
TORSORS ON THE COMPLEMENT OF A SMOOTH DIVISOR

KĘSTUTIS ČESNAVIČIUS

Abstract. We complete the proof of the Nisnevich conjecture in equal characteristic: for a smooth
algebraic variety X over a field k, a k-smooth divisor D Ă X, and a reductive X-group G whose
base change GD is totally isotropic, we show that each generically trivial G-torsor on XzD trivializes
Zariski semilocally on X. In mixed characteristic, we show the same when k is a replaced by a
discrete valuation ring O, the divisor D is the closed O-fiber of X, and either G is quasi-split or G
is only defined over XzD but descends to a quasi-split group over FracpOq (a Kisin–Pappas type
variant). Our arguments combine Gabber–Quillen style presentation lemmas with excision and
reembedding dévissages to reduce to analyzing generically trivial torsors over a relative affine line.
As a byproduct of this analysis, we give a new proof for the Bass–Quillen conjecture for reductive
group torsors over Ad

R in equal characteristic.
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1. The corrected statement of the Nisnevich conjecture and our main results

In [Nis89, Conjecture 1.3], Nisnevich proposed a common generalization of the Quillen conjecture
[Qui76, (2) on page 170] that had grown out of Serre’s problem about vector bundles on affine
spaces and of the Grothendieck–Serre conjecture [Ser58, page 31, Remarque], [Gro58, pages 26–27,
Remarques 3] about Zariski local triviality of generically trivial torsors under reductive groups. In
its geometric case, the Nisnevich conjecture predicts that, for a reductive group scheme G over a
smooth variety X over a field k and a k-smooth divisor D Ă X, every generically trivial G-torsor on
XzD trivializes Zariski locally on X. Recent counterexamples of Fedorov [Fed23, Proposition 4.1]
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show that this fails for anisotropic G, so, to bypass them, one considers the following isotropicity
condition whose relevance for problems about torsors has been observed already in [Rag89].

Definition 1.1 ([Čes22a, Definition 8.1]). Let S be a scheme and let G be a reductive S-group
scheme. We say that G is totally isotropic1 if in the canonical decomposition

Gad –
ś

iPtAn, Bn, ..., G2u
ResSi{SpGiq (1.1.1)

of [SGA 3III new, exposé XXIV, proposition 5.10 (i)], in which i ranges over the types of connected
Dynkin diagrams, Si is a finite étale S-scheme, and Gi is an adjoint semisimple Si-group with simple
geometric fibers of type i, Zariski locally on S each Gi has Gm,Si as a subgroup.

Intuitively, G is totally isotropic if and only if its simple factors are isotropic. Recall from [SGA 3III new,
exposé XXVI, corollaire 6.12] that in Definition 1.1 it is equivalent to require that Zariski locally on
S each Gi has a parabolic Si-subgroup that contains no Si-fiber of Gi. For instance, every quasi-split,
so also every split, group is totally isotropic, as is every torus.

With the total isotropicity in place, the Nisnevich conjecture becomes the following statement.

Conjecture 1.2 (Nisnevich). For a regular semilocal ring R, an r P R that is a regular parameter
in the sense that r R m2 for each maximal ideal m Ă R, and a reductive R-group scheme G such that
GR{prq is totally isotropic, every generically trivial G-torsor over Rr1r s is trivial, that is,

KerpH1pRr1r s, Gq Ñ H1pFracpRq, Gqq “ t˚u.

For instance, in the case when r is a unit, the total isotropicity condition holds for every reductive
R-group G and we recover the Grothendieck–Serre conjecture. The condition also holds in the
case when G is a torus, and this case follows from the known toral case of the Grothendieck–Serre
conjecture, see [Čes22b, Section 3.4.2 (1)]. In [Fed23], Fedorov settled the Nisnevich conjecture in
the case when R contains an infinite field and G itself is totally isotropic. Other than this, some low
dimensional cases are known, see [Čes22b, Section 3.4.2]—for instance, the case when R is local of
dimension ď 3 and G is either GLn or PGLn is a result of Gabber [Gab81, Chapter I, Theorem 1].

We settle the Nisnevich conjecture in equal characteristic and in some mixed characteristic cases.

Theorem 1.3. Let R be a regular semilocal ring, let r P R be a regular parameter in the sense that
r R m2 for each maximal ideal m Ă R, and let G be a reductive Rr1r s-group. In the following cases,

KerpH1pRr1r s, Gq Ñ H1pFracpRq, Gqq “ t˚u,

in other words, in the following cases every generically trivial G-torsor over Rr1r s is trivial:

(1) (§8.2) if R contains a field and G extends to a reductive R-group G with GR{prq totally isotropic;

(2) (§5.4) if R is geometrically regular2 over a Dedekind subring O containing r and G either
extends to a quasi-split reductive R-group or descends to a quasi-split reductive Or1r s-group.

The mixed characteristic case (2) is new already for vector bundles, that is, for G “ GLn. In contrast,
at least for local R, the vector bundle case of the equicharacteristic (1) is due to Bhatwadekar–Rao
[BR83, Theorem 2.5]. When r P Rˆ, Theorem 1.3 recovers the equal and mixed characteristic cases
of the Grothendieck–Serre conjecture settled in [FP15], [Pan20], [Čes22a], so we reprove these here.

1In [Fed22] and [Fed23], the terminology ‘strongly locally isotropic’ was used for the same notion.
2For a ring A, recall that an A-algebra B is geometrically regular if it is flat and the base change of each of its

A-fibers to any finite field extension of the corresponding residue field of A is regular, see [SP, Definition 0382]. For
instance, R could be a semilocal ring of a smooth algebra over a discrete valuation ring O with r as a uniformizer.
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In the mixed characteristic case (2), the requirement that r P O is quite restrictive relative to the
assumptions of Conjecture 1.2. However, the case of (2) in which G descends to an Or1r s-group but
need not extend to a reductive R-group was inspired by Kisin–Pappas [KP18, Section 1.4, especially,
Lemma 1.4.6], who used such a statement for some 2-dimensional R under further assumptions on G.

The geometric version of Theorem 1.3 (1) is the following statement announced in the abstract.

Theorem 1.4. For a field k, a smooth k-scheme X, a k-smooth divisor D Ă X, and a reductive
X-group scheme G such that GD is totally isotropic, every generically trivial G-torsor E over XzD
is trivial Zariski semilocally on X, that is, for every x1, . . . , xm P X that lie in a single affine open,
there is an affine open U Ă X containing all the xi such that E|UzD is trivial.

Theorem 1.4 follows by applying Theorem 1.3 (1) to the semilocal ring of X at x1, . . . , xm (built via
prime avoidance, see [SP, Lemma 00DS]) and spreading out. Even when X is affine, the stronger
statement that E extends to a G-torsor over X is false: for G “ GLn, this had been a question of
Quillen [Qui76, (3) on page 170] that was answered negatively by Swan in [Swa78, Section 2]. Even
for GLn, Theorem 1.4 typically fails if D is singular or if X is singular, see [Lam06, pages 34–35].

We use Theorem 1.3 to reprove the following equal characteristic case of the generalization of the
Bass–Quillen conjecture to torsors under reductive group schemes [Čes22b, Conjecture 3.6.1].

Theorem 1.5 (§9.2). For a regular ring R containing a field and a totally isotropic reductive R-group
scheme G, every generically trivial G-torsor over Ad

R descends to a G-torsor over R, equivalently,

H1
ZarpR,Gq

„
ÝÑ H1

ZarpAd
R, Gq or, if one prefers, H1

NispR,Gq
„
ÝÑ H1

NispAd
R, Gq.

The equivalence of the three formulations in Theorem 1.5 follows from the Grothendieck–Serre
conjecture: by Theorem 1.3, a G-torsor over Ad

R is generically trivial, if and only if it is Zariski
locally trivial, if and only if it is Nisnevich locally trivial. The generic triviality assumption is needed
because, for instance, for every separably closed field k that is not algebraically closed, there are
nontrivial PGLn-torsors over A1

k, see [CTS21, Theorem 5.6.1 (vi)]. The total isotropicity assumption
is needed because of [BS17, Proposition 4.9], where Balwe and Sawant show that a Bass–Quillen
statement cannot hold beyond totally isotropic G. For earlier counterexamples to generalizations of
the Bass–Quillen conjecture beyond totally isotropic reductive groups, see [OS71, Propositions 1
and 2], [Par78] and [Fed16, Theorem 3 (ii) (whose assumptions can be met by Remark 2.6 (i))].

Theorem 1.5 was established by Stavrova in [Sta22, Corollary 5.5] by a different method, and in
the case when R contains an infinite field already in the earlier [Sta19, Theorem 4.4]. Prior to
that, the case when R is smooth over a field k and G is defined and totally isotropic over k was
settled by Asok–Hoyois–Wendt: they used methods of A1-homotopy theory of Morel–Voevodsky to
verify axioms of Colliot-Thélène–Ojanguren [CTO92] that were known to imply the statement, see
[AHW18, Theorem 3.3.7] for infinite k and [AHW20, Theorem 2.4] for finite k. For regular R of
mixed characteristic, Theorem 1.5 is only known in sporadic cases, for instance, when G is a torus,
see [CTS87, Lemma 2.4], as well as [Čes22b, Section 3.6.4] for an overview.

We obtain Theorem 1.3 by refining the Grothendieck–Serre strategies used in [Fed23] and [Čes22a].
In fact, we establish the following version of Grothendieck–Serre valid over arbitrary base rings.

Theorem 1.6 (Remark 4.6). For a reductive group G over a ring A, every G-torsor over a smooth
affine A-curve C that is trivial away from some A-finite Z Ă C trivializes Zariski semilocally on C.

Theorem 1.6, more precisely, its finer version given in Theorem 4.5, is our ultimate source of triviality
of torsors under reductive groups, and it generalizes [Fed22, Theorem 4], as well as several earlier
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results in the literature. Armed with it we quickly reprove the cases of the Grothendieck–Serre
conjecture that have been settled in [FP15], [Pan20], [Čes22a]: more precisely, we use Popescu
approximation and presentation lemmas in the style of Gabber–Quillen to reduce these cases to the
relative curve setting of Theorem 1.6, and in this way we dissect the overall argument into a part
that works over arbitrary rings and a part that is specific to regular rings.

Coming back to the Nisnevich conjecture itself, a key novelty of our approach is the following
extension result for G-torsors over smooth relative curves.

Theorem 1.7 (Proposition 7.3 and Theorem 6.1). Let R be a regular semilocal ring containing a
field and let G be a reductive R-group. For a smooth affine R-scheme C of pure relative dimension 1
and an R-(finite étale) closed Y Ă C such that GY is totally isotropic, every G-torsor E over CzY
that is trivial away from some R-finite closed Z Ă C extends to a G-torsor over C.

Roughly, extending a G-torsor to all of C in Theorem 1.7 corresponds to extending a G-torsor in
Theorem 1.3 (1) to all of R, in effect, to reducing the Nisnevich conjecture to the Grothendieck–Serre
conjecture—this is why Theorem 1.7 is crucial for us. Conversely, to reduce Theorem 1.3 (1) to
Theorem 1.7 we use a presentation lemma that extends its variants due to Quillen and Gabber:
we first use Popescu theorem to pass to the geometric setting of Theorem 1.4 and then show in
Lemma 8.1 that, up to replacing X by an affine open neighborhood of x1, . . . , xm, we can express X
as a smooth relative curve over some affine open of Ad´1

k in such a way that D is relatively finite étale
and our generically trivial G-torsor over X is trivial away from a relatively finite closed subscheme.

As for Theorem 1.7, in §7 we present a series of excision and patching dévissages to reduce to when
C “ A1

R and CzY descends to a smooth curve defined over a subfield k Ă R. In this “constant” case,
we show that our G-torsor over CzY is even trivial by the “relative Grothendieck–Serre” theorem
of Fedorov from [Fed22] (with an earlier version due to Panin–Stavrova–Vavilov [PSV15]) that we
reprove in Theorem 6.1: for every k-algebra W , no nontrivial G-torsor over R bk W trivializes
over FracpRq bk W ; the total isotropicity assumption is crucial for this beyond the “classical” case
W “ Specpkq. As for the excision and patching techniques, finite field obstructions are a well-known,
delicate difficulty in the field. We overcome them with a novel version of Panin’s “finite field tricks”
presented in Proposition 3.2. The wide scope of these techniques makes our overall approach to
Theorem 1.3 quite axiomatic, and although we do not pursue this here, it would be interesting to
have similar results for other functors, for instance, for the unstable K1-functor studied by Stavrova
and her coauthors, compare, for instance, with [Sta22], [Sta19] and earlier articles cited there.

1.8. Notation and conventions. All rings we consider are commutative and unital. For a point s
of a scheme (resp., for a prime ideal p of a ring), we let ks (resp., kp) denote its residue field. For a
scheme S over a ring A and an A-algebra B, we write S bA B for the base change S ˆSpecA SpecB.
For a global section s of a scheme S, we write Sr1s s Ă S for the open locus where s does not vanish.
For a ring A, we let FracpAq denote its total ring of fractions. For a semilocal regular ring R, we say
that an r P R is a regular parameter if r R m2 for every maximal ideal m Ă R.

For reductive groups, we use the terminology from SGA 3, as reviewed in [Čes22b, Section 1.3]. For
a parabolic subgroup P of a reductive group scheme G, we let RupP q denote its unipotent radical
constructed in [SGA 3III new, exposé XXVI, proposition 1.6 (i)]. We say that a torus T over a scheme
S is isotrivial if it splits over some finite étale cover over S; this always holds if either S is locally
Noetherian and geometrically unibranch (in the sense that the map from the normalization of Sred
to S is a universal homeomorphism), see [SGA 3II, exposé X, théorème 5.16], or if T is of rank ď 1.
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2. Torsors over Ad
A

Our eventual source of triviality of torsors is the following general result about torsors over P1
A. Its

part (b) is how the total isotropicity assumption ultimately enters into the geometric approach to
the Nisnevich conjecture 1.2 that is developed in this article building on [Fed23]. Earlier weaker
versions of Theorem 2.1 contained in [Čes22b, Proposition 5.3.6] or in [Fed22, Theorem 6] would
suffice for us as well, but we prefer to take a clean general statement as our point of departure.

Theorem 2.1. Let G be a reductive group over a ring A and let E be a G-torsor over P1
A.

(a) ([ČF23, Theorem 3.6]). If A is semilocal, then E |tt“0u » E |tt“8u.

(b) ([ČF23, Theorem 4.2]). If G is totally isotropic and E |tt“8u is trivial, then E |A1
A
is trivial.

Proof. The claims are proved in a self-contained manner in the indicated references, although for (a)
we could alternatively cite [PS24]. Let us briefly indicate what goes into the arguments.

The key geometric input is the open immersion i : BG ãÑ BunG from the algebraic A-stack BG
parametrizing G-torsors over A to the algebraic A-stack BunG parametrizing G-torsors over P1

A,
which one argues by using deformation theory for G-torsors. Moreover, in (b) one uses Quillen
patching for G-torsors over A1

A to reduce to local A. In both (a) and (b), the geometry of BunG and
the study of multiplicative group gerbes over P1

A allows one to pass to simply connected G.

In both (a) and (b), one knows the conclusion when A is a field k thanks to the classification of
G-torsors over P1

k from, for instance, [Ans18], and the goal is to pass to semilocal A using the open
immersion i. This bootstrap is based on the Borel–Tits theorem [Gil09, fait 4.3, lemme 4.5] (which
uses the total isotropicity and the simply connectedness of G), by which certain glueings of trivial
torsors can be obtained using “elementary matrices.” Since elementary matrices, and so the relevant
glueings, lift across surjections, in (b) one gets that the G-torsor E |A1

A
extends to a G-torsor rE

over P1
A whose closed A-fiber is trivial; thanks to the openness of i, this means that rE , and so also

E |A1
A
, is trivial. The argument for (a) is similar, except that, since G is not totally isotropic, the

lifting of glueings now happens along an A-(finite étale) closed Y Ă Gm,A such that GY is totally
isotropic. �

The following consequence of Theorem 2.1 (b) is sharp in that it fails if the reductive A-group G is
no longer totally isotropic, see [Fed16, Theorem 3 and what follows].

Corollary 2.2. For a totally isotropic reductive group G over a ring A and an A-finite closed
Z Ă Ad

A with d ą 0, every G-torsor over Ad
A that trivializes over every affine Ad

AzZ-scheme is trivial.

Proof. Let E be the G-torsor over Ad
A in question. To show that E is trivial, it suffices to show that its

pullback under any section s P Ad
ApAq is trivial: indeed, as Gabber pointed out, by applying this after
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base change to the coordinate ring Arts of A1
A and to the “diagonal” section of A1

Arts Ñ SpecpArtsq,
we would get that E itself is trivial. Any A-point s of Ad

A factors through some Ad´1
A -point, so we

may replace A by Art1, . . . , td´1s to reduce to d “ 1. In the case d “ 1, since the coordinate ring of
Z is a finite A-module, some monic polynomial in Arts vanishes on Z, so we may replace Z by this
vanishing locus to arrange that A1

AzZ be affine. The advantage of this is that then E is even trivial
over A1

AzZ. We then patch E with the trivial torsor over P1
AzZ to extend E to a G-torsor over P1

A
whose fiber at tt “ 8u is trivial. By Theorem 2.1 (b), then E itself is trivial, as desired. �

Remark 2.3. In Corollary 2.2, if d ą 1 and if the G-torsor in question trivializes over all of Ad
AzZ

(not merely over every affine Ad
AzZ-scheme), then the conclusion is an immediate consequence of

[EGA IV4, Proposition 19.9.8] and holds for any affine A-group G (that need not be reductive).

3. Overcoming the finite field obstructions

A part of the reason of why we are able to progress beyond the cases of the Nisnevich conjecture
established in [Fed23] is that in the critical Proposition 3.2 below we find a way to bypass the finite
field obstruction that hinders the geometric approach to the Nisnevich conjecture over finite fields.
Even though in the Nisnevich case this obstruction is significantly more delicate, we still start with
Panin’s “finite field tricks” that have been used in every paper about the finite field or unramified
mixed characteristic cases of the Grothendieck–Serre conjecture to overcome the corresponding
obstacle in that context, see [Čes22a, Lemma 6.1] or earlier works of Panin and of Fedorov.

Definition 3.1. For a ring A, a quasi-finite A-scheme Z, and an A-scheme X, there is no finite field
obstruction to embedding Z into X if for each maximal ideal m Ă A with km finite, we have

#tz P Zkm | rkz : kms “ mu ď #tz P Xkm | rkz : kms “ mu for every m ě 1. (:)

Proposition 3.2. Let A be a semilocal ring, let Z be a quasi-finite, separated A-scheme, let Y Ă Z
be an A-finite closed subscheme, and let X be an A-scheme such that for every maximal ideal
m Ă A with km finite, some subscheme of Xkm is of finite type over km, positive dimensional, and
geometrically irreducible. Suppose that Y “ Y0 \ Y1 with a Y0 that has no finite field obstruction to
embedding it into X. For every n ą 0 and every large N ą 0, there is a finite étale surjection

rZ – SpecpOZrts{pfptqqq� Z (3.2.1)

with fptq monic of degree N such that there is no finite field obstruction to embedding rZ into X and

rY :“ Y ˆZ
rZ is a disjoint union rY “ rY0 \ rY1 such that rY0

„
ÝÑ Y0

and each connected component of rY1 is a scheme over SpecB for some finite Z-algebra B each of
whose residue fields k of characteristic p | n satisfies

#k ą n ¨ degp rZ{Zq.

To be clear, the Z-algebra B depends on the connected component of rY1 in question.

Proof. We may replace Z by any A-finite scheme containing Z as an open, so we use the Zariski Main
Theorem [EGA IV4, Corollaire 18.12.13] to assume that Z “ SpecpA1q for an A-finite A1. To explain
the role of the assumption on X, recall that by the Weil conjectures [Poo17, Theorem 7.7.1 (ii)], it
implies that for every d ą 0, every maximal ideal m Ă A with km finite, and every large m ą 0,

#tz P Xkm | rkz : kms “ mu ě d (that is, lim
ÝÑmÑ8

#tz P Xkm | rkz : kms “ mu “ 8q. (3.2.2)
6



Moreover, if the claim holds for n, then it also holds for every divisor of n (with the same rZ). Thus,
we may replace n by any of its multiples, so we may assume that n ą 1 and that it is divisible by all
the positive residue characteristics of A. Moreover, we may assume that Y contains all the closed
points of Z by adding some of these points to Y1 if needed. Granted this, for each N ą 2 we choose

‚ an fY0ptq P Zrts that is the product of t and a monic polynomial of degree N ´ 1 whose
reduction modulo every prime p | n is irreducible (and not linear because N ą 2);

‚ a monic fY1ptq P Zrts of degree N whose reduction modulo every prime p | n is irreducible.

We write Yi “ SpecpA1iq, view fYiptq as an element of A1irts, and choose a monic polynomial
fptq P A1rts whose image in A1irts is fYiptq. With fptq fixed, we let rZ be defined by the formula
(3.2.1). Since fptq is monic, this rZ is finite and flat over A. To then check that rZ is even finite
étale over A it suffices to check that the reduction of fptq modulo every maximal ideal m Ă A is a
separable polynomial over km. This is so by construction because Y contains all the closed points of
Z and the images of the fYiptq in Fprts with p | n and also in Qrts are separable (in fact, even either
irreducible or a product of t and a nonlinear irreducible polynomial).

We let rY0 be the component of Y0 ˆZ
rZ cut out by the factor t of fY0ptq, so that rY0

„
ÝÑ Y0. By

the choice of the fYiptq, each connected component of the complement rY1 of rY0 in Y ˆZ
rZ is an

algebra over a finite Z-algebra B that is either Zrts{pt´1fY0ptqq or Zrts{pfY1ptqq. Each residue field k
of characteristic p ą 0 with p | n of this B has degree either N ´ 1 or N over Fp and, for large N ,

#k ą nN “ n ¨ degp rZ{Zq.

It remains to show that there is no finite field obstruction to embedding rZ into X. An irreducible
polynomial in Fprts of degree N splits into at most i irreducible factors in Fpirts, each of degree at
least N{i. We now let i range over the degrees of the finite residue fields of Z. By construction of rZ,
we therefore get that, as N grows, the number of closed points of rZ not in rY0 with a finite residue
field remains bounded by the sum of the degrees of the finite residue fields of Z. Moreover, as N
grows, the degrees of the finite residue fields of closed point of rZ not in rY0 are all ě εN for some
ε ą 0 that does not depend on N (roughly, ε is the inverse of the maximum of the degrees of the
finite residue fields of Z, except that we have to take it slightly smaller than that and let N be large
because the degree of t´1fY0ptq is N ´ 1 and not N). In particular, for large N , by (3.2.2), there is
no finite field obstruction to embedding the resulting rZ into X: indeed, when N is large, (:) with rZ
in place of Z is automatic for m ă εN because there is no finite field obstruction to embedding Y0
(so also rY0) into X and rY1 does not contribute to the left side of (:), whereas if m ě εN , then the
left side of (:) remains bounded while the right side tends to infinity in the view of (3.2.2). �

Remarks.

3.3. As its proof shows, Proposition 3.2 simplifies when A is an Fp-algebra: then B may be chosen
to be a product of finite field extensions k of Fp, each satisfying #k ą n ¨ degp rZ{Zq.

3.4. The A-quasi-finite Z to be modified as in Proposition 3.2 to avoid the finite field obstruction
to embedding it into X often occurs as a closed subscheme of a smooth affine A-scheme C,
and it is useful to lift the resulting rZ � Z to a finite étale cover rC � D of an affine open
neighborhood D Ă C of Z. Since rZ is explicit, this is possible to arrange: it suffices to lift
fptq to a monic polynomial with coefficients in the coordinate ring of the semilocalization of
C at the closed points of Z (built via prime avoidance [SP, Lemma 00DS]) and to spread out.

7

https://stacks.math.columbia.edu/tag/00DS


The absence of finite field obstructions lets us reembed finite schemes Z into A1
A as follows. This

reembedding statement extends [ČF23, Lemma 2.5] and [Čes22a, Lemma 6.3] (so also earlier versions
due to Panin and Fedorov, see loc. cit.), but for applications to the Nisnevich conjecture we critically
need its aspect about the compatibility f |Y “ ιY , which the previous references do not supply.

Proposition 3.5. Let A be a semilocal ring, let U Ă A1
A be an A-fiberwise nonempty open, and let

Z be a finite A-scheme. If there is no finite field obstruction to embedding Z into U and Z is a
closed subscheme of some A-smooth affine scheme C of relative dimension 1, then there is a closed
immersion ι : Z ãÑ U . Moreover, then ι may be chosen to be excisive: there are an affine open
D Ă C containing Z and an étale A-morphism f : D Ñ U that fits into a Cartesian square

Z �
�

//

„

��

D

f

��

Z 1 �
�

// U,

(3.5.1)

in particular, such that f embeds Z as a closed subscheme Z 1 Ă U ; in addition, for every A-finite
closed subscheme Y Ă Z and an embedding ιY : Y ãÑ U , there are D and f as above with f |Y “ ιY .

Proof. We fix embeddings Z Ă C and ιY : Y ãÑ U , let εZ Ă C be the first infinitesimal neighborhood
of Z in C, so that εZ is also finite over A, and let k be the product of the residue fields of the
maximal ideals of A. Since there is no finite field obstruction to embedding pεZqk into U , by
[ČF23, Lemma 2.4], there is such an embedding rιk : Zk ãÑ Uk that extends pιY qk on Yk. The closed
immersions rιk and ιY are compatible, so there is a global section of εZ whose restriction to pεZqk
(resp., Y ) is the rιk-pullback (resp., ιY -pullback) of the standard coordinate of A1

A. By sending the
standard coordinate of A1

A to this global section, we obtain an A-morphism rι : εZ ãÑ U that extends
the fixed ιY . By construction and the Nakayama lemma [SP, Lemma 00DV], this rι is a closed
immersion. Its restriction to Z is then the desired closed immersion ι : Z ãÑ U .

By lifting the rι-pullbacks of the standard coordinate of A1
A, we may extend rι to an A-morphism

rf : C Ñ A1
A. By construction, the a priori open locus of C where rf is quasi-finite (see [SP,

Lemma 01TI]) contains the points of Z. Thus, since Z has finitely many closed points, we may use
prime avoidance [SP, Lemma 00DS] to shrink C around Z to arrange that rf is quasi-finite. The
flatness criteria [EGA IV2, Proposition 6.1.5] and [EGA IV3, Corollaire 11.3.11] then ensure that rf is
flat at the points of Z, so, by construction, rf is even étale at the points of Z. Consequently, we may
shrink C further around Z to arrange that rf is étale and factors through U . A section of a separated
étale morphism, such as rf´1p rfpZqq Ñ rfpZq, is an inclusion of a clopen subset, so, by shrinking C
around Z once more, we arrange that Z “ rf´1p rfpZqq. This equality means that the square (3.5.1)
is Cartesian, so, granted all the shrinking above, it remains to set D :“ C and rf :“ f . �

4. Grothendieck–Serre for smooth relative curves over arbitrary rings

We use the reembedding techniques discussed in Proposition 3.5 to present a Grothendieck–Serre
phenomenon over arbitrary base rings: in Theorem 4.5 we show that torsors under reductive groups
over smooth relative curves are Zariski semilocally trivial as soon as they are trivial away from some
relatively finite closed subscheme. To approach this beyond constant G, we first establish Lemma 4.3
about equating reductive groups, which is a variant of [PSV15, Theorem 3.6] of Panin–Stavrova–
Vavilov and combines ideas from [Čes22a, Lemma 5.1] with those from the survey [Čes22b, Chapter 6].
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Definition 4.1 ([Čes22b, (‹) in the beginning of Section 6.2]). For a ring A and an ideal I Ă A, we
consider the following property of a set-valued functor F defined on the category of A-algebras:

for every x P F pA{Iq, there are a faithfully flat, finite, étale A-algebra rA,

an A{I-point a : rA� A{I, and an rx P F p rAq whose a-pullback is x.
(‹)

Of course, since rA is étale over A, faithful flatness amounts to the surjectivity of Specp rAq Ñ SpecpAq.
Moreover, any F that is representable by a faithfully flat, finite, étale A-scheme satisfies (‹).

Remark 4.2. Let f : F Ñ F 1 be a map of functors on the category of A-algebras and, for a
y P F 1pAq, let Fy Ă F denote the f -fiber of y. If F 1 has property (‹) with respect to I Ă A and,
for every faithfully flat, finite, étale A-algebra rA and every y P F 1p rAq, the fiber pF |

rA
qy has property

(‹) with respect to any ideal rI Ă rA with rA{rI – A{I, then F itself has property (‹) with respect to
I Ă A. This straight-forward dévissage is useful in practice for dealing with short exact sequences.

Lemma 4.3. For a semilocal ring A, an ideal I Ă A, reductive A-groups G and G1 that on geometric
A-fibers have the same type and whose maximal central tori radpGq and radpG1q are isotrivial,
maximal A-tori T Ă G and T 1 Ă G1, and an A{I-group isomorphism

ι : GA{I
„
ÝÑ G1A{I such that ιpTA{Iq “ T 1A{I ,

there are a faithfully flat, finite, étale A-algebra rA equipped with an A{I-point a : rA� A{I and an
rA-group isomorphism rι : G

rA

„
ÝÑ G1

rA
whose a-pullback is ι and such that rιpT

rA
q “ T 1

rA
.

Proof. By passing to connected components, we may assume that SpecpAq is connected, so that the
types of the geometric fibers of G and G1 are constant. The claim is that the functor

X :“ IsomgpppG,T q, pG
1, T 1qq

that parametrizes those group scheme isomorphisms between base changes of G and G1 that bring
T to T 1 has property (‹) with respect to I Ă A. By [SGA 3III new, exposé XXIV, corollaires 1.10
et 2.2 (i)], the normalizer NGadpT adq of the A-torus T ad Ă Gad induced by T acts freely on X and,
thanks to the assumption about the geometric fibers of G and G1, the quotient

X :“ X{NGadpT adq

is a faithfully flat A-scheme that becomes constant étale locally on A. We claim that X has property
(‹) with respect to I Ă A, more generally, that each quasi-compact subset of X is contained is
some A-(finite étale) clopen subscheme of X (such a clopen satisfies (‹), as we pointed out after
Definition 4.1). The advantage of the claim about the existence of an A-(finite étale) clopen is that
it suffices to argue it after base change along any finite étale cover of A. Thus, we may combine
our assumption on radpGq and radpG1q with [SGA 3III new, exposé XXIV, théorème 4.1.5] to assume
that both G and G1 are split. In this case, however, [SGA 3III new, exposé XXIV, théorème 1.3 (iii)
et corollaire 2.2 (i)] ensure that X is a constant A-scheme, so the claim is clear.

With the property (‹) of X in hand, by Remark 4.2, we may replace A by a finite étale cover
to reduce to showing that every NGadpT adq-torsor has property (‹). However, NGadpT adq is an
extension of a finite étale A-group scheme by T ad (see, for instance, [Čes22b, Section 1.3.2]), so we
may repeat the same reduction based on Remark 4.2 and be left with showing that every T ad-torsor
has property (‹) with respect to I Ă A. By [SGA 3III new, exposé XXIV, théorème 4.1.5 (i)], the
assumed isotriviality of radpGq ensures that the maximal torus T ad Ă Gad is isotrivial, and hence,
A being semilocal, that every T ad-torsor over A is isotrivial as well. The desired property (‹)
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for T ad-torsors then follows from [Čes22b, Corollary 6.3.2 and its proof] (based on building an
equivariant projective compactification of the A-torus T ad using toric geometry): indeed, although
the statement of loc. cit. assumes that the local rings of A are geometrically unibranch, its proof uses
this assumption only to ensure that both T ad and its torsor in question are isotrivial, which we have
argued directly, whereas the Noetherianity assumption may be arranged by a limit argument. �

Remark 4.4. Lemma 4.3 continues to hold if instead of the maximal A-tori T Ă G and T 1 Ă G1,
the groups G and G1 come equipped with fixed quasi-pinnings extending Borel A-subgroups B Ă G
and B1 Ă G1, and if ι and rι are required to respect these quasi-pinnings, see [Čes22a, Lemma 5.1].

We are ready for the following promised Grothendieck–Serre type result over arbitrary base rings.

Theorem 4.5. Let A be a ring, let B be an A-algebra, let C be a smooth affine A-scheme of pure
relative dimension d ą 0, let G be a totally isotropic reductive pC bA Bq-group scheme that descends
to a reductive C-group rG whose maximal central torus radp rG q is isotrivial Zariski semilocally on C
(resp., that descends to a reductive B-group G), and let P Ă G be a parabolic pC bA Bq-subgroup
that descends to a parabolic C-subgroup ĂP Ă rG (resp., to a parabolic B-subgroup P Ă G). Every
G -torsor E over C bA B whose restriction to pCzZq bA B for some A-finite Z Ă C reduces to a
RupPq-torsor trivializes Zariski semilocally on C, that is, for every c1, . . . , cn P C, there is an affine
open C 1 Ă C containing all the ci such that E trivializes over C 1 bA B.

Proof. Let A1 be the semilocal ring of C at c1, . . . , cn, so that, by a limit argument, it suffices to
show that E trivializes over A1 bA B. After base change to A1 the map SpecpA1q Ñ C induces a
“diagonal” section of C, so, by performing such a base change and replacing B by A1bAB, we reduce
to showing that, when A is semilocal, the pullback of E under sbA B for any s P CpAq is trivial. In
addition, we enlarge Z if necessary to ensure that s P ZpAq.

Granted this reformulation of the goal statement, let k be the product of the residue fields of the
maximal ideals of A. It follows from the presentation lemma [Čes22a, Proposition 3.6 (vii)] (choose
Y “ H there), alternatively, from Lemma 5.1 below (choose O “ k and Z “ H there), that there
are a principal affine open C 1 Ă C containing Zk and a smooth k-morphism πk : C 1k Ñ Ad´1

k of pure
relative dimension 1. By lifting the images of the standard coordinates, πk lifts to a morphism
π : C 1 Ñ Ad´1

A . By the fibral criterion [EGA IV3, théorème 11.3.10], this π is flat, so even smooth
of pure relative dimension 1, at every point of Zk. Thus, by shrinking C 1 while keeping Zk Ă C 1,
so also Z Ă C 1, we may arrange π to be smooth. At this point, we may replace C by C 1 and A by
Art1, . . . , td´1s (so B by Art1, . . . , td´1sbAB) to reduce the initial statement to the case when d “ 1.
We then repeat the reductions of the paragraph above to make A semilocal again, with an s P CpAq.

Granted the above reduction to d “ 1 and the reformulation of the goal statement, we will reduce to
the case when G descends to a reductive B-group G, which, being the pullback of G along sbA B,
is totally isotropic, and P Ă G descends to a parabolic B-subgroup P Ă G. For this, it suffices
to focus on the case when G lifts to a reductive C-group rG for which radp rG q is isotrivial Zariski
semilocally on C and P Ă G lifts to a parabolic C-subgroup ĂP Ă rG , and to reduce this case to
when rG descends to a reductive A-group rG and ĂP Ă rG descends to a parabolic A-subgroup rP Ă rG.
We begin by defining the candidate rP Ă rG simply as the s-pullback of ĂP Ă rG .

By shrinking C around the closed points of Z, we may assume that radp rG q is isotrivial, that rG

has a maximal torus ĂT Ă rG defined over C (see [SGA 3II, exposé XIV, corollaire 3.20]), and,
by passing to clopens if needed, that the type of the geometric C-fibers of rG is constant. We let
rT Ă rG be the s-pullback of ĂT . By Lemma 4.3 and spreading out, there are an affine open D Ă C
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containing Z and a finite étale cover rC � D for which s lifts to some rs P rCpAq such that rG |
rC
» rG|

rC
compatibly with the fixed identification of pullbacks along rs. Thus, we may replace C and s by
rC and rs, respectively, and reduce to the case when rG descends, that is, to when rG “ rGC . To
now likewise descend ĂP, we first pass to clopens to assume that the type of ĂP as a parabolic
subgroup of rGC is constant on C. Then rPC and ĂP are parabolic subgroups of rGC of the same type,
so, by [SGA 3III new, exposé XXVI, corollaire 5.5 (iv)] and a limit argument, they are conjugate
over some affine open neighborhood of Z in C. Since parabolic subgroups are self-normalizing
[SGA 3III new, exposé XXVI, proposition 1.2], the s-pullback of a conjugating section lies in rP , so
we may adjust by this s-pullback to make the conjugating section pull back to the identity by s.
Thus, by shrinking C and adjusting the identification between rG and rGC by an aforementioned
conjugation, we achieve the promised reduction to the case when ĂP Ă rG descends to rP Ă rG.

With P Ă G now being the base change of P Ă G, we wish to reduce to the case when C “ A1
A.

For this, we begin with our closed immersion Z ãÑ C and combine Proposition 3.2 (with Y “ Y0
there being the schematic image of our section s), Remark 3.4, and Proposition 3.5 to reduce to
when there is an étale morphism C Ñ A1

A and a Cartesian square

Z �
�

// C

��

Z �
�

// A1
A.

By [SP, Lemma 01PG] applied to the quasi-coherent ideal sheaf of Z Ă P1
A, the A-finite Z Ă A1

A is
the scheme-theoretic intersection of A-finite, finitely presented closed subschemes of A1

A containing it.
By a limit argument, our étale map C Ñ A1

A becomes an isomorphism already when based changed to
a small enough some such closed subscheme. Thus, we may enlarge our A-finite Z to make it finitely
presented over A while retaining the Cartesian square above. The square remains Cartesian after
base change to B, so we may apply excision for RupP q-torsors [Čes22a, Lemma 7.2 (b), Example 7.3]
(with a limit argument that reduces to the Noetherian setting of loc. cit.; facilitating this limit
argument was the only purpose of making Z finitely presented) and then use patching supplied, for
instance, by [Čes22b, Proposition 4.2.1], to descend E to a G-torsor over A1

B whose restriction to
pA1

AzZqbAB reduces to an RupP q-torsor. Effectively, we have reduced to the promised case C “ A1
A.

Once C “ A1
A, we may use the avoidance lemma [Čes22a, Lemma 3.1] to enlarge our A-finite Z Ă A1

A

to be the vanishing locus of some hypersurface in P1
A, to the effect that A1

AzZ becomes affine. Then
[SGA 3III new, exposé XXVI, corollaire 2.2] ensures that E trivializes over pA1

AzZq bA B. It then
suffices to apply Corollary 2.2 to conclude that E is trivial. �

Remark 4.6. In the case when B “ A, Theorem 4.5 holds even without assuming that G is totally
isotropic. Indeed, we only used the total isotropicity assumption in the very last sentence of the
proof, in order to apply Corollary 2.2, and without it we could instead change coordinates to make s
be the section t “ 0, extend E to a G-torsor over P1

A by patching it with the trivial torsor at infinity,
and conclude the desired triviality of s˚pE q by applying Theorem 2.1 (a) instead.

5. The mixed characteristic cases of our main result on the Nisnevich conjecture

We deduce the mixed characteristic cases of Theorem 1.3 from the Grothendieck–Serre phenomenon
of Theorem 4.5. To arrive at its relative curve setting, we use the following presentation lemma.

Lemma 5.1 ([Čes22a, Proposition 4.1]). For a smooth, affine scheme X of relative dimension
d ą 0 over a semilocal Dedekind ring O, points x1, . . . , xm P X, and a closed subscheme Z Ă X of
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codimension ě 2, there are an affine open X 1 Ă X containing x1, . . . , xm, an affine open S Ă Ad´1
O ,

and a smooth morphism f : X 1 Ñ S of relative dimension 1 such that X 1 X Z is S-finite. �

Remark 5.2. In the case when O is a field, the same statement holds under the weaker assumption
that Z is merely of codimension ě 1 in X, see [Čes22a, Remark 4.3] or Lemma 8.1 below (whose
proof does not use any other results from the present article).

5.3. The abstract maximal torus. To every reductive group G over a scheme S one associates an
S-torus TG, the abstract maximal torus of G defined by étale descent on S as follows. Étale locally
on S, the group G has a Borel B Ă G, and, letting RupBq Ă B denote the unipotent radical, one sets

TG :“ B{RupBq.

Up to a canonical isomorphism, this TG does not depend on the choice of B, and so it descends to the
original S: indeed, any two Borels are Zariski locally conjugate and, up to multiplying by a section
of B, the conjugating section is unique [SGA 3III new, exposé XXVI, proposition 1.2, corollaire 5.2],
so it suffices to note that the conjugation action of B on TG is trivial because the latter is abelian.

5.4. Proof of Theorem 1.3 (2). We have a semilocal ring R that is flat and geometrically regular
over a Dedekind subring O, an r P O, a reductive Rr1r s-group G that either extends to a quasi-split
reductive R-group or descends to a quasi-split reductive Or1r s-group, and a generically trivial G-torsor
E over Rr1r s. We need to show that E is trivial, and we will do this by applying Theorem 4.5.

We use Popescu theorem [SP, Theorem 07GC] and a limit argument to reduce to the case when R is
a semilocal ring of a smooth affine O-scheme X. By passing to connected components if needed, we
may assume that X is connected, of constant relative dimension d over O. If d “ 0, then R, and so
also Rr1r s, is a semilocal Dedekind ring, and E is trivial by [Guo22, Theorem 1]; therefore, we lose
no generality by assuming that d ą 0. By shrinking X if needed, we may assume that G (resp., E)
begins life over X (resp., over Xr1r s). In the case when our original G extends to a quasi-split
reductive R-group, we shrink X further to make G extend to a quasi-split reductive X-group rG

and we fix a Borel X-subgroup B Ă rG. In the case when our original G over Rr1r s descends to a
quasi-split Or1r s-group, we shrink X further to make sure that our new G over Xr1r s still descends
to a quasi-split reductive Or1r s-group, and we fix a Borel Or1r s-subgroup B of this descended group.

By applying the valuative criterion of properness to E{BXr 1
r
s, we may choose an open U Ă Xr1r s

with complement of codimension ě 2 such that EU reduces to a generically trivial B-torsor EB over
U . By purity for torsors under tori [CTS79, corollaire 6.9], the TG-torsor EB{RupBq over U extends
to a generically trivial TG-torsor over Xr1r s. To proceed, we use the following claim.

Claim 5.4.1. The abstract maximal torus of G has no nontrivial generically trivial torsors over Rr1r s:

H1pRr1r s, TGq ãÑ H1pFracpRr1r sq, TGq.

Proof. By our assumption on G and the base change compatibility of the formation of the abstract
maximal torus of a reductive group (see §5.3), our pTGqRr 1

r
s is the base change of a torus T defined

over a ring A that is either R or Or1r s. By [CTS87, Proposition 1.3], this T has a flasque resolution

0 Ñ F Ñ ResA1{ApGmq Ñ T Ñ 0,

where A1 is a finite étale A-algebra and F is a flasque A-torus. For now, all we need to know about
flasque tori is that, by the regularity of Rr1r s and [CTS87, Proposition 1.4, Theorem 2.2 (ii)],

H2pRr1r s,Fq ãÑ H2pFracpRr1r sq,Fq.
12
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This reduces our desired claim to the vanishing PicpRr1r s bA A
1q – 0, which we argue as follows. In

the case A “ R, the ring A1 is again regular semilocal, so every line bundle on A1r1r s extends to a line
bundle on A1, and hence is trivial, to the effect that PicpA1r1r sq “ 0, as desired. In the case A “ Or1r s,
by [Ser79, Chapter I, Section 4, Proposition 8], the normalization of O in A1 is a finite O-algebra O1,
in particular, O1 is again a Dedekind ring. Thus, RbOO1 is a finite R-algebra, and hence is semilocal,
but is also flat and geometrically regular over O1, so it is regular by [SP, Lemma 033A]. Since
Rr1r s bA A

1 is a localization of RbO O1, it again follows that PicpRr1r s bA A
1q – 0, as desired. �

Thanks to Claim 5.4.1, we may shrink X around SpecpRq to trivialize the TG-torsor EB{RupBq, in
particular, to make EU reduce to an RupBq-torsor. Since the complement Xr1r szU is of codimension
ě 2, its closure Z in X is also of codimension ě 2. Thus, by Lemma 5.1, we may shrink X around
SpecpRq to arrange that there exists an affine open S Ă Ad´1

O and a smooth morphism f : X Ñ S of
relative dimension 1 such that Z is S-finite. We can now apply Theorem 4.5 with A :“ ΓpS,OSq and
B :“ Ar1r s (and §1.8 for the isotriviality condition) to conclude that E is trivial over Rr1r s; of course,
here we are crucially using our assumption that the element r comes from the base ring O. �

6. The relative Grothendieck–Serre conjecture

In equal characteristic, the approach to Theorem 1.3 is based on the following relative version of the
Grothendieck–Serre conjecture that is a mild improvement to [Fed22, Theorem 1] (with an earlier
more restrictive case due to Panin–Stavrova–Vavilov [PSV15, Theorem 1.1]). Its case (ii), included
here for completeness, reproves the equal characteristic case of the Grothendieck–Serre conjecture.

Theorem 6.1. For a regular semilocal ring R containing a field k, a reductive R-group G, and an
affine k-scheme W , no nontrivial G-torsor over W bk R trivializes over W bk FracpRq if either

(i) G is totally isotropic; or

(ii) if W bk R is semilocal, for instance, if W “ Specpkq.

Proof. Let E be a G-torsor over W bk R that trivializes over W bk FracpRq, let F Ă k be the prime
subfield, and consider the k-algebra kbFR. The composition R a

ÝÑ kbFR
b
ÝÑ R, in which the second

map uses the k-algebra structure of R, is the identity. The base change of E along idW bk a is a
G-torsor over W bF R that trivializes over W bF FracpRq. Thus, it suffices to settle the claim with
k “ F because, by then base changing further along idW bk b, we would get the desired triviality of E.

Since k is now perfect, Popescu theorem [SP, Theorem 07GC] expresses R as a filtered direct limit
of smooth k-algebras. Thus, by passing to connected components of SpecpRq and doing a limit
argument, we may assume that R is a semilocal ring of a smooth, affine, irreducible k-scheme X of
dimension d ě 0 and that G and E are defined over all of X. Since E trivializes over W bk FracpXq,
is also trivializes over W ˆk pXzZq for some closed Z Ĺ X. If d “ 0, then E is trivial, and if d ą 0,
then we may apply the presentation lemma of Remark 5.2 to shrink X around SpecpRq so that there
exist an affine open S Ă Ad´1

k and a smooth morphism X Ñ S of relative dimension 1 that makes Z
finite over S. With such a fibration into curves in hand, however, the triviality of E over W bk R is
a special case of Theorem 4.5 (with §1.8 for the isotriviality condition) and Remark 4.6 applied with
A “ ΓpS,OSq and B “ ΓpW ˆk S,OWˆkSq in (i), and with A “ B “ ΓpW ˆk S,OWˆkSq in (ii). �

We will apply Theorem 6.1 with W Ă A1
k, in which case we may sharpen the assumptions as follows.

13

https://stacks.math.columbia.edu/tag/033A
https://stacks.math.columbia.edu/tag/07GC


Lemma 6.2 ([Gil02, Corollaire 3.10]). For a reductive group G over a field K and an open U Ă P1
K ,

each generically trivial G-torsor E over U reduces to a torsor under a maximal K-split subtorus of G;
in particular, if U Ă A1

K , then, since U has no nontrivial line bundles, E is a trivial G-torsor. �

Corollary 6.3. For a regular semilocal ring R containing a field k, a totally isotropic reductive
R-group G, and a nonempty open W Ă A1

k, every generically trivial G-torsor over W bk R is trivial.

Proof. Thanks to Lemma 6.2, Theorem 6.1 (i) applies and gives the desired triviality. �

7. Extending G-torsors over a finite étale subscheme of a relative curve

A crucial preparation to the equicharacteristic case of the Nisnevich conjecture is a result about
extending G-torsors over a finite étale closed subscheme of a smooth relative curve that we deduce
in Proposition 7.3 from the reembedding techniques of Proposition 3.5. For wider applicability,
we present this extension result axiomatically—it loosely amounts to a reduction of the Nisnevich
conjecture to the Grothendieck–Serre conjecture. The equicharacteristic relative Grothendieck–Serre
conjecture settled in Theorem 6.1 supplies the required axioms in our main case of interest.

Definition 7.1. For a ring A, a contravariant, set-valued functor F on the category of A-schemes
that are complements of A-quasi-finite closed subschemes in smooth affine A-schemes of pure relative
dimension 1 is excisive if for all Cartesian squares

Z �
�

//

„

��

S

f
��

Z 1 �
�

// S1

in which the horizontal maps are closed immersions, Z and Z 1 are A-quasi-finite and finitely presented,
S and S1 are complements of A-quasi-finite closed subschemes in smooth affine A-schemes of pure
relative dimension 1, and f is étale and induces an indicated isomorphism Z

„
ÝÑ Z 1, we have

F pS1q� F pSq ˆF pSzZq F pS
1zZ 1q.

For instance, for a quasi-affine, flat, finitely presented A-group G, the functor H1p´, Gq is excisive,
see [Čes22b, Proposition 4.2.1]. The following lemma is critical for our argument for Theorem 1.3 (1).

Lemma 7.2. Let A be a ring, let S be an A-scheme, let Y Ă S be an A-(separated étale) closed
subscheme that is locally cut out by a finitely generated ideal, and consider the decomposition

Y ˆA Y “ ∆\ Y 1

in which ∆ Ă Y ˆA Y is the diagonal copy of Y . The following square is Cartesian:

∆ �
�

//

„

��

SY zY
1

��

Y �
�

// S,

in particular, if F is an excisive functor as in Definition 7.1 and S is the complement of an A-
quasi-finite closed subscheme in some smooth affine A-scheme of pure relative dimension 1, then an
element of F pSzY q extends to F pSq if and only if its pullback to F ppSzY qY q extends to F pSY zY 1q;
for instance, for a quasi-affine, flat, finitely presented S-group G, a G-torsor over SzY extends to a
G-torsor over S if and only if its base change to pSzY qY extends to a G-torsor over SY zY 1.
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Proof. The claimed decomposition Y ˆA Y “ ∆\ Y 1 exists because any section of a separated étale
morphism, such as the projection Y ˆA Y Ñ Y , is both a closed immersion and an open immersion.
Thus, the square in question is Cartesian because the étale map SY zY 1 Ñ S induces an isomorphism
∆

„
ÝÑ Y . The claim about F is then immediate from Definition 7.1. �

We are ready for our key axiomatic extension result, which extends Fedorov’s [Fed23, Proposition 2.8].

Proposition 7.3. Let

‚ A be a reduced semilocal ring that contains a field (so also a field k that is either Q or Fp),

‚ C be a smooth affine A-scheme of pure relative dimension 1,

‚ Y Ă C be an A-(finite étale) closed subscheme, and

‚ F be an excisive, pointed set valued functor as in Definition 7.1.

Suppose that for each finite étale k-algebra k1, each finite étale Y -scheme Y that is also a k1-scheme,
each Y Ă A1

Y that is both a union of finitely many pairwise disjoint Y-points and a base change of a
finite set of k1-points of A1

k1 , and each Y-finite closed subscheme Z Ă A1
Y containing Y , we have

KerpF pA1
Yq Ñ F pA1

YzZ qq� KerpF pA1
YzY q Ñ F pA1

YzZ qq, (7.3.1)

that is, every element of F pA1
YzY q that trivializes away from some Y-finite Z Ă A1

Y containing Y

extends to F pA1
Yq. Then, for every A-finite closed subscheme Z Ă C containing Y , we have

KerpF pCq Ñ F pCzZqq� KerpF pCzY q Ñ F pCzZqq, (7.3.2)

that is, every element of F pCzY q that trivializes away from some A-finite Z Ă C containing Y
extends to F pCq.

Corollary 6.3 supplies the assumption (7.3.1) when A is regular of equicharacteristic and F p´q is
H1p´, Gq for a reductive A-group G such that GY is totally isotropic.

For proving Proposition 7.3 and, simultaneously, for potential future applications in mixed charac-
teristic, it is convenient to directly argue the following more general statement in Proposition 7.4. It
incorporates an auxiliary larger curve C 1 to help with intermediate reductions in the proof and it
also works over Z instead of over a base field k. Since the finite étale Y -scheme Y in Proposition 7.3
is reduced, any map from a finite Z-algebra B to the coordinate ring of Y factors through some k1
as in Proposition 7.3, so Proposition 7.3 is indeed a special case of Proposition 7.4.

Proposition 7.4. Let

‚ A be a semilocal ring,

‚ C 1 be a smooth affine A-scheme of pure relative dimension 1,

‚ Y 1 Ă C 1 is an A-(finite étale) closed subscheme with complement C :“ C 1zY 1,

‚ Y Ă C be an A-(finite étale) closed subscheme, and

‚ F be an excisive, pointed set valued functor as in Definition 7.1.

Suppose that for each finite Z-algebra B, each finite étale pY YY 1q-scheme Y that is also a B-scheme,
each Y Ă A1

Y that is both a union of finitely many pairwise disjoint Y-points and a base change of a
finite set of (possibly nondisjoint) B-points of A1

B, and each Y-finite closed Z Ă A1
Y containing Y ,

KerpF pA1
Yq Ñ F pA1

YzZ qq� KerpF pA1
YzY q Ñ F pA1

YzZ qq. (7.4.1)
15



Then, for every A-finite closed subscheme Z Ă C 1 containing Y Y Y 1, we have

KerpF pCq Ñ F pCzZqq� KerpF pCzY q Ñ F pCzZqq. (7.4.2)

The proof is a formal reduction of the property (7.4.2) to the case when C “ A1
A and Y is “constant.”

Proof. We fix an α P KerpF pCzY q Ñ F pCzZqq that we wish to extend over Y . The assumption
that F be excisive is stable under finite étale base change in A. Thus, we may use Lemma 7.2 to
base change along Y Ñ SpecpAq and shrink the base changed C by removing the off-diagonal part
of Y ˆA Y to reduce to the case when Y – SpecpAq (so the base changed C 1 is kept and the base
changed Y 1 is enlarged by uniting it with the off-diagonal part of Y ˆA Y ). Moreover, we decompose
A to reduce to the case when SpecpAq is connected, so that degpY Y Y 1{Aq is a well-defined integer.

We let n be the product of degppY Y Y 1q{Aq and of all the prime numbers p with p R Aˆ. By
Proposition 3.2 (applied with Y0 “ Y and Y1 “ Y 1) with Remark 3.4, there are an affine open
D Ă C 1 containing Z (so also Y Y Y 1) and a finite étale cover rC 1 � D such that there is no finite
field obstruction to embedding rZ :“ Z ˆC1 rC 1 into A1

A and
rY :“ Y ˆC1 rC 1 decomposes as rY “ rY0 \ rY1 such that rY0

„
ÝÑ SpecpAq

and each component of rY1 or of rY 1 :“ Y 1 ˆC1 rC 1 is a scheme over some finite Z-algebra B each of
whose residue fields k of characteristic p | n satisfies

#k ą n ¨ degp rZ{Zq ě degpprY Y rY 1q{Aq.

By construction, setting rC :“ pDzY 1q ˆC1 rC 1, we have a Cartesian square

rY0

„

��

� � // rCzrY1

��

Y �
�

// C XD.

Thus, since F is excisive, to extend α over Y we may first restrict to CXD (in Definition 7.1, choose
f to be the inclusion CXD ãÑ C and choose Z and Z 1 there to be our Y ) and then pass to rCzrY1. In
other words, we may replace Y Ă C Ă C 1 by rY0 Ă rCzrY1 Ă rC 1 and α by its pullback to rCzrY to reduce
to the case when Y – SpecpAq and each connected component of Y 1 is an algebra over some finite
Z-algebra B each of whose residue fields k of characteristic p | n satisfies #k ą degppY YY 1q{Aq and
there is no finite field obstruction to embedding Z into A1

A (the goal of this step is to prepare for
reducing to A1

A by excision afterwards). By Proposition 3.5, such an embedding then exists, more
precisely, there are an affine open D Ă C 1 containing Z and a Cartesian square

Z �
�

//

„

��

D

f

��

Z 1 �
�

// A1
A

(7.4.3)

in which the map f is étale and embeds Z as a closed subscheme Z 1 Ă A1
A. The square remains

Cartesian after passing to the complements of the A-(finite étale) Y Y Y 1 viewed inside Z (so also
inside Z 1). Thus, for the purpose of extending α over Y , we may use the excisive property of F to
patch the restriction α|DzpYYY 1q with the origin in F pA1

AzZ
1q to reduce to the case when C 1 “ A1

A.

In conclusion, at the cost of stepping back to the setting of a more general Y , we have reduced our
overall sought claim about extending α to the case when C 1 “ C “ A1

A and Y – SpecpAq \ y are
such that each connected component of y is a scheme over some finite Z-algebra B each of whose
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residue fields k of characteristic p | n satisfies #k ą degpY {Aq. To extend α over any fixed connected
component of y, since F is excisive, we may base change to this component and use Lemma 7.2
(noting that we may use the same n after such a base change and that degpY {Aq is stable under
such a base change). Thus, we may assume that A itself is an algebra over some finite Z-algebra B
as above: indeed, once we argue the claim under this assumption, by the previous sentence, we will
be able to extend α over y by iteratively extending over each of its components, and this will leave
us with the case y “ H, in which case we may choose B “ Z to force the same assumption.

Granted the reductions above, we now induct on the number of disjoint copies of SpecpAq contained
in Y to reduce to when Y »

Ů

SpecpAq. Indeed, suppose that Y has a connected component W
that does not map isomorphically to SpecpAq, so that W is of degree ě 2 over A. Since W ˆA W
contains the diagonal copy of W as a clopen (compare with Lemma 7.2), the W -(finite étale) closed
subscheme Y ˆAW Ă A1

W has the same degree degpY {Aq over W and contains strictly more disjoint
copies of W than Y contained disjoint copies of SpecpAq. Thus, by the inductive hypothesis, the
pullback of α to A1

W zpY ˆA W q extends over Y ˆA W . By Lemma 7.2, this implies that α extends
over W . By repeating this for each possible W , we effectively eliminate connected components of Y
one by one until we reduce to the desired base case when Y »

Ů

SpecpAq.

To treat this last case, we set m :“ degpY {Aq, so that, without losing generality, m ě 1, and we
will use our assumption (7.4.1). We take Y :“ SpecpAq, which is, by our assumption, a B-scheme.
However, we cannot simply choose Y “ Y because, even though Y is a union of m pairwise disjoint
A-points of A1

A, these points need not be defined over B, that is, Y need not be a base change of a
finite set of B-points of A1

B (not even up to an automorphism of A1
A if m ě 3). Nevertheless, the

condition on the residue fields of B does ensure that A1
B has m distinct B-points that pull back to

m pairwise distinct k-points of A1
k for every residue field k of B of characteristic p with p R Aˆ. The

union of these B-points of A1
B base changes to a closed subscheme Y Ă A1

A that is a union of m
pairwise disjoint A-points of A1

A (disjointness may be tested over the residue fields of the maximal
ideals of A). This last condition ensures that there is an A-isomorphism Y » Y , and Proposition 3.5
(especially, its final aspect) then supplies an affine open D Ă A1

A containing Z and a Cartesian square
as in (7.4.3) such that f maps Y isomorphically onto Y . Thus, since F is excisive, we reduce to the
case when Y “ Y inside A1

A. At this point we conclude by applying our assumption (7.4.1). �

Corollary 7.5. Let R be a regular semilocal ring containing a field, let G be a totally isotropic
reductive R-group scheme, let C be a smooth affine R-scheme of pure relative dimension 1, and let
Y Ă C be an R-(finite étale) closed subscheme. Every G-torsor over CzY that trivializes away from
some R-finite closed subscheme Z Ă C containing Y extends to a G-torsor over C.

Proof. By Corollary 6.3, for a product of fields k1, a k1-fiberwise nonempty open W Ă A1
k1 , and a

finite étale R-algebra R1 that is a k1-algebra, every generically trivial G-torsor over W bk1 R1 is
trivial. Thus, the excisive functor F p´q :“ H1p´, Gq fulfils the axiomatic assumption (7.3.1) (let
W Ă A1

k1 be such that WY “ A1
YzY ). In effect, Proposition 7.3 applies and gives the claim. �

8. The Nisnevich conjecture over a field

The final preparation to the equicharacteristic case of the Nisnevich conjecture is the following
geometric presentation lemma in the spirit of Gabber’s refinement [Gab94, Lemma 3.1] of the
Quillen presentation lemma [Qui73, Section 7, Lemma 5.12], which itself is a variant of the Noether
normalization theorem. For us, it is crucial to have its aspect about the smooth divisor D.
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Lemma 8.1. For a smooth, affine, irreducible scheme X of dimension d ą 0 over a field k that is
either finite or of characteristic 0,3 points x1, . . . , xm P X, a proper closed subscheme Z Ă X, and a
k-smooth divisor D Ă X, there are an affine open X 1 Ă X containing x1, . . . , xm, an affine open
S Ă Ad´1

k , and a smooth morphism

f : X 1 Ñ S

of relative dimension 1 such that

X 1 X Z “ f´1pSq X Z is S-finite and X 1 XD “ f´1pSq XD is S-(finite étale).

Proof. In the case d “ 1, we may choose X 1 “ X and S “ Specpkq, so we assume that d ą 1. We
also replace each xi by a specialization to reduce to xi being a closed point (see [SP, Lemma 02J6]),
and in this case we will force each fpxiq to be the origin of Ad´1

k . We embed X into some projective
space PN

k and then form closures to arrange that X is an open of a projective X Ă PN
k of dimension

d with XzX of dimension ď d´ 1 and that there are

‚ a projective D Ă X of dimension d´ 1 with DzD of dimension ď d´ 2, and

‚ a projective Z Ă X of dimension ď d´ 1 with ZzZ of dimension ď d´ 2.

We use the avoidance lemma [GLL15, Theorem 5.1] and postcompose with a Veronese embedding
to build a hyperplane H0 not containing any xi such that pXzXq XH0 is of dimension ď d´ 2 (to
force the dimension drop, choose appropriate auxiliary closed points and require H0 to not contain
them). By the Bertini theorem [Poo04, Theorem 1.3] of Poonen if k is finite and by the Bertini
theorem of [Čes22a, second paragraph of the proof of Lemma 3.2] applied both to X and to D in
place of X if k is of characteristic 0, there is a hypersurface H1 Ă PN

k such that

‚ H1 contains x1, . . . , xm;

‚ X XH1 (resp., D XH1) is k-smooth of dimension d´ 1 (resp., d´ 2);

‚ Z XH1 is (resp., pDzDq XH1 and pZzZq XH1 are) of dimension ď d´ 2 (resp., ď d´ 3);

‚ pXzXq XH0 XH1 is of dimension ď d´ 2.

In particular, by passing to intersections with H1, we are left with an analogous situation with d
replaced by d ´ 1. Therefore, by iteratively applying the Bertini theorem in this way, we build
hypersurfaces H1, . . . ,Hd´1 such that

(i) the x1, . . . , xm lie in H1 X . . .XHd´1 but not in H0;

(ii) X XH1X . . .XHd´1 (resp., DXH1X . . .XHd´1) is k-smooth of dimension 1 (resp., k-étale);

(iii) pDzDq XH1 X . . .XHd´1 “ pZzZq XH1 X . . .XHd´1 “ H.

(iv) pXzXq XH0 XH1 X . . .XHd´1 “ H.

By letting 1, w1, . . . , wd´1 be the degrees of the hypersurfaces H0, H1, . . . ,Hd´1 and choosing defining
equations hi of the Hi, we determine a projective morphism rf : rX Ñ Pkp1, w1, . . . , wd´1q from the

3The assumption on k is likely not optimal but it will suffice and we do not wish to further complicate the proof.
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weighted blowup rX :“ Blph0, . . . , hd´1q to the weighted projective space such that the diagram

XzH0
� � //

f
��

XzpH0 X . . .XHd´1q
� � //

��

rX

rf

��

Ad´1
k
� � // Pkp1, w1, . . . , wd´1q Pkp1, w1, . . . , wd´1q

commutes, where the bottom left arrow is the inclusion of the open locus where the first standard
coordinate of Pkp1, w1, . . . , wd´1q does not vanish, see [Čes22a, Sections 3.4 and 3.5]. By (i), each
fpxiq is the origin of Ad´1

k . By (ii) and the dimensional flatness criterion [EGA IV2, Proposition 6.1.5],
at every point of the fiber above the origin of Ad´1

k , the map f is smooth of relative dimension 1

and its restriction to D is étale. Since rf is projective, (iii)–(iv) and the openness of the quasi-finite
locus [SP, Lemma 01TI] ensure that for some affine open neighborhood of the origin S Ă Ad´1

k both
f´1pSq X Z and f´1pSq XD are S-finite (see also [SP, Lemma 02OG]). In conclusion, any affine
open of f´1pSq that contains all the xi and all the points of Z and D that lie above the origin of
Ad´1
k becomes a sought X 1 after possibly shrinking S further. �

8.2. Proof of Theorem 1.3 (1). We have a regular semilocal ring R containing a field k, a regular
parameter r P R, a reductive R-group G with GR{prq totally isotropic, and a generically trivial
G-torsor E over Rr1r s. We need to show that E is trivial, equivalently, by a known case of the
Grothendieck–Serre conjecture Theorem 6.1 (ii), we need to extend E to a G-torsor E over R. For this,
by Zariski patching and a limit argument, we may semilocalize R along the union of those maximal
ideals m Ă R that contain r and reduce ourselves to the case when r lies in every maximal ideal
m Ă R. Moreover, we may replace k by its prime subfield to assume that k is either Q or some Fp.

Popescu theorem [SP, Theorem 07GC] expresses R as a filtered direct limit of smooth k-algebras.
Thus, by passing to connected components of SpecpRq and doing a limit argument, we may assume
that R is a semilocal ring of a smooth, affine, irreducible k-scheme X of dimension d ě 0, that r is
a global section of X that cuts out a k-smooth divisor D Ă X with complement U :“ XzD, that
G (resp., E) is defined over all of X (resp., U), and that GD is totally isotropic. Since E is trivial
over FracpXq, there is a closed Z Ĺ X containing D such that E is trivial over UzZ . If d “ 0,
then E is trivial, so we assume that X is of dimension d ą 0. Finally, we use [SGA 3II, exposé XIV,
corollaire 3.20] to shrink X further to make G have a maximal torus T defined over all of X.

With these preparations, Lemma 8.1 allows us to shrink X around SpecpRq to arrange that there
exist an affine open S Ă Ad´1

k and a smooth morphism f : X Ñ S of relative dimension 1 such that
Z is S-finite and D is S-(finite étale). We base change f along the map SpecpRq Ñ S to obtain

‚ a smooth affine R-scheme C of pure relative dimension 1 (base change of X);

‚ an R-finite closed subscheme Z Ă C (base change of Z );

‚ an R-(finite étale) closed subscheme Y Ă Z (base change of D);

‚ a section s P CpRq (induced by the “diagonal” section) such that s|Rr 1
r
s factors through CzY ;

‚ a reductive C-group G with s˚pG q – G (base change of G) such that GY is totally isotropic;

‚ a maximal C-torus T Ă G (base change of T ) with s˚pT q – T ; and

‚ a G -torsor E over CzY (base change of E) that is trivial over CzZ such that

ps|Rr 1
r
sq
˚pE q – E as G-torsors over Rr1r s.
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We replace Z by ZYs if needed to arrange that s P ZpRq. By Lemma 4.3 (with §1.8 for the isotriviality
aspect) and spreading out, there is a finite étale cover rC of some affine open neighborhood of Z in C
such that s lifts to some rs P rCpRq and G

rC
» G

rC
, compatibly with an already fixed such isomorphism

after pullback along rs. Thus, we may replace C and s by rC and rs and replace Z, Y , G , E by their
corresponding base changes to reduce to when G is GC . In this case, however, by Corollary 7.5, the
G-torsor E extends to a G-torsor defined over all of C. Thus, by pulling back along s, our G-torsor
E extends to a desired G-torsor E over R. �

9. The generalized Bass–Quillen conjecture over a field

The proof of Theorem 1.5 will use the following general form of Quillen patching.

Lemma 9.1 (Gabber, see [Čes22b, Corollary 5.1.5 (b)]). For a ring A and a locally finitely presented
A-group algebraic space G, a G-torsor (for the fppf topology) over Ad

A descends to a G-torsor over A
if and only if it does so Zariski locally on SpecpAq. �

9.2. Proof of Theorem 1.5. We have a regular ring R containing a field, a totally isotropic
reductive R-group G, and a generically trivial G-torsor E over Ad

R. We need to show that E descends
to a G-torsor over R. For this, by induction on d, we may assume that d “ 1. By Quillen patching
of Lemma 9.1, we may assume that R is local. In this key local case, we will show that E is trivial.

For this, by Corollary 2.2, it suffices to show that E is trivial on A1
RzZ for some R-finite closed

subscheme Z Ă A1
R. By a limit argument, it therefore suffices to show that E becomes trivial over

the localization of Rrts obtained by inverting all the monic polynomials. By the change of variables
x :“ t´1, this localization is the localization of P1

R along the section 8, and hence is isomorphic to

pRrxs1`xRrxsqr
1
x s.

The ring R1 :“ Rrxs1`xRrxs is regular, local, and shares its fraction field with A1
R. In particular,

the base change of E to R1 is generically trivial. Thus, since x is a regular parameter of R1,
Theorem 1.3 (1) implies that this base change of E is trivial, as desired. �
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