponding results of Fedorov from [Fed22a] to
establish the following new type of Grothendieck–Serre result that is valid over arbitrary base rings.

Theorem 1.6 (Theorem 4.5). For a reductive group G over a ring A, every G-torsor over a smooth
affine A-curve C that is trivial away from some A-finite Z Ă C trivializes Zariski semilocally on C.

Theorem 1.6, more precisely, its finer version given in Theorem 4.5, is our ultimate source of triviality
of torsors under reductive groups. Armed with it we quickly reprove the cases of the Grothendieck–
Serre conjecture that have been settled in [FP15], [Pan20], [Čes22a]: more precisely, we use Popescu
approximation and presentation lemmas in the style of Gabber–Quillen to reduce these cases to the
relative curve setting of Theorem 1.6, and in this way we dissect the overall argument into a part
that works over arbitrary rings and a part that is specific to regular rings.

As for the affine Grassmannian itself, Theorem 1.6 implies that GrG is simply the Zariski sheafification
of the quotient of the loop functor LG by the positive loop subfunctor L`G as follows, in other
words, that the étale or even fpqc sheafifications usually used to define GrG are overkills.

Theorem 1.7 (Corollary 4.6). For a reductive group G over a ring A, the affine Grassmannian
GrG agrees with the Zariski sheafification of the presheaf quotient LG{L`G, more precisely, if A is
semilocal, then no nontrivial G-torsor over A, equivalently, over AJtK, trivializes over Apptqq and

GrGpAq – GpApptqqq{GpAJtKq. (1.7.1)

To deduce the conclusions about the affine Grassmannian from the statement about torsors, see
the discussion in [Čes22b, Section 5.3.1]. Compare also with [Bac19, Proposition 14] for an earlier
variant of the Zariski sheafification claim that restricted to smooth A over a field and deduced
it from the Grothendieck–Serre conjecture. We do not know whether the Zariski sheafification is
needed for general G, in fact, for totally isotropic G we have the following finer result that improves
[Fed22a, Theorem 5] and simultaneously resolves [Čes22b, Conjecture 3.5.1] proposed by Ning Guo.

Theorem 1.8 (Theorem 2.1). Let G be a totally isotropic reductive group over a ring A.

(a) No nontrivial G-torsor over A1
A trivializes away from some A-finite closed subscheme Z Ă A1

A.

(b) No nontrivial G-torsor over A, equivalently, over AJtK, trivializes over Apptqq and

GpApptqqq “ GpArt˘1sqGpAJtKq. (1.8.1)

(c) The affine Grassmannian GrG agrees with the presheaf quotient LG{L`G and

GrGpAq – GpApptqqq{GpAJtKq – GpArt˘1sq{GpArtsq.

To deduce Theorem 1.8 (c) from (b), one again uses [Čes22b, Section 5.3.1] and the equality

GpArtsq “ GpArt˘1sq XGpAJtKq in GpApptqqq.

Theorem 1.8 (a) answers [Fed16, Question 2] because in op. cit. Fedorov already found counterex-
amples for the corresponding statement beyond totally isotropic reductive G. More precisely, in
[Fed16, Theorem 3 and what follows], he gave examples of regular local rings A, anisotropic reductive
A-groups G, and nontrivial G-torsors over A1

A that trivialize away from some A-(finite étale) closed
Z Ă A1

A. Special cases of Theorem 1.8 (a) were settled in [PSV15, Theorem 1.3], [Fed21, Theorem 2],
and [Čes22a, Proposition 8.4], see also [Čes22b, Section 3.5.2] for an overview.

Coming back to the Nisnevich conjecture itself, a key novelty of our approach is the following
extension result for G-torsors over smooth relative curves.

4



Theorem 1.9 (Proposition 7.3 and Theorem 6.1). Let R be a regular semilocal ring containing a
field and let G be a reductive R-group. For a smooth affine R-scheme C of pure relative dimension 1
and an R-(finite étale) closed Y Ă C such that GY is totally isotropic, every G-torsor E over CzY
that is trivial away from some R-finite closed Z Ă C extends to a G-torsor over C.

Roughly, extending a G-torsor to all of C in Theorem 1.9 corresponds to extending a G-torsor in
Theorem 1.3 (1) to all of R, in effect, to reducing the Nisnevich conjecture to the Grothendieck–Serre
conjecture—this is why Theorem 1.9 is crucial for us. Conversely, to reduce Theorem 1.3 (1) to
Theorem 1.9 we use a presentation lemma that extends its variants due to Quillen and Gabber:
we first use Popescu theorem to pass to the geometric setting of Theorem 1.4 and then show in
Lemma 8.1 that, up to replacing X by an affine open neighborhood of x1, . . . , xm, we can express X
as a smooth relative curve over some affine open of Ad´1k in such a way that D is relatively finite étale
and our generically trivial G-torsor over X is trivial away from a relatively finite closed subscheme.

As for Theorem 1.9, in §7 we present a series of excision and patching dévissages to reduce to when
C “ A1

R and CzY descends to a smooth curve defined over a subfield k Ă R. In this “constant” case,
we show that our G-torsor over CzY is even trivial by the “relative Grothendieck–Serre” theorem
of Fedorov from [Fed22a] (with an earlier version due to Panin–Stavrova–Vavilov [PSV15]) that
we reprove in Theorem 6.1: for every k-algebra W , no nontrivial G-torsor over Rbk W trivializes
over FracpRq bk W ; the total isotropicity assumption is crucial for this beyond the “classical” case
W “ Specpkq. As for the excision and patching techniques, we overcome known finite field difficulties
with novel versions of the Lindel style embedding in Proposition 3.4 and of Panin’s “finite field tricks”
in Lemma 3.6. The wide scope of these techniques makes our overall approach to Theorem 1.3 quite
axiomatic, and although we do not pursue this here, it would be interesting to have similar results
for other functors, for instance, for the unstable K1-functor studied by Stavrova and her coauthors,
compare, for instance, with [Sta22], [Sta19] and earlier articles cited there.

1.10. Notation and conventions. All the rings we consider are commutative and unital. For a
point s of a scheme (resp., for a prime ideal p of a ring), we let ks (resp., kp) denote its residue
field. For a global section s of a scheme S, we write Sr1s s Ă S for the open locus where s does not
vanish. For a semilocal regular ring R, we say that an r P R is a regular parameter if r R m2 for every
maximal ideal m Ă R. For a ring A, we let FracpAq denote its total ring of fractions. For a parabolic
subgroup P of a reductive group scheme G, we let RupP q denote its unipotent radical constructed in
[SGA 3III new, exposé XXVI, proposition 1.6 (i)]. We say that a torus T over a scheme S is isotrivial
if it splits over some finite étale cover over S, and that this condition always holds if S is locally
Noetherian and geometrically unibranch (in the sense that the map from the normalization of Sred
to S is a universal homeomorphism), see [SGA 3II, exposé X, théorème 5.16], or if T is of rank ď 1.

Acknowledgements. This article was inspired by the recent preprint [Fed22b], in which Roman
Fedorov settled Theorem 1.3 (1) in the case when R contains an infinite field and G is totally
isotropic. I thank him for a seminar talk on this subject and for helpful correspondence. I thank
Alexis Bouthier, Elden Elmanto, Ofer Gabber, Arnab Kundu, Shang Li, and Anastasia Stavrova for
helpful conversations or correspondence, especially, Ofer Gabber for astute remarks during seminar
talks. This project has received funding from the European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation programme (grant agreement No. 851146).

2. Torsors over A1
A via the affine Grassmannian

Our eventual source of triviality of torsors is the following general result whose part (a) was conjectured
in [Čes22b, Conjecture 3.5.1] and generalizes [Fed22a, Theorem 5] along with several earlier results
in the literature, and whose part (b) was suggested by results from [BČ22]. We ultimately deduce it

5



from geometric properties of the affine Grassmannian GrG and from the unramified nature of the
Whitehead group, both of which come through references to the survey [Čes22b].

Theorem 2.1. Let A be a ring, let G be a totally isotropic reductive A-group scheme, and let d ą 0.

(a) Every G-torsor over AdA that is trivial away from some A-finite closed subscheme is trivial,
more generally, every G-torsor over AdA that reduces to an RupP q-torsor away from some
A-finite Z Ă AdA for some parabolic pAdAzZq-subgroup P Ă GAd

AzZ
is trivial.

(b) No nontrivial G-torsor over A, equivalently, over AJtK, trivializes over Apptqq.

(c) Letting Attu denote the t-Henselization of Arts, we have

GpApptqqq “GpArt˘1sqGpAJtKq, GpAttur1t sq “ GpArt˘1sqGpAttuq,

GppArts1`tArtsqr
1
t sq “ GpArt˘1sqGpArts1`tArtsq.

Remarks.

2.2. We state Theorem 2.1 for any d ą 0, but one should keep focused on its main case of interest
d “ 1. Indeed, for d ą 1, the first part of Theorem 2.1 (a) is an immediate consequence of
[EGA IV4, Proposition 19.9.8] and holds for any affine A-group G. Similar remarks apply to
other results below: the key case to focus on is always that of a relative curve when d “ 1.

2.3. As we already mentioned in the introduction, Theorem 2.1 (a) is sharp in that it fails if the
reductive A-group G is no longer totally isotropic, see [Fed16, Theorem 3 and what follows].

We recall from [Čes22b, Section 3.5.2] that Theorem 2.1 (a) was known when G is either semisimple
simply connected, or split, or a torus, and from [BČ22, Theorems 2.1.24 and 3.1.7] that Theorem 2.1 (b)
was known when G is either a pure inner form of GLn or a torus. For a general totally isotropic
G, we first show in Lemma 2.5 (b) that a torsor over A1

A that is trivial away from some A-finite
Z Ă A1

A trivializes after pulling back along any map A1
A Ñ A1

A given by t Ñ tm for a sufficiently
divisible m. For this, we follow Fedorov’s strategy from [Fed22a] that is based on the geometry of the
affine Grassmannian. The latter enters through (self-contained) citations to the survey [Čes22b] that
mildly generalized Fedorov’s steps. We will also use the following general form of Quillen patching.

Lemma 2.4 (Gabber, see [Čes22b, Corollary 5.1.5 (b)]). For a ring A and a locally finitely presented
A-group algebraic space G, a G-torsor (for the fppf topology) over AdA descends to a G-torsor over A
if and only if it does so Zariski locally on SpecpAq. �

Lemma 2.5. Let A be a ring, let G be a totally isotropic reductive A-group scheme, and let E be a
G-torsor over A1

A that is trivial away from some A-finite closed subscheme Z Ă A1
A.

(a) If, for some extension of E to a G-torsor rE over P1
A obtained by glueing E with the trivial

torsor over P1
AzZ and for every prime ideal p Ă A, the Gad-torsor over P1

kp
induced by rE lifts

to a generically trivial pGadqsc-torsor over P1
kp
, then E is trivial.

(b) For any m ą 0 divisible by the A-fibral degrees of the isogeny pGadqsc Ñ Gad, the pullback of
E along any finite flat map A1

A Ñ A1
A of degree m that extends to a map P1

A Ñ P1
A is trivial.

Proof. In (b), we extend E to a G-torsor rE over P1
A as in (a) and consider the pullback of this

extension under our map P1
A Ñ P1

A. By [Čes22b, Lemma 5.3.5] (or [Fed22a, Proposition 2.3]), the
choice of m ensures that the fibral condition of (a) holds for this pullback, so (b) follows from (a).

6



In (a), it suffices to show that both E and the restriction of rE to the complementary affine line
P1
Aztt “ 0u descend to G-torsors over A: both of these descents will agree with the restriction of rE

to t “ 1, which will agree with the restriction of rE to t “ 8 and hence be trivial, and then E will
also be trivial. By Quillen patching of Lemma 2.4, for the descent claim we may replace A by its
localization at a maximal ideal to reduce to the case of a local A.

Once A is local, we will directly show that both E and the restriction of rE to P1
Aztt “ 0u are

trivial. For this, we first show that we may modify Z so that it does not meet t “ 0. Namely,
if the residue field k of A is infinite, then there is some s P pA1

AzpZ Y tt “ 0uqqpAq and, by
[Čes22b, Proposition 5.3.6] (which uses the total isotropicity assumption, the fibral assumption on rE,
and is based on geometric input about the affine Grassmannian in the style of [Fed22a, Theorem 6]),
the restriction of rE to P1

Azs is a trivial G-torsor, so that we may replace Z by s to arrange the
desired Z X tt “ 0u “ H. In contrast, if the residue field k of A is finite, then there is some large n
such that A1

kzpZk Y tt “ 0uq contains a finite étale subscheme y that is the union of a point valued
in the field extension of k of degree n and a point valued in the field extension of k of degree n` 1.
Both of these components of y are cut out by separable monic polynomials with coefficients in k,
so y lifts to an A-(finite étale) closed subscheme Y Ă A1

AzpZ Y tt “ 0uq that is a disjoint union of
an A-(finite étale) closed subscheme of degree n and an A-(finite étale) closed subscheme of degree
n` 1. In particular, both Opnq and Opn` 1q restrict to trivial line bundles on P1

AzY , and hence so
does Op1q. Thus, by [Čes22b, Proposition 5.3.6] once more, rE is trivial on P1

AzY , to the effect that
in the case when k is finite we may replace Z by Y to again arrange that Z X tt “ 0u “ H.

Once our Z Ă A1
A does not meet tt “ 0u, it suffices to apply [Čes22b, Proposition 5.3.6] twice to

conclude that rE restricts to the trivial torsor both on P1
Aztt “ 8u and on P1

Aztt “ 0u, as desired. �

2.6. Proof of Theorem 2.1. We have a ring A and a totally isotropic reductive A-group G. In
(a), we have a G-torsor E over AdA that reduces to an RupP q-torsor away from an A-finite closed
subscheme Z Ă AdA for some parabolic pAdAzZq-subgroup P Ă GAd

AzZ
, and we need to show that E

is trivial. For this it suffices to show that its pullback under any section s P AdApAq is trivial: indeed,
as Gabber pointed out, by applying this after base change to the coordinate ring Arts of A1

A and to
the “diagonal” section of A1

Arts Ñ SpecpArtsq, we would get that E itself is trivial. Any A-point s of
AdA factors through some Ad´1A -point, so we may replace A by Art1, . . . , td´1s to reduce to d “ 1. In
the case d “ 1, since the coordinate ring of Z is a finite A-module, some monic polynomial in Arts
vanishes on Z, so we may replace Z by this vanishing locus to arrange that A1

AzZ be affine. The
advantage of this is that then [SGA 3III new, exposé XXVI, corollaire 2.2] ensures that E is even
trivial over A1

AzZ, in other words, we have reduced to the case when d “ 1 and the parabolic P is G
itself. We then change variables on A1

A to transform s into the origin t “ 0. This makes s lift to an
A-point along every map A1

A Ñ A1
A given by t ÞÑ td. In particular, we may pull back along such a

map for a sufficiently divisible d and apply Lemma 2.5 (b) to conclude that s˚pEq is trivial.

For (b), we first recall from [BČ22, Theorem 2.1.6] that pullback along t ÞÑ 0 is a bijection between the
sets of isomorphism classes of G-torsors over AJtK and over A. Thus, we need to show that every G-
torsor over AJtK that trivializes over Apptqq is trivial. However, patching of [BČ22, Lemma 2.2.11 (b)]
(already of Lemma 3.8 below if AJtK is Arts-flat) ensures that we may glue such a G-torsor over
AJtK with the trivial G-torsor over Art, t´1s to descend it to a G-torsor over A1

A that trivializes over
Gm,A. It then suffices to apply part (a), according to which this descended G-torsor is trivial.
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For (c), it suffices to note that if one of the displayed equalities was only a proper inclusion, then we
could use the same patching as in the proof of (b) to produce a nontrivial G-torsor over A1

A that
trivializes over Gm,A. This would contradict the already settled part (a). �

3. Reembeddings into A1
A

To progress from torsors over the affine line A1
A treated in §2 to those over an arbitrary smooth

relative A-curve C in §4, we aim to build an étale map C Ñ A1
A that would excisively embed a given

A-finite closed subscheme Z Ă C into A1
A. We build such excisive reembeddings in this section, and

to accommodate for their construction we begin by first reembedding Z itself.

Proposition 3.1. For a semilocal ring A, a finite A-scheme Z, a closed subscheme Y Ă Z, and
compatible closed immersions ιY : Y ãÑ AdA and ιm : Zkm ãÑ Adkm for every maximal ideal m Ă A and
d ą 0, there is a closed immersion ι : Z ãÑ AdA over A that extends the fixed ιY and ιm.

Proof. Let rA be the coordinate ring of Z. Since the closed immersions ιY and the ιm are compatible,
there are a1, . . . , ad P rA such that ai on each Zkm (resp., on Y ) is the ιm-pullback (resp., ιY -pullback)
of the i-th standard coordinate of Adkm (resp., of AdA). By sending the i-th standard coordinate of AdA
to ai we obtain a map ι : Z Ñ AdA. To check that this ι is our desired closed immersion it suffices to
apply the Nakayama lemma [SP, Lemma 00DV] and to note that each ιm is a closed immersion. �

To apply Proposition 3.1 effectively, we need a practical criterion for the existence of the closed
immersions ιm. For this, we first have to wrestle with the following finite field obstruction.

Definition 3.2. For a ring A, a quasi-finite A-scheme Z, and an A-scheme X, there is no finite field
obstruction to embedding Z into X if for each maximal ideal m Ă A with km finite,

#tz P Zkm | rkz : kms “ mu ď #tz P Xkm | rkz : kms “ mu for every m ě 1. (:)

In practice, Z occurs as a closed subscheme of a smooth affine A-scheme, so the following lemma gives
an applicable criterion for the existence of the closed immersions ιm : Zkm ãÑ Adkm in Proposition 3.1.

Lemma 3.3. For a finite scheme Z over a field k and a nonempty open U Ă Adk with d ą 0, there
is a closed immersion ι : Z ãÑ U if and only if Z is a closed subscheme of some smooth k-scheme C
of pure dimension d and there is no finite field obstruction to embedding Z into U , in which case we
may choose ι to extend any fixed embedding ιY : Y ãÑ U of any closed subscheme Y Ă Z.

Proof. The ‘only if’ is clear, so we fix closed immersions Z Ă C and ιY as in the statement and
assume that there is no finite field obstruction. We may build ι one connected component of Z at a
time and shrink U at each step, so we may assume that Z is connected with unique closed point z.

In the case when the extension kz{k is separable, [EGA IV4, proposition 17.5.3] and the invariance of
the étale site under nilpotents ensure that the n-th infinitesimal neighborhood of z in C is isomorphic
to Specpkzrx1, . . . , xds{px

n`1
1 , . . . , xn`1d qq over k. In particular, this neighborhood does not depend

on C and we may extend any fixed embedding z ãÑ U , which exists by the assumption on the finite
field obstruction, to a similar embedding of the n-th infinitesimal neighborhood of Z in C compatibly
with ιY . This suffices because Z lies in this n-th infinitesimal neighborhood for every large enough n.

In the case when kz is infinite and Y “ H, we use [Čes22b, Proposition 4.1.4] (whose proof uses a
presentation theorem similar to Lemma 8.1). By loc. cit., there is an étale map f : C Ñ Adk such that
kfpzq

„
ÝÑ kz. In particular, since étale sites are insensitive to nilpotents, f embeds Z as a closed
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subscheme of Adk. To force Z land in U , we note that since kz is infinite, so is k, and for infinitely
many changes of coordinates t1 ÞÑ t1 ` α1, . . . , td ÞÑ td ` αd with αi P k the image of Z will lie in U .

In the remaining case when kz (equivalently, k) is infinite and Y ‰ H, it suffices to show that the
given closed immersion ιY : Y ãÑ U extends to a closed immersion of the square-zero infinitesimal
neighborhood εY of Y in C: by iterating this with Y replaced by εY and eventually restricting to Z,
we will obtain the desired ι. By deformation theory, more precisely, by [Ill05, Theorem 8.5.9 (a)],
the k-morphisms εY Ñ U that restrict to ιY are parametrized by some affine space ANk . Since εY
is k-finite, the Nakayama lemma [SP, Lemma 00DV] ensures that the locus parametrizing those
εY Ñ U that are closed immersions is an open V Ă ANk . Moreover, V ‰ H: indeed, we may check
this after base change to any field extension of k, and a suitable such base change reduces us to the
already settled case when kz{k is separable. Since k is infinite and V is nonempty, V pkq ‰ H. Any
k-point of V corresponds to a sought closed immersion εY ãÑ U that restricts to ιY . �

To transform Proposition 3.1 into a statement that we will use for patching, we now extend
[Čes22a, Lemma 6.3] (so also earlier versions due to Panin and Fedorov, see loc. cit.) to arrange that
the closed immersion ι : Z ãÑ AdA built there be excisive as follows.

Proposition 3.4. Let A be a semilocal ring, let U Ă AdA with d ą 0 be an A-fiberwise nonempty
open, and let Z be a finite A-scheme.

(a) There is a closed immersion ι : Z ãÑ U iff there is no finite field obstruction to embedding Z
into U and Z is a closed subscheme of some A-smooth affine scheme C of relative dimension d.

(b) If the conditions of (a) hold, then ι may be chosen to be excisive: then there are an affine open
D Ă C containing Z and an étale A-morphism f : D Ñ U that fits into a Cartesian square

Z �
�

//

„

��

D

f

��

Z 1 �
�

// U,

(3.4.1)

in particular, such that f embeds Z as a closed subscheme Z 1 Ă U ; for every A-finite closed
subscheme Y Ă Z and an embedding ιY : Y ãÑ U , there are D and f as above with f |Y “ ιY .

Proof. For the ‘only if’ in (a), it suffices to note that if there is a closed immersion ι : Z ãÑ U , then,
by Proposition 3.1, there is also a closed immersion Z ãÑ AdA. Thus, we focus on the ‘if’ in its
stronger form (b). In particular, we fix an embedding Z Ă C as in (a) and we let εZ Ă C be the
first infinitesimal neighborhood of Z in C, so that εZ is also finite over A.

By Lemma 3.3 and Proposition 3.1, there is a closed immersion rι : εZ ãÑ U that extends the
fixed ιY . By lifting the rι-pullbacks of the standard coordinates of AdA, we may extend rι to an
A-morphism rf : C Ñ AdA. By construction, the a priori open locus of C where rf is quasi-finite (see
[SP, Lemma 01TI]) contains the points of Z. Thus, since Z has finitely many closed points, we may
use prime avoidance [SP, Lemma 00DS] to shrink C around Z to arrange that rf is quasi-finite. The
flatness criteria [EGA IV2, Proposition 6.1.5] and [EGA IV3, Corollaire 11.3.11] then ensure that rf is
flat at the points of Z, so, by construction, rf is even étale at the points of Z. Consequently, we may
shrink C further around Z to arrange that rf is étale and factors through U . A section of a separated
étale morphism, such as rf´1p rfpZqq Ñ rfpZq, is an inclusion of a clopen subset, so, by shrinking C
around Z once more, we arrange that Z “ rf´1p rfpZqq. This equality means that the square (3.4.1)
is Cartesian, so, granted all the shrinking above, it remains to set D :“ C and rf :“ f . �
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The following corollary is useful for embedding a finite étale Z into U without an ambient scheme C.

Corollary 3.5. For a semilocal ring A and an A-fiberwise nonempty open U Ă AdA with d ą 0, an
A-(finite étale) scheme Z embeds into U if and only if there is no finite field obstruction to it.

Proof. The ‘only if’ is clear. For the ‘if,’ by Proposition 3.4 (a), it is enough to embed Z into AdA, so
we may assume that U “ AdA. It then suffices to show that Z – SpecpA1q with an A1 that may be
generated by d elements as an A-algebra. Thus, since A1 is a finite A-module and A is semilocal, the
Nakayama lemma [SP, Lemma 00DV] allows us to replace A by the product of the residue fields of
its maximal ideals, so we may assume that A is a field k. In this case, Z is a disjoint union of spectra
of finite separable field extensions k and, since there is no finite field obstruction to embedding Z
into Adk, such an embedding exists by the primitive element theorem. �

To bypass the finite field obstruction in practice, we will modify Z via the following lemma. It extends
[Čes22a, Lemma 6.1] (so also earlier versions by Panin) and is built on Panin’s “finite field tricks.”

Lemma 3.6. Let A be a semilocal ring, let Z be a quasi-finite, separated A-scheme, let Y Ă Z be an
A-finite closed subscheme, and let X be an A-scheme such that for every maximal ideal m Ă A some
closed subscheme of Xkm is of finite type over km, positive dimensional, and geometrically irreducible.

(a) There is a finite étale surjection rZ � Z such that there is no finite field obstruction to
embedding rZ into X, moreover, for every large N ą 0 we may find such a rZ of the form
rZ0 \ rZ1 with rZi – SpecpOZrts{pfiptqqq� Z surjective and fi monic of constant degree N ` i.

(b) Fix any sufficiently divisible n ě 0 and suppose that Y “ Y0 \ Y1 such that there is no finite
field obstruction to embedding Y0 into X. Then (a) holds with the requirement that

rY :“ Y ˆZ rZ is a disjoint union rY “ rY0 \ rY1

such that rY0
„
ÝÑ Y0 and each connected component of rY1 is a scheme over a finite Z-algebra

B each of whose residue fields k of characteristic p | n satisfies

#k ą n ¨ degp rZ{Zq.

Part (b) is a critical statement that we will use in §7 to bypass finite field difficulties of [Fed22b],
and a typical case is when Y “ Y0 “ SpecpAq is an A-rational point of Z. To be clear, in (b) the
Z-algebra B depends on the connected component of rY1 in question.

Proof. We may replace Z by any A-finite scheme containing Z as an open, so we use the Zariski Main
Theorem [EGA IV4, Corollaire 18.12.13] to assume that Z “ SpecpA1q for an A-finite A1. To explain
the role of the assumption on X, recall that by the Weil conjectures [Poo17, Theorem 7.7.1 (ii)], it
implies that for every m ą 0, every maximal ideal m Ă A with km finite, and every large d ą 0,

tz P Xkm | rkz : kms “ du ě m. (3.6.1)

In (a), we let N ą 2 be sufficiently large and choose the following monic polynomials: for each
closed point z P Z with kz finite (resp., infinite), a monic fzptq P kzrts that is irreducible of degree N
(resp., that is the product of N distinct monic linear polynomials). We let f0ptq P A1rts be a monic
polynomial that simultaneously lifts all the fzptq, and we define a monic f1ptq P A1rts analogously
with N replaced by N ` 1. Granted that N is large enough, by (3.6.1), the resulting rZi settle (a).

In (b), to satisfy the “sufficiently divisible” requirement it suffices to make sure that n is divisible by
all the positive residue characteristic of A. Granted this, for each N ą 2 we choose
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‚ an fY0ptq P Zrts that is the product of t and a monic polynomial of degree N ´ 1 whose
reduction modulo every prime p | n is irreducible;

‚ a monic fY1ptq P Zrts of degree N whose reduction modulo every prime p | n is irreducible;

‚ for each closed point z P Z not in Y with kz finite (resp., infinite), an fzptq P kzrts that is
irreducible of degree N (resp., that is the product of N distinct monic linear polynomials).

We write Yi “ SpecpA1iq and view fYiptq as an element of A1irts. Since Y and the closed points of
Z not in Y form a closed subscheme of Z, there is a monic polynomial f0ptq P A1rts whose image
in A1irts (resp., in kzrts for each closed point z P Z not in Y ) is fYiptq (resp., fzptq). With the
resulting rZ0 defined by this f0ptq as in (a), let rY0 be component of Y0 ˆZ rZ0 cut out by the factor t
of fY0ptq to arrange that rY0

„
ÝÑ Y0. By the choice of the fYiptq, each connected component of the

complement of rY0 in Y ˆZ rZ0 is an algebra over some finite Z-algebra B each of whose residue fields
k of characteristic p ą 0 with p | n has degree either N ´ 1 or N over Fp.

We repeat the construction with N replaced by N ` 1, except that now we let fY0ptq P Zrts be a
monic polynomial of degree N `1 whose reduction modulo every prime p | n is irreducible, to build a
monic f1ptq P A1rts of degree N `1. For the resulting rZ1, by construction, each connected component
of Y ˆZ rZ1 is an algebra over some finite Z-algebra B each of whose residue fields k of characteristic
p ą 0 with p | n has degree N ` 1 over Fp. Overall, with the resulting rY1 complementary to rY0,
every connected component of rY1 is an algebra over some finite Z-algebra B each of whose residue
fields k of characteristic p | n has degree N ´ 1, N , or N ` 1 over Fp. For large N , such a k satisfies

#k ą nNpN ` 1q “ n ¨ degp rZ{Zq.

By construction, the number of closed points of rZ not in rY0 with a finite residue field is bounded as
N grows and the degree of the residue field of every such closed point over the corresponding Fp is
ě εN for some ε ą 0 (that depends on the degrees of kz over the Fp, but not on N). In particular,
for large N , by (3.6.1), there is no finite field obstruction to embedding rZ into X. �

Remark 3.7. The A-finite Z that is to be modified as in Lemma 3.6 to avoid the finite field
obstruction to embedding it into X often occurs as a closed subscheme of a smooth affine A-scheme
C, and it is useful to lift the resulting rZ � Z to a finite étale cover rC � D of an affine open
neighborhood D Ă C of Z. Since the rZi are explicit, this is possible to arrange: it suffices to lift
each fipT q to a monic polynomial with coefficients in the coordinate ring of the semilocalization of
C at the closed points of Z (built via prime avoidance [SP, Lemma 00DS]) and to spread out.

Throughout this article, we will analyze torsors that are trivial away from a closed subscheme Z. For
this, the following basic glueing technique of Moret-Bailly [MB96] (with a more restrictive version
implicit already in [FR70, Proposition 4.2]) will let us take advantage of excisive squares like (3.4.1).

Lemma 3.8 ([Čes22b, Proposition 4.2.1]). For a scheme S, a closed subscheme Z Ă S that is locally
cut out by a finitely generated ideal, an affine, flat map f that fits into a Cartesian square

Z �
�

//

„

��

S

f
��

Z 1 �
�

// S1
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and embeds Z as a closed subscheme Z 1 Ă S1 (so Z – Z 1 ˆS1 S by the Cartesianness requirement),
and a quasi-affine, flat, finitely presented S1-group G, base change induces an equivalence of categories

tG-torsors over S1u „
ÝÑ tG-torsors over Su ˆtG-torsors over SzZu tG-torsors over S1zZ 1u,

in particular, a G-torsor over S descends to S1 if and only if it does so away from Z 1. �

Remark 3.9. If the flat map f is locally of finite presentation, then the excisive condition on Z
and Z 1 implies that f is étale at the points of Z. This means that it then induces an isomorphism
between the formal completion of S along Z and that of S1 along Z 1.

4. Grothendieck–Serre for smooth relative curves over arbitrary rings

We use the reembedding techniques discussed above to present a Grothendieck–Serre phenomenon
over arbitrary base rings: in Theorem 4.5 we show that torsors under reductive groups over smooth
relative curves are Zariski semilocally trivial as soon as they are trivial away from some relatively
finite closed subscheme. To approach this beyond constant G, we first establish Lemma 4.3 about
equating reductive groups, which is a variant of [PSV15, Theorem 3.6] of Panin–Stavrova–Vavilov
and combines ideas from [Čes22a, Lemma 5.1] with those from the survey [Čes22b, Chapter 6].

Definition 4.1 ([Čes22b, (‹) in the beginning of Section 6.2]). For a ring A and an ideal I Ă A, we
consider the following property of a set-valued functor F defined on the category of A-algebras:

for every x P F pA{Iq, there are a faithfully flat, finite, étale A-algebra rA,

an A{I-point a : rA� A{I, and an rx P F p rAq whose a-pullback is x.
(‹)

Remark 4.2. Let f : F Ñ F 1 be a map of functors on the category of A-algebras and, for a
y P F 1pAq, let Fy Ă F denote the f -fiber of y. If F 1 has property (‹) with respect to I Ă A and,
for every faithfully flat, finite, étale A-algebra rA and every y P F 1p rAq, the fiber pF |

rA
qy has property

(‹) with respect to any ideal rI Ă rA with rA{rI – A{I, then F itself has property (‹) with respect to
I Ă A. This straight-forward dévissage is useful in practice for dealing with short exact sequences.

Lemma 4.3. For a semilocal ring A, an ideal I Ă A, reductive A-groups G and G1 that on geometric
A-fibers have the same type and whose maximal central tori radpGq and radpG1q are isotrivial,
maximal A-tori T Ă G and T 1 Ă G1, and an A{I-group isomorphism

ι : GA{I
„
ÝÑ G1A{I such that ιpTA{Iq “ T 1A{I ,

there are a faithfully flat, finite, étale A-algebra rA equipped with an A{I-point a : rA� A{I and an
rA-group isomorphism rι : G

rA

„
ÝÑ G1

rA
whose a-pullback is ι and such that rιpT

rA
q “ T 1

rA
.

Proof. By passing to connected components, we may assume that SpecpAq is connected, so that the
types of the geometric fibers of G and G1 are constant. The claim is that the functor

X :“ IsomgpppG,T q, pG
1, T 1qq

that parametrizes those group scheme isomorphisms between base changes of G and G1 that bring
T to T 1 has property (‹) with respect to I Ă A. By [SGA 3III new, exposé XXIV, corollaires 1.10
et 2.2 (i)], the normalizer NGadpT adq of the A-torus T ad Ă Gad induced by T acts freely on X and,
thanks to the assumption about the geometric fibers of G and G1, the quotient

X :“ X{NGadpT adq
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is a faithfully flat A-scheme that becomes constant étale locally on A. We claim that X has property
(‹) with respect to I Ă A, more generally, that each quasi-compact subset of X is contained is some
A-(finite étale) clopen subscheme of X. The advantage of this last claim is that it suffices to argue
it after base change along any finite étale cover of A. Thus, we may combine our assumption on
radpGq and radpG1q with [SGA 3III new, exposé XXIV, théorème 4.1.5] to assume that both G and G1
are split. In this case, however, [SGA 3III new, exposé XXIV, théorème 1.3 (iii) et corollaire 2.2 (i)]
ensure that X is a constant A-scheme, so the claim is clear.

With the property (‹) of X in hand, by Remark 4.2, we may replace A by a finite étale cover to
reduce to showing that every NGadpT adq-torsor has property (‹). However, NGadpT adq is an extension
of a finite étale A-group scheme by T ad (see, for instance, [Čes22b, Section 1.3.2]), so we may repeat
the same reduction based on Remark 4.2 and be left with showing that every T ad-torsor has property
(‹) with respect to I Ă A. This, however, is a special case of [Čes22b, Corollary 6.3.2] (based on
building an equivariant projective compactification of the A-torus T ad using toric geometry). �

Remark 4.4. Lemma 4.3 continues to hold if instead of the maximal A-tori T Ă G and T 1 Ă G1,
the groups G and G1 come equipped with fixed quasi-pinnings extending Borel A-subgroups B Ă G
and B1 Ă G1, and if ι and rι are required to respect these quasi-pinnings, see [Čes22a, Lemma 5.1].

We are ready for the following promised Grothendieck–Serre type result over arbitrary base rings.

Theorem 4.5. Let A be a ring, let B be an A-algebra, let C be a smooth affine A-scheme of pure
relative dimension d ą 0, let G be a reductive pCbABq-group scheme that lifts to a reductive C-group
rG whose maximal central torus radp rG q is isotrivial Zariski semilocally on C (resp., that descends to
a reductive B-group G), and let P Ă G be a parabolic pC bA Bq-subgroup that lifts to a parabolic
C-subgroup ĂP Ă rG (resp., that descends to a parabolic B-subgroup P Ă G). Suppose either that

(i) B “ A; or that

(ii) G is totally isotropic.

Then every G -torsor E over C bA B whose restriction to pCzZq bA B for some A-finite Z Ă C
reduces to a RupPq-torsor trivializes Zariski semilocally on C, that is, for every c1, . . . , cn P C, there
is an affine open C 1 Ă C containing all the ci such that E trivializes over C 1 bA B.

The core case to keep in mind is when P “ G and B “ A: then the claim is that every G -torsor E
on C that is trivial away from some A-finite closed subscheme Z Ă C is Zariski semilocally trivial.
This case generalizes [Fed22a, Theorem 4], as well as several earlier results in the literature.

Proof. Let A1 be the semilocal ring of C at c1, . . . , cn, so that, by a limit argument, it suffices to
show that E trivializes over A1 bA B. After base change to A1 the map SpecpA1q Ñ C induces a
“diagonal” section of C, so, by performing such a base change and replacing B by BbAA1, we reduce
to showing that, when A semilocal, the pullback of E under sbA B for any s P CpAq is trivial. In
addition, we enlarge Z if necessary to ensure that s P ZpAq.

Granted this reformulation of the goal statement, we will reduce to the case when G descends to a
reductive B-group G (which, being the pullback of G along sbA B, is totally isotropic in the case
(ii)) and P Ă G descends to a parabolic B-subgroup P Ă G. For this, it suffices to focus on the
case when G lifts to a reductive C-group rG for which radp rG q is isotrivial Zariski semilocally on C
and P Ă G lifts to a parabolic C-subgroup ĂP Ă rG , and to reduce this case to when rG descends
to a reductive A-group rG and ĂP Ă rG descends to a parabolic A-subgroup rP Ă rG. We begin by
defining the candidate rP Ă rG simply as the s-pullback of ĂP Ă rG .
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By shrinking C around the closed points of Z, we may assume that radp rG q is isotrivial, that rG

has a maximal torus ĂT Ă rG defined over C (see [SGA 3II, exposé XIV, corollaire 3.20]), and,
by passing to clopens if needed, that the type of the geometric C-fibers of rG is constant. We let
rT Ă rG be the s-pullback of ĂT . By Lemma 4.3 and spreading out, there are an affine open D Ă C

containing Z and a finite étale cover rC � D for which s lifts to some rs P rCpAq such that rG |
rC
» rG|

rC
compatibly with the fixed identification of pullbacks along rs. Thus, we may replace C and s by
rC and rs, respectively, and reduce to the case when rG descends, that is, to when rG “ rGC . To
now likewise descend ĂP, we first pass to clopens to assume that the type of ĂP as a parabolic
subgroup of rGC is constant on C. Then rPC and ĂP are parabolic subgroups of rGC of the same type,
so, by [SGA 3III new, exposé XXVI, corollaire 5.5 (iv)] and a limit argument, they are conjugate
over some affine open neighborhood of Z in C. Since parabolic subgroups are self-normalizing
[SGA 3III new, exposé XXVI, proposition 1.2], the s-pullback of a conjugating section lies in rP , so
we may adjust by this s-pullback to make the conjugating section pull back to the identity by s.
Thus, by shrinking C and adjusting the identification between rG and rGC by an aforementioned
conjugation, we achieve the promised reduction to the case when ĂP Ă rG descends to rP Ă rG.

With P Ă G now being the base change of P Ă G, our next goal is to reduce to the case when
C “ AdA. For this, we begin with a closed immersion Z ãÑ C and combine Lemma 3.6 (b), Remark 3.7,
and Proposition 3.4 to reduce to when there is an étale morphism C Ñ AdA and a Cartesian square

Z �
�

// C

��

Z �
�

// AdA.

Since every A-point s of AdA factors through some Ad´1A -point, by restricting the square above to
this Ad´1A -point of AdA, we may decrease d to eventually reduce to d “ 1. Once d “ 1, however,
the A-finite Z Ă A1

A is monogenic in the sense that its coordinate ring is generated by a single
element as an A-algebra. Since this coordinate ring is also a finite A-module, a lift of an A-algebra
generator of Z to the coordinate ring of C satisfies a monic polynomial with coefficients in A when
restricted to Z. Thus, by enlarging Z to be the vanishing locus of this monic polynomial, we reduce
to the case when CzZ is affine at the cost of losing the Cartesian square above. Once CzZ is affine,
[SGA 3III new, exposé XXVI, corollaire 2.2] ensures that E restricts to the trivial G-torsor over CzZ,
in other words, we have reduced to the case when P “ G.

Granted the reductions above, we now apply the same reembedding and patching technique based
on Lemma 3.6 (b), Proposition 3.4, and Lemma 3.8 to Z \ SpecpAq ãÑ C \ A1

A instead to reduce
to the case when we still have the Cartesian square above with d “ 1 such that, in addition,
pA1

AzZqpAq ‰ H. The square remains Cartesian after base change to B, so the patching Lemma 3.8
ensures that E descends to a G-torsor over A1

A bA B that trivializes over pA1
AzZq bA B. In the

totally isotropic case (ii), it then suffices to apply Theorem 2.1 (a) to conclude that E is trivial.

Since we are left with the case (i), we assume from now on that B “ A. Moreover, we change
coordinates to make s be the section t “ 0, and we subsequently use the assumption pA1

AzZqpAq ‰ H
to scale the standard coordinate of A1

A to ensure that Z does not meet the section t “ 1. Granted
this, we glue E with the trivial torsor over P1

AzZ and hence extend it to a G-torsor rE over P1
A.

We let m be the least common multiple of the A-fibral degrees of the isogeny pGadqsc Ñ Gad and,
as in the proof of Lemma 2.5 (b), replace rE by its pullback along the map P1

A Ñ P1
A given by

rx : ys ÞÑ rxm : yms to arrange that, for every maximal ideal m Ă A, the Gad-torsor over P1
km

induced
14



by rE lifts to a generically trivial pGadqsc-torsor over P1
km

(see [Čes22b, Lemma 5.3.5]). Both sections
t “ 0 and t “ 1 of A1

A lift along this map, so we retain other assumptions, in particular, we still
have Z X tt “ 1u “ H. We will eventually obtain the conclusion from [Čes22b, Proposition 5.3.6],
so, to prepare for applying it, we consider the canonical decomposition as in (1.1.1):

Gad –
ś

iHi with Hi – ResAi{ApGiq,

where Ai is a finite étale A-algebra and Gi is an adjoint Ai-group scheme with simple geometric
fibers. For each i, consider the projective, smooth A-scheme Xi parametrizing parabolic subgroups
of Hi (see [SGA 3III new, exposé XXVI, corollaire 3.5]). For each i, consider the closed subscheme
SpecpA{Iiq Ă SpecpAq that is the disjoint union of those maximal ideals m Ă A such that pHiqkm
is isotropic, in other words, such that pHiqkm has a proper parabolic subgroup (see [SGA 3III new,
exposé XXVI, corollaire 6.12]), and fix such parabolic subgroups to obtain an xi P XipA{Iiq. By
[Čes22b, Lemma 6.2.2] (which is based on Bertini theorem), there are a faithfully flat, finite, étale
A-scheme Yi equipped with an A{Ii-point yi P YipA{Iiq and an A-morphism Yi Ñ Xi that maps yi
to xi, so that, in particular, pHiqYi is totally isotropic for every i.

By Lemma 3.6 (a), there is a finite étale cover π : rY �
Ů

i Yi such that there is no finite field
obstruction to embedding rY into A1zpZ Y tt “ 1uq and rY “ rY 1 \ rY 2 with rY 1 (resp., rY 2) surjective
over

Ů

i Yi of constant degree N (resp., N ` 1) for some N ą 0. By Corollary 3.5, we may therefore
find an embedding rY ãÑ A1

A whose image does not meet Z nor the section t “ 1. By construction,
for each i and each maximal ideal m Ă A such that pHiqkm is isotropic, Yi has a km-point, and so the
km-fiber of the preimage rYi :“ π´1pYiq has two disjoint clopens that have degrees N and N ` 1 over
km. Consequently, for each such i and m, the line bundle Op1q is trivial over pP1

Az
rYiqkm . Thus, since

prY \ tt “ 1uq X Z “ H, we may apply [Čes22b, Proposition 5.3.6] to conclude that E is trivial over
A1
Azp

rY \ tt “ 1uq. Since rY is disjoint from s, the pullback s˚pE q is also trivial, and (i) follows. �

Corollary 4.6. For a reductive group G over a semilocal ring A, no nontrivial G-torsor over A,
equivalently, over AJtK, trivializes over Apptqq.

Proof. As in the proof of Theorem 2.1 (b) given in §2.6, every G-torsor E over AJtK that trivializes
over Apptqq descends to a G-torsor over A1

A that trivializes over Gm,A. Thus, Theorem 4.5 implies
that E |tt“0u is the trivial G-torsor over A. By [BČ22, Theorem 2.1.6], then E itself is trivial. �

5. The mixed characteristic cases of our main result on Nisnevich conjecture

We deduce the mixed characteristic cases of Theorem 1.3 from the Grothendieck–Serre phenomenon
of Theorem 4.5. To arrive at its relative curve setting, we use the following presentation lemma.

Lemma 5.1 ([Čes22a, Proposition 4.1]). For a smooth, affine scheme X of relative dimension
d ą 0 over a semilocal Dedekind ring O, points x1, . . . , xm P X, and a closed subscheme Z Ă X of
codimension ě 2, there are an affine open X 1 Ă X containing x1, . . . , xm, an affine open S Ă Ad´1O ,
and a smooth morphism f : X 1 Ñ S of relative dimension 1 such that X 1 X Z is S-finite. �

Remark 5.2. In the case when O is a field, the same statement holds under the weaker assumption
that Z is merely of codimension ě 1 in X, see [Čes22a, Remark 4.3] or Lemma 8.1 below (whose
proof does not use any other results from the present article).

5.3. The abstract maximal torus. To every reductive group G over a scheme S one associates an
S-torus TG, the abstract maximal torus of G defined by étale descent on S as follows. Étale locally
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on S, the group G has a Borel B Ă G, and, letting RupBq Ă B denote the unipotent radical, one sets

TG :“ B{RupBq.

Up to a canonical isomorphism, this TG does not depend on the choice of B, and so it descends to the
original S: indeed, any two Borels are Zariski locally conjugate and, up to multiplying by a section
of B, the conjugating section is unique [SGA 3III new, exposé XXVI, proposition 1.2, corollaire 5.2],
so it suffices to note the conjugation action of B on TG is trivial because the latter is abelian.

5.4. Proof of Theorem 1.3 (2). We have a semilocal ring R that is flat and geometrically regular
over a Dedekind subring O, an r P O, a reductive Rr1r s-group G that either extends to a quasi-split
reductive R-group or descends to a quasi-split reductive Or1r s-group, and a generically trivial G-torsor
E over Rr1r s. We need to show that E is trivial, and we will do this by applying Theorem 4.5 (ii).

We use Popescu theorem [SP, Theorem 07GC] and a limit argument to reduce to the case when R is
a semilocal ring of a smooth affine O-scheme X. By passing to connected components if needed, we
may assume that X is connected, of constant relative dimension d over O. If d “ 0, then R, and so
also Rr1r s, is a semilocal Dedekind ring, and E is trivial by [Guo20, Theorem 1]; therefore, we lose
no generality by assuming that d ą 0. By shrinking X if needed, we may assume that G (resp., E)
begins life over X (resp., over Xr1r s). In the case when our original G lifts to a quasi-split reductive
R-group, we shrink X further to make G extend to a quasi-split reductive X-group rG and we fix a
Borel X-subgroup B Ă rG. In the case when our original G descends to a quasi-split Or1r s-group, we
shrink X further to make sure that our new G over Xr1r s still descends to a quasi-split reductive
group over Or1r s, and we fix a Borel Or1r s-subgroup B of this descended group.

By applying the valuative criterion of properness to E{BXr 1
r
s, we may choose an open U Ă Xr1r s

with complement of codimension ě 2 such that EU to reduces to a generically trivial B-torsor EB
over U . By purity for torsors under tori [CTS79, corollaire 6.9], the TG-torsor EB{RupBq over U
extends to a generically trivial TG-torsor over Xr1r s. To proceed, we use the following claim.

Claim 5.4.1. The abstract maximal torus of G has no nontrivial generically trivial torsors over Rr1r s:

H1pRr1r s, TGq ãÑ H1pFracpRr1r sq, TGq.

Proof. Thanks to our assumption on G, the torus pTGqRr 1
r
s is the base change of a torus T defined

over a ring A that is either R or Or1r s. By [CTS87, Proposition 1.3], this T has a flasque resolution

0 Ñ F Ñ ResA1{ApGmq Ñ T Ñ 0,

where A1 is a finite étale A-algebra and F is a flasque A-torus. For now, all we need to know about
flasque tori is that, by the regularity of Rr1r s and [CTS87, Proposition 1.4, Theorem 2.2 (ii)],

H2pRr1r s,Fq ãÑ H2pFracpRr1r sq,Fq.

This reduces our desired claim to the vanishing PicpRr1r s bA A
1q – 0, which we argue as follows. In

the case A “ R, the ring A1 is again regular semilocal, so every line bundle on A1r1r s extends to a line
bundle on A1, and hence is trivial, to the effect that PicpA1r1r sq “ 0, as desired. In the case A “ Or1r s,
by [Ser79, Chapter I, Section 4, Proposition 8], the normalization of O in A1 is a finite O-algebra O1,
in particular, O1 is again a Dedekind ring. Thus, RbOO1 is a finite R-algebra, and hence is semilocal,
but is also flat and geometrically regular over O1, so it is regular by [SP, Lemma 033A]. Since
Rr1r s bA A

1 is a localization of RbO O1, it again follows that PicpRr1r s bA A
1q – 0, as desired. �
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Thanks to Claim 5.4.1, we may shrink X around SpecpRq to trivialize the TG-torsor EB{RupBq, in
particular, to make EU reduce to an RupBq-torsor. Since the complement Xr1r szU is of codimension
ě 2, its closure Z in X is also of codimension ě 2. Thus, by Lemma 5.1, we may shrink X around
SpecpRq to arrange that there exists an affine open S Ă Ad´1O and a smooth morphism f : X Ñ S of
relative dimension 1 such that Z is S-finite. We can now apply Theorem 4.5 (ii) with A :“ ΓpS,OSq

and B :“ Ar1r s (and §1.10 for the isotriviality condition) to conclude that E is trivial over Rr1r s. �

6. The relative Grothendieck–Serre conjecture

In equal characteristic, the approach to Theorem 1.3 is based on the following relative version of the
Grothendieck–Serre conjecture that is a mild improvement to [Fed22a, Theorem 1] (with an earlier
more restrictive case due to Panin–Stavrova–Vavilov [PSV15, Theorem 1.1]). Its case (ii), included
here for completeness, reproves the equal characteristic case of the Grothendieck–Serre conjecture.

Theorem 6.1. For a regular semilocal ring R containing a field k, a reductive R-group G, and an
affine k-scheme W , no nontrivial G-torsor over W bk R trivializes over W bk FracpRq if either

(i) G is totally isotropic; or

(ii) W bk R is semilocal, for instance, if W “ Specpkq.

Proof. Let E be a G-torsor over W bk R that trivializes over W bk FracpRq, let F Ă k be the prime
subfield, and consider the k-algebra kbFR. The composition R a

ÝÑ kbFR
b
ÝÑ R, in which the second

map uses the k-algebra structure of R, is the identity. The base change of E along idW bk a is a
G-torsor over W bF R that trivializes over W bF FracpRq. Thus, it suffices to settle the claim with
k “ F because, by then base changing further along idW bk b, we would get the desired triviality of E.

Since k is now perfect, Popescu theorem [SP, Theorem 07GC] expresses R as a filtered direct limit
of smooth k-algebras. Thus, by passing to connected components of SpecpRq and doing a limit
argument, we may assume that R is a semilocal ring of a smooth, affine, irreducible k-scheme X of
dimension d ě 0 and that G and E are defined over all of X. Since E trivializes over W bk FracpXq,
is also trivializes over W ˆk pXzZq for some closed Z Ĺ X. If d “ 0, then E is trivial, and if d ą 0,
then we may apply the presentation lemma of Remark 5.2 to shrink X around SpecpRq so that there
exist an affine open S Ă Ad´1k and a smooth morphism X Ñ S of relative dimension 1 that makes Z
finite over S. With such a fibration into curves in hand, however, the triviality of E over W bk R is
a special case of Theorem 4.5 (with §1.10 for the isotriviality condition) applied with A “ ΓpS,OSq

and B “ ΓpW,OW q in case (i), and with A “ B “ ΓpW bk R,OWbkRq in case (ii). �

We will apply Theorem 6.1 with W Ă A1
k, in which case we may sharpen the assumptions as follows.

Lemma 6.2 ([Gil02, Corollaire 3.10]). For a reductive group G over a field K and an open U Ă P1
K ,

each generically trivial G-torsor E over U reduces to a torsor under a maximal K-split subtorus of G;
in particular, if U Ă A1

K , then, since U has no nontrivial line bundles, E is a trivial G-torsor. �

Corollary 6.3. For a regular semilocal ring R containing a field k, a totally isotropic reductive
R-group, and a nonempty open W Ă A1

k, every generically trivial G-torsor on W bk R is trivial.

Proof. Thanks to Lemma 6.2, Theorem 6.1 (i) applies and gives the desired triviality. �
17
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7. Extending G-torsors over a finite étale subscheme of a relative curve

A crucial preparation to the equicharacteristic case of the Nisnevich conjecture is a result about
extending G-torsors over a finite étale closed subscheme of a smooth relative curve that we deduce
in Proposition 7.3 from the reembedding techniques of §3. For wider applicability, we present this
extension result axiomatically—it loosely amounts to a reduction of the Nisnevich conjecture to
the Grothendieck–Serre conjecture. The equicharacteristic relative Grothendieck–Serre conjecture
settled in Theorem 6.1 supplies the required axiomatic assumptions in our main case of interest.

Definition 7.1. For a ring A, a contravariant, set-valued functor F on the category of A-schemes of
the form SzZ with S a smooth affine A-scheme of pure relative dimension d and Z Ă S an A-quasi-
finite closed subscheme, is excisive if for all Z Ă S and Z 1 Ă S1 as above and all Cartesian squares

Z �
�

//

„

��

S

f
��

Z 1 �
�

// S1

with f étale that induces an indicated isomorphism Z
„
ÝÑ Z 1, we have

F pS1q� F pSq ˆF pSzZq F pS
1zZ 1q.

For instance, by Lemma 3.8, for a quasi-affine, flat, finitely presented A-group G, the functor
H1p´, Gq is excisive. The following lemma is instrumental for the aforementioned ‘excision tricks.’

Lemma 7.2. Let A be a ring, let S be an A-scheme, let Y Ă S be an A-(separated étale) closed
subscheme that is locally cut out by a finitely generated ideal, and consider the decomposition

Y ˆA Y “ ∆\ Y 1

in which ∆ Ă Y ˆA Y is the diagonal copy of Y . The following square is Cartesian:

∆ �
�

//

„

��

SY zY
1

��

Y �
�

// S,

in particular, if S is as in Definition 7.1 and F is an excisive functor, then an element of F pSzY q
extends to F pSq if and only if its pullback to F ppSzY qY q extends to F pSY zY 1q; for instance, for a
quasi-affine, flat, finitely presented S-group scheme G, a G-torsor over SzY extends to a G-torsor
over S if and only if its base change to pSzY qY extends to a G-torsor over SY zY 1.

Proof. The claimed decomposition Y ˆA Y “ ∆\ Y 1 exists because any section of a separated étale
morphism, such as the projection Y ˆA Y Ñ Y , is both a closed immersion and an open immersion.
Thus, the square in question is Cartesian because the étale map SY zY 1 Ñ S induces an isomorphism
∆

„
ÝÑ Y . The claim about F is then immediate from Definition 7.1. �

We are ready for our key axiomatic extension result, which extends Fedorov’s [Fed22b, Proposition 2.6].

Proposition 7.3. Let

‚ A be a semilocal ring,

‚ C be a smooth affine A-scheme of pure relative dimension d ą 0,
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‚ Y Ă C be an A-(finite étale) closed subscheme, and

‚ F be an excisive, pointed set valued functor as in Definition 7.1.

Suppose that for all finite étale Y -schemes Y and integers m ď degpY {Aq such that Y is a scheme
over a finite Z-algebra B for which AdB contains m disjoint copies of SpecpBq, some Y 1 Ă AdY that
is a union of m disjoint copies of Y and every Y -finite closed subscheme Z Ă AdY containing Y 1,

KerpF pAdY q Ñ F pAdY zZqq� KerpF pAdY zY
1q Ñ F pAdY zZqq, (7.3.1)

that is, every element of F pAdY zY
1q that trivializes away from some Y -finite Z Ă AdY extends to

F pAdY q. Then, for every A-finite closed subscheme Z Ă C containing Y ,

KerpF pCq Ñ F pCzZqq� KerpF pCzY q Ñ F pCzZqq, (7.3.2)

that is, every element of F pCzY q that trivializes away from some A-finite Z Ă C extends to F pCq.

Although a general d ą 0 requires no extra work, the main case is d “ 1. In this case, Corollary 6.3
supplies the assumption (7.3.1) when A is regular of equicharacteristic and F p´q “ H1p´, Gq for
a reductive A-group G such that GY totally isotropic. Roughly, the point of Proposition 7.3 is to
formally reduce the extendability property (7.3.2) to the case when C “ AdA and Y is “constant.”

Proof. For the proof, it is convenient to generalize our setup as follows. We assume that C Ă C 1 is
an open immersion of smooth affine A-schemes of pure relative dimension d such that Y 1 :“ C 1zC is
A-(finite étale), that our assumption (7.3.1) holds with m ď degppY Y Y 1q{Aq, and that we seek to
show (7.3.2) for every A-finite Z Ă C 1 containing Y and Y 1. Of course, the case C 1 “ C recovers
the original claim, and the formulation with an arbitrary C 1 is equivalent because after extending to
an element of F pCq we may extend further to an element of F pC 1q. For intermediate reductions,
however, it is convenient to require that our A-finite Z lives in C 1 instead of the possibly smaller C.

In the setup with a C 1, we fix an F satisfying the assumptions and an α P KerpF pCzY q Ñ F pCzZqq
that we wish to extend over Y . We then use Lemma 7.2 to base change along Y Ñ SpecpAq and
shrink the base changed C by removing the off-diagonal part of Y ˆA Y to reduce to the case when
Y – SpecpAq. Moreover, we decompose A to reduce to the case when SpecpAq is connected, so that
degpY {Aq is a well-defined integer. We then let n be the product of degppY Y Y 1q{Aq and all the
primes p with either p ď degppY Y Y 1q{Aq or p R Aˆ. We combine Lemma 3.6 (b) with Remark 3.7
to find an affine open D Ă C 1 containing Z as well as a finite étale cover rC 1 � D such that

rY :“ Y ˆC1 rC 1 decomposes as rY “ rY0 \ rY1 where rY0
„
ÝÑ SpecpAq,

each component of rY1 or of rY 1 :“ rC 1z rC with rC :“ pDzY 1q ˆC1 rC 1 is an algebra over some finite
Z-algebra B each of whose residue fields k1 of characteristic p | n satisfies

#k1 ą degpprY Y rY 1q{Aq,

and there is no finite field obstruction to embedding rZ :“ Z ˆC1 rC 1 into AdA. By construction,

rY0

„

��

� � // rCzrY1

��

Y �
�

// C XD

is a Cartesian square. Thus, since F is excisive, to extend α over Y we may first restrict to CXD and
then pass to rCzrY1. That is, we may replace Y Ă C Ă C 1 by rY0 Ă rCzrY1 Ă rC 1 and α by its pullback
to rCzrY to reduce to the case when each connected component of Y 1 is an algebra over some finite
Z-algebra B each of whose residue fields k1 of characteristic p | n satisfies #k1 ą degppY YY 1q{Aq and
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there is no finite field obstruction to embedding Z into AdA. By Proposition 3.4, such an embedding
exists, more precisely, there are an affine open D Ă C 1 containing Z and a Cartesian square

Z �
�

//

„

��

D

f

��

Z 1 �
�

// AdA

(7.3.3)

in which the map f is étale and embeds Z as a closed subscheme Z 1 Ă AdA. The square remains
Cartesian after passing to the complements of the A-(finite étale) Y Y Y 1 viewed inside Z (so also
inside Z 1). Thus, for the purpose of extending α over Y , we may use the excisive property of F to
patch the restriction of α|DzpYYY 1q with the origin in F pAdAzZ 1q to reduce to the case when C 1 “ AdA.

In conclusion, we reduced to the case when C 1 “ C “ AdA and Y – SpecpAq \ y such that each
connected component of y is an algebra over some finite Z-algebra B each of whose residue fields
k1 of characteristic p | n satisfies #k1 ą degpY {Aq. Moreover, we may assume that A itself is an
algebra over some such finite Z-algebra B: indeed, once we settle this case, we may combine it with
Lemma 7.2 to iteratively extend α over each connected component of y, and hence to reduce to the
case when y “ H, in which we may simply choose B “ Z.

Granted the reductions above, we now induct on the number of disjoint copies of SpecpAq contained
in Y to reduce to when Y »

Ů

SpecpAq. Indeed, suppose that Y has a connected component W
that does not map isomorphically to SpecpAq, so that W is of degree ě 2 over A. Since W ˆAW
contains the diagonal copy of W as a clopen (compare with Lemma 7.2), the W -(finite étale) closed
subscheme Y ˆA W Ă AdW contains strictly more disjoint copies of W than Y contained disjoint
copies of SpecpAq. Thus, by the inductive hypothesis, the pullback of α to AdW zpY ˆAW q extends
over Y ˆA W . By Lemma 7.2, this implies that α extends over W . By repeating this for each
possible W , we effectively shrink Y until we reduce to the desired base case when Y »

Ů

SpecpAq.

To treat this last case, we set m :“ degpY {Aq and note that, by Proposition 3.4, for any closed
subscheme Y 1 Ă AdA that is a disjoint union of m copies of SpecpAq, there are an affine open D Ă AdA
containing Z and a Cartesian square as in (7.3.3) such that f maps Y isomorphically onto Y 1. Since
F is excisive, Lemma 3.8 then reduces us to the case when Y “ Y 1 inside AdA. At this point, we will
finally use the assumption (7.3.1) on F . Namely, by the arranged condition on the residue fields of
B, there is a B-(finite étale) closed subscheme of AdB that is a union of m disjoint copies of SpecpBq,
and its base change is then a closed subscheme of AdA that is a union of m disjoint copies of SpecpAq.
This means that (7.3.3) applies to some closed subscheme Y 1 Ă AdA that is a disjoint union of m
copies of SpecpAq and, as we have already argued, this implies our claim about extending over Y . �

Corollary 7.4. For a regular semilocal ring R containing a field, a totally isotropic reductive R-group
scheme G, and an R-(finite étale) closed subscheme Y Ă A1

R, no nontrivial G-torsor over A1
RzY

becomes trivial over A1
RzZ for some R-finite closed subscheme Z Ă A1

R containing Y , that is,

KerpH1pA1
RzY,Gq Ñ H1pA1

RzZ,Gqq “ t˚u.

Proof. By Proposition 7.3 (with Corollary 6.3), every G-torsor over A1
RzY that is trivial over A1

RzZ
extends to a G-torsor over A1

R. This Y “ H case, however, is covered by Theorem 2.1 (a). �

8. The Nisnevich conjecture over a field

The final preparation to the equicharacteristic case of the Nisnevich conjecture is the following
geometric presentation lemma in the spirit of Gabber’s refinement [Gab94, Lemma 3.1] of the
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Quillen presentation lemma [Qui73, Section 7, Lemma 5.12], which itself is a variant of the Noether
normalization theorem. For us, it is crucial to have its aspect about the smooth divisor D.

Lemma 8.1. For a smooth, affine, irreducible scheme X of dimension d ą 0 over a field k that is
either finite or of characteristic 0,2 points x1, . . . , xm P X, a proper closed subscheme Z Ă X, and a
k-smooth divisor D Ă X, there are an affine open X 1 Ă X containing x1, . . . , xm, an affine open
S Ă Ad´1k , and a smooth morphism

f : X 1 Ñ S

of relative dimension 1 such that

X 1 X Z “ f´1pSq X Z is S-finite and X 1 XD “ f´1pSq XD is S-(finite étale).

Proof. In the case d “ 1, we may choose X 1 “ X and S “ Specpkq, so we assume that d ą 1. We
also replace each xi by a specialization to reduce to xi being a closed point (see [SP, Lemma 02J6]),
and in this case we will force each fpxiq to be the origin of Ad´1k . We embed X into some projective
space PNk and then form closures to arrange that X is an open of a projective X Ă PNk of dimension
d with XzX of dimension ď d´ 1 and that there are

‚ a projective D Ă X of dimension d´ 1 with DzD of dimension ď d´ 2, and

‚ a projective Z Ă X of dimension ď d´ 1 with ZzZ of dimension ď d´ 2.

We use the avoidance lemma [GLL15, Theorem 5.1] and postcompose with a Veronese embedding
to build a hyperplane H0 not containing any xi such that pXzXq XH0 is of dimension ď d´ 2 (to
force the dimension drop, choose appropriate auxiliary closed points and require H0 to not contain
them). By the Bertini theorem [Poo04, Theorem 1.3] of Poonen if k is finite and by the Bertini
theorem of [Čes22a, second paragraph of the proof of Lemma 3.2] applied both to X and to D in
place of X if k is of characteristic 0, there is a hypersurface H1 Ă PNk such that

‚ H1 contains x1, . . . , xm;

‚ X XH1 (resp., D XH1) is k-smooth of dimension d´ 1 (resp., d´ 2);

‚ Z XH1 is (resp., pDzDq XH1 and pZzZq XH1 are) of dimension ď d´ 2 (resp., ď d´ 3);

‚ pXzXq XH0 XH1 is of dimension ď d´ 2.

In particular, by passing to intersections with H1, we are left with an analogous situation with d
replaced by d ´ 1. Therefore, by iteratively applying the Bertini theorem in this way, we build
hypersurfaces H1, . . . ,Hd´1 such that

(i) the x1, . . . , xm lie in H1 X . . .XHd´1 but not in H0;

(ii) X XH1X . . .XHd´1 (resp., DXH1X . . .XHd´1) is k-smooth of dimension 1 (resp., k-étale);

(iii) pDzDq XH1 X . . .XHd´1 “ pZzZq XH1 X . . .XHd´1 “ H.

(iv) pXzXq XH0 XH1 X . . .XHd´1 “ H.

By letting 1, w1, . . . , wd´1 be the degrees of the hypersurfaces H0, H1, . . . ,Hd´1 and choosing defining
equations hi of the Hi, we determine a projective morphism rf : rX Ñ Pkp1, w1, . . . , wd´1q from the

2The assumption on k is likely not optimal but it will suffice and we do not wish to further complicate the proof.
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weighted blowup rX :“ Blph0, . . . , hd´1q to the weighted projective space such that the diagram

XzH0
� � //

f
��

XzpH0 X . . .XHd´1q
� � //

��

rX

rf

��

Ad´1k
� � // Pkp1, w1, . . . , wd´1q Pkp1, w1, . . . , wd´1q

commutes, where the bottom left arrow is the inclusion of the open locus where the first standard
coordinate of Pkp1, w1, . . . , wd´1q does not vanish, see [Čes22a, Sections 3.4 and 3.5]. By (i), each
fpxiq is the origin of Ad´1k . By (ii) and the dimensional flatness criterion [EGA IV2, Proposition 6.1.5],
at every point of the fiber above the origin of Ad´1k , the map f is smooth of relative dimension 1

and its restriction to D is étale. Since rf is projective, (iii)–(iv) and the openness of the quasi-finite
locus [SP, Lemma 01TI] ensure that for some affine open neighborhood of the origin S Ă Ad´1k both
f´1pSq X Z and f´1pSq XD are S-finite (see also [SP, Lemma 02OG]). In conclusion, any affine
open of f´1pSq that contains all the xi and all the points of Z and D that lie above the origin of
Ad´1k becomes a sought X 1 after possibly shrinking S further. �

8.2. Proof of Theorem 1.3 (1). We have a regular semilocal ring R containing a field k, a regular
parameter r P R, a reductive R-group G with GR{prq totally isotropic, and a generically trivial
G-torsor E over Rr1r s. We need to show that E is trivial, equivalently, by the Grothendieck–Serre
Theorem 6.1 (ii), we need to extend E to a G-torsor E over R. For this, by patching supplied by
Lemma 3.8 and a limit argument, we may semilocalize R along the union of those maximal ideals
m Ă R that contain r and reduce ourselves to the case when r lies in every maximal ideal m Ă R.
Moreover, we may replace k by its prime subfield to assume that k is either Q or some Fp.

Popescu theorem [SP, Theorem 07GC] expresses R as a filtered direct limit of smooth k-algebras.
Thus, by passing to connected components of SpecpRq and doing a limit argument, we may assume
that R is a semilocal ring of a smooth, affine, irreducible k-scheme X of dimension d ě 0, that r is
a global section of X that cuts out a k-smooth divisor D Ă X with complement U :“ XzD, that
G (resp., E) is defined over all of X (resp., U), and that GD is totally isotropic. Since E is trivial
over FracpXq, there is a closed Z Ĺ X containing D such that E is trivial over UzZ . If d “ 0,
then E is trivial, so we assume that X is of dimension d ą 0. Finally, we use [SGA 3II, exposé XIV,
corollaire 3.20] to shrink X further to make G have a maximal torus T defined over all of X.

With these preparations, Lemma 8.1 allows us to shrink X around SpecpRq to arrange that there
exist an affine open S Ă Ad´1k and a smooth morphism f : X Ñ S of relative dimension 1 such that
Z is S-finite and D is S-(finite étale). We base change f along the map SpecpRq Ñ S to obtain

‚ a smooth affine R-scheme C of pure relative dimension 1 (base change of X);

‚ an R-finite closed subscheme Z Ă C (base change of Z );

‚ an R-(finite étale) closed subscheme Y Ă Z (base change of D);

‚ a section s P CpRq (induced by the “diagonal” section) such that s|Rr 1
r
s factors through CzY ;

‚ a reductive C-group G with s˚pG q – G (base change of G) such that GY is totally isotropic;

‚ a maximal C-torus T Ă G (base change of T ) with s˚pT q – T ; and

‚ a G -torsor E over CzY (base change of E) that is trivial over CzZ such that

ps|Rr 1
r
sq
˚pE q – E as G-torsors over Rr1r s.
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We replace Z by Z Y s if needed to arrange that s P ZpRq. By Lemma 4.3 (with §1.10 for the
isotriviality aspect) and spreading out, there is a finite étale cover rC of some affine open neighborhood
of Z in C such that s lifts to some rs P rCpRq and G

rC
» G

rC
, compatibly with an already fixed such

isomorphism after pullback along rs. Thus, we may replace C and s by rC and rs and replace Z, Y , G ,
E by their corresponding base changes to reduce to when G is GC . A similar reduction based on
Lemma 3.6 (b) and Remark 3.7 instead allows us to assume that there is no finite field obstruction
to embedding Z into A1

R. Thus, Proposition 3.4 gives an affine open D Ă C containing Z and a
Cartesian square

Z �
�

// D

π

��

Z �
�

// A1
R

in which the map π is étale and embeds Z as a closed subscheme Z Ă A1
R. These properties of the

square persist after restricting to the open complements of the common closed subscheme Y of D
and of A1

R. Thus, by Lemma 3.8, we may descend E |DzY to a G-torsor E 1 over A1
RzY that is trivial

over A1
RzZ to reduce to the case when C “ A1

R. In this case, however, by Proposition 7.3 (with
Corollary 6.3 to check its main assumption), the G-torsor E extends to a G-torsor defined over all of
A1
R. Thus, by pulling back along s, our G-torsor E extends to a desired G-torsor E over R. �

9. The generalized Bass–Quillen conjecture over a field

9.1. Proof of Theorem 1.5. We have a regular ring R containing a field, a totally isotropic
reductive R-group G, and a generically trivial G-torsor E over AdR. We need to show that E descends
to a G-torsor over R. For this, by induction on d, we may assume that d “ 1. By Quillen patching
of Lemma 2.4, we may assume that R is local. In this key local case, we will show that E is trivial.

For this, by Theorem 2.1, it suffices to show that E is trivial on A1
RzZ for some R-finite closed

subscheme Z Ă A1
R. By a limit argument, it therefore suffices to show that E becomes trivial over

the localization of Rrts obtained by inverting all the monic polynomials. By the change of variables
x :“ t´1, this localization is the localization of P1

R along the section 8, and hence is isomorphic to

pRrxs1`xRrxsqr
1
x s.

The ring R1 :“ Rrxs1`xRrxs is regular, local, and shares its fraction field with A1
R. In particular,

the base change of E to R1 is generically trivial. Thus, since x is a regular parameter of R1,
Theorem 1.3 (1) implies that this base change of E is trivial, as desired. �
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