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1. Introduction

The goal of this survey is to discuss a web of conjectures and questions about torsors under reductive
groups over regular rings. Some of these are well-known major problems in the field that have stood
the tests both of time and of partial results (some recent) by multiple authors. Some others appear
to have avoided the spotlight, even though they are close in spirit or even have direct links to the
better known of these conjectures. In spite of multiple surveys that some of these problems have
already received, we believe that it is worthwhile to discuss them together in the pages that follow
with the hope that highlighting their common aspects may eventually lead to further progress.

Indeed, even though these problems concern torsors, key progress on them involved establishing
structural results about regular rings themselves, concrete examples being the Popescu approximation
(Theorem 1.4.6 below), the Geometric Presentation Theorem (Theorem 4.1.1 below), or the Lindel
lemma (Proposition 4.1.4 below). These structural results are useful in many contexts, so finding
fruitful approaches to torsor problems tends to bring general insights into the geometry of regular
rings. This amplifies the significance of problems about torsors, although they are captivating already
for the elegance and simplicity of their statements. Heuristically, this geometric approach is suggested
by the difficulty of “enlarging” the regular rings at hand, for instance, by passing to Henselizations
or completions, because a priori this may trivialize the torsors one is studying—therefore, one is
forced to “shrink” the rings instead by studying their fine geometric structure.

The conjectures in question almost exclusively concern regular local rings R,1 so they naturally
split into three cases of increasingly arithmetic flavor: when R is of equal characteristic, when it
is of mixed characteristic but unramified, and when it is of mixed characteristic and ramified (see
§1.4). Thanks to Popescu approximation, the equal characteristic case essentially concerns local
rings of smooth varieties over a field and tends to be the most approachable. Likewise, the mixed
characteristic unramified case essentially concerns local rings of smooth schemes over Z, so it tends
to be similar to the equal characteristic case except for new and often rather delicate geometric
subtleties of arithmetic flavor. Finally, the mixed characteristic ramified case has so far remained
almost entirely out of reach, and our understanding of the geometry of arbitrary ramified regular
local rings appears to still be limited.

As for reductive groups themselves, the simplest are the commutative ones, that is, tori: for them,
one typically reduces the problem at hand either to the most basic case of Gm or to an abelian
question that concerns étale or flat cohomology. The next simplest class is that of general linear
groups GLn: for them, studying torsors amounts to studying vector bundles—this case already
exhibits general nonabelian phenomena, although it also has some simplifying features, for example,
Zariski local triviality of the torsors in question. The case of a general reductive group G is the most
delicate: the question at hand may already be highly nontrivial for split G (or even for GLn), and
it tends to complicate further once arithmetic structure of a non-split G enters the picture. For
instance, in general it may be important to know whether G has nontrivial split subtori, nontrivial
parabolic subgroups, or even a Borel subgroup. We segregate problems about GLn-torsors into §2

1We expect them to stay true for regular semilocal rings, but for the sake of focus we chose to neglect this aspect
below. Many of their known special cases are established in this generality in the indicated references.
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and then discuss problems that concern general G in §3. In subsequent §§4–6, we discuss some of
the techniques that have been used for making progress on the conjectures overviewed in §§2–3.

Most of the problems we discuss admit analogues for valuation rings, as we sometimes indicate
along the way. For this, the idea is that, by the Zariski local uniformization conjecture (a local
form of the resolution of singularities), any valuation ring V ought to be a filtered direct limit
of its regular local subrings. Although local uniformization remains open in positive and mixed
characteristics, this heuristic suggests precise formulations for expected valuation ring analogues of
problems about torsors. These analogues may often be settled directly: the non-Noetherian nature of
general valuation rings brings considerable technicalities but, on the other hand, valuation rings have
somewhat straight-forward ring-theoretic properties when compared to regular rings, for instance,
their prime ideals are linearly ordered and their arithmetic resembles regular rings of dimension ď 1.

Before proceeding to the main body of the text, we review some basic facts about torsors, reductive
group schemes, and regular rings that we will use throughout without explicit mention.

Acknowledgements. I thank Viê.n Toán Ho.c for the invitation to contribute to the special issue
of Acta Mathematica Vietnamica. I thank Yifei Zhao for the appendix and for helpful comments
on the main body of the text. I thank the referee for helpful comments and suggestions. I thank
Alexis Bouthier, Jean-Louis Colliot-Thélène, Sean Cotner, Roman Fedorov, Ofer Gabber, Ning
Guo, Shang Li, Ivan Panin, Federico Scavia, Yifei Zhao, and many others for useful conversations
and correspondence related to the subject of this article. This project received funding from the
European Research Council under the European Union’s Horizon 2020 research and innovation
program (grant agreement No. 851146).

1.1. Notation and conventions

The rings we consider are commutative and unital. A commutative ring R is local (resp., semilocal)
if it has a unique (resp., finitely many) maximal ideal(s) m Ă R (so the zero ring is semilocal but not
local). A scheme is local (resp., semilocal) if it is the spectrum of a local (resp., semilocal) ring. A
local ring pR,mq is complete if it is complete for its m-adic topology, in other words, if every m-adic
Cauchy sequence in R has a unique limit. We say that a local domain R is of equicharacteristic
(resp., of mixed characteristic) if its fraction field and its residue field have the same (resp., different)
characteristics, equivalently, if R contains either Q or some Fp (resp., if R contains no field). We
let kp (resp., ks) denote the residue field of a prime ideal p Ă R of a ring (resp., of a point s P S
of a scheme). For a scheme S, and an S-scheme X, we let Xsm denote its smooth locus (which is
automatically open, see [SP, Definition 01V5]). A vector bundle on a scheme S is an OS-module
that is finite locally free of finite rank; a vector bundle V on S is stably free if V ‘ O‘n1

S » O‘n
S for

some n, n1 ě 0. Every vector bundle on a semilocal S scheme is free granted that its rank is constant
(an automatic condition if S is connected, for instance, if S is local), see [SP, Lemma 02M9].

These notations and conventions are in place throughout the article, including the appendix.

1.2. Basic properties of torsors

An exhaustive reference for generalities about torsors is Giraud’s book [Gir71]. Op. cit. may appear
difficult to navigate at first, so we now recall some salient points.
1.2.1. The pointed set H1pS,Gq. For a group sheaf G on a site S, a torsor, synonymously, a
principal homogeneous space under G (simply, a G-torsor) is a sheaf E equipped with a right action
of G such that E becomes trivial locally for the topology in question, that is, becomes isomorphic to
the trivial torsor given by G equipped with its right translation action. A simple triviality criterion is

EpSq
?
‰ H.
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The collection of isomorphism classes of G-torsors is denoted by H1pS,Gq and is understood to be
pointed by the class of the trivial torsor. For abelian G, this agrees with the usual derived functor
H1, see [Gir71, Chapitre III, Remarque 3.5.4]. Any morphism between G-torsors is automatically an
isomorphism. The automorphism functor of the trivial G-torsor is G itself acting via left translation.
In particular, for a G-torsor E, its automorphism functor AutGpEq is a group sheaf that is a pure
inner form of G (and every pure inner form of G arises in this way).2 The G-torsors correspond to
the AutGpEq-torsors via the “change of origin” bijection

H1pS,Gq – H1pS,AutGpEqq given by E1 ÞÑ IsomGpE,E1q, (1.2.1.1)

where IsomGpE,E1q is the AutGpEq-torsor that parametrizes G-torsor isomorphisms between E and
E1 (so E gets sent to the class of the trivial AutGpEq-torsor), see [Gir71, Chapitre III, Remarque 2.6.3].
When G is abelian, AutGpEq – G and the bijection simply subtracts the class of E.
1.2.2. Subgroups and quotients. For a map of group sheaves G1 Ñ G, every G1-torsor E1 gives
rise to a G-torsor defined as the contracted product E :“ E1 ˆG1 G; this gives a map of pointed sets

H1pS,G1q Ñ H1pS,Gq.

Conversely, for an inclusion of group sheaves G1 Ă G and a G-torsor E, the quotient E{G1 parametrizes
the reductions of E to a G1-torsor E1. As in the abelian case, by [Gir71, Chapitre III, Proposition 3.3.1;
Chapitre IV, Remarque 4.2.10], a short exact sequence of S-sheaves

1 Ñ G1 Ñ G Ñ G2 Ñ 1

with G1 and G group sheaves and G2 :“ G{G1 produces a functorial exact sequence of pointed sets

1 Ñ G1pSq Ñ GpSq Ñ G2pSq Ñ H1pS,G1q Ñ H1pS,Gq 99K H1pS,G2q 99K H2pS,G1q, (1.2.2.1)

where the first (resp., second) dashed arrow exists if G1 is normal (resp., even central) in G, and
exactness means that the kernel of each arrow is precisely the image of the preceding one.
1.2.3. The scheme case and the representability properties. For us, S will be a scheme
endowed with its fppf topology and G will be an S-group algebraic space (or even an S-group
scheme), and we will consider torsors for the fppf topology. By [SP, Lemma 04SK], the G-torsors are
then automatically representable by algebraic spaces because they are representable fppf locally on
S (by base changes of G). In contrast, if G happens to even be an S-group scheme, then its torsors
need not be representable by schemes: nonrepresentable torsors exist already when G is an abelian
scheme, see [Ray70, Section XIII 3.2, page 200]. However, this point tends to be moot: modulo more
demanding technicalities, working with algebraic spaces is often (but not always!) “just as good.”

On the positive side, if G is an S-affine S-scheme, or merely an S-ind-quasi-affine3 S-scheme, then
its torsors are representable by schemes: the affine case follows from flat descent for quasi-coherent
sheaves, the more general quasi-affine case follows from the effectivity of descent for quasi-affine
schemes [SP, Lemma 0247], and the yet more general ind-quasi-affine case is more subtle and follows
from the effectivity of fpqc descent for ind-quasi-affine morphisms due to Gabber [SP, Lemma 0APK].

Of course, by fppf descent, torsors, as well as functors like AutGpEq and IsomGpE,E1q above, inherit
properties of G such as relative ((ind-)quasi-)affineness, or finite presentation, or smoothness, etc.

2A form of G is an S-group sheaf isomorphic to G locally on S, so it corresponds to an element of H1
pS,AutgppGqq.

A form is inner (resp., pure inner) if this element lifts to H1
pS,G{ZGq (resp., even to H1

pS,Gq), where ZG Ă G is
the center and the map G{ZG Ñ AutgppGq is induced by G acting on itself by conjugation.

3We recall from [SP, Definition 0AP6] that a scheme is ind-quasi-affine if all of its quasi-compact opens are
quasi-affine, and that a morphism is ind-quasi-affine if the preimage of every affine open is ind-quasi-affine. By
[SP, Lemma 0AP8], ind-quasi-affineness of a morphism is fpqc local on the target. Useful examples of ind-quasi-affine
but not quasi-affine (that is, not quasi-compact) schemes are character groups of tori or automorphism groups of
reductive groups, see §1.3.7 below.

4

https://stacks.math.columbia.edu/tag/04SK
https://stacks.math.columbia.edu/tag/0247
https://stacks.math.columbia.edu/tag/0APK
https://stacks.math.columbia.edu/tag/0AP6
https://stacks.math.columbia.edu/tag/0AP8


In particular, since a smooth morphism of schemes admits a section étale locally on the base (see
[EGA IV4, Corollaire 17.16.3 (ii)]), torsors under a smooth G trivialize étale locally on S. Similarly,
if G is flat and locally of finite presentation, then so are its torsors even for the fpqc topology, so that
they all trivialize already fppf locally; consequently, considering fpqc G-torsors is “no more general.”

As for quotients, it is useful to recall that, for a scheme S, the fppf sheaf quotient X{G of an
S-algebraic space X equipped with a free action of a flat, locally finitely presented S-group algebraic
space G is always representable by an S-algebraic space, see [SP, Lemma 06PH]. The map X Ñ X{G
is a G-torsor over X{G, so, by descent, it inherits properties of G Ñ S, for instance, flatness and local
finite presentation; in particular, if X Ñ S is smooth, then so is X{G Ñ S, see [SP, Lemma 0AHE].
Deciding whether X{G is a scheme if X and G are schemes is significantly more delicate, for
instance, no general result ensures this even when X and G are both affine (with S general). Some
situations in which X{G is a scheme is when X is affine and G is either finite locally free (see
[SGA 3I new, Théorème 4.1 (iv)]) or a torus (or even reductive over S, see the end of §1.3.1); in both
of these cases the quotient X{G is also affine over S.

As far as representability by schemes goes, it may be worth to recall that one does not know any
example of a scheme S and a smooth, separated, finitely presented S-group algebraic space G with
connected fibers that would not be a scheme (compare with [FC90, Chapter I, Theorem 1.9]).

1.3. Basic properties of reductive group schemes and of their torsors

We assume that the reader is familiar with the theory of reductive group schemes (so also with
reductive groups over a field) described in [SGA 3II], [SGA 3III new], and surveyed by Conrad in
[Con14]. Nevertheless, we now review the basic aspects that are particularly relevant for studying
torsors—in reality, each individual conjecture discussed in §3 only requires a small subset of them.
1.3.1. Reductive groups. For a scheme S, an S-group scheme G is reductive (resp., semisimple) if
it is smooth and affine over S and its geometric S-fibers are connected reductive (resp., semisimple)
groups, see [SGA 3III new, Exposé XIX, Définition 2.7]. Basic examples of reductive S-groups are
the S-tori (see §A.1.3) and the split S-groups such as GLn, S , PGLn, S , SOn, S , etc. Split (and
pinned) reductive group schemes are classified combinatorially by root data and every reductive
S-group is split (and pinned) étale locally on S, see [SGA 3III new, Exposé XXII, Définition 1.13,
Corollaire 2.3; Exposé XXIII, Définition 1.1; Exposé XXV, Théorème 1.1]. The split type of a general
reductive S-group G is locally constant on S, see [SGA 3III new, Exposé XXII, Proposition 2.8]. If
this type is constant, then G is a form of the split reductive S-group scheme of the same type, see
[SGA 3III new, Exposé XXII, Corollaire 2.3] and also §1.3.7 below.

By [SGA 3II, Exposé XVI, Corollaire 1.5 (a)], for a reductive S-group H, any S-monomorphism
H ãÑ G to a finitely presented S-group scheme G is necessarily an immersion (resp., a closed
immersion if G is separated).4 For a (closed) immersion H ãÑ G of reductive S-group schemes, the
quotient G{H is an S-affine scheme, more precisely, if G is reductive and H is merely its smooth,
closed S-subgroup with connected S-fibers, then G{H is an S-affine scheme if and only if H is
reductive, see [Alp14, Corollary 9.7.7] in the post-publication arXiv version of op. cit. The affineness
of G{H generalizes the Matsushima theorem to arbitrary base schemes, see [Alp14, Section 9.4].
Moreover, for any S-affine S-scheme X equipped with a free action of a reductive S-group scheme
H, the quotient X{H is an S-affine S-scheme, see [Alp14, Proposition 9.7.8].
1.3.2. Subtori. An S-subtorus T Ă G is a maximal torus of a reductive S-group G if, for every
geometric S-point s, the base change Ts is a maximal subtorus of Gs. By [SGA 3II, Exposé XIV,

4Note that the case of loc. cit. that allows a separated G to be merely locally of finite type over a Noetherian S
is false, as is pointed out in [Con14, Theorem 5.3.5 and below]: the Néron lft model of Gm gives a counterexample
because its relative identity component is an open but not closed subgroup identified with Gm.
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Corollaire 3.20], every reductive S-group G admits a maximal torus Zariski locally on S, in fact,
even Zariski semilocally on S: any finite set of points of S contained in a single affine open lies
in a smaller affine open over which G has a maximal torus. Any maximal torus T is its own
centralizer in a reductive G, see [SGA 3III new, Exposé XIX, Lemme 1.6.2, Section 2.2] (with
[EGA IV4, Corollaire 17.9.5]), and any two maximal tori of G are conjugate étale locally on S, see
[SGA 3II, Exposé XI, Corollaire 5.4 bis; Exposé XII, Section 1.0]. The normalizer NGpT q of any
S-subtorus T Ă G is a closed, S-smooth subgroup of G and, if T is maximal, then the quotient

W :“ NGpT q{T

is a finite étale S-group scheme, the Weyl group of T (or simply of G), see [SGA 3II, Exposé XI,
Corollaire 5.3 bis; Exposé XII, Théorème 2.1]. The functor that parametrizes the maximal tori of
(base changes of) a reductive S-group G is an affine, smooth S-scheme (see [SGA 3II, Exposé XII,
Corollaire 5.4]) that is isomorphic to G{NGpT q for any maximal S-torus T Ă G. The commutative
reductive S-group schemes are precisely the S-tori. The S-subtori are closed in G, see §1.3.1.
1.3.3. The reductive center and reductive groups built using it. For a scheme S, the center
of a reductive S-group G is the kernel of the conjugation map G Ñ AutgppGq and is a closed,
finitely presented, S-flat group subscheme of multiplicative type ZG Ă G, see [SGA 3II, Exposé XII,
Proposition 4.11] or [Con14, Theorem 3.3.4]. The self-centralizing property of any maximal S-
torus T Ă G implies that ZG Ă T , more precisely, [SGA 3II, Exposé XII, Théorème 4.7 d)] (or
[Con14, Corollary 3.3.6]) shows that ZG is the kernel of the adjoint action of T on the Lie algebra
LiepGq. In turn, ZG contains a unique maximal central subtorus of G (see [SGA 3II, Exposé XII,
Proposition 1.12]), which is of formation compatible with base change, is called the radical of G, and
is denoted by radpGq as in [SGA 3III new, Exposé XXII, Définition 4.3.6]. A reductive S-group G is
semisimple (resp., adjoint) if and only if radpGq (resp., ZG) is trivial. By [SGA 3III new, Exposé XXII,
Proposition 4.3.5 (ii)], for a reductive S-group G, the adjoint quotient

Gad :“ G{ZG

is a semisimple adjoint S-group scheme.

For a reductive S-group G, the fppf sheafification of the group subpresheaf that sends an S-scheme
S1 to the commutator

rGpS1q, GpS1qs Ă GpS1q

is a semisimple S-subgroup Gder Ă G, the derived subgroup of G, see [SGA 3III new, Exposé XXII,
Théorème 6.2.1] or [Con14, Theorem 5.3.1]. By the same references,

coradpGq :“ G{Gder

is a torus, the coradical of G. By [SGA 3III new, Exposé XXII, Section 6.2.3], the multiplication map

Gder ˆ radpGq Ñ G (1.3.3.1)

is a central isogeny (see §A.3.1) whose kernel is finite and of multiplicative type. When studying
torsors, one often combines maps like (1.3.3.1) with an analysis of resulting long exact cohomology
sequences (1.2.2.1) in attempts to reduce to simpler groups. For a semisimple S-group G, we denote
its simply connected cover by Gsc, see Proposition A.3.4 for a review. A semisimple S-group scheme
is simply connected if the central isogeny Gsc Ñ G is an isomorphism.

The adjoint (resp., the simply connected) semisimple S-group schemes G canonically decompose as

G –
ś

iGi with Gi – ResSi{S
rGi, (1.3.3.2)

where i runs over the types of nonempty connected Dynkin diagrams, Si is a finite étale S-scheme
(a clopen in the scheme of Dynkin diagrams of G), and rGi is an adjoint (resp., simply connected)
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semisimple Si-group scheme with simple geometric Si-fibers of type i. This decomposition is one
reason why adjoint or simply connected groups tend to be somewhat easier to analyze.
1.3.4. Parabolic subgroups. For a scheme S and a reductive S-group G, an S-subgroup P Ă G is
a parabolic (resp., a Borel) if it is S-smooth and each of its geometric S-fibers contains (resp., is) a
maximal solvable subgroup of the corresponding geometric S-fiber of G. Two parabolic S-subgroups
of G are of the same type if they are conjugate Zariski locally on S, see [SGA 3III new, Exposé XXVI,
Définition 3.4, Corollaire 5.2] (also for an equivalent definition). A parabolic S-subgroup P is closed
in G, has connected S-fibers, is its own normalizer in G, and the quotient G{P is a smooth, projective
S-scheme, see [SGA 3III new, Exposé XXVI, Proposition 1.2]. The functor that parametrizes parabolic
subgroups of (base changes of) a reductive S-group G is a smooth, projective S-scheme, and the
subfunctors that parametrize parabolics of a fixed type are clopen in it—such a subfunctor is simply
G{P once a parabolic P Ă G of the type in question is fixed, see [SGA 3III new, Exposé XXVI,
Corollaires 3.5 et 3.6]. For a G-torsor E and a parabolic S-subgroup P Ă G, the quotient E{P is a
smooth, projective S-scheme, in fact, it is a scheme that parametrizes parabolics of a fixed type of
the inner form AutGpEq of G, see [SGA 3III new, Exposé XXVI, Lemme 3.20].5

A parabolic S-subgroup P Ă G has its unipotent radical, namely, the largest normal S-subgroup
RupP q Ă P that is smooth, finitely presented, and whose geometric S-fibers are connected and
unipotent, see [SGA 3III new, Exposé XXVI, Proposition 1.6 (i)]. The quotient P {RupP q is a reductive
S-group scheme (loc. cit.), in particular, RupP q is closed in P . There is a canonical filtration

. . . Ă Ui`1 Ă Ui Ă . . . Ă U1 Ă U0 “ RupP q

by normal, closed S-subgroups Ui that are smooth, with connected geometric S-fibers, such that the
successive quotients Ui{Ui`1 are vector groups, that is, are associated to finite locally free OS-modules,
and rUi, Ujs Ă Ui`j`1 for all i, j ě 0, and such that every automorphism of P preserves RupP q

and the Ui and acts linearly on each Ui{Ui`1, see [SGA 3III new, Exposé XXVI, Proposition 2.1,
Section 2.1.2]. In particular, whenever S is affine the S-scheme RupP q is isomorphic to the affine
space associated to some vector bundle on S and

H1pS,RupP qq “ t˚u, (1.3.4.1)

see [SGA 3III new, Exposé XXVI, Corollaire 2.5]. A Levi S-subgroup of a parabolic S-subgroup
P Ă G is any S-subgroup L Ă P that maps isomorphically to the reductive S-group P {RupP q, so

P – RupP q ¸ L.

Any such L is its own normalizer in P , any two Levis of P are conjugate by a unique section of
RupP q, the functor that parametrizes Levis of (base changes of) P is a RupP q-torsor, and for any
maximal S-torus T Ă P there exists a unique S-Levi containing T , see [SGA 3III new, Exposé XXVI,
Proposition 1.6 (ii), Corollaires 1.8 et 1.9]. A parabolic S-subgroup need not have an S-Levi but, by
(1.3.4.1), it does whenever S is affine. If a parabolic S-subgroup P Ă G has an S-Levi L Ă P , then
it also has a unique opposite parabolic relative to L: there is a unique parabolic S-subgroup P 1 Ă G
such that P X P 1 “ L, see [SGA 3III new, Exposé XXVI, Théorème 4.3.2 (a), Définition 4.3.3].

Due to the uniqueness aspects above, especially, the aspect about any automorphism of P preserving
the Ui and the structure of the Ui{Ui`1, the claims of the preceding paragraph all continue to hold
for any form of P , that is, for any S-group scheme that becomes isomorphic to P fpqc locally on S.

If G is the restriction of scalars ResS1{SpG1q for a finite étale cover S1 Ñ S, then the parabolic
S-subgroups (resp., Borel S-subgroups; resp., maximal S-tori) of G are precisely the restrictions of
scalars of the parabolic S1-subgroups (resp., Borel S1-subgroups; resp., maximal S1-tori) of G1, as
one checks by reducing to when S1 is a disjoint union of copies of S, see also [Con14, Exercise 6.5.7].

5The representability of E{P is quite remarkable because no general result about quotients ensures it, see §1.2.3.
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1.3.5. Torsors under parabolic subgroups. The vanishing (1.3.4.1) is used often when studying
torsors. For instance, by also using it in the case of inner forms and exploiting (1.2.1.1)–(1.2.2.1),
for any ring R and any R-Levi L of a parabolic R-subgroup P of a reductive R-group G one obtains

H1pR,Lq
„

ÝÑ H1pR,P q, (1.3.5.1)

see [SGA 3III new, Exposé XXVI, Corollaire 2.3], and similarly when P is merely an R-form of a
parabolic R-group, compare with the end of §1.3.4. As we now explain, in the case when R is
semilocal we also have

H1pR,Lq ãÑ H1pR,Gq, equivalently, H1pR,P q ãÑ H1pR,Gq. (1.3.5.2)

Indeed, by twisting by a variable P -torsor as reviewed in (1.2.1.1), at the cost of changing G we
reduce to showing that the map on H1 has a trivial kernel. The sequence (1.2.2.1) then reduces us
to showing that the map GpRq ↠ pG{P qpRq is surjective. However, by [SGA 3III new, Exposé XXVI,
Corollaire 5.2], even the map RupP qpRqRupP 1qpRq Ñ pG{P qpRq is surjective for any parabolic
R-subgroup P 1 Ă G that is opposite to P (see §1.3.4).

The injectivity (1.3.5.2) deserves to be known more widely, for instance, it is in the same spirit as
the Witt cancellation theorem for quadratic forms [Bae78, Chapter III, Corollary 4.3].
1.3.6. Totally isotropic reductive groups. A reductive group G over a semilocal affine scheme
S is quasi-split (resp., isotropic; resp., anisotropic) if it has a Borel S-subgroup6 (resp., if it has
Gm,S as a subgroup; resp., if it has no Gm,S as a subgroup). If S is, in addition, connected, then G
is anisotropic if and only if it has no proper parabolic S-subgroup and radpGq has no Gm,S as an
S-subgroup, see [SGA 3III new, Exposé XXVI, Corollaire 6.12].

A reductive group G over a scheme S is totally isotropic if for every s P S, each rGi that appears in the
canonical decomposition (1.3.3.2) of Gad

OS, s
(over SpecpOS, sq) is isotropic, see [Čes22, Definition 8.1],

equivalently, if each rGi has a parabolic subgroup that contains no fiber of rGi. This condition on
Gad

OS, s
is stable upon replacing s by a generization, so it suffices to consider those s that exhaust

the closed points of the members of some affine open cover of S, for instance, for semilocal affine
S it suffices to consider the finitely many closed points s P S. As an example, if G has a Borel
S-subgroup, then G is totally isotropic (compare with the end of §1.3.4).
1.3.7. Automorphisms of reductive groups. For a scheme S and a reductive S-group G, the
functor that parametrizes group scheme automorphisms of (base changes of) G is an extension

1 Ñ Gad Ñ AutgppGq Ñ OutgppGq Ñ 1 (1.3.7.1)

of an S-group scheme OutgppGq that becomes constant and finitely generated étale locally on S by
the adjoint group Gad that parametrizes the inner automorphisms, see [SGA 3III new, Exposé XXIV,
Théorème 1.3]. In particular, the S-group AutgppGq is representable, smooth, and ind-quasi-affine (as
reviewed in §1.1). Torsors under AutgppGq correspond to forms of G, that is, to reductive S-groups
that become isomorphic to G étale locally on S. Such a form is inner (resp., pure inner) if the
corresponding AutgppGq-torsor lifts to a Gad-torsor (resp., even to a G-torsor). Any G splits étale
locally on S, so, at least for connected S, studying forms of G amounts to studying forms of the
corresponding split S-group G. For split groups, however, the extension (1.3.7.1) admits a splitting,
to the effect that

AutgppGq » Gad ¸ OutgppGq; (1.3.7.2)
concretely, a splitting OutgppGq ď AutgppGq is given by the subgroup of those automorphisms that
preserve a fixed pinning of G.

6Beyond semilocal S, quasi-splitness is a slightly more delicate notion, see [SGA 3III new, Exposé XXIV, Section 3.9].
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1.3.8. Isotriviality and embeddings into GLn. As in the case of groups of multiplicative type
reviewed in §A.1.4, a reductive group scheme G over a scheme S is said to be isotrivial if it becomes
split over some finite étale cover of S. If S is affine and semilocal, then, by [SGA 3III new, Exposé XXIV,
Théorème 4.1.5, Corollaire 4.1.6] (see also [Gil21, Corollary 4.4]), a reductive S-group G of constant
type is isotrivial if and only if its maximal central S-torus radpGq is isotrivial, in which case every
G-torsor is also isotrivial in the sense that it trivializes over some finite étale cover of S. We recall
from §§A.1.4–A.1.8 that radpGq is isotrivial if it is S-fiberwise of rank ď 1, or if S is Noetherian and
its local rings are geometrically unibranch (for instance, normal), or if S is local and normal.

By [Gil21, Theorem 1.1] (which refines [Tho87, Corollary 3.2]), a reductive group G over a scheme S
is a closed subgroup of some GLpV q for a vector bundle V on S if and only if radpGq is isotrivial.†
In the case when S is affine, V is a direct summand of a finite free OS-module, and then one may
even choose V to be trivial, that is, if S is affine and radpGq is isotrivial, one may find a closed
embedding

G ãÑ GLn, S for some n ě 1.

Another class of S-groups G that always admit a closed embedding G ãÑ GLpV q for some vector
bundle V on S are the finite, locally free S-group schemes G: in this case, the translation action
of G on itself gives such an embedding by choosing V to be the structure sheaf of G. Both for
reductive and for finite, locally free G and any embedding G ãÑ GLpV q, the quotient GLpV q{G is
affine, see §1.2.3 and §1.3.1 above.
1.3.9. Extending sections and torsors. When studying torsors, it is useful to keep in mind
extension results that follow from general principles. To recall these, for a scheme S, a closed Z Ă S,
and a d ě 0, we write depthZpSq ě d to mean that each mS, z with z P Z contains an OS, z-regular
sequence of length d. Then, by [ČS21, Lemma 7.2.7],

EpSq ãÑ EpSzZq for each separated S-scheme E, granted that depthZpSq ě 1;

EpSq
„

ÝÑ EpSzZq for each affine S-scheme E granted that depthZpSq ě 2;
(1.3.9.1)

(when S is locally Noetherian, we may cite [EGA I, Corollaire 9.5.6] and [EGA IV2, Théorème 5.10.5],
respectively). In particular, if depthZpSq ě 2, then for any affine S-group scheme G we have

H1pS,Gq ãÑ H1pSzZ,Gq, (1.3.9.2)

in other words, nonisomorphic G-torsors over S do not become isomorphic over SzZ.

The surjectivity of (1.3.9.2) is significantly more delicate, but it does hold if S is regular (see §1.4)
of dimension ď 2, still with depthZpSq ě 2 (so Z of codimension ě 2), and G is either reductive or
finite flat: one first reduces to G “ GLn using embeddings as in §1.3.8 and then notes that, thanks
to the Auslander–Buchsbaum formula, vector bundles over regular schemes of dimension 2 extend
uniquely over closed points, see [CTS79, Corollary 6.14] for a detailed argument.

Another situation in which (1.3.9.2) is surjective is if S is regular with depthZpSq ě 2 and G is of
multiplicative type (see §A.1.2), for instance, an S-torus: see [CTS79, Corollary 6.9] and note that
the key case of Gm-torsors follows by thinking of line bundles in terms of Weil divisors.

1.4. Basic properties of regular rings

A local ring pR,mq is regular if it is Noetherian and

dimpRq “ dimR{mpm{m2q,

in which case the same holds for any localization of R at a prime ideal, see [SP, Lemma 0AFS]. By
Nakayama lemma, this equality amounts to requiring that the maximal ideal m be generated by

†Added after publication. This sentence is only correct as stated for G of constant type over S.
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dimpRq elements. A scheme is regular if it is locally Noetherian and its local rings are regular. A
ring is regular if it is Noetherian and its localizations at prime (equivalently, maximal) ideals are
regular. For a regular local ring pR,mq, a sequence r1, . . . , rd P m is a regular system of parameters if
the elements ri give a basis of the R{m-vector space m{m2; an element r P m is a regular parameter
if it is a part of a regular system of parameters, in other words, if its image in m{m2 is nonzero.

A regular ring of dimension 0 is a product of fields. A regular ring of dimension ď 1 is a Dedekind
ring ; each of its local rings is either a field or a discrete valuation ring. As a basic example, any
smooth algebra over a Dedekind domain (such as a field or Z) or, more generally, over a regular ring,
is regular. The definition of regularity is local, and regular local rings split into the following classes.
Definition 1.4.1. A regular local ring pR,mq of residue characteristic p ě 0 is unramified (resp., ram-
ified) if the ring R{pR is regular (resp., is not regular), that is, if p P pmzm2qYt0u (resp., if p P m2zt0u).
A general regular ring (or a regular scheme) is unramified if each of its local rings is unramified.

If a regular ring R is unramified, then so is every smooth R-algebra.
Remark 1.4.2. In addition to unramified regular local rings, it is useful to consider a larger
class consisting of those regular local rings R that are flat over some Dedekind ring O and have
geometrically regular O-fibers.7 At the expense of more demanding technicalities (for instance,
caused by imperfect residue fields of O), this class tends to be susceptible to the same techniques as
the unramified case. The latter is recovered by restricting O to be either Z, or Q, or some Fp.

The ramified regular local rings are necessarily of mixed characteristic (see §1.1 for this terminology).
In turn, the unramified ones split into two further classes: the regular local rings of equicharacteristic
and the unramified regular local rings of mixed characteristic.
Example 1.4.3. The following representative examples illustrate the classes of regular local rings:

‚ of equicharacteristic (so also unramified): krx1, . . . , xdspx1,..., xdq, where k is a field;

‚ unramified of mixed characteristic: Zrx1, . . . , xdspp, x1,..., xdq, where p is a prime;

‚ ramified: pZrx1, . . . , xds{pp ´ x1 ¨ ¨ ¨xrqqpp, x1,..., xdq, where 1 ă r ď d.

In the spirit of these examples, the complete regular local rings are classified as follows.
Lemma 1.4.4 (Cohen structure theorem). Any complete regular local ring pR,mq is of the form

R » W Jx1, . . . , xdK{pp ´ fq with f P pp, x1, . . . , xdq,

where W is a complete discrete valuation ring of mixed characteristic p0, pq that has p as a uni-
formizer.† Moreover, letting k :“ R{m be the residue field, we have

(i) R is of equicharacteristic if and only if we may choose f “ 0, so that

R » kJx1, . . . , xdK;

(ii) R is unramified of mixed characteristic if and only if we may choose f “ p, so that

R » W Jx1, . . . , xdK;

(iii) R is ramified if and only if we may choose f P pp, x1, . . . , xdq2 z pR.

7An algebra C over a field k is geometrically regular if C bk k1 is a regular ring for every finite field extension k1
{k.

†Added after publication. This sentence is correct as stated only if the residue field of R has characteristic p ą 0. In
the remaining case when R is of equicharacteristic 0, we have R » kJx1, . . . , xdK as in (i).
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Proof. The claim follows from [Mat89, Theorem 29.7] (the unramified case) and [Mat89, Theorem 29.3
and the proof of Theorem 29.8 (ii)] (the ramified case). In general, the Cohen structure theorem
applies beyond regular rings and describes the structure of complete Noetherian local rings, see
[EGA IV4, Chapitre 0, Théorème 19.8.8]. □

In principle, Lemma 1.4.4 exhaustively describes the structure of complete regular local rings.
Consequently, it tends to be important in those problems about regular rings that may be reduced
to the complete local case. The problems about torsors are typically not of this kind: for them,
passage to completion may be no less difficult, so other structural results are needed. The central
among such is the following highly useful theorem of Popescu that applies in the unramified case.
Theorem 1.4.5 (Popescu). For a Noetherian ring A, a Noetherian A-algebra B is a filtered direct
limit of smooth A-algebras if and only if it is A-flat with geometrically regular A-fibers. In particular,

(a) a regular ring R that contains a perfect field F (such as Q or Fp) is a filtered direct limit of
smooth F -algebras;

(b) a regular ring R that is a flat algebra over a Dedekind ring O with geometrically regular
O-fibers is a filtered direct limit of smooth O-algebras;

(c) a regular local ring R of mixed characteristic p0, pq is unramified if and only if it is a filtered
direct limit of smooth Zppq-algebras, equivalently, of smooth Z-algebras.

Proof. The ‘only if’ claim about B is straight-forward, see [SP, Lemma 07DX or Lemma 07EP]. In
contrast, the ‘if’ claim is intricate and has been the subject of surveys of its own: it is a result of
Popescu [Pop90], whose proof has been clarified by Swan [Swa98], who, in turn, built on earlier
clarifications due to André and Ogoma; a modern account of the proof that includes some new
simplifications is due to de Jong and is given in [SP, Section 07BW, especially, Theorem 07GC].

Part (a) (resp., (b); resp., (c)) is a special case of the main claim with B “ R and A “ F
(resp., A “ O; resp., A “ Zppq, equivalently, A “ Z): indeed, to check that its conditions are met, we
use that every finite field extension k1 of a perfect field k is separable and that every étale algebra
over a regular ring is regular [SP, Proposition 025N]. □

Theorem 1.4.5 is useful because smooth algebras are of finite type and may be studied using techniques
from algebraic geometry, whereas the geometry of general regular rings is a priori difficult to access
directly. In effect, this link with algebraic geometry supplied by the Popescu theorem is one of the
reasons why unramified regular local rings have been significantly more tractable in problems about
torsors. In the ramified case, Popescu has recently established the following version of his theorem.
Theorem 1.4.6 (Popescu, [Pop19, Theorem 3.8]). Every regular local ring is a filtered direct limit
of regular local rings that are essentially of finite type as Z-algebras. □

It seems plausible to us that this theorem, or perhaps some version or refinement thereof, could
eventually be used for attacking the ramified case of problems about torsors over regular rings. At
the moment, however, we are not aware of any application along such lines.

2. Conjectures about vector bundles over regular rings

The most basic nonabelian reductive groups are the general linear groups GLn. For them, torsors
amount to vector bundles, and we discuss the corresponding conjectures in this chapter. These
conjectures (and much more) have already been discussed in the survey book [Lam06], but we hope
that our summary would nevertheless be useful to some readers.
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2.1. The Bass–Quillen conjecture

The Bass–Quillen conjecture is the flagship problem about vector bundles over regular rings. Posed
in [Bas73, Section 4.1] and [Qui76, Comment (1) on page 170], it grew out of Serre’s problem solved
by Quillen [Qui76] and Suslin [Sus76]: every vector bundle over an affine space over a field is free.
Serre’s problem and its variants were surveyed in a number of articles and books, notably in [Lam06].
Conjecture 2.1.1 (Bass–Quillen). For a regular ring R, every vector bundle on Ad

R descends to R.
2.1.2. Basic reductions and known cases of Conjecture 2.1.1.

(1) The claim applies with Rrt1, ..., td´1s in place of R, so induction reduces one to the case d “ 1.

(2) Once d “ 1, Quillen patching of Corollary 5.1.5 reduces one to local R. In effect, it suffices to
show that for a regular local ring R, each finite projective Rrts-module is free.

(3) The case when all the localizations of R at its maximal ideals are unramified follows from
results of Quillen, Suslin, Lindel, and Popescu, see Theorem 5.2.2 below.

(4) Quillen and Suslin (independently) settled the case when dimpRq ď 1, see Theorem 5.2.1 below.

(5) The case when dimpRq ď 2 and d “ 1 is the Murthy–Horrocks theorem, see [Lam06,
Chapter IV, Theorem 6.6].

(6) The case when dimpRq ď 3 and d “ 1 with 6 P Rˆ is due to Rao [Rao88, Theorem 2].

(7) It is incorrectly claimed in [Lam06, page 330] and [Pop17, Theorem 18 (3)] that the case when
R is local, Henselian, and excellent (for instance, complete) follows from results of [Pop89].

(8) The case of line bundles is known: more generally, by [Swa80, Theorem 1], for any seminormal
ring A, the map PicpAq Ñ PicpArt1, . . . , tdsq is bijective (in fact, by loc. cit., these pullback
maps on Picp´q are bijective if and only if Ared is seminormal).

(9) The analogue for valuation rings was established by Lequain and Simis [LS80]: for a valuation
ring V , every vector bundle on Ad

V is free.

To sum up, the main case in which the conjecture remains (widely) open is when R is a ramified
regular local ring. In §5.2 below, we review the proof of Conjecture 2.1.1 in the unramified case.

A basic result that is used repeatedly in proving cases of the Bass–Quillen conjecture is the following
theorem of Horrocks. We review it here because we will use it in the next section.
Proposition 2.1.5 (Horrocks). For a (resp., semilocal) ring A, a vector bundle on A1

A descends to
A (resp., is free on each connected component of A1

A) iff it extends to a vector bundle on P1
A.

Proof. A finite projective module over a semilocal ring with connected spectrum is free (see §1.1),
so the parenthetical assertion follows from the rest. For the latter, Quillen patching, that is,
Corollary 5.1.5, reduces us to the case when A is local, which is Horrocks theorem [Hor64, Theorem 1].
Letting k be the residue field of the maximal ideal of A, Horrocks used Grothendieck’s classification
of vector bundles on P1

k as direct sums of the Opnq to first analyze the k-fiber of a vector bundle
on P1

A, and then applied the theorem on formal functions from [EGA III1] to bootstrap to A. See
[Lam06, Chapter IV, Section 2 onwards] for other proofs and also the discussion in §3.5 below. □

2.2. The Quillen conjecture

In his resolution of Serre’s problem about freeness of vector bundles on an affine space over a field,
Quillen proposed an avenue of attack for the general case of the Bass–Quillen conjecture via the
Horrocks theorem 2.1.5. To apply the latter, for a regular local ring A one needs to be able to extend
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a vector bundle V on A1
A to P1

A. The ring of the formal completion of P1
A along the infinity section is

AJtK, where t is the inverse of the standard coordinate of A1
A, so, by formal glueing (Proposition 4.2.1

below), V extends to a vector bundle on P1
A if and only if it restricts to a free Apptqq-module. The

following conjecture of Quillen [Qui76, (2) on page 170] predicts that this is always the case.
Conjecture 2.2.1 (Quillen). For a regular local ring pR,mq and an r P m that is a regular parameter
(so r P mzm2, see §1.4), every finite projective Rr1r s-module is free.

Equivalently, the conjecture predicts that every finite projective Rr1r s-module extends to a finite
projective R-module. Thus, formal glueing (see Proposition 4.2.1) allows one to replace R by its
r-adic completion to assume without losing generality that R is r-adically complete. As we explained
above, Conjecture 2.2.1 implies the Bass–Quillen conjecture 2.1.1.
2.2.2. Basic reductions and known cases of Conjecture 2.2.1.

(1) The case dimpRq ď 2 follows from general extension results reviewed in §1.3.9: by glueing, any
finite projective Rr1r s-module extends over the prime ideal prq Ă R, and then the dimension
assumption ensures that this extension extends further to a finite projective R-module.

(2) The case when R is of equicharacteristic was settled by Bhatwadekar–Rao [BR83, Theorem 2.5]
(see also [Rao85, Theorem 2.9]) and Popescu (whose input amounts to Theorem 1.4.5 (a)).
For a statement in mixed characteristic, see [Tei95, page 272].

(3) The case dimpRq ď 3 was settled by Gabber in [Gab81, Chapter I, Theorem 1] and later in
a simpler way by Swan in [Swa88]. Very crudely, the dimension assumption helps because
any extension of a vector bundle on Rr1r s over the height one prime prq Ă R further extends
uniquely to the entire (2-dimensional) punctured spectrum of R (see §1.3.9), and the reduction
of that extension modulo r extends to all of R{prq, so is free. With this premise, both proofs
analyze all such extensions to the punctured spectrum of R to show that one of them is free.

To sum up, as in the Bass–Quillen conjecture 2.1.1, the main case in which the Quillen conjecture
2.2.1 remains open is when the regular local ring R is of mixed characteristic and, especially, ramified.
2.2.3. Variants and generalizations.

(1) Rao, following a suggestion of Nori, proposed the following generalization of Conjecture 2.2.1
in [Rao85]: for a regular local ring R and r1, . . . , rt P m that form a part of a regular system
of parameters, every finite projective Rr 1

r1¨¨¨rt
s-module is free. Strictly speaking, loc. cit. only

considered those R that are localizations of finite type, regular algebras over some infinite field
and, with this restriction, established the generalization when either t ď 2 or dimpRq ď 5, see
[Rao85, Corollaries 2.10 and 2.11]. See also [Gab02, Theorem 1.1] (possibly also the earlier
[Nis98]) for further results on this generalization of Conjecture 2.2.1.

(2) The assumption that r R m2 is critical in Conjecture 2.2.1. For instance, as is pointed out in
[BR83, Example (1) on page 808], when

R :“ Rrx, y, zspx, y, zq and r :“ x2 ` y2 ` z2,

the kernel of the surjection Rr1r s‘3 ↠ Rr1r s given by pa, b, cq ÞÑ ax ` by ` cz is a nonfree
projective Rr1r s-module of rank 2, see [Lam06, pages 34–35].

(3) The global version of Conjecture 2.2.1, posed in [Qui76, (3) on page 170] as a question, is
false: for an affine, regular scheme X and a regular divisor Z Ă X, a vector bundle on XzZ
need not extend to X. In [Swa78, Section 2], Swan showed that this happens for

X :“ Spec
`

Crx0, . . . , x4, ts{px20 ` . . . ` x24 ´ 1q
˘

and Z :“ tt “ 0u,
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namely, there is a (stably free) vector bundle of rank 2 on XzZ that does not extend to X.

2.3. The Lam conjecture

Regularity of R is a critical assumption in the Bass–Quillen conjecture 2.1.1, see [Lam06, page 342]
for an overview of counterexamples when this assumption is weakened. In these counterexamples,
even the map K0pRq Ñ K0pRrt1, . . . , tdsq between the Grothendieck rings of vector bundles8 fails
to be an isomorphism, in other words, the “obstruction” is visible already on K0. In contrast, by
Grothendieck’s theorem [Lam06, Chapter II, Theorem 5.8], for any regular ring R, we have

K0pRq
„

ÝÑ K0pRrt1, . . . , tdsq.

On the other hand, for a ring A, the stably free (see §1.1) finite projective A-modules P are precisely
those whose classes lie in Z Ă K0pAq, see [Lam06, Chapter I, Corollary 6.2]. Thus, it is conceivable
that one could obtain a Bass–Quillen conjecture for arbitrary rings by only considering stably free
modules. This is precisely what the following conjecture posed by Lam [Lam06, page 180] predicts.
Conjecture 2.3.1 (Lam). For a ring A, every stably free vector bundle on Ad

A descends to A.
Equivalently, for a local ring A, every stably free Arts-module is free.

The equivalence of the two formulations, that is, the reduction to local A, follows from Quillen
patching of Corollary 5.1.5. By the discussion above, for a regular local A, every finite projective
Art1, . . . , tds-module is stably free, so Conjecture 2.3.1 implies the Bass–Quillen conjecture 2.1.1.

Although we attribute the conjecture to Lam, Swan raised it as a question already in [Swa78,
page 114, (B)]. We stress that even though Conjecture 2.3.1 offers the advantage of making no
assumption on A, it has to be regarded as very speculative. Indeed, it is only known in very few
cases: the ones in §2.1.2 and, by [Yen08, Corollary 5], also in the case when dimpAq ď 1 and d “ 1.

The following proposition offers several equivalent versions of Conjecture 2.3.1 that may be useful to
keep in mind while contemplating possible arguments or counterexamples.
Proposition 2.3.2. Let A be a local ring and let Aptq be the localization of Arts with respect to all
the monic polynomials. The following statements are equivalent:

(a) every stably free Arts-module is free;

(b) every stably free Aptq-module is free;

(c) every stably free Apptqq-module is free.

Proof. The equivalence between (a) and (b) was established by Bhatwadekar and Rao in [BR83,
Theorem A]. The equivalence between (b) and (c) was established in [BČ21, Theorem 2.1.25 (c)–(d)]:
roughly, one uses the A-isomorphism Aptq » pArts1`tArtsqr1t s (induced by “t ÞÑ t´1”), notes that
the completion of pArts1`tArtsqr1t s for the “t-adic” topology is Apptqq, and, crucially, shows that the
functor of isomorphism classes of stably free modules is invariant under such completion because it
is invariant under Zariski pairs. In this last step, Zariski pairs come about via Gabber’s technique
of considering the ring of “t-adic” Cauchy sequences valued in pArts1`tArtsqr1t s: this ring is Zariski
along its ideal formed by nil sequences, and the corresponding quotient is the completion Apptqq. □

Beyond local A and stably free modules, one has the following result of a similar spirit.

8We recall that the Grothendieck ring K0pAq of a commutative ring A is the quotient of the free abelian group on
the set of isomorphism classes of finite projective A-modules P by the relations rP s “ rP 1

s ` rP 2
s for finite projective

A-modules P , P 1, P 2 with P » P 1
‘ P 2, and that the multiplication in K0pAq is induced by the tensor product bA.
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Proposition 2.3.3. For a ring A, with Aptq as in Proposition 2.3.2, nonisomorphic finite projective
A-modules (resp., Aptq-modules) cannot become isomorphic after base change to Aptq or to Apptqq.

Proof. The claim is contained in [BČ21, Theorem 2.1.25 (a)–(b)]. The first main input is the
Cauchy sequence technique mentioned in the proof of Proposition 2.3.2: it achieves a comparison
between finite projective modules over Aptq and Apptqq. The second main input is [Lam06, Chapter V,
Proposition 2.4], which is an elementary patching argument due to Bass that shows that nonisomorphic
finite projective A-modules P and P 1 cannot become isomorphic after base change to Aptq: in more
detail, an Aptq-isomorphism PAptq » P 1

Aptq would permit us to use base changes of P and P 1 to
glue up a vector bundle over P1

A whose restriction along the section tt “ 1u (resp., tt “ 8u) is P
(resp., P 1), and the Horrocks Proposition 2.1.5 would then give the desired P » P 1. □

3. Conjectures about torsors under reductive groups over regular rings

We turn our attention to torsors under general reductive group schemes over regular bases. Questions
about them tend to be more subtle than the ones about vector bundles discussed in §2 because
group-theoretic properties start playing important roles in the arguments. However, these questions
about general reductive groups may be more susceptible to progress, perhaps simply for the reason
that some of them do not appear to have been studied as extensively.

3.1. The Grothendieck–Serre conjecture

The following conjecture of Grothendieck and Serre is the flagship problem about torsors under
reductive group schemes over regular rings. It originated from its special cases conjectured by
Serre [Ser58, Remark on page 31] and Grothendieck [Gro58, Remark on pages 26–27], [Gro68,
Remark 1.11 a)] and was popularized by the article of Colliot-Thélène and Ojanguren [CTO92]. It
was also the subject of a recent ICM survey of Panin [Pan18], which we refer to for further discussion.
Conjecture 3.1.1 (Grothendieck–Serre). For a regular local ring R and a reductive R-group scheme
G, no nontrivial G-torsor over R trivializes over K :“ FracpRq, equivalently,

H1pR,Gq ãÑ H1pK,Gq. (3.1.1.1)

The claimed equivalence of the two statements follows from the twisting bijections (1.2.1.1): more
precisely, the injectivity of (3.1.1.1) for G is equivalent to no nontrivial torsor over R trivializing
over K for all pure inner forms of G.
Example 3.1.2. For a reductive group G over an algebraically closed field k (such as C), the
conjecture predicts that every generically trivial G-torsor over a smooth algebraic variety X over k
is Zariski locally trivial. This was Serre’s original formulation and was settled by Colliot-Thélène–
Ojanguren in [CTO92], see also §3.1.4 (3). By Steinberg theorem [Ser02, Chapter III, Section 2.3,
Theorem 11 and Remarks 1) (with Chapter II, Section 3.3, b))], generic triviality is automatic if X is
a curve and, by de Jong–He–Starr theorem [dJHS11, Theorem 1.4], also if both X is a surface and G
is semisimple, simply connected; thus, in these cases every G-torsor over X is Zariski locally trivial.
Example 3.1.3. In the cases G “ GLn or G “ SLn, both the source and the target of (3.1.1.1)
vanish, so it is more instructive to consider the case G “ PGLn, in which the conjecture predicts
that an Azumaya algebra over R that is isomorphic to a matrix algebra over K is isomorphic to a
matrix algebra already over R. The central extension

1 Ñ Gm Ñ GLn Ñ PGLn Ñ 1
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and its associated long exact sequence (1.2.2.1) give a commutative square

H1pR,PGLnq

��

// H2pR,Gmq

��

H1pK,PGLnq // H2pK,Gmq

whose horizontal maps have trivial kernels. Since R is regular, Grothendieck’s injectivity result for
the Brauer group [Gro68, Corollaire 1.8] implies that the right vertical map is injective. Thus, the left
vertical map has trivial kernel, so Conjecture 3.1.1 holds in the case when G “ PGLn. In fact, this case
seems to have been one of the main motivations for the conjecture, see [Gro68, Remarques 1.11 a)].

For relations between the Grothendieck–Serre conjecture 3.1.1 and certain group decompositions,
see [Čes22, Corollary 1.3]. For consequences for quadratic forms, see [Čes22, Corollary 9.6]
3.1.4. Basic reductions and known cases of Conjecture 3.1.1. The known cases of Conjec-
ture 3.1.1 have already been summarized in [Čes22, Section 1.4] or [Pan18], and the literature is
vast, so here we do not attempt to be exhaustive and focus on overviewing the main known cases.

(1) The case when G is a torus was settled by Colliot-Thélène and Sansuc in [CTS78] and [CTS87].
The latter reference uses flasque resolutions of tori reviewed in Remark A.2.9 below to reduce
to “simpler” tori. The toral case is used often in arguing other cases of Conjecture 3.1.1.

(2) The case when dimpRq ď 1, that is, when R is either a field (trivial case) or a discrete valuation
ring was settled by Nisnevich in [Nis82], [Nis84], with clarifications and complements given
by Guo in [Guo20]. Roughly, the idea is to replace R by its completion via approximation
arguments that go back to Harder and to then exploit the Bruhat–Tits theory to conclude.
Guo’s result also gives the semilocal case: the statement of Conjecture 3.1.1 holds when R is a
semilocal Dedekind domain. One question that seems to still be open in the discrete valuation
ring case is whether (3.1.1.1) remains injective when G is merely a parahoric R-group scheme.

By induction on dimpRq, the 1-dimensional case implies that any generically trivial torsor
over a regular local ring R trivializes over the residue field of any prime p Ă R. In particular,
it trivializes over the residue field of the maximal ideal of R, and Hensel’s lemma [EGA IV4,
Théorème 18.5.17] then implies that Conjecture 3.1.1 holds in the case when the regular local
ring R is Henselian, for instance, complete (compare with [CTS79, Assertion 6.6.1]).

Thus, one possible point of view is that for a general R the main difficulty lies in passing
to the completion. Such passage remains out of reach when dimpRq ě 2: in effect, in this
higher-dimensional case, geometric approaches have so far been more fruitful.

(3) The case when R is of equicharacteristic, that is, when R contains a field, was settled by
Fedorov–Panin [FP15] when the field is infinite and by Panin [Pan20a] when the field is
finite. In spite of numerous group-theoretic subtleties that accompany an arbitrary G, crudely
speaking, the overall structure of the Fedorov–Panin strategy is somewhat similar to the
approach to the Bass–Quillen conjecture discussed in §2.1 and §5.2 below: more precisely, it
uses the Popescu Theorem 1.4.5 to pass to local rings of smooth algebras over a field, it then
combines Artin’s results on good neighborhoods from [SGA 4III, Exposé XI] with Voevodsky’s
ideas that appear through Panin’s notion of “nice triples” (which are smooth relative curves
over R equipped with a section and an R-finite closed subscheme) to pass via excision to
studying torsors over the relative affine line A1

R, and it concludes via Horrocks-style results
aided by insights from the geometry of the affine Grassmannian. The split of the argument
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into the cases of an infinite versus a finite base field was primarily due to technical difficulties
caused by the Bertini theorem over finite fields (these difficulties have since been resolved).

In their strategy, one first reduced to semisimple, simply-connected G, although the need
for this has since been eliminated by Fedorov by refining the part that concerns the affine
Grassmannian, see [Fed21a] and §5.3 below. In the general case of Conjecture 3.1.1, a
reduction to semisimple, simply connected G remains unavailable; however, one may at least
reduce to those G whose derived group Gder is simply connected, see Proposition A.5.1 below.

(4) In mixed characteristic, the case when R is unramified and the group G has a Borel R-
subgroup was settled in [Čes22]. The argument builds on the Panin–Fedorov strategy, in fact,
it simultaneously reproves the equal characteristic case. The main novelties in comparison to
their strategy are in the “middle part” of the argument: the role of Artin’s good neighborhoods
got replaced by a presentation lemma in the style of Gabber (see Theorem 4.1.1), and “nice
triples” were replaced by a more direct analysis of relative curves (see Proposition 4.1.6); this
simplified the argument to the point that, modulo circumventing some technical difficulties
caused by mixed characteristic, it could work over discrete valuation rings in place of fields.
We refer to [Čes22, especially, Section 1.6] for more details.

For the moment, the unramifiedness assumption seems difficult to bypass in any “geometric”
approach that eventually reduces to the relative affine line A1

R (see the end of §1.4). In turn,
the Borel R-subgroup helps by ensuring that a generically trivial G-torsor E over R reduces
to a B-torsor away from some closed subset Z Ă SpecpRq of codimension ě 2 (apply the
valuative criterion of properness to E{B), and this codimension aspect is used in a crucial
way for extending the presentation lemma to mixed characteristic. Other ways in which a
Borel helps are that it allows one to reduce to the semisimple, simply connected case, even
without R being unramified, and that it allows one to bypass the compactification question
discussed in §6.2 below (but both of these seem less essential at the cost of further work).

(5) Beyond the cases above, some sporadic cases were settled in [Oja82], [Nis89], [Fir22], [BFFP20].

(6) The analogue of the Grothendieck–Serre conjecture for valuation rings was established by Guo
[Guo21]: for a valuation ring V and a reductive V -group G, no nontrivial G-torsor trivializes
over FracpV q. A desirable further step in this direction would be to show the same with V
replaced by a local ring of a smooth scheme over a valuation ring (say, of equicharacteristic).

To sum up, the Grothendieck–Serre conjecture is known in equal characteristic but remains open
in mixed characteristic, especially, over ramified regular local rings, for which one may need a
substantially different approach. As for the unramified mixed characteristic case beyond quasi-split
G, we feel that it may, in principle, be approachable, perhaps by finding some way to improve or to
bypass the presentation lemma, but we do not know of a precise way to attack it fruitfully.

The Grothendieck–Serre conjecture has the following consequence for uniqueness of reductive group
schemes with a fixed generic fiber over a regular local ring.
Proposition 3.1.5. For a regular local ring R, its fraction field K, and a reductive R-group scheme
G such that the Grothendieck–Serre conjecture 3.1.1 holds for every form of Gad, up to isomorphism
G is the unique reductive R-group scheme with the generic fiber isomorphic to GK .

In particular, for a regular local ring R that is either of equicharacteristic or of dimension ď 1,
nonisomorphic reductive R-group schemes do not become isomorphic over K (see §3.1.4 (2)–(3)).
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Proof. One uses the extension structure (1.3.7.1) to argue that the map

H1pR,AutgppGqq Ñ H1pK,AutgppGqq

has a trivial kernel, see [Guo20, Proposition 14] for a detailed argument. □

Remark 3.1.6. For unramified R, the known cases of Conjecture 3.1.1 suffice for showing that a
reductive R-group scheme G is split if and only if so is its generic fiber GK , see [Čes22, Theorem 9.3].
Remark 3.1.7. In the context of the Grothendieck–Serre conjecture, one may consider the analogy
with an abelian scheme A over regular base scheme S. A key simplifying difference is that in this case,
for any dense open U Ă S, one has ApSq

„
ÝÑ ApUq (the injectivity follows from the separatedness of

A (see §1.3.9) and the surjectivity follows by considering A as its own double dual and by extending
line bundles via the regularity assumption, see [BLR90, Section 8.4, Corollary 6]). By applying this
étale locally on S, the same holds for a torsor under an abelian scheme, so that, in particular,

H1pS,Aq ãÑ H1pU,Aq.

Consequently, the Grothendieck–Serre conjecture 3.1.1 holds if G is replaced by an abelian R-scheme.
Similarly, Proposition 3.1.5 holds if G is replaced by an abelian scheme, see [Fal83, Lemma 1] (or
recall that the moduli scheme of suitably polarized abelian schemes with level structure is separated).

3.2. The Colliot-Thélène–Sansuc purity conjecture

The Grothendieck–Serre conjecture 3.1.1 predicts that, in its notation, H1pR,Gq is a subset of
H1pK,Gq. The following purity conjecture posed as [CTS79, Question 6.4] characterizes this subset.
Conjecture 3.2.1 (Colliot-Thélène–Sansuc). For a regular local ring R, its fraction field K, and a
reductive R-group scheme G, a G-torsor over K that extends to a G-torsor over Rp for every height
1 prime p Ă R extends uniquely to a G-torsor. In other words, we have

H1pR,Gq “
č

p of height 1

H1pRp, Gq inside H1pK,Gq.

It is instructive to contrast this conjecture with the purity for the Brauer group, according to which

BrpRq “
č

p of height 1

BrpRpq inside BrpKq,

see [Čes19, Theorem 6.2]. This Brauer group variant had been conjectured by Auslander–Goldman
in [AG60], established by Gabber in most cases, and completed in the remaining cases of mixed
characteristic in [Čes19] using a perfectoid method, see op. cit. for an overview of prior literature.
The principal reason why the Brauer group version is more approachable is the relation to derived
functor cohomology, namely, to the cohomological Brauer group via the isomorphism

BrpRq – H2
étpR,Gmqtors

due to Gabber [Gab81, Chapter II, Theorem 1]. This dramatically broadens the range of available
techniques, basically, because abelian cohomology classes are simpler to manipulate than torsors.

In Conjecture 3.2.1, by spreading out and glueing in the Zariski topology, any G-torsor over K that
extends to a G-torsor over Rp for every height 1 prime p Ă R also extends to a G-torsor E over U for
some nonempty open U Ă SpecpRq whose complement is of codimension ě 2. However, there may
be many ways to glue, and so many possible E with the same generic fiber EK—the key point, and
the main difficulty, is to be able to glue in such a way that E extends to a G-torsor over SpecpRq

(in the Brauer group case, the analogue of E is automatically unique for any fixed U). In contrast,
thanks to §1.3.9, this further extension to a G-torsor will have to be unique.
3.2.2. Basic reductions and known cases of Conjecture 3.2.1.
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(1) The case when either dimpRq ď 2 or G is a torus follow from general principles reviewed in
§1.3.9: these assumptions ensure that any E as above extends to a G-torsor over SpecpRq.

(2) Some cases with split G were settled by Chernousov–Panin, Panin, Panin–Pimenov, and
Antieau–Williams in [CP07], [Pan10], [PP10], [CP13], and [AW15], see [EKW21, Remark 4.3].

(3) Antieau and Williams showed in [AW15] that, once the regular domain R is no longer assumed
to be local, the statement of Conjecture 3.2.1 does not hold even in the case G “ PGLn.

To sum up, the Colliot-Thélène–Sansuc purity conjecture 3.2.1 remains widely open beyond somewhat
restrictive special cases. In the rest of this section, we turn to its following consequence for extending
reductive group schemes. This theme has also been investigated by Vasiu from the point of view of
extending their associated Lie algebras, see [Vas16] for details.
Conjecture 3.2.3. For a regular local ring R and its fraction field K, a reductive K-group extends
to a reductive R-group scheme if and only if it extends to a reductive Rp-group scheme for every
prime p Ă R of height 1, in which case this extension is unique up to isomorphism.
3.2.4. Conjecture 3.2.1 implies Conjecture 3.2.3. We assume that the Colliot-Thélène–Sansuc
purity conjecture 3.2.1 holds for adjoint semisimple R-group schemes, and we will argue that then
every reductive K-group G that extends to a reductive Rp-group scheme for every prime p Ă R
of height 1 also extends to a reductive R-group scheme. By spreading out and glueing, we may
take advantage of the assumption on the Rp to arrange that G begins life as a reductive U -group
scheme for some open U Ă SpecpRq whose complement is of codimension ě 2. Letting G be the
split reductive R-group scheme of the same type as G, we then use the dictionary of §1.3.7 to reduce
to showing that for every AutgppGq-torsor E over U there is an AutgppGq-torsor E over R such that
EK » EK as AutgppGq-torsors over K. For this, we first show the same for OutgppGq-torsors.

Let F be an OutgppGq-torsor over U . By [SGA 3II, Exposé X, Corollaire 5.14], the connected
components of F are open and finite étale over U . Thus, Auslander–Nagata purity [SGA 2new,
Exposé X, Théorème 3.4] ensures that they extend uniquely to finite étale R-schemes. In this way,
F extends to an étale locally constant R-scheme F , and the maps describing the torsor structure
likewise extend and make F an OutgppGq-torsor over R.

We now let F to be the OutgppGq-torsor induced by the AutgppGq-torsor E via (1.3.7.1). We use
the splitting (1.3.7.2) to view the resulting OutgppGq-torsor F as an AutgppGq-torsor. We twist
by this AutgppGq-torsor F and combine the twisting bijection (1.2.1.1) with the cohomology exact
sequence (1.2.2.1) to note that the image of E under this bijection comes from a torsor E1 over
U under an R-form G of Gad. By the assumed Conjecture 3.2.1 for G, there is a G-torsor E 1 over
R with E 1

K » E1
K . This E 1 gives rise to a torsor under the twist of AutgppGq in question, and its

preimage under the twisting bijection is a desired AutgppGq-torsor E with EK » EK . □

3.3. The Grothendieck–Serre conjecture for Levi reductions and parabolic subgroups

We wish to draw attention to two variants of the Grothendieck–Serre conjecture, one for Levi
reductions of torsors and another one for parabolic subgroups of reductive groups. As we show,
the parabolic variant implies the Levi variant and both follow from the conjectures discussed in
§§3.1–3.2. One could hope that these variants may be more amenable to direct attack. We begin
with the less general variant that concerns Levi reductions of torsors under reductive groups.
Conjecture 3.3.1. For a regular local ring R, its fraction field K, a reductive R-group scheme G, a
parabolic R-subgroup P Ă G, and an R-Levi M Ă P , a G-torsor E reduces (necessarily uniquely) to
an M -torsor (equivalently, a P -torsor) iff EK reduces to an MK-torsor (equivalently, a PK-torsor).
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The parenthetical aspects follow from the basic review of §1.3.5, especially, from (1.3.5.1)–(1.3.5.2).
3.3.2. Conjectures 3.1.1 and 3.2.1 imply Conjecture 3.3.1. We assume that the Grothendieck–
Serre map (3.1.1.1) is injective for G and that the Colliot-Thélène–Sansuc conjecture 3.2.1 holds for
M . Since the ‘only if’ is obvious, we seek the converse, so we let F be the unique PK-torsor that
induces EK . By the Grothendieck–Serre conjecture for G, namely, by (3.1.1.1), we need to show that
F extends to an P -torsor over R. For this, (1.3.5.1) and the Colliot-Thélène–Sansuc conjecture 3.2.1
for M reduce us to showing that F extends to a P -torsor over Rp for every height 1 prime p Ă R, so
we may assume that R is a discrete valuation ring. But then the valuative criterion of properness
applied to E{P suffices: F amounts to a K-point of E{P (see see §1.2.2), which automatically
extends to an R-point of E{P , which amounts to the desired extension of F to a P -torsor. □

The following variant for parabolic subgroups is more general, goes back to ideas of Colliot-Thélène
and Panin, and was stated as a conjecture in [Čes22, Conjecture 9.4].
Conjecture 3.3.3 (Colliot-Thélène–Panin). For a regular local ring R, its fraction field K, and a
reductive R-group scheme G, if GK has a proper parabolic subgroup, then so does G; more precisely,
if GK has a parabolic K-subgroup of a fixed type, then G has a parabolic R-subgroup of the same type.

The R-scheme that parametrizes the types of parabolic subgroups of (base changes of) G is finite
étale (see [SGA 3III new, Exposé XXVI, Section 3.1, Définition 3.4]), so its K-points extend uniquely
to R-points. Thus, the aspect of the conjecture about parabolics of the same type is well posed.
3.3.4. Conjecture 3.3.3 implies Conjecture 3.3.1. Let R, G, and P be as in Conjecture 3.3.1,
and let E be a G-torsor. By §1.2.2 and §1.3.4, the quotient E{P parametrizes both reductions of E
to a P -torsor and also parabolic subgroups of the same type as P of the inner form AutGpEq of G.
Thus, if EK reduces to a PK-torsor, then AutGpEqK has a parabolic subgroup of the same type as
P . By Conjecture 3.3.3, then AutGpEq itself has a parabolic subgroup of the same type as P , so
that E reduces to a P -torsor over R, as predicted by Conjecture 3.3.1. □

3.3.5. Basic reductions and known cases of Conjecture 3.3.3.

(1) The case when dimpRq ď 1 follows from the valuative criterion of properness: in fact, since
the scheme that parametrizes parabolic subgroups of G of a fixed type is proper (see §1.3.4),
every parabolic K-subgroup of GK extends to a parabolic R-subgroup of G. Similarly, for a
general regular local R, any parabolic K-subgroup of GK extends to a parabolic U -subgroup
of GU for some open U Ă SpecpRq whose complement is of codimension ě 2. The difficulty
lies in arguing the existence of a K-parabolic of GK for which even U “ SpecpRq.

(2) As observed by Sean Cotner, the case when dimpRq ď 1 implies the case when R is Henselian.
Indeed, analogously to §3.1.4 (2), induction on dimpRq shows that the desired parabolic
subgroup exists over the residue field of any prime p Ă R; since the scheme that parametrizes
parabolic subgroups of G of a fixed type is smooth (see §1.3.4), Hensel’s lemma [EGA IV4,
Théorème 18.5.17] then lifts the parabolic from the residue field k to all of R.

(3) Several cases in which G is an orthogonal group were settled in [CT79], [Pan09], [PP10], [PP15],
[Scu18]. In fact, these cases related to quadratic forms suggested the general conjecture.

(4) The case when Gk, where k is the residue field of R, has no proper parabolic subgroup follows
from the fact that then neither does GK . To see this last claim, we use induction on dimpRq

to replace R by some regular quotient that is a discrete valuation ring and then apply (1).
As an aside, similarly, if Gk is even anisotropic, then so is GK .

The anisotropicity of Gk is a very stringent condition: as we now argue, it implies that

GpRr1r sq “ GpRq for every regular parameter r P R, so also that GpRpptqqq “ GpRJtKq.
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For this, since R{prq is regular, the aside above implies that Gkprq
is also anisotropic. Con-

sequently, (1.3.9.1) allows us to replace R by its localization at the height 1 prime prq Ă R
and to thus reduce to the case of a discrete valuation ring. To then see that every K-point
of G is integral, we may even replace R by its completion, at which point, since GK is still
anisotropic by the aside above, GpRq “ GpKq by, for instance, [Guo21, Proposition 4.4 (c)].

(5) For minimal parabolic subgroups, that is, for Borels, the conjecture predicts that a reductive
R-group scheme is quasi-split if and only if so is its generic fiber. By [Čes22, Theorem 9.5],
this consequence follows from the adjoint case of the Grothendieck–Serre conjecture 3.1.1—the
latter gets used via Proposition 3.1.5 and the argument is similar to that of §3.2.4.

Conversely, this consequence implies the quasi-split case of the Grothendieck–Serre conjecture
over R: indeed, if G is a reductive R-group scheme, B Ă G is an R-Borel, and E is a
generically trivial G-torsor, then, since B-reductions of E amount to Borels of the inner form
AutGpEq of G (see §1.3.4), we find that E admits a generically trivial B-reduction; the latter
must be trivial due to (1.3.5.1) and the Grothendieck–Serre conjecture for tori §3.1.4 (1).

We now extend the result of §3.3.2 by showing that Conjecture 3.3.3 also follows from the combination
of the Grothendieck–Serre conjecture and the Colliot-Thélène–Sansuc purity conjecture.
3.3.6. Conjectures 3.1.1 and 3.2.1 imply Conjecture 3.3.3. With the notation of Conjec-
ture 3.3.3, assume that GK has a parabolic subgroup PK of a fixed type, let pG,Pq be a split
reductive R-group and a parabolic subgroup of the same type as pGK , PKq such that pG,Pq admits
a pinning (see [SGA 3III new, Exposé XXVI, Définition 1.11, Lemme 1.14]), and assume that the
Grothendieck–Serre conjecture 3.1.1 holds for every form of Gad. By Proposition 3.1.5, then G is
the unique reductive R-group scheme with generic fiber isomorphic to GK , so, to show that G has a
parabolic subgroup of the desired type, all we need to do is build an R-form of pG,Pq with generic
fiber isomorphic to GK . In terms of torsors, we need to build an AutgppG,Pq-torsor E over R whose
K-fiber is isomorphic to the torsor E that corresponds to pGK , PKq.

By §3.3.5 (1), we may assume that E starts out as an AutgppG,Pq-torsor over an open U Ă SpecpRq

with complement of codimension ě 2. Since parabolics self-normalizing (see §1.3.4), up to the
center act simply transitively on pinnings adapted to them (see [SGA 3III new, Exposé XXVI,
Proposition 1.15]), and, for split groups, up to a pinning correspond to subsets of the base of positive
roots (see [SGA 3III new, Exposé XXVI, Proposition 1.4, Définition 1.11]), the formula (1.3.7.2) gives

AutgppG,Pq – Pad ¸ I

where Pad ď Gad is the image of P and I ď OutgppGq ď AutgppGq is the subgroup of automorphisms
that preserve both a fixed pinning of G and the subset of positive roots corresponding to P.

At this point, the argument becomes analogous to that of §3.2.4. Namely, I is a constant R-group,
so the I-torsor over U induced by E extends uniquely to an I-torsor F over R. We then use the
semidirect product structure to upgrade F to an AutgppG,Pq-torsor and twist by it as in (1.2.1.1)
to arrange that E comes from a torsor E1 over U under an R-form P of Pad. By the last paragraph
of §1.3.4 and the Colliot-Thélène–Sansuc purity conjecture 3.3.3 applied to a Levi subgroup of this
R-form P, there then exists a P-torsor E 1 over R with generic fiber E 1

K » E1
K . By tracing E 1 back

across the twisting bijection, we arrive at the desired AutgppG,Pq-torsor E with EK » EK . □

3.4. The Nisnevich conjecture

In search for a strategy for the Grothendieck–Serre conjecture, Nisnevich proposed to extend the
Quillen conjecture 2.2.1 to general reductive R-group schemes in [Nis89, Conjecture 1.3]. However,
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recent examples of Fedorov [Fed21c, Theorem 2] show that it is necessary to restrict this extension
to totally isotropic groups (see §1.3.6). The resulting formulation of the conjecture is as follows.
Conjecture 3.4.1 (Nisnevich). For a regular local ring pR,mq, a regular parameter r P m, and a
totally isotropic reductive R-group scheme G, every generically trivial G-torsor over Rr1r s is trivial:

KerpH1pRr1r s, Gq Ñ H1pK,Gqq “ t˚u, where K :“ FracpRq. (3.4.1.1)

We changed the original formulation by requiring generic triviality, as opposed to Zariski local
triviality: this stresses the parallel with the Grothendieck–Serre conjecture 3.1.1, by which these two
versions of Conjecture 3.4.1 ought to be the same. One could also weaken the assumption that r be
a regular parameter and only require that r R m2, where m Ă R is the maximal ideal: indeed, the
new case in which r is a unit is already covered by the Grothendieck–Serre conjecture 3.1.1.
3.4.2. Basic reductions and known cases of Conjecture 3.4.1. The case when G “ GLn

is the Quillen conjecture (every GLn-torsor over Rr1r s is generically trivial, so one indeed recovers
Conjecture 2.2.1), whose known cases were reviewed in §2.2.2, so now we focus on other G.

(1) The case when G is a torus follows from the Grothendieck–Serre conjecture 3.1.1 as follows.
For a generically trivial G-torsor E over Rr1r s, we may glue it (noncanonically!) with the
trivial G-torsor over Rprq and then extend the glueing to a G-torsor rE over R (see §1.3.9).
By §3.1.4 (1) (the Grothendieck–Serre conjecture for tori), rE is trivial, so E is also trivial.

Similarly, the case when dimpRq “ 2 with G arbitrary follows from the Grothendieck–Serre
conjecture for G. In both of these cases, we could allow any r P R, not merely r R m2, and
the total isotropicity assumption is not needed.

(2) The case when dimpRq “ 2 and R is r-Henselian (for instance, r-adically complete) may be
argued as follows. As in (1), the dimension assumption allows us to use §1.3.9 to extend
any generically trivial G-torsor over Rr1r s to a G-torsor over R that trivializes over Rprq. By
the invariance under Henselian pairs (see Proposition 6.1.1 (b)) and the Grothendieck–Serre
conjecture over R{prq (see §3.1.4 (2)), this extension is a trivial G-torsor over R, as desired.
In this case, the total isotropicity assumption is again not needed.

(3) The case when dimpRq “ 2 and GK is quasi-split follows from the toral case, as we now
explain (under further assumptions this case is contained in [Nis89, Proposition 5.1]). As in
§3.3.5 (1), the dimension assumption ensures that a Borel K-subgroup B Ă GK extends to a
Borel U -subgroup B Ă GU where U is the punctured spectrum of R. Similarly, a generically
trivial G-torsor over Rr1r s reduces to a generically trivial B-torsor over Rr1r s, equivalently, to
a generically trivial T -torsor over Rr1r s for the U -torus T :“ B{RupBq (see §1.2.2, §1.3.4, and
(1.3.5.1)). Since T extends to an R-torus (for example, by §3.2.4 or simply as the “abstract
Cartan” torus of G), this achieves the promised reduction to the toral case discussed in (1).

(4) The case when dimpRq ď 3 and G “ PGLn follows from the corresponding case of the Quillen
conjecture proved by Gabber (see §2.2.2 (3)): indeed, granted the latter, the same argument
as in Example 3.1.3 reduces one to the injectivity of the map H2pRr1r s,Gmq Ñ H2pK,Gmq.

(5) The case when R is of equal characteristic and either contains an infinite field or contains its
own residue field was recently settled by Fedorov in [Fed21c, Theorem 1].

(6) Over a valuation ring V , one possible analogue is the statement that for any reductive V -group
G, every generically trivial G-torsor over V pptqq is trivial. This analogue was settled by Guo
in [Guo21, Corollary 7.5] (with critical input from the work of Gabber and Ramero [GR18]).

22



To sum up, Conjecture 3.4.1 is known in almost all equicharacteristic cases but, beyond tori and
some GLn and PGLn cases, remains widely open in mixed characteristic.
Remark 3.4.3. As in §2.2.3 (1), one may also consider a more general variant of Conjecture 3.4.1
in which Rr1r s is replaced by Rr 1

r1¨¨¨rt
s for a part of a regular system of parameters r1, . . . , rt P R.

Heuristically, the Nisnevich conjecture 3.4.1 suggests that phenomena related to torsors under
reductive groups over regular local rings may persist after inverting a regular parameter. We wish to
illustrate statements of this type with the following consequence for parabolic subgroups.
Proposition 3.4.4. For a regular local ring pR,mq, a regular parameter r P m, a reductive R-group
scheme G, and a parabolic R-subgroup P Ă G such that (3.4.1.1) holds with M :“ P {RupP q in place
of G (as is the case when P is a Borel, see §3.4.2 (1)), every parabolic Rr1r s-subgroup of G of the
same type as P is conjugate to PRr 1

r
s by an element of GpRr1r sq, equivalently,

GpRr1r sq ↠ pG{P qpRr1r sq, equivalently, KerpH1pRr1r s, P q Ñ H1pRr1r s, Gqq “ t˚u.

It is instructive to recall from §1.3.5 that analogous statements hold when Rr1r s is replaced by any
semilocal ring (but, of course, Rr1r s itself is far from being semilocal when dimpRq ě 2).

Proof. We recall from §1.3.4 that G{P represents the functor that parametrizes those parabolic
subgroups of (base changes of) G that are of the same type as P , so the equivalent reformulations
follow by also using the cohomology sequence (1.2.2.1). For the claim itself, by §1.3.4 again, the
subfunctor of G consisting of those sections that conjugate (a base change of) PRr 1

r
s to a fixed

parabolic Rr1r s-subgroup of G is a P -torsor over Rr1r s. Since parabolics of the same type are conjugate
Zariski locally on the base (see §1.3.4), this torsor is generically trivial. It then remains to note that,
by (3.4.1.1) for M and (1.3.5.1), no nontrivial P -torsor over Rr1r s is generically trivial. □

3.5. The Horrocks phenomenon for totally isotropic reductive group schemes

For general reductive groups, studying torsors over the relative affine line A1
A requires some substitute

for the Horrocks principle that we reviewed in Proposition 2.1.5. For general groups, the same
statement as there does not hold: in [Fed16, Corollary 2.3; Theorem 3, Example 2.4, Lemma 2.5],
Fedorov gave examples of regular local rings A and semisimple, simply-connected A-group schemes
G for which some G-torsor E over A1

A does not descend to a G-torsor over A but is trivial away
from an A-(finite étale) closed subscheme Z Ă A1

A (so that E extends to a G-torsor over P1
A).

More precisely, loc. cit. shows that the Horrocks phenomenon requires some isotropicity condition on
G. The following conjecture suggested by Ning Guo seems to capture a precise desired statement.
Conjecture 3.5.1. For a commutative ring A and a totally isotropic reductive A-group scheme G,
every G-torsor over Ad

A that is trivial away from an A-finite closed subscheme Z Ă Ad
A is trivial.

In terms of analogies, this conjecture is a version of Horrocks Proposition 2.1.5 beyond G “ GLn.
3.5.2. Basic reductions and known cases of Conjecture 3.5.1.

(1) Since Z is also finite over Ad´1
A , induction on d allows us to assume that d “ 1. Once d “ 1,

one may use Quillen patching to reduce to local A, see Corollary 5.1.9 for details.

(2) The case when G is a torus follows from the general formula of [BČ21, Theorem 3.1.7]
(essentially due to Gabber), according to which

H1pArts, Gq ‘ H1pA,X˚pGqq
„

ÝÑ H1pAppt´1qq, Gq with X˚pGq :“ HomgppGm, Gq.
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Indeed, the injectivity H1pArts, Gq ãÑ H1pAppt´1qq, Gq means that no nontrivial G-torsor over
A1
A trivializes away from an A-finite closed Z Ă A1

A (since Z is also closed in P1
A, it does not

meet the infinity section, so it also does not meet the formal neighborhood of infinity in P1
A).

(3) The case when G is semisimple, simply connected is known, see [Čes22, Proposition 8.4]
(possibly also [PSV15, Theorem 1.3] for an earlier special case).

(4) The case when G is split follows from the discussion in the rest of this section.

To sum up, Conjecture 3.5.1 is known in many cases, and so has the feeling of being within reach.

To review the strategy in the case (3) and to simultaneously settle the split case claimed in (4), we
put ourselves in the key case when A is local and d “ 1, see (1) above. By the following lemma, the
key is to extend to a torsor over P1

A in such a way that the extension be trivial over the special fiber.
Lemma 3.5.3. For a semilocal ring S and a reductive S-group G such that radpGq is isotrivial (for
instance, such that G is either semisimple or split, or such that S is normal), every GP1

S
-torsor E

whose base change to P1
km

is trivial for every maximal ideal m Ă S is the base change of a G-torsor.

Proof. See [Čes22, Lemma 8.3] for a detailed argument (possibly, see also the earlier [PSV15,
Proposition 9.6], [Fed21b, Proposition 2.2], [Tsy19]). One uses the assumption on radpGq to embed
G into GLn, S (see §1.3.8) and then combines the resulting exact cohomology sequence (1.2.2.1)
with the affineness of GLn, S {G (see §1.3.1) to reduce to the key case when G “ GLn, S . The latter
concerns vector bundles and its argument is similar to the proof of the Horrocks Proposition 2.1.5 in
that it is based on input from [EGA III1] about cohomology and base change. □

With this lemma, arguing the triviality of a G-torsor E over A1
A breaks up into two steps: into the

case when A is replaced by its residue field k and into lifting the extension of E|P1
k

to the trivial
G-torsor over P1

k to an extension of E to a G-torsor over P1
A. These correspond to the following two

lemmas, the second of which requires the total isotropy and the assumptions of (3) or (4).
Lemma 3.5.4. For a reductive group G over a field k, a generically trivial G-torsor over A1

k is trivial.

Proof. The Grothendieck–Serre conjecture 3.1.1 holds for discrete valuation rings (see §3.1.4 (2)), so
generic triviality amounts to Zariski local triviality. Gille showed in [Gil02, Corollaire 3.10 (a)] that
every Zariski locally trivial G-torsor over A1

k reduces to a torsor under a maximal k-split subtorus of
G (see also [Gil05], and possibly compare with the earlier [RR84]). Since A1

k has no nontrivial line
bundles, it follows that every generically trivial G-torsor over A1

k is trivial. □

Lemma 3.5.5. For a local ring A with the residue field k and a totally isotropic reductive A-group
scheme G that is either split or semisimple, simply connected, the following map is surjective:

GpApptqqq{GpAJtKq ↠ Gpkpptqqq{GpkJtKq.

Proof. The semisimple, simply-connected case was discussed in [Čes22, proof of Proposition 8.4]. In
this case, at the cost of allowing semilocal A and replacing k by the product of the residue fields
at the maximal ideals of A, the canonical decomposition (1.3.3.2) allows one to assume that G
is, in addition, fiberwise simple.† The key point is then the unramified nature of the Whitehead
group: by [Gil09, Fait 4.3, Lemme 4.5], letting Gpkpptqqq` Ă Gpkpptqqq be the subgroup generated by

†Added after publication. For semilocal A, however, one should strengthen the total isotropicity assumption as
follows: each rGi that appears in the canonical decomposition (1.3.3.2) contains Gm,Si as an Si-subgroup. Indeed, by
[SGA 3III new, Exposé XXVI, Corollaire 6.12], this ensures that then each rGi contains a fiberwise proper parabolic
Si-subgroup (whereas total isotropicity would supply such a parabolic only after base change to each local ring of A),
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pRupP qqpkpptqqq and pRupP´qqpkpptqqq, where P Ă G is a minimal parabolic subgroup and P´ Ă G
is an opposite parabolic subgroup (see §1.3.4), we have

Gpkpptqqq “ Gpkpptqqq`GpkJtKq.

To conclude the semisimple, simply-connected case it then suffices to note the following surjectivity:
since both RupP q and RupP´q are isomorphic to affine spaces Ad

A (see §1.3.4) and Apptqq ↠ kpptqq,

pRupP qqpApptqqq ↠ pRupP qqpkpptqqq and pRupP´qqpApptqqq ↠ pRupP´qqpkpptqqq. (3.5.5.1)

The case when G is split is simpler. Then there are a split maximal A-torus and a Borel A-subgroup
T Ă B Ă G. The Iwasawa decomposition, so, in essence, the valuative criterion of properness, gives

Gpkpptqqq “ BpkpptqqqGpkJtKq “ pRupBqqpkpptqqqT pkpptqqqGpkJtKq.

Thus, (3.5.5.1) applied to RupBq instead reduces us to the case G “ Gm. It then suffices to note
that, since A is local, the map Apptqqˆ Ñ kpptqqˆ – tZ ˆ kJtKˆ is surjective. □

Remark 3.5.6. As we saw, for semisimple, simply-connected, totally isotropic† G, Lemma 3.5.5
continues to hold when A is semilocal and k is the product of its residue fields at the maximal ideals.

3.6. The Bass–Quillen conjecture for general reductive groups

The Bass–Quillen conjecture 2.1.1 fails for torsors under arbitrary reductive groups G in place of
vector bundles (that is, in place of GLn-torsors), as examples of Parimala and others show, see [Par78],
[Fed16, Remark 2.6], or [EKW21, Example 1.3]. Moreover, Fedorov’s [Fed16, Remark 2.6] suggests
excluding anisotropic groups if one aims for a positive statement. In fact, due to Balwe–Sawant
[BS17, Proposition 4.9], the Bass–Quillen conjecture for G cannot hold over all smooth algebras over
a fixed infinite perfect base field over which G is defined unless G is totally isotropic. The relevance
of total isotropicity was stressed already by Raghunathan in [Rag89].

A key feature of the groups GLn is that all of their torsors are Zariski locally trivial. In [Gro58,
Théoréme 3], Grothendieck classified groups that have this property and called them special, for
instance, SLn and Spn are special. For general reductive groups, one could hope that some phenomena
specific to special groups may be witnessed by only considering Zariski locally trivial torsors. Over
regular bases, due to the Grothendieck–Serre conjecture 3.1.1, this Zariski local triviality ought to
amount to generic triviality or, if one prefers, to local triviality in the Nisnevich topology.

With these observations in mind, it seems reasonable to consider the following extension of the
Bass–Quillen conjecture to torsors under more general reductive group schemes.
Conjecture 3.6.1. For a regular ring R and a totally isotropic reductive R-group scheme G, every
Zariski locally trivial G-torsor over Ad

R descends to a G-torsor over R.
Remark 3.6.2. Induction on d reduces Conjecture 3.6.1 to d “ 1 and Quillen patching of Corol-
lary 5.1.5 reduces further to local R. Once R is local and d “ 1, the conjecture may be strengthened
to predict that every Zariski locally trivial G-torsor over A1

R is trivial: by Lemma 3.5.4 applied to
FracpRq and by the Grothendieck–Serre conjecture 3.1.1, this ought to give an equivalent statement.

Analogously to how the Quillen conjecture 2.2.1 and the Horrocks Proposition 2.1.5 imply the Bass–
Quillen conjecture 2.1.1 (see §2.2), the Nisnevich conjecture 3.4.1 and the Horrocks phenomenon
stated in Conjecture 3.5.1 imply the extension of the Bass–Quillen conjecture above as follows.

which allows us to choose the fiberwise proper parabolic A-subgroups P Ă G and P´
Ă G in the argument below (in

order to apply [Gil09, Fait 4.3, Lemme 4.5], the minimality assumption on P is not needed).
†Added after publication. Here the total isotropicity assumption should be strengthened as in the previous footnote.
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3.6.3. Conjectures 3.4.1 and 3.5.1 imply Conjecture 3.6.1. By Remark 3.6.2, for a regular
local ring R, a totally isotropic reductive R-group G, and a Zariski locally trivial G-torsor E on A1

R,
we need to argue that E is trivial. The Nisnevich conjecture 3.4.1 implies that E becomes trivial
over the punctured neighborhood of infinity in P1

R, that is, after inverting all the monic polynomials
in Rrts (compare with the proof of Proposition 2.3.2). Thus, by a limit argument, E also becomes
trivial after inverting a single monic polynomial. Conjecture 3.5.1 applied with Z being the vanishing
locus of that polynomial then implies that E is trivial to begin with. □

3.6.4. Basic reductions and known cases of Conjecture 3.6.1. The case G “ GLn is the
Bass–Quillen conjecture 2.1.1, whose known cases were reviewed in §2.1.2, so now we focus on other G.

(1) By §3.6.3, the case when G is a torus follows from §3.4.2 (1) and §3.5.2 (2).

(2) The case when R is a smooth algebra over a field k and G is the base change of a totally
isotropic reductive k-group was settled by Asok–Hoyois–Wendt in [AHW18, Theorem 3.3.7]
when k is infinite and in [AHW20, Theorem 2.4] when k is finite. Their argument follows
an axiomatic approach of Colliot-Thélène–Ojanguren [CTO92], and they check a crucial
Nisnevich excision axiom using methods of A1-homotopy theory of Morel–Voevodsky. One
may also check this Nisnevich excision more directly by using Proposition 4.2.1, see [Li21].

(3) By §3.6.3, the case when R contains an infinite field and G is either quasi-split, semisimple,
and simply connected or split follows from §3.4.2 (5) and §3.5.2 (3)–(4).

(4) By §3.6.3, the case when dimpRq ď 2, d “ 1, and G “ PGLn follows from §3.4.2 (4) and
§3.5.2 (4).

(5) By §3.6.3, the case when dimpRq “ 1, d “ 1, and G is either quasi-split, semisimple, and
simply connected or split follows from §3.4.2 (3) and §3.5.2 (3)–(4).

To sum up, these known cases give evidence for Conjecture 3.6.1, especially in equal characteristic,
but the general case remains open even in the setting when R is a smooth algebra over a field k and
the totally isotropic reductive R-group scheme G does not descend to k.

4. Passage to the affine space via presentation lemmas and excision

Most of the conjectures discussed in §§2–3 are specific to regular bases. Crudely speaking, one broad
strategy for attacking them has been to reduce to the “geometric” case in which the base ring is a
localization of a smooth algebra over a ring k that is either a field or Z, and to then combine suitable
preparation lemmas with excision to reduce further to working over a localization of some affine
space Ad

k. This strategy is specific to unramified regular base rings because the reduction to the
geometric case is based on the Popescu theorem 1.4.5, which requires the unramifiedness assumption.

We elaborate on this strategy in the sections that follow. In §4.1, we overview some of the presentation
lemmas that have been used for building the required maps to Ad

k. In §4.2, we review the relevant
excision input that allows subsequent passage to the local rings of Ad

k.

4.1. Presentation lemmas

By [EGA IV4, Corollaire 17.11.4], Zariski locally on the source every smooth map of schemes factors
as an étale morphism to a relative affine space, in particular, for any ring k and a smooth k-algebra
R, upon localizing around a fixed point of SpecpRq, there is an étale map

f : SpecpRq Ñ Ad
k. (4.1.0.1)

The goal of presentation lemmas is to build such a map subject to additional requirements, for
instance, it may be handy to have that f induce an isomorphism on the residue fields kfpsq

„
ÝÑ ks
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at some point s P SpecpRq of interest or that a specified closed subscheme Z Ă SpecpRq of smaller
dimension would be finite over the affine space Ad´1

k given by the first d´ 1 coordinates. In practice,
R comes equipped with a torsor under some reductive R-group and one knows that “something
good” happens, for instance, the torsor trivializes, over a dense open U Ă SpecpRq; the control
of the complement Z :“ SpecpRqzU via some presentation lemma is then crucial for reducing the
problem to its counterpart for the affine space. Presentation lemmas are most developed in the
literature in the case when k an (often infinite) field, for instance, the following result gives a broadly
useful statement in this setting. It grew out of refinements due to Gabber [Gab94, Section 3] and
Gros–Suwa [GS88, Section 2] to a basic such lemma used by Quillen [Qui73, Section 7, Lemma 5.12].
Theorem 4.1.1 (Geometric Presentation Theorem). For a smooth, affine, irreducible scheme X
of dimension d ą 0 over an infinite field k, a closed subscheme Z Ă X of codimension ą 0, and
x1, . . . , xn P X, there are a k-map f : X Ñ Ad

k making Z finite over the Ad´1
k of the first d ´ 1

coordinates and an open X 1 Ă X containing x1, . . . , xn that fit into a commutative diagram

X 1 X Z

–

� � // X 1
f |X1

//

��

Ă
Ad
k

pt1, ..., tdq ÞÑ pt1, ..., td´1q

��

g´1pSq X Z

��

X

g

��

f

::

S �
�

// Ad´1
k

in which f |X 1 is étale, S Ă Ad´1
k is an open, fpxiq R fpZq if xi R Z, and f |X 1 maps X 1 X Z

isomorphically to a closed subscheme Z 1 Ă A1
S in such a way that the following square is Cartesian:

X 1 X Z – pf |X 1q´1pZ 1q� _

��

„ // Z 1
� _

��

X 1
f |X1

// A1
S .

Proof. A detailed proof was given by Colliot-Thélène–Hoobler–Kahn, see [CTHK97, Theorem 3.1.1].
Since X is affine, there is some affine space over k that parametrizes maps X Ñ Ad

k. Loc. cit. shows
that the desired conditions describe a nonempty open of this “moduli space.” Since k is infinite, this
nonempty open has a k-rational point, which corresponds to the desired f . □

Remark 4.1.2. For a version of Theorem 4.1.1 in a setting where k is replaced by a discrete valuation
ring O, see [Čes22, Variant 3.7]. There it was convenient to even allow semilocal Dedekind O: the
method was to bootstrap from Theorem 4.1.1 applied to the closed O-fibers of X, but one of the
difficulties was that some of the xi may lie in the generic O-fibers; to overcome it, we enlarged
Specpkq by glueing in an auxiliary discrete valuation ring along which such xi specialized well.

Theorem 4.1.1 is particularly useful for dealing with imperfect base fields k, for which other techniques
run into difficulties. However, it needs k to be infinite; on the other hand, to treat finite k, one
may adapt Artin’s technique of good neighborhoods from [SGA 4III, Exposé XI]. Artin’s method
is more direct: roughly, instead of considering a moduli space of maps X Ñ Ad

k as in the proof of
Theorem 4.1.1, it uses Bertini theorem to directly construct hypersurfaces Hi Ă X whose defining
functions are the images of the coordinates of the affine space under the desired map X Ñ Ad

k. A
detailed implementation of such an approach may be found in [Čes22, proof of Proposition 3.6,
around equation (3.6.2)]; here we content ourselves with reviewing the relevant Bertini statement.
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Proposition 4.1.3. For a projective scheme X of pure dimension over a field k, a nowhere dense
closed subscheme Z Ă X, and a t ď dimpXq´dimpZq such that even t ď dimpXq when Z “ H, there
are hypersurfaces H1, . . . ,Ht Ă X with respect to a fixed ample line bundle OXp1q whose intersection

H1 X . . . X Ht

is of pure dimension dimpXq´t, contains Z, and has a k-smooth intersection with XsmzZ. Moreover,
we may simultaneously achieve the following additional requirements:

(a) for closed subschemes Y1, . . . , Yn Ă X, the Hi intersect each YjzZ transversally in the sense
that dimppYjzZq X

Ş

iPI Hiq ď dimpYjzZq ´ #I for all 1 ď j ď n and I Ă t1, . . . , tu;

(b) if Z “ Z1 \ Z0 for a 0-dimensional Z0 Ă Xsm all of whose residue fields are separable
extensions of k, then H1 X . . . X Ht is k-smooth even at the points in Z0;

(c) iteratively on i, with H1, . . . ,Hi´1 already fixed, Hi may be chosen to have any sufficiently
large degree divisible by the characteristic exponent of k.

Proof. The lemma is essentially a restatement of [Čes22, Lemma 3.2], whose proof split into the
characteristic 0 and the positive characteristic cases. In both cases, the conclusion followed from
Bertini theorem (which supplies a single Hi), although the slightly nonstandard requirements Z Ă Hi

and (b) required further care. In positive characteristic, the key input was Gabber’s version of
Bertini theorem over finite fields from [Gab01], notably, it allowed us to arrange (c). The latter
seems less straight-forward to obtain from Poonen’s version of Bertini theorem over finite fields from
[Poo04] (which is sharper in other aspects that are not relevant for the present lemma). □

To give a small illustration of the Geometric Presentation Theorem 4.1.1 in practice, we present the
following refinement of the local structure of smooth maps of schemes.
Proposition 4.1.4 (Compare with [Lin81, Proposition 2]). For a local ring k and a k-algebra R
that is smooth of relative dimension d ą 0 at a maximal ideal m Ă R that lies over the maximal ideal
of k, there are an affine open S Ă SpecpRq containing m and an étale R-map

f : S Ñ Ad
k that induces an isomorphism on residue fields kfpmq

„
ÝÑ km.

Proof. The main point is the aspect about isomorphisms on residue fields: without it and under the
additional assumption that km is a separable extension of the residue field of k, it would suffice to
choose global sections t1, . . . , td P R that form a regular system of parameters at m in the closed
k-fiber of R, to define f by sending the standard coordinates of Ad

k to the ti, and to combine
[EGA IV4, Proposition 17.15.8] with the fibral criterion of flatness [EGA IV3, Théorème 11.3.10]
to conclude that this f is étale at m. Even though this method does not suffice for us, the fibral
criterion of flatness of loc. cit. and the openness of the étale locus do allow us to replace k by its
residue field, and hence to assume for the rest of the proof that k is a field.

Once k is a field, if it is also infinite, then the conclusion is a special case of Theorem 4.1.1 with
Z Ă X there being our tmu Ă SpecpRq. In the remaining case when k is a finite field, the finite
extension km{k is automatically separable, so the method of the previous paragraph at least gives us
an R-morphism SpecpRq Ñ Ad´1

k that is smooth of relative dimension 1 at m (this time send the
standard coordinates to t1, . . . , td´1). The technique of the previous paragraph now allows us to
replace SpecpRq by its fiber over the origin of Ad´1

k to reduce further to the case when d “ 1 (and
k is still a finite field). In this case, SpecpRq is an affine curve over k and the first infinitesimal
neighborhood εm of its point m is isomorphic to kmrts{pt2q. In particular, we may embed εm into
A1
k and then choose an r P R whose image in the coordinate ring of εm agrees with the image
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of the standard coordinate of A1
k. By sending this standard coordinate to r, we obtain a desired

k-morphism f : SpecpRq Ñ A1
k that is étale at m and induces an isomorphism kfpmq

„
ÝÑ km. □

The morphism f as in Proposition 4.1.4 is not only an isomorphism on residue fields but is
automatically even an isomorphism along a germ of a local hypersurface as follows.
Lemma 4.1.5 (Lindel). For an étale, local homomorphism R0 Ñ R of local rings that induces an
isomorphism on residue fields, there is a nonunit r P R0 such that

R0{rnR0
„

ÝÑ R{rnR for all n ą 0.

Proof. We follow Lindel’s argument from [Lin81, Lemma on p. 321]. Namely, by [SP, Proposi-
tion 00UE], the morphism is standard étale, more precisely, R is a localization of the quotient
R0rT s{phpT qq for some hpT q P R0rT s whose derivative h1pT q P R0rT s is a unit in R. Since R0 Ñ R
is an isomorphism on residue fields, we may change variables and arrange that T lie in the maximal
ideal of R. It then follows that

r :“ hp0q

lies in the maximal ideal of R0. The condition on the derivative h1pT q ensures that R{rR – R0{rR0

and, by étaleness, then R0{rnR0
„

ÝÑ R{rnR for all n ą 0 (see [SP, Theorem 039R]). □

The idea of embedding εm into the affine line at the end of the proof of Proposition 4.1.4 is also
central in the proof of the following preparation result for relative curves. This result is used in
proving cases of the Grothendieck–Serre conjecture 3.1.1: its role is to produce an excision square,
which one then combines with patching discussed in §4.2 to reduce to studying torsors over A1

R.
Proposition 4.1.6. Let R be a semilocal ring, let C be an affine R-scheme that is smooth of pure
relative dimension 1 (an R-curve), and let Z Ă C be an R-finite closed subscheme such that, for
every maximal ideal m Ă R whose residue field is finite, Zkm is connected. There are an affine open
C 1 Ă C containing Z and an étale morphism f : C 1 Ñ A1

R that maps Z isomorphically to a closed
subscheme of A1

R whose scheme-theoretic preimage in C 1 is Z, so that we have Cartesian squares

C 1zZ

��

� � // C 1

f

��

f´1pZq? _oo

„

��

A1
RzZ �

�
// A1

R Z.? _oo

(4.1.6.1)

Proof. The claim is a special case of [Čes22, Lemma 6.3], which is itself a generalization of earlier
versions given by Panin and his collaborators in [OP99, Section 5], [PSV15, Theorem 3.4], [Pan19,
Theorem 3.8]. To the best of our knowledge, it was Panin who introduced this type of statement.

The argument given in [Čes22, Lemma 6.3] is not long (and is self-contained): the idea is to embed
each Zkm into A1

km
, to then lift these to an R-embedding Z ãÑ A1

R using the Nakayama lemma (the
R-finiteness of Z is critical for this), and, finally, to build C 1 using prime avoidance. The construction
of the embedding Zkm ãÑ A1

km
rests on the following corollary that one shows first and that deserves

to be known more widely: for a closed point of a smooth curve over a field k, its residue field k1 is
also the residue field of some point of A1

k (equivalently, k1 is generated by a single element as a field
extension of k; equivalently, k1{k has only finitely many field subextensions). □

Remark 4.1.7. The version in [Čes22, Lemma 6.3] is more general, for instance, the assumption on
Zkm may be weakened to that, for every d ě 1, the number of points of Zkm with residue field of
degree d over km is at most its counterpart for A1

km
(as is automatically the case if km is infinite).
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4.2. Excision and patching techniques

An important and often used technique for studying torsors is excision, sometimes also called patching
or formal glueing. For instance, it is used in conjunction with squares such as (4.1.6.1) to descend a
torsor over C 1 to a torsor over A1

R. The following proposition gives a general basic excision result.
Proposition 4.2.1. Let U Ă X be an open immersion of schemes, let Z Ă X be a complementary
closed subscheme that is locally cut out by a finitely generated ideal, and consider Cartesian squares

f´1pUq

��

� � // X 1

f

��

f´1pZq? _oo

„

��

U �
�

// X Z? _oo

(4.2.1.1)

in which the morphism f is affine, flat, and induces an isomorphism over Z as indicated. For a quasi-
affine, flat, finitely presented X-group scheme G, base change induces an equivalence of categories

tG-torsors over Xu
„

ÝÑ tG-torsors over X 1u ˆtG-torsors over f´1pUqu tG-torsors over Uu,

in other words, giving a G-torsor over X amounts to giving G-torsors over X 1 and U together with
an isomorphism between their base changes to f´1pUq (and likewise for G-torsor (iso)morphisms).

Proof. The claim is a special case of general patching results of Moret-Bailly [MB96, Corol-
laire 6.5.1 (a)] applied to the classifying stack BG, although it also follows from earlier Ferrand–
Raynaud patching of modules [FR70, Proposition 4.2]. See also [Čes22, Lemma 7.1] for comments
on why BG with G as in the statement satisfies the general assumptions of Moret-Bailly. □

The preceding result is general but its requirement that f be flat is too restrictive in some situations,
especially, in non-Noetherian settings. In some such cases, one may instead use the following result,
which refines the widely-known Beauville–Laszlo patching from [BL95].
Proposition 4.2.2. For a ring A, an a P A, a ring map f : A Ñ A1 that is an isomorphism on
derived a-adic completions (concretely, this means that f induces an isomorphism both modulo an and
on an-torsion for every n ą 0), and a quasi-affine, flat A-group scheme G, we have an equivalence

tG-torsors over Au
„

ÝÑ tG-torsors over A1u ˆtG-torsors over A1r 1
a

su tG-torsors over Ar 1a su,

in other words, giving a G-torsor over A amounts to giving G-torsors over A1 and Ar 1a s together with
an isomorphism between their base changes to A1r 1a s (and likewise for G-torsor (iso)morphisms).

Proof. The claim is [BČ21, Lemma 2.2.11 (b)] that is due to de Jong. Its main input are the results
from [SP, Section 0F9M] that were inserted into the Stacks Project to facilitate this proof. □

5. The analysis of torsors over the relative affine line

The final stages of the known approaches to problems about torsors over regular rings usually involve
the analysis of torsors over the relative affine line A1

R (so, by changing R, also over the relative affine
space Ad

R). The techniques for studying torsors over A1
R tend to work for any base ring R, although

they sometimes require R to be local. In practice, this last requirement is not stringent: one reduces
to local R via Quillen patching, which we review in its general form in §5.1, see Corollary 5.1.5.
We illustrate the utility of Quillen patching by reviewing the proof of the unramified case of the
Bass–Quillen conjecture in §5.2. Once R is local, a key technique that permits the analysis of torsors
over A1

R beyond semisimple, simply-connected groups is due to Fedorov and is based on the geometry
of the affine Grassmannian; we review it in §5.3.
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5.1. Quillen patching for general groups

A central technique for studying torsors over A1
R is a local-to-global principle known as Quillen

patching. In Corollary 5.1.5, we show that Quillen patching holds for any locally finitely presented
group scheme G. The argument is not long and its key insight is due to Gabber. The result is
much more general than what has appeared in the literature: the Quillen case [Qui76, Theorem 1] is
G “ GLn and his proof was extended to arbitrary finitely presented closed subgroups of GLn by
Moser [Mos08, Satz 3.5.1] and Asok–Hoyois–Wendt [AHW18, Theorem 3.2.5]. Quillen’s insightful
and in essence elementary technique was axiomatized by Bass–Connell–Wright in [BCW76], who
isolated a crucial “axiom Q” that ensures that patching still holds for G-torsors: for any r P R and any
g P GpRr1r srT sq that reduces to the identity section modulo T , there ought to be an n ą 0 such that
the Rr1r s-algebra automorphism of Rr1r srT s determined by T ÞÑ rnT brings g to the image of some
rg P GpRrT sq whose reduction modulo T is the identity section. It seems to have been overlooked in
the literature for a long time that this axiom is straight-forward to verify when G is affine and of
finite presentation by considering generators and relations of the coordinate ring. Gabber’s insight is
deeper: he noticed that “axiom Q” holds even when G is a locally finitely presented R-algebraic space
because one may check it by using a result of Temkin–Tyomkin [TT16, Theorem 4.3], according
to which the functor Gp´q commutes with fiber products of rings A1 ˆA0 A2 provided that one of
the maps A1 Ñ A0 and A2 Ñ A0 is surjective (one applies this to the maps Rr1r srT s ↠ Rr1r s and
R Ñ Rr1r s). We explain his observation in more detail in the following lemma.
Lemma 5.1.1. For a ring R, an R-algebraic space X locally of finite presentation, an r P R, an

xpT q P XpRr1r srT sq whose pullback x0 P XpRr1r sq along T ÞÑ 0 lifts to an rx0 P XpRq,

and every large enough n ě 0 (that depends on xpT q), the section xprnT q P XpRr1r srT sq lifts to an

rxpT q P XpRrT sq whose pullback along T ÞÑ 0 is rx0 P XpRq.

Here and below we let xprnT q denote the pullback of xpT q along the map Rr1r srT s
T ÞÑ rnT
ÝÝÝÝÝÑ Rr1r srT s.

Proof. By [TT16, Lemma 4.1 and Theorem 4.3], Specp´q transforms fiber products of rings into
pushouts in the category of algebraic spaces granted that one of the two maps of which the fiber
product is formed is surjective. We apply this to the fiber product Rr1r srT s ˆRr 1

r
s R, in which the

first map is the surjection given by T ÞÑ 0, to conclude that x and rx0 assemble to a unique section

x1pT q P XpRr1r srT s ˆRr 1
r

s Rq.

Concretely, Rr1r srT s ˆRr 1
r

s R may be thought of as the ring of polynomials in Rr1r srT s whose constant
coefficient is equipped with a lift to an element of R, in other words,

Rr1r srT s ˆRr 1
r

s R – lim
ÝÑT ÞÑrT

RrT s.

Since X is locally of finite presentation, applying Xp´q commutes with this filtered direct limit, to
the effect that x1pT q lifts to the resulting n-th copy of XpRrT sq for every large n ě 0 in such a way
that this lift restricts to rx0 along T ÞÑ 0. Then x1prnT q lifts to a desired rxpT q in the 0-th (that is,
in the initial) copy of XpRrT sq in the filtered direct limit lim

ÝÑT ÞÑrT
XpRrT sq. □

5.1.2. The notation G0. In the rest of this section, for a ring R and a group-valued functor G on
the category of R-algebras R1, we will let G0 be the group-valued functor defined by

G0pR1q :“ KerpGpR1rT sq
T ÞÑ 0
ÝÝÝÑ GpR1qq.
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This shorthand notation is nonstandard, but it will be convenient. The following generalization will
also be useful: for a Zě0-graded R-algebra A “ A0 ‘ A1 ‘ . . . , we let GA

0 be the functor defined by

GA
0 pR1q :“ KerpGpA bR R1q Ñ GpA0 bR R1qq.

As a concrete example, A could be some R-subalgebra of RrT s generated by monomials.
Proposition 5.1.3. For a ring R, a group-valued functor G on the category of R-algebras R1 that
has a locally finitely presented R-subgroup algebraic space G1 Ă G as an open subfunctor that is
R-fiberwise clopen in G (main example: G1 “ G), and elements r, r1 P R that generate the unit ideal,

G0pRr 1
rr1 sq “ G0pRr1r sqG0pRr 1

r1 sq and, more generally, GA
0 pRr 1

rr1 sq “ GA
0 pRr1r sqGA

0 pRr 1
r1 sq

for every Zě0-graded R-algebra A “ A0 ‘ A1 ‘ . . . that satisfies R
„

ÝÑ A0 (our notation is slightly
abusive, since localization maps such as G0pRr1r sq Ñ G0pRr 1

rr1 sq need not be injective).

Proof. We focus on the claim about A because it includes the case when A “ RrT s with the grading
given by the degree. Any idempotent in a Zě0-graded ring is homogeneous of degree 0, so SpecpAq

has connected R-fibers. Thus, since the identity section of G lies in G1, we have GA
0 “ G1A

0 . In
conclusion, we may replace G by G1 and assume that G1 “ G.

The claim now follows from [BCW76, Corollary 2.7]. Indeed, by Lemma 5.1.1, the functor G satisfies
“axiom Q” formulated in [BCW76, Axiom 1.1]: explicitly, for an R-algebra R1, an r P R1, and a

gpT q P Ker
´

GpR1r1r srT sq
T ÞÑ 0
ÝÝÝÑ GpR1r1r sq

¯

,

there is an n ě 0 such that gprnT q lifts to an element of Ker
´

GpR1rT sq
T ÞÑ 0
ÝÝÝÑ GpR1q

¯

. □

Corollary 5.1.4. For a ring R and a group functor G as in Proposition 5.1.3, we have

H1
ZarpR,G0q “ t˚u and, with A as there, also H1

ZarpR,GA
0 q “ t˚u.

Proof. With Proposition 5.1.3 in hand, we merely need to follow the argument of [Qui76, proof of
Theorem 1]. Namely, we need to show that every Zariski locally trivial G0-torsor X is trivial, so we
let S Ă R be the subset of those r P R such that X trivializes over Rr1r s. It suffices to show that S
is an ideal, since then the Zariski local triviality will imply that S “ R, and for this it is enough
to argue that r ` r1 P S whenever r, r1 P S. Moreover, by replacing R by Rr 1

r`r1 s, we may assume
that r, r1 generate the unit ideal. However, then Proposition 5.1.3 applies and, in terms of Zariski
descent, implies that no nontrivial GA

0 -torsor trivializes over both Rr1r s and Rr 1
r1 s, as desired. □

Corollary 5.1.5 (Gabber). Let R be a ring and let G be a group functor as in Proposition 5.1.3
(for instance, G could be any locally finitely presented R-group scheme).

(a) For a G-torsor X over Rrt1, . . . , tds, the set S Ă R of those r P R such that X|pRrt1,...,tdsqr 1
r

s

descends to a G-torsor over Rr1r s is an ideal.

(b) A G-torsor over Rrt1, . . . , tds descends to a G-torsor over R iff it does so Zariski locally on R.

More generally, the analogues of (a) and (b) hold with Rrt1, . . . , tds replaced by any Z‘d
ě0-graded

R-algebra A –
À

i1,...,idě0Ai1,...,id such that R „
ÝÑ A0,...,0.

Of course, the main case of interest is when G is locally finitely presented R-group scheme. However,
better descent properties of algebraic spaces (see §1.2.3) make the added generality quite useful: for
instance, if one wishes to pass to a form of G, one needs not worry about the form being a scheme.
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Proof. Evidently, (a) implies (b), so we only focus on (a) and follow the proof of [AHW18, Proposi-
tion 3.2.4]. Namely, as in the proof of Corollary 5.1.4, it suffices to show that r ` r1 P S whenever
r, r1 P S, and we may assume that r, r1 generate the unit ideal, so that we seek to show that X
descends to a G-torsor over R. Induction on d then allows us to assume that d “ 1, that is, that we
are dealing with a G-torsor X over a Zě0-graded R-algebra A – A0 ‘ A1 ‘ . . . with R

„
ÝÑ A0. The

sought descent of X to a G-torsor over R will have to be X|A0 , and we have G-torsor isomorphisms

α : pX|A0qAr 1
r

s

„
ÝÑ X|Ar 1

r
s and α1 : pX|A0qAr 1

r1 s

„
ÝÑ X|Ar 1

r1 s.

By adjusting these isomorphisms by elements of GpA0r1r sq and GpA0r 1
r1 sq, we may assume that both

α|A0 and α1|A0 are the identity isomorphisms. The isomorphisms α and α1 glue to a desired G-torsor
isomorphism pX|A0qA

„
ÝÑ X if and only if their restrictions to Ar 1

rr1 s agree. The difference of these
restrictions is given by an element g P GA

0 pRr 1
rr1 sq, and our flexibility of adjusting the choices of α

and α1 amounts to the fact that g only matters through its class in the double coset

GA
0 pRr1r sqzGA

0 pRr 1
rr1 sq{GA

0 pRr 1
r1 sq.

By Proposition 5.1.3, this double coset is trivial, so we may adjust α and α1 to ensure that they
agree over Ar 1

rr1 s, as desired. □

Remarks.

5.1.6. Proposition 5.1.3 and Corollaries 5.1.4 and 5.1.5 hold for any group sheaf G that commutes
both with filtered direct limits of rings and with fiber products A1 ˆA0 A2 in which one of
the ring homomorphisms Ai Ñ A0 is surjective: indeed, Lemma 5.1.1 holds (with the same
proof) for sheaves X satisfying these properties and the arguments then continue to work.

5.1.7. Quillen patching fails beyond affine bases. For instance, the universal extension of O by
Op´2q on P1

C is a vector bundle of rank 2 on A1
P1
C

that does not descend to P1
C in spite of the

fact that it does descend Zariski locally on P1
C (because every vector bundle on A2

C is trivial).

We obtain the following consequence for descending reductive group schemes defined over Ad
R.

Corollary 5.1.8. For a ring R, a reductive group scheme H over Rrt1, . . . , tds descends to a reductive
group scheme over R if and only if it does so Zariski locally on R; moreover, the same holds with
Rrt1, . . . , tds replaced by any Z‘d

ě0-graded R-algebra A –
À

i1,...,idě0Ai1,...,id such that R „
ÝÑ A0,...,0.

Proof. We focus on the ‘if,’ since the converse is obvious. The type of the geometric fibers of a reductive
group scheme is locally constant on the base (see [SGA 3III new, Exposé XXII, Proposition 2.8]) and
SpecpAq has connected R-fibers (compare with the proof of Proposition 5.1.3), so we may replace R
by a direct factor to assume that this type is constant for H. We let H be the split reductive group
over R of the same type as H and use the same references as in the proof of Proposition 6.1.3 (b) to
argue that H corresponds to a torsor under the R-group scheme AutgppHq. The claim then follows
from Corollary 5.1.5 applied with G “ AutgppHq. □

The following consequence of Quillen patching reduces Conjecture 3.5.1 to the local case.
Corollary 5.1.9. Let R be a ring and let G be a group functor as in Proposition 5.1.3 that is locally
of finite presentation [SP, Definition 049J] (for instance, G could be an R-group algebraic space
locally of finite presentation). Every G-torsor over A1

R that is trivial away from an R-finite closed
subscheme is trivial as soon as the same holds with R replaced by Rm for each maximal ideal m Ă R.

Proof. Let X be a G-torsor over A1
R that is trivial away from an R-finite closed subscheme Z Ă A1

R.
In the category of sets, filtered direct limits commute with finite inverse limits, so, by descent, X
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is also locally of finite presentation. Thus, the assumption about the Rm implies that X is trivial
Zariski locally on R. Corollary 5.1.5 (b) then ensures that X descends to a G-torsor X1 over R,
which is simply the pullback of X along the section t ÞÑ 1, and we need to show that X1 is trivial.

Since X is trivial away from Z, we may glue it with the trivial G-torsor over P1
RzZ, and so extend X

to a G-torsor X over P1
R. By the assumption on the Rm again, the restrictions X|A1

Rm
are all trivial,

so the restriction X|P1
Rzt0u becomes trivial away from the section at infinity after base change to

each Rm. The assumption on the Rm, this time applied to the G-torsor X|P1
Rzt0u (note that P1

Rzt0u

is isomorphic to A1
R), now implies that each X|P1

Rm
zt0u is trivial. Thus, by local finite presentation

as before, X|P1
Rzt0u is trivial Zariski locally on R. Corollary 5.1.5 (b) now ensures that X|P1

Rzt0u

descends to a G-torsor over R. By pulling back along the section t ÞÑ 1, we find that this descended
G-torsor is X1 while, on the other hand, by pulling back along the infinity section, we find that it is
trivial. In conclusion, X1 is a trivial G-torsor, as desired. □

The following “inverse” to Quillen patching is more elementary but is also useful. Its case when
G “ GLn and A “ Rrt1, . . . , tds is due to Roitman [Roi79, Proposition 2].
Proposition 5.1.10. Let R be a ring, let G be a quasi-affine, flat, finitely presented R-group scheme,
let A –

À

i1,...,idě0Ai1,...,id be a Z‘d
ě0-graded R-algebra such that R „

ÝÑ A0,...,0 (for instance, A could
be Rrt1, . . . , tds), and suppose that every G-torsor over A (resp., whose pullback to A0,...,0 – R is
trivial) descends to a G-torsor over R. Then, for any multiplicative subset S Ă R, every G-torsor over
AS whose restriction to each local ring of pA0,...,0qS – RS extends to a G-torsor over R (resp., whose
restriction to pA0,...,0qS – RS is Zariski locally trivial) descends to a G-torsor over RS.

Proof. We let X be a G-torsor over AS as in the statement that we wish to descend to RS , and we
use Corollary 5.1.5 (with a limit argument) to enlarge S and reduce to the case when RS is local.
Then, by our assumption, the restriction of X to pA0,...,0qS – RS extends to a (resp., trivial) G-torsor
X0 over R. Granted this, we use a limit argument to reduce to the case when S is a singleton tru at
the cost of RS no longer being local. Consider the projection map

R ‘

´

À

pi1,...,idq‰p0,...,0q Ai1,...,idr1r s

¯

– Ar1r s ˆRr 1
r

s R ↠ R,

which, by the snake lemma, induces an isomorphism both modulo rn and also on rn-torsion for
every n ą 0. By patching of Proposition 4.2.2, we may use this map to glue up a G-torsor rX over
Ar1r s ˆRr 1

r
s R from the G-torsor X over Ar1r s and the G-torsor X0 over R. By construction, the base

change of rX to Ar1r s is X, so it suffices to descend rX to a G-torsor over R. However,

Ar1r s ˆRr 1
r

s R – lim
ÝÑ

A

where the direct limit is indexed by N and its transition maps A Ñ A are given by multiplication
by ri1`...`id on the degree pi1, . . . , idq piece Ai1,...,id . A limit argument then shows that rX descends
to a G-torsor over some copy of A in this direct limit, and hence, by the assumption on A, even
descends further to a G-torsor over R, as desired. □

5.2. The unramified case of the Bass–Quillen conjecture

We wish to illustrate the utility of Quillen patching by reviewing the proof of the unramified case of
the Bass–Quillen conjecture, in which it plays a central role. The starting point of the proof is the
following dimpRq ď 1 case, which is susceptible to an inductive argument thanks to Quillen patching.
Theorem 5.2.1 (Quillen, Suslin; [Qui76, Theorem 41]). For a regular ring R of dimension ď 1,
every vector bundle V on Ad

R descends to R, in particular, V is free if R is a principal ideal domain.
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Proof. We follow loc. cit. The last assertion follows from the rest and from the structure theorem for
finitely generated modules over a principal ideal domain [SP, Lemma 0ASV]. Moreover, by Quillen
patching, we may assume that our R is a principal ideal domain, and we will induct on d. The key
insight for attacking d ą 0 is the observation that the localization RpT q of RrT s with respect to the
multiplicative set of monic polynomials is again a principal ideal domain: indeed, RpT q is a regular
ring in which every prime is of height ď 1 (any prime of higher height would have to lie over a
maximal ideal of R, but the closed R-fibers of RpT q are fields), and it is a unique factorization domain
by [SP, Lemmas 0BC1 or 0AFT]. This and the inductive hypothesis show that the finite projective
RrT1, . . . , Tds-module that corresponds to V becomes free over RpT1qrT2, . . . , Tds. Thus, formal
glueing, that is, Proposition 4.2.1, ensures that V extends to a vector bundle rV on P1

R ˆR Ad´1
R .

Horrocks Proposition 2.1.5 then implies that V descends to vector bundle on the second factor Ad´1
R .

Consequently, the inductive hypothesis applies and shows that V descends to R, as desired. □

Theorem 5.2.2 (Quillen, Suslin, Lindel, Popescu). For a regular ring R whose localizations at
maximal ideals are unramified regular local rings, every vector bundle on Ad

R descends to R.

Proof. The assumption implies that the localization of R at any prime ideal is a regular local
ring. Thus, we may apply §2.1.2 (1) to reduce to d “ 1 and then apply Quillen patching, namely,
Corollary 5.1.5, to also assume that R is an unramified regular local ring. The Popescu Theorem 1.4.5
and a limit argument then reduce to R being a local ring of a scheme X that is smooth over a ring
k that is either a field or some Zppq (this was one of the first successes of Popescu’s theorem!).

By shrinking X, we may assume that the vector bundle in question is defined over all of A1
X and,

by specializing if needed, we may assume that R “ OX,x for a closed point x P X. By Lindel’s
Proposition 4.1.4 and Lemma 4.1.5, then there are

‚ a local ring R0 of an affine space over k;

‚ a local ring homomorphism R0 Ñ R and a nonunit r P R0 such that R0{rR0
„

ÝÑ R{rR.

By induction on dimpRq, the base case dimpRq ď 1 being Theorem 5.2.1, we may assume that
our vector bundle V on A1

R trivializes over A1
Rr 1

r
s
: indeed, by the inductive assumption (with

Corollary 5.1.5 to pass to the local rings of Rr1r s), the restriction V |A1

Rr 1r s

descends to a vector bundle

on Rr1r s, and this descent is trivial because it extends to a vector bundle on R given by the restriction
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of V to the origin of A1
R.† Thus, by formal glueing of Proposition 4.2.1 applied to the square

A1
Rr 1

r
s

��

� � // A1
R

��

A1
R0r 1

r
s

� � // A1
R0

,

the vector bundle V descends to a vector bundle on A1
R0

. In effect, we may replace R by R0 to reduce
to R being a local ring of an affine space over k. The inverse patching, namely, Proposition 5.1.10,
then reduces us further to when R is a polynomial algebra over k. In conclusion, we are left with
showing that, for any d ě 0, every vector bundle on Ad

k is free, which follows from Theorem 5.2.1. □

Remark 5.2.3. More generally, Theorem 5.2.2 holds with the same argument when each local ring
of R at a maximal ideal is merely flat, with geometrically regular fibers over some Dedekind ring k.
Remark 5.2.4. In the ramified case of the Bass–Quillen conjecture, it is difficult to envision any
reduction to vector bundles on Ad

Z via formal glueing: we recall from [EGA IV2, Proposition 6.1.5]
that a quasi-finite morphism between regular schemes of the same dimension is flat, so a formal
glueing square between regular schemes of the same dimension always involves a morphism that is
étale at the points of interest. This automatic étaleness is a major obstacle hindering any passage
from a non-smooth regular Z-scheme to a smooth one via formal glueing.

5.3. The analysis of torsors over A1
R

In [Fed21a] and [Fed21b], Fedorov developed a technique for analyzing torsors over A1
R via the

geometry of the affine Grassmannian. This simplified prior approaches to the Grothendieck–Serre
conjecture by eliminating the need for an initial reduction to semisimple, simply-connected groups (for
which it is simpler to analyze torsors over A1

R, as we already saw in §3.5, see, especially, Lemma 3.5.5).
We review his ideas in this section, in particular, we show that they continue to work beyond the
equicharacteristic setting. The main statement is the useful in practice Proposition 5.3.6 below.

The geometric input about affine Grassmannians that is relevant for the study of torsors over A1
R is

the surjectivity of the map GrpGderqsc Ñ Gr0G on field-valued points. After reviewing basic definitions
and setup in §§5.3.1–5.3.2, we follow an argument suggested by Timo Richarz to establish this
surjectivity in Corollary 5.3.4. For context, it is helpful to recall that from [Zhu17, Theorem 1.3.11 (3)]
that if G is semisimple and the degree of the isogeny Gsc Ñ G is invertible on the base, then even
GrpGderqsc

„
ÝÑ Gr0G. Thus, we are grappling with a “bad characteristics” phenomenon, knowing from

[HLR20] that the geometry of the affine Grassmannian GrG in such characteristics is delicate.

†Added after publication. This sentence contains a small gap (that seems to be inherited from the literature): as
written, the inductive hypothesis does not apply to the local rings of Rr 1

r
s because they are not local rings of X at

closed points. To fix this, assume instead that R “ OX, x for a point x P X that is nongeneric in its k-fiber of X (so
we no longer assume that x is a closed point) and then note that, for the same argument to work, it suffices to instead
use the following generalization of Proposition 4.1.4: for a smooth scheme X over a ring κ and a point y P X that is
nongeneric in its κ-fiber of X , there are an affine open U Ă X containing y and an étale map f : U Ñ Ad

κ that induces
an isomorphism kfpyq

„
ÝÑ ky on the residue fields as indicated. To argue this generalization, since mapping U to Ad

κ

amounts to giving d global sections of U , the fibral criterion of flatness [EGA IV3, Théorème 11.3.10] and spreading
out reduce us to the case when κ is a field (compare with the proof of Proposition 4.1.4). If this field κ is infinite,
then the Geometric Presentation Theorem 4.1.1 applied with Z :“ tyu Ă X supplies the desired U and f . For a
general field κ, the variant of the Geometric Presentation Theorem given by [Čes22, Proposition 4.1 (with Remark 4.3
to ensure that codimension ě 1 suffices there when O is a field)] supplies an affine open U 1

Ă X containing y and
a smooth map g : U 1

Ñ Ad´1
k of relative dimension 1 such that y is a nongeneric point in its fiber of g. The same

technique based on the fibral criterion of flatness now allows us to pass to this fiber of g to reduce to the case when
X is a curve and y is its closed point. In this case, however, Proposition 4.1.4 supplies the desired U and f .
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5.3.1. The affine Grassmannian. For a reductive group G over a field k, the affine Grassmannian
GrG is the functor that to a k-algebra R associates the set of isomorphism classes of pairs pE, τq

consisting of a G-torsor E over RJtK and its trivialization τ : ERpptqq
„

ÝÑ GRpptqq over Rpptqq. By, for
instance, [Zhu17, Theorem 1.2.2], the functor GrG is representable by an ind-projective ind-scheme.

Concretely, consider the loop and the positive loop groups of G defined as the respective functors

LG : R ÞÑ GpRpptqqq and L`G : R ÞÑ GpRJtKq,

which are representable by a group ind-affine ind-scheme (resp., by an affine group scheme) over k.
The subfunctor of GrG that parametrizes those pairs in which E is trivial is the presheaf quotient

LG{L`G Ă GrG . (5.3.1.1)

A general E trivializes over R1JtK for a faithfully flat, étale R-algebra R1 (see Proposition 6.1.1 (c)
below), so this inclusion exhibits GrG as the étale sheafification of LG{L`G. Whenever no nontrivial
G-torsor over RJtK trivializes over Rpptqq, the inclusion (5.3.1.1) induces an equality on R-points:

GrGpRq – GpRpptqqq{GpRJtKq;

this happens, for instance, for a field R (see §3.1.4 (2)), or for any R when G is either a torus or
a pure inner form of GLn (combine Proposition 6.1.1 (c) with the formula in §3.5.2 (2) or with
Proposition 2.3.3 (with (1.2.1.1))). In general, L`G acts on GrG by left multiplication, and GrG is the
increasing union of L`G-invariant projective subschemes (for this one fixes an embedding G ãÑ GLn

and uses the resulting closed immersion GrG ãÑ GrGLn , see [Zhu17, proof of Theorem 1.2.2]).

The scheme L`G is connected, see [CLNS18, Chapter 3, Proposition 4.1.1]. By [PR08, Theorem 5.1],
the map LG Ñ GrG induces a bijection on sets of geometric connected components, these components
are all clopen, and, if G is semisimple and simply connected, then both LG and GrG are geometrically
connected. In general, the neutral components, that is, the connected components LG0 Ă LG and
Gr0G Ă GrG containing the class of the identity, are geometrically connected (as is any connected
k-scheme X with Xpkq ‰ H, see [EGA IV2, Proposition 4.5.13]). Since L`G is geometrically
connected, its left multiplication action on LG and GrG respects connected components. The map

GrpGderqsc Ñ Gr0G (5.3.1.2)

is surjective on topological spaces, in fact, it is even surjective on K-points for every algebraically
closed field extension K of k.9 By [Zhu17, Theorem 1.3.11 (3)], if G is semisimple with Gsc Ñ G of
degree prime to char k, then the map (5.3.1.2) is even an isomorphism.
5.3.2. Schubert cells. With G over k as in §5.3.1, let T Ă G be a maximal k-torus with

X˚pT q :“ HomgppGm, T q.

By [SGA 3I new, Exposé VIA, Théorème 3.3.2], the L`G-orbit of any x P GrGpkq is a smooth
k-subscheme of GrG. When x is the image of t under the base change to kpptqq of the k-morphism
given by a λ P X˚pT qpkq, the resulting subscheme is the Schubert cell

GrλG Ă GrG .

9We justify the assertion about K-points as follows. Since LG Ñ GrG is surjective on K-points and a bijection
on sets of connected components, by [PR08, Theorem 5.1 and the end of the proof of Lemma 17 on page 198 (with
GpLq1 defined after Remark 2 on page 189)] (their GpLq1 is our pLGq

0
pKq), we may replace G by a z-extension (see

Theorem A.4.1) to reduce to Gder being simply connected. For such G, however, the surjectivity of

GrGderpKq Ñ Gr0GpKq

follows from [PR08, last line on page 197 and proof of Lemma 5 on page 191] (by the latter, T pLq1 there is our T pKJtKq).
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Its closure (schematic image) in GrG is the Schubert variety

Grďλ
G Ă GrG,

which is a reduced, projective k-scheme containing GrλG as a dense open. In the case when T is split,
the GrλG topologically exhaust GrG: then, by [PR08, Appendix, Proposition 8], every field-valued
(equivalently, (algebraically closed field)-valued) point of GrG factors through some GrλG. In general,
the same holds for the k-subschemes

Gr
rλs

G :“
Ť

λ1PGalpksep{kq¨λGrλ
1

G Ă GrG with λ P X˚pT qpksepq.

Thus, letting T sc Ă pGderqsc be the maximal torus induced by T Ă G, we see from (5.3.1.2) that the
Gr

rλs

G with λ P X˚pT scqpksepq Ă X˚pT qpksepq topologically exhaust the neutral component Gr0G.

We now argue that these k-subschemes Gr
rλs

G are insensitive to replacing G by pGderqsc.
Proposition 5.3.3. For a reductive group G over a field k, a maximal k-torus T Ă G, the resulting
maximal k-torus T sc Ă pGderqsc, and a λ P X˚pT scqpksepq, the k-morphism

Gr
rλs

pGderqsc
„

ÝÑ Gr
rλs

G induced by GrpGderqsc Ñ GrG is an isomorphism.

Proof. The argument is similar to that of [Fed21a, Proposition 2.8] and was suggested to us by Timo
Richarz. The claim is insensitive to enlarging k, so we reduce to k being algebraically closed and
then, by passing to individual Schubert cells, to showing that

Grλ
pGderqsc

„
ÝÑ GrλG .

This last isomorphism, however, is a special case of [HR21, Lemma 3.8]. □

We turn to the promised conclusion about the behavior of GrpGderqsc Ñ GrG on field-valued points.
Corollary 5.3.4. For a reductive group G over a field k, the following map is surjective on k-points:

GrpGderqsc
(5.3.1.2)
ÝÝÝÝÝÑ Gr0G,

in particular, the image of the following map is stable under left multiplication by GpkJtKq:

GrpGderqscpkq
§5.3.1

– pGderqscpkpptqqq{pGderqscpkJtKq Ñ Gpkpptqqq{GpkJtKq
§5.3.1

– GrGpkq.

Proof. By §5.3.1, the ind-scheme GrpGderqsc is connected, so the map GrpGderqsc Ñ GrG factors through

the clopen Gr0G Ă GrG. Moreover, by §5.3.2, a k-point of Gr0G factors through some Gr
rλs

G for a
λ P X˚pT scqpksepq, where T Ă G is a maximal torus and T sc Ă pGderqsc is the corresponding maximal
torus of pGderqsc. Thus, by Proposition 5.3.3, every such point lifts to GrpGderqsc , as claimed.

By §5.3.1, the source of the left multiplication map L`G ˆk Gr0G Ñ GrG is connected, so this map
factors through Gr0G Ă GrG. Consequently, its image on k-points is Gr0Gpkq, which, by the above,
agrees with the image of GrpGderqscpkq Ñ GrGpkq. In particular, the latter is GpkJtKq-stable. □

Before turning to the consequence for torsors over A1
R in Proposition 5.3.6, we record the following

lemma, which clarifies one of the hypotheses appearing there and is a minor generalization of
[Fed21a, Proposition 2.3]. By this lemma, the hypothesis in question may be arranged by pulling

back the torsor under study along the map P1
R

t ÞÑ td
ÝÝÝÑ P1

R for any sufficiently divisible d.
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Lemma 5.3.5. For a field k, a semisimple k-group G, opens U,U 1 Ă P1
k, and a generically trivial

G-torsor E over U , the pullback of E along any finite k-morphism U 1 Ñ U of degree divisible by
the degree of the isogeny Gsc Ñ G (or merely by the exponent of the quotient X˚pT q{X˚pT scq for a
maximal split k-torus T sc Ă Gsc with image T Ă G) lifts to a Zariski locally trivial Gsc-torsor over U 1.

Proof. The kernel of the isogeny T sc Ñ T is a subgroup of the kernel of Gsc Ñ G, so the degree dT
of the former divides that of the latter. Since dT is simply the order of X˚pT q{X˚pT scq, it is divisible
by the exponent eT of this quotient. Thus, the parenthetical assertion is indeed more general, and we
need to show the claim under the assumption that eT divides the degree d of the finite k-morphism
U 1 Ñ U . For this, we first note that, by §3.1.4 (2), the G-torsor E over U is Zariski locally trivial.

The key input to the proof is [Gil02, Corollaire 3.10 (a)], according to which E is the extension
of Op1q|U (viewed as a Gm-torsor) along some cocharacter µ : Gm Ñ T . The pullback of Op1q|U
to U 1 is Opdq|U 1 , so the pullback of E to U 1 is the extension of Op1qU 1 along the cocharacter
dµ : Gm Ñ T . However, the assumption eT | d ensures that d kills X˚pT q{X˚pT scq, so dµ factors
through a cocharacter Gm Ñ T sc. Consequently, the pullback of E to U 1 lifts to a Gsc-torsor over
U 1 that comes from a Gm-torsor over U 1, and hence is Zariski locally trivial, as desired. □

We are ready to present the following sharpening of the core result of [Fed21a]; the latter refined
[FP15, Theorem 3], which was the centerpiece technical novelty of op. cit. It may be viewed as a
Horrocks-type statement, namely, it is in the spirit of extending Conjecture 3.5.1 beyond totally
isotropic groups. However, the price of allowing anisotropic groups is a weaker conclusion: instead of
the G-torsor being trivial over all of A1

R as in Conjecture 3.5.1, one only concludes that it is trivial
away from a fixed R-(finite étale) closed subscheme along which G is sufficiently isotropic.
Proposition 5.3.6. Let R be a semilocal ring, let G be a reductive R-group, write the canonical
decomposition (1.3.3.2) of Gad as

Gad –
ś

iGi with Gi :“ Res
rRi{R

p rGiq,

where rRi (resp., rGi) is a finite étale R-algebra (resp., an adjoint rRi-group with simple geometric
fibers), and let Yi Ă Y Ă A1

R be nonempty closed subschemes such that

(i) Y and each Yi are all finite étale over R;

(ii) pGiqYi is totally isotropic† for every i;

(iii) Op1q is trivial on P1
RzY ; and

(iv) Op1q is trivial on P1
km

zpYiqkm for every i and every maximal ideal m Ă R with pGiqkm isotropic.

For a G-torsor E over P1
R that is trivial away from an R-finite closed subscheme Z Ă A1

RzY , if for
every maximal ideal m Ă R the Gad-torsor over P1

km
induced by EP1

km
lifts to a generically trivial

pGadqsc-torsor over P1
km

(see Lemma 5.3.5), then EP1
RzY is a trivial G-torsor over P1

RzY .

The assumptions become simpler when G is totally isotropic, for instance, quasi-split: then (ii) is
automatic and one may choose Yi “ Y to make (iv) follow from (iii). Since Conjecture 3.5.1 remains
open in general, Proposition 5.3.6 is useful even for totally isotropic G. Regardless of what G is, it
is typically straight-forward to arrange (iii) by making sure that either Y contains an R-point of P1

R
or that Y contains both an R-(finite étale) closed subscheme of degree n and one of degree n ` 1 for
some n ą 0 (this ensures that both Opnq and Opn ` 1q are trivial on P1

RzY , so that so is Op1q).

†Added after publication. The assumption (ii) should be strengthened to: Gm,Yi Ă pGiqYi for every i. This is
needed in order to be able to apply Remark 3.5.6 in the proof below.
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Proof. The statement is mild generalization of [Fed21a, Theorem 6] and the proof is similar, even if
we present it slightly differently. It combines the techniques reviewed in §3.5 with the analysis of the
geometry of the affine Grassmannian that we carried out in the beginning of this section.

By the Cayley–Hamilton theorem, the R-(finite étale) closed subscheme Y Ă A1
R is cut out by a

monic polynomial with coefficients in R (see [Čes22, Remark 6.4]). Thus, the coordinate ring of
the formal completion of A1

R along Y is R1JtK for a finite étale R-algebra R1 that is the coordinate
ring of Y (where t is a monic polynomial in the coordinate of A1

R). Likewise, for each i, the formal
completion of A1

R along Yi is, compatibly, RiJtK for a finite étale R-algebra Ri that is the coordinate
ring of Yi; this Ri is a direct factor of R1, so that R1 – Ri ˆ R1

i.

We fix a trivialization τ P EpP1
RzZq of E|P1

RzZ . Since Y Ă P1
RzZ, this τ trivializes the restriction

of E to R1JtK and we use τ to regard E as the glueing corresponding to 1 P GpR1pptqqq{GpR1JtKq of
E|P1

RzY and the trivial G-torsor over R1JtK (see Proposition 4.2.2).

We let m range over the maximal ideals of R, set k :“
ś

m km, let Ei be the Gi-torsor over P1
k induced

by E, and let Esc
i be a generically trivial Gsc

i -torsor over P1
k that lifts Ei (such an Esc

i was assumed
to exist). By the semilocal Dedekind case of the Grothendieck–Serre conjecture (see §3.1.4 (2)),
the generic triviality implies that Esc

i is trivial on a formal neighborhood of pYiqk in P1
k. We fix a

trivialization τi over such a neighborhood and use it to regard Esc
i as the glueing corresponding to

1 P Gsc
i ppRi bR kqpptqqq{Gsc

i ppRi bR kqJtKq

of Esc
i |P1

kzpYiqk
and the trivial pGsc

i qpRibRkqJtK-torsor (see Proposition 4.2.2).

Of course, the trivializations τ and τi need not be compatible, in other words, using τ as the reference,
the image of τi in GippRi bR kqpptqqq need not be the identity. Nevertheless, this image of τi and
that of τ both describe the same Gi-torsor over P1

k (the one induced by E) as the glueing of the
same Gad-torsor Ei|pP1zYiqk

over pP1zYiqk and the trivial Gi-torsor over pRi bR kqJtK. Concretely,
this identification of the glueings means that the image of τi lies in

GippRi bR kqJtKq Ă GippRi bR kqpptqqq,

in other words, that the images of τ and τi are GippRi bR kqJtKq-translates of each other. Thus,
Corollary 5.3.4 implies—and this is a crucial point—that, at the cost of Esc

i only lifting Ei over
P1
kzpYiqk, we may change the glueings Esc

i and the trivializations τi to arrange that they be compatible
with τ : namely, still with τ as the reference, that the image of τi be the class of the identity 1 in

GippRi bR kqpptqqq{GippRi bR kqJtKq.

By [Gil02, Théoréme 3.8 (b)] (with §3.1.4 (2)), the generic triviality of Esc
i means that this torsor

comes from a torsor under a split subtorus of pGsc
i qk, and hence, thanks to (iv), that Esc

i |P1
kzpYiqk

is
a trivial Gsc

i -torsor. In particular, the trivial Gsc
i -torsor over P1

k is a glueing of Esc
i |pP1zYiqk

and the
trivial Gsc

i -torsor over pRi bR kqJtK and, continuing to use τi as reference, this glueing is given by an

αi P Gsc
i ppRi bR kqpptqqq{Gsc

i ppRi bR kqJtKq.

By (ii) and Remark 3.5.6, this αi lifts to some rαi P Gsc
i pRipptqqq. We consider rαi as an element of

Gsc
i pR1pptqqq by letting it be the identity on the complementary factor Gsc

i pR1
ipptqqq.

Jointly, the rαi assemble to an element rα P pGadqscpR1pptqqq. The map pGadqsc Ñ Gad factors through
the isogeny Gder Ñ Gad, where Gder Ă G is the derived subgroup, so rα maps to an element of
GpR1pptqqq. With τ as the reference trivialization, this image of rα in GpR1pptqqq gives rise to a G-torsor
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rE over P1
R that is the glueing of EP1

RzY and the trivial G-torsor over R1JtK. The Gad-torsor E over

P1
k induced by rE is the analogous glueing over P1

k that arises from the image of
ś

i rαi in
ś

iGippRi bR kqpptqqq.

Thus, by construction and by the prearranged compatibility of τ and τi, this E is a trivial torsor.

Lemma 3.5.3 now implies that rE induces a Gad-torsor over P1
R that is the pullback of a Gad-torsor

over R. Thus, since rE|P1
RzpY YZq is trivial and since the infinity section factors through P1

RzpY Y Zq,

we conclude that rE induces a trivial Gad-torsor over P1
R, to the effect that rE comes from a ZG-torsor

F over P1
R. It now suffices to argue that F |P1

RzY is the pullback of a ZG-torsor over R: then

rE|P1
RzY – E|P1

RzY

will be the pullback of a G-torsor over R, so, by considering pullbacks at 8, it will be trivial.

For showing that F |P1
RzY descends to a ZG-torsor over R, we twist to assume that the pullback of

F along the infinity section is trivial, and we then fix a trivialization of this pullback. With this
rigidification in place, [MFK94, Proposition 6.1] (applied to the morphism P1

R Ñ ZG, where pZGqP1
R

is viewed as the automorphism functor of F ) ensures that F has no nontrivial automorphisms. We
now consider the line bundle Op1q on P1

R, rigidify it by trivializing its pullback along the infinity
section, and use (iii) to reduce to showing that there is a unique cocharacter

µ : Gm,R Ñ ZG

such that F is isomorphic to the extension along µ of Op1q regarded as a Gm-torsor. By what
we already observed, such an isomorphism is unique granted that we require it to be compatible
with rigidifications at infinity, so the claim is étale local on R. Thus, we may assume that the
multiplicative R-group ZG is split and reduce to when ZG is either Gm or µn. In the first case, the
uniqueness of µ follows from the classification of line bundles on P1

R that results from Lemma 3.5.3
and [BLR90, Section 9.1, Proposition 2]. In the second case, since PicpP1

Rq is torsion free and
Rˆ „

ÝÑ ΓpR,Oˆ

P1
R

q, our F descends to a µn-torsor over R that, by checking at infinity, is necessarily
trivial, and the unique choice µ “ 0 works. □

6. Techniques for equating reductive groups and their torsors

For a ring A and an ideal I Ă A, we wish to discuss when two reductive A-group schemes or two
torsors that are isomorphic over A{I are also isomorphic over A (or can be made so by replacing A
by a cover that has a section over A{I). A simple such setup is a local ring and its maximal ideal,
but there are others: for instance, in arguing cases of the Grothendieck–Serre conjecture one arrives
at such a setup with A being a smooth curve over a semilocal regular ring R such that R

„
ÝÑ A{I

(so that I cuts out an R-point of A), and one needs to replace A by a finite étale cover to equate
two reductive A-group schemes while preserving the R-point A{I over which they are already equal.

As we review in §6.1, a basic case in which positive answers to such questions are available is when the
pair pA, Iq is Henselian (see [SP, Section 09XD] for the definition and basic properties of Henselian
pairs, which we use freely; an instructive elementary example is a complete local ring A equipped
with its maximal ideal I). For a general pair pA, Iq, this means that the answer becomes positive
upon replacing A by an étale A-algebra A1 with A{I

„
ÝÑ A1{IA1. This does not suffice for more

delicate applications, for instance, for arguing cases of the Grothendieck–Serre conjecture: there one
needs A1 to be finite étale over A at the expense of the induced map A{I Ñ A1{IA1 merely admitting
a section instead of being an isomorphism. Arranging such finiteness tends to be delicate and to
involve working with compactifications and using the Bertini theorem, we discuss it in §§6.2–6.3.
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6.1. Invariance under Henselian pairs for isomorphism classes of reductive groups

We wish to show in Proposition 6.1.3 that reductive group schemes lift uniquely across Henselian
pairs. This generalizes [SGA 3III new, Exposé XXIV, Proposition 1.21], which treated the Henselian
local case. The argument is based on the following broadly useful invariance properties of torsors.
Proposition 6.1.1. Let pA, Iq be a Henselian pair and let G be an A-group algebraic space.

(a) For a smooth A-algebraic space X that is either quasi-separated or a scheme,

XpAq ↠ XpA{Iq, and, if X is constant, then even XpAq
„

ÝÑ XpA{Iq.

(b) If G is smooth and quasi-separated, then

H1pA,Gq ãÑ H1pA{I,Gq.

(c) If G is quasi-affine, flat, and of finite presentation, then

H1pA,Gq ↠ H1pA{I,Gq.

(d) If G » H ¸ G is a semidirect product of an A-group G that becomes constant over a finite
étale cover of A and a smooth, quasi-affine, normal A-subgroup H, then every G-torsor over
A{I whose induced G-torsor is isotrivial lifts to a G-torsor over A.

Proof. In the constant case of (a), every A-point (resp., every A{I-point) of X factor through a
quasi-compact open, so we lose no generality by assuming that X is quasi-compact, so that it is
a finite union of copies of SpecpAq. For such X, by [SP, Lemma 09XI], the clopen subsets of X
are identified with those of XA{I via base change and, by [SP, Lemma 09ZL], this identification
respects the property of mapping isomorphically to SpecpAq (resp., to SpecpA{Iq). Since sections of
X (resp., of XA{I) are precisely the clopens with this property, the constant case of (a) follows.

Part (c) and the case of (a) when X is quasi-separated are special cases of [BČ21, Example 2.1.5,
Theorem 2.1.6] (whose key input is Tannaka duality for algebraic stacks supplied by [HR19, Corol-
lary 1.5 (ii)] or [BHL17, Corollary 1.5]). This case of (a) applied to

X :“ IsomGpE,E1q

for G-torsors E and E1 over A implies (b) (see §1.2.1 and §1.2.3).

For a scheme X in (a), we only seek the surjectivity and, by passing to an open, we may again
assume that X is quasi-compact. We will then reduce further to when X is also quasi-separated,
a case covered by the previous paragraph. For this reduction, we use a technique of Gabber that
appeared in [Bha16, Remark 4.6]. Namely, by [SP, Lemma 03K0], there is a filtered direct system of
étale X-schemes Xi that are quasi-compact and quasi-separated, are such that Zariski locally on Xi

the structure map Xi Ñ X is an open immersion, and are such that

lim
ÝÑi

XipRq
„

ÝÑ XpRq for every A-algebra R.

In particular, a fixed A{I-point of X lifts to an A{I-point of some Xi. Since Xi inherits A-smoothness
from X, we may replace X by Xi and achieve the desired reduction to quasi-separated X.

We turn to the remaining part (d), in which the morphism of short exact sequences of pointed sets

H1pA,Hq //

„

��

H1pA,Gq // //

��

H1pA,Gq

��

H1pA{I,Hq // H1pA{I,Gq // // H1pA{I,Gq
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(see §1.2.2) will allow us to replace G by G as follows. The semidirect product decomposition ensures
the displayed surjectivity of the right horizontal arrows and, by (b) and (c), the analogue of the left
vertical map stays bijective for every smooth, quasi-affine A-group, for instance, for every form of H
for the fppf topology. Moreover, any inner form of G is an extension of an inner form of G by a form
of H. A diagram chase and the twisting bijections (1.2.1.1) then show that a G-torsor over A{I lifts
to a G-torsor if the same holds for its induced G-torsor. Thus, we have reduced to the case G “ G.

In the remaining case in which G becomes constant over a finite étale cover A1 of A, we fix an
isotrivial G-torsor E over A{I that is to be lifted to a G-torsor. The isotriviality means that E
trivializes over some finite étale cover B of A{I, and we may take B to even be a finite étale cover
of A1{IA1. Consequently, E is described by a section g P GpB bA{I Bq that satisfies the cocycle
condition. We use [SP, Lemma 09ZL] to lift B to a finite étale cover A1 Ñ rB, and we apply (a)
over rB bA

rB and over rB bA
rB bA

rB to lift g to a section rg P Gp rB bA
rBq that satisfies the cocycle

condition with respect to A Ñ rB. This rg gives rise to the desired G-torsor rE that lifts E. □

Remark 6.1.2. In (d), every G-torsor over A{I is isotrivial if A{I is Noetherian and its localizations
at prime ideals are geometrically unibranch, see §A.1.8 and [SGA 3II, Exposé X, Corollaire 5.14]. In
general, however, nonisotrivial G-torsors exist even when G “ Z, see [BČ21, Remark 2.1.8].

We are ready for the promised invariance under Henselian pairs for reductive group schemes.
Proposition 6.1.3. Let pA, Iq be a Henselian pair and let G and G1 be reductive A-group schemes.

(a) Every A{I-group isomorphism ι : GA{I
„

ÝÑ G1
A{I lifts to an A-group isomorphism rι : G

„
ÝÑ G1.

(b) A reductive A{I-group H with radpHq isotrivial lifts (uniquely, by (a)) to a reductive A-group.

Proof.

(a) By [SGA 3III new, Exposé XXIV, Corollaire 1.9], the functor IsomgppG,G1q that parametrizes
group isomorphisms is a torsor under the automorphism functor AutgppGq. Thus, [SGA 3III new,
Exposé XXIV, Théorème 1.3] and Footnote 3 ensure that IsomgppG,G1q is representable by
an ind-quasi-affine, smooth A-scheme. In particular, by Proposition 6.1.1 (a), every A{I-point
ι of IsomgppG,G1q lifts to a desired A-point rι.

(b) By decomposing into clopens and lifting idempotents via [SP, Lemma 09XI], we may assume
that the type of the geometric fibers of H is constant (see §1.3.1). We let H be a split
reductive group over A of the same type as H, so that H is a form of HA{I , and hence
corresponds to an AutgppHq-torsor E over A{I (see §1.3.7). Since radpHq is isotrivial, so is
E, see §1.3.8. By Proposition 6.1.1 (d) and the structure of AutgppHq described in (1.3.7.2),
this E lifts to an AutgppHq-torsor over A that corresponds to the desired lift of H. □

Remark 6.1.4. In Proposition 6.1.3 (b), some condition on H is necessary: it is not true that for
every Henselian pair pA, Iq, every reductive A{I-group lifts to a reductive A-group. Indeed, this fails
already for tori: if it held, then, by considering those pairs in which A is normal (or even in which
A is a Henselization of some affine space), we could conclude from §A.1.8 that every torus over an
affine base is isotrivial, contradicting Remark A.1.7 or [SGA 3II, Exposé X, Section 1.6].

6.2. A conjecture about compactifying reductive groups and consequences for torsors
43

https://stacks.math.columbia.edu/tag/09ZL
https://stacks.math.columbia.edu/tag/09XI


For a ring A and its ideal I Ă A, arranging the finer lifting property mentioned in the introduction
of this chapter amounts to finding situations in which a functor F has the following property:

for every x P F pA{Iq, there are a faithfully flat, finite, étale A-algebra rA,

an A{I-point a : rA ↠ A{I, and a rx P F p rAq whose a-pullback is x.
(‹)

If I lies in every maximal ideal of A, then the faithful flatness requirement follows from the rest.
Granted this further condition on I, the results presented in §6.1 arrange the same without rA being
finite over A but with rA{I rA – A{I instead. In contrast, getting (‹) instead typically requires finer
techniques that we discuss in this section. We begin with the following simple example.
Example 6.2.1. Any faithfully flat, finite, étale A-scheme has property (‹) because we may choose
rA to be its coordinate ring. Somewhat more interestingly, if A is Noetherian and its local rings are
geometrically unibranch (see §A.1.8), then any faithfully flat A-scheme X that becomes constant étale
locally on A has property (‹): by [SGA 3II, Exposé X, Corollaire 5.14] (with [EGA I, Corollaire 6.1.9]),
these assumptions ensure the connected components of X are clopen subschemes that are finite étale
over A, so, by considering a sufficiently large union of them, we reduce to the finite étale case.

In practice, the key source of property (‹) is following lemma that we learned from the argument of
[OP01, Lemma 7.2] and that was also pointed out by Uriya First.
Lemma 6.2.2. For a semilocal ring A and a projective, finitely presented A-scheme X, any A-smooth
open U Ă X that is dense in the closed A-fibers of X, is of pure relative dimension d ě 0, and is
faithfully flat over A has property (‹) with respect to any ideal I Ă A.

Proof. Fix a x as in (‹). By replacing U by a finite union of some of its open affines (that cover the
image of x), we may assume that U is quasi-compact. Then a limit argument allows us to assume
(mostly for comfort) that A is Noetherian. By decomposing into connected components, we may also
assume that SpecpAq is connected. Finally, we fix a projective embedding X ãÑ Pn

A and postcompose
it with a linear change of projective coordinates if necessary to arrange that x is the origin A{I-point

r0 : . . . : 0 : 1s P Pn
ApA{Iq.

Let S Ă SpecpAq be the union of the closed points. Since pXzUqS is of dimension less than d,
we may apply Proposition 4.1.3, with Z “ Z0 there being the image of xS , to find hypersurfaces
H1, . . . ,Hd Ă XS of large enough and constant on S degrees such that H1X. . .XHd lies in US , is finite
étale over S, is fiberwise nonempty, and contains xS . Granted that these degrees are sufficiently large,
[EGA III1, Corollaire 2.2.4] allows us to lift the Hi to hypersurfaces H 1

1, . . . ,H
1
d Ă XS1 where the

closed subscheme S1 Ă SpecpAq is the union of SpecpA{Iq and S. We may choose these lifts in such a
way that they contain x: indeed, x “ r0 : . . . : 0 : 1s, so ensuring that x P H 1

ipA{Iq amounts to lifting
a defining equation of Hi in such a way that the coefficient of the monomial that is a power of the
last variable stays zero. Once such H 1

i of large degrees are fixed, we apply [EGA III1, Corollaire 2.2.4]
again to lift them to hypersurfaces rH1, . . . , rHd Ă X, which, by construction, contain x.

By construction, the scheme-theoretic intersection rZ :“ rH1 X . . . X rHd lies in U and contains x. By
the openness of the quasi-finite locus [SP, Lemma 01TI] and the finiteness of proper, quasi-finite
morphisms [SP, Lemma 02OG], the A-scheme rZ is finite. By [EGA IV3, Théorème 11.3.8], it is A-flat
at its closed points, so the openness of the flat locus [EGA IV3, Théorème 11.3.1] ensures that it is
A-flat. Thus, we check over S that rZ is faithfully flat and étale over A. In conclusion, rZ “ Specp rAq

for a faithfully flat, finite, étale A-algebra rA that is equipped with an A{I-point a : rA ↠ A{I that
corresponds to x. The inclusion rZ Ă U is the desired rA-point rx P Up rAq whose a-pullback is x. □
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The lemma above reveals that checking property (‹) in practice hinges on compactifying a smooth
scheme U in question in such a way that it be fiberwise dense in its projective compactification
X. Such density is straight-forward to arrange over a field, basically, because any quasi-projective
variety is dense in its closure in a projective space, but the question becomes significantly more
delicate over a general base, for instance, in mixed characteristic. In this regard, it would be useful
to resolve the following conjecture about compactifying reductive group schemes. In [Čes22], we
bypassed it by taking advantage of the quasi-splitness assumption.
Conjecture 6.2.3. For an isotrivial reductive group G over a Noetherian scheme S, there are a
projective, finitely presented S-scheme G equipped with a left G-action and a G-equivariant S-fiberwise
dense open immersion

G ãÑ G.

We restricted to Noetherian S for concreteness, although it is plausible that a sufficiently natural
argument may work more generally. It may be worthwhile to also require that G be equipped with a
commuting right G-action and then that the open immersion G ãÑ G be equivariant with respect to
both actions. In §6.3, we check that even this finer variant holds in the case of a torus. We now
show that the conjecture implies that any isotrivial G-torsor over a semilocal base has property (‹).
Proposition 6.2.4. For an isotrivial reductive group G over a Noetherian scheme S, if Conjec-
ture 6.2.3 holds for G, then any isotrivial G-torsor E admits an S-fiberwise dense open immersion

E ãÑ E

into a projective, finitely presented S-scheme E; in particular, if, in addition, S “ SpecpAq for a
semilocal ring A, then any isotrivial G-torsor has property (‹) with respect to any ideal I Ă A.

Proof. The final assertion follows from the rest and from Lemma 6.2.2. For the rest, we let G be the
compactification of G supplied by Conjecture 6.2.3 and consider the contracted product

E :“ E ˆG G.

By general results on quotients, E is an algebraic space (see §1.2.3). Moreover, by construction, it
comes equipped with an open immersion E ãÑ E that is étale locally on S isomorphic to G ãÑ G.
Thus, all that remains for us to check is that this E is a projective S-scheme.

For this, we will only use a finite étale cover S1 ↠ S such that ES1 is a projective S1-scheme, for
instance, this may be a finite étale cover trivializing E (see §1.3.8). Consider the restriction of scalars

E
1
:“ ResS1{SpES1q.

Its base change to a larger finite étale cover of S decomposes as a product of copies of E, so, by
[CGP15, Proposition A.5.8 and its proof] and [EGA II, Remarques 5.5.4 (i)], this E

1 is a projective
S-scheme. By checking étale locally on S, the adjunction morphism E ãÑ E

1 is a closed immersion
(compare with [CGP15, Proposition A.5.7]), so E is a projective S-scheme, as promised. □

We conclude the section with a consequence of Conjecture 6.2.3 for equating reductive group schemes.
This consequence is used in proving cases of the Grothendieck–Serre conjecture 3.1.1, and it is close
in spirit to [OP01, Proposition 7.1], [PSV15, Proposition 5.1], or [Pan20b, Theorem 3.4]. In [Čes22],
we used the quasi-splitness assumption to avoid tackling Conjecture 6.2.3, see [Čes22, Lemma 5.1].
Proposition 6.2.5. For a Noetherian semilocal ring A whose local rings are geometrically unibranch,
an ideal I Ă A, reductive A-groups G and G1 that on geometric A-fibers have the same type and such
that Conjecture 6.2.3 holds for Gad, and an A{I-group isomorphism

ι : GA{I
„

ÝÑ G1
A{I ,
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there are a faithfully flat, finite, étale A-algebra rA equipped with an A{I-point a : rA ↠ A{I and an
rA-group isomorphism rι : G

rA

„
ÝÑ G1

rA
whose a-pullback is ι.

It is key that A Ñ rA be finite: without this, the assertion would be a special case of Proposition 6.1.3.

Proof. Similarly to the proof of Proposition 6.1.3, we consider the smooth, ind-quasi-affine scheme

X :“ IsomgppG,G1q,

and need to show that X has property (‹) with respect to the ideal I Ă A. The condition on the
geometric A-fibers ensures that G and G1 are isomorphic étale locally on A (see §1.3.1). Thus, by
§1.3.7 (see also §1.2.3), the adjoint group Gad acts freely on X by conjugation and the quotient

X :“ X{Gad

is a faithfully flat A-scheme that becomes constant étale locally on A. By Example 6.2.1, this X
has property (‹), so there are a faithfully flat, finite, étale A-algebra A1 equipped with an A{I-point
a1 : A1 ↠ A{I and an A1-point ι1 P XpA1q whose a1-pullback is the A{I-point ι P XpA{Iq induced by
ι P XpA{Iq. In effect, by base changing the Gad-torsor X Ñ X along ι1, we reduce to showing that
every Gad-torsor over A1 has property (‹) with respect to the ideal Kerpa1q Ă A1. However, by §1.3.8,
the adjoint group Gad is isotrivial on every connected component of SpecpAq and every Gad-torsor
over A1 is also isotrivial. Consequently, our assumption about Conjecture 6.2.3 allows us to apply
Proposition 6.2.4 to conclude that the ι1-pullback of X Ñ X has property (‹), as desired. □

6.3. Compactifying torsors under tori

We show that Conjecture 6.2.3 holds in the case when G is a torus. For this, we adapt the work of
Colliot-Thélène–Harari–Skorobogatov [CTHS05, Corollaire 1] (so also previous work of Brylinski
and Künnemann), who used toric techniques to build the required compactification over a field.
Theorem 6.3.1. For an isotrivial torus T over a Noetherian scheme S, there are a projective, smooth
S-scheme T , commuting left and right T -actions on T , and an S-fiberwise dense open immersion

ι : T ãÑ T

that is equivariant with respect to both the left and the right translation actions of T .

Proof of Theorem 6.3.1. We show how to construct the desired ι : T ãÑ T by using the results of
[CTHS05], where ι was constructed when the base is a field by using the theory of toric varieties.
We decompose S into connected components to assume that it is connected and let S1 be a finite
étale cover of S splitting T . We may assume that S1 is connected and then enlarge it to ensure that
it is Galois over S with group Γ. We claim that it suffices to construct an analogous equivariant
compactification ι1 : TS1 ãÑ T

1 over S1 granted that T
1 is equipped with a Γ-action (compatibly

with the Γ-action on S1, so that the action will be free on T
1 because it so already on S1) that

commutes with the left and right actions of TS1 and ι1 is Γ-equivariant. Indeed, by [SP, Lemma 07S7],
the projectivity of T 1 will then ensure that the quotient T :“ T

1
{Γ is an S-scheme. Moreover, by

[SP, Lemma 0BD0 (with Lemmas 0BD2, 0AH6, and 05B5)], this T will automatically be projective
and smooth over S. Thus, we will be able to choose ι to be

T – TS1{Γ ãÑ T
1
{Γ “ T .

For the remaining construction of T 1, we will use [CTHS05, Théorème 1] and the theory of toric
varieties, and we begin by noting that, by functoriality, Γ acts on the cocharacter lattice L :“ X˚pTS1q,
as well as on LR :“ L bZ R. Let F be a (rational, polyhedral) fan in LR whose associated toric
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variety is P rkpLq (see, for instance, [Dan78, Example 5.3]). This fan need not be Γ-invariant but,
by [CTHS05, Théorème 1], there is a (rational, polyhedral) fan F 1 in LR that is Γ-invariant, is
a subdivision of F , and is projective and smooth in the sense that its associated toric variety
is projective and smooth (these properties can be expressed combinatorially in terms of F 1, see
[Dan78, Section 3.3] and [CTHS05, Proposition 1]). The construction [Dan78, Section 5.2] that
builds the toric variety associated to F 1 adapts to any base, so we obtain a flat, finitely presented
S1-scheme T

1 equipped with commuting left and right TS1-actions, a compatible Γ-action, and an
S1-fiberwise dense, TS1-biequivariant and compatibly Γ-equivariant open immersion ι1 : TS1 ãÑ T

1

over S1. By [Dan78, Section 3.3] applied S1-fiberwise, T 1 is S1-smooth, so it remains to argue that it
is projective over S1.

Due to its combinatorial definition, the S1-scheme T
1 descends to a scheme over SpecpZq, so

[Dan78, Proposition 5.5.6] and its proof, which is based on the finer than usual form [EGA II,
Corollaire 7.3.10 (ii)] of the valuative criterion of properness, imply that T

1 is proper over S1. In
combinatorial terms, the fact that F 1 is projective means that there exists a function h : LR Ñ R that
is strictly upper convex in the sense that, letting F 1 top Ă F 1 denote the subset of top-dimensional
cones, there are linear forms

tℓσuσPF 1 top Ă HomZpL,Zq “ X˚pT q

satisfying ℓσpxq ě hpxq for all x P LR with equality if and only if x P σ (see [CTHS05, Proposition 1]
and [Oda88, Lemma 2.12]). This last requirement uniquely determines the characters ℓσ because
each σ is top-dimensional. Thus, as in [Oda88, Proposition 2.1 (i) and its proof], the function h, more
precisely, the ℓσ, define a line bundle Lh on T

1. By [EGA IV3, Corollaire 9.6.4], checking that Lh is
ample over S1 can be done S1-fiberwise. Consequently, [Oda88, Proposition 2.1 (vi), Corollary 2.14,
and their proofs] imply the S1-ampleness of Lh, and hence the S1-projectivity of T 1. □

As an immediate consequence, Proposition 6.2.4 holds in the case when G is a torus. More explicitly,
we obtain the following statement about torsors under tori.
Corollary 6.3.2. For a Noetherian semilocal ring A whose local rings are geometrically unibranch,
an ideal I Ă A, an A-torus T , a T -torsor E, and an e P EpA{Iq, there are a faithfully flat, finite,
étale A-algebra rA equipped with an A{I-point a : rA ↠ A{I and an re P Ep rAq whose a-pullback is e;
in particular, E trivializes over some finite étale cover of A (choose I “ A).

If we do not require rA to be finite over A, then the claim follows from Proposition 6.1.1 (a).

Proof. We included the last aspect of the claim for the sake of emphasis: as we already saw in §1.3.8,
the geometric unibranchedness assumption ensures that both T and E are isotrivial. Thanks to this
isotriviality, the main assertion follows by combining Theorem 6.3.1 with Proposition 6.2.4. □

Appendix A. Resolutions of reductive groups

Yifei Zhao10

This appendix is an exposition on the construction of flasque and coflasque resolutions of a reductive
group G over a general base scheme S, subject only to the condition that radpGq be isotrivial.

The notions of flasque and coflasque tori are due to Colliot-Thélène–Sansuc [CTS87]. The existence of
a coflasque resolution strengthens that of a z-extension of Langlands and Kottwitz [Kot86, Section 1],

10CNRS, Université Paris-Saclay, Laboratoire de mathématiques d’Orsay, F-91405, Orsay, France. E-mail address:
yifei.zhao@universite-paris-saclay.fr

47

yifei.zhao@universite-paris-saclay.fr


which is often stated over a field of characteristic zero ([DMOS82, Chapter V, Section 3], [BK00],
for example). When the base is a field of arbitrary characteristic, both resolutions are constructed
by Colliot-Thélène in [CT04], but, as observed by González-Avilés [GA13], the same proof yields
the existence of flasque resolutions over locally Noetherian, geometrically unibranch schemes (e.g. a
normal scheme). Our proof follows Colliot-Thélène’s strategy, but we replace the hypotheses on
S by the isotriviality of radpGq, which holds whenever S is locally Noetherian and geometrically
unibranch but could remain valid in other contexts.

The §§A.2–A.3 are preparatory and the main construction appears as Theorem A.4.1. As an
application, we explain a simple reduction of the Grothendieck–Serre conjecture 3.1.1 to the case when
the derived subgroup is simply connected, see Proposition A.5.1. The author thanks K. Česnavičius
for many helpful conversations and comments.

A.1. Group schemes of multiplicative type

In this section, we review group schemes of multiplicative type. The most important notion for us is
the isotriviality of such group schemes.
A.1.1. Let S be a scheme. For an fppf sheaf of abelian groups F over S, one may consider the
fppf sheaf DSpF q whose value at an affine S-scheme S1 is HompFS1 ,Gm,S1q. Here, Hom is viewed
in the category of fppf sheaves of abelian groups over S1. The fppf sheaf DSpF q again takes values
in abelian groups, the group structure being inherited from Gm.
A.1.2. An S-group scheme G is diagonalizable if there exist a finitely generated abelian group M
and an isomorphism between G and the group scheme DSpMSq, where MS denotes the constant
sheaf with values in M . An S-group scheme G is of multiplicative type if it is diagonalizable fppf
locally on S.11 In fact, every S-group scheme of multiplicative type is diagonalizable étale locally on
S ([SGA 3II, Exposé X, Corollaire 4.5] or [Con14, Proposition B.3.4]).

If an S-group scheme G of multiplicative type becomes diagonalizable after base change along rS Ñ S,
then G is said to be split by rS. If S is connected, then any S-group scheme of multiplicative type is
split by some fppf (equivalently, étale) surjection rS Ñ S ([SGA 3II, Exposé IX, Remarque 1.4.1]).
By fppf descent, any S-group scheme G of multiplicative type is S-affine.

An S-group G of multiplicative type is a torus if fppf (equivalently, étale) locally on S it is of the
form DSpMSq for some finitely generated free abelian group M .
A.1.3. Groups of multiplicative type enjoy certain closure properties:

(1) an S-flat, finitely presented closed subgroup of an S-group scheme of multiplicative type is
again of multiplicative type ([SGA 3II, Exposé X, Corollaire 4.7 b)] or [Con14, Corollary
B.3.3]);

(2) a commutative extension of group schemes of multiplicative type is again of multiplicative
type ([SGA 3II, Exposé XVII, Proposition 7.1.1] or [Con14, Corollary B.4.2]).

Furthermore, an S-group scheme G of multiplicative type is reflexive in the sense that the natural
transformation G Ñ DSpDSpGqq is an isomorphism. Indeed, this statement may be verified fppf
locally on S, where it follows from [SGA 3II, Exposé VIII, Théorème 1.2].
A.1.4. An S-group scheme G of multiplicative type is called isotrivial if G is split by a finite étale
surjection rS Ñ S. When S is connected, an isotrivial S-group scheme of multiplicative type is split

11This definition agrees with [Con14, Definition B.1.1], but it differs from [SGA 3II, Exposé IX, Définition 1.1],
where G is only required to be fpqc locally isomorphic to DSpMq for an abelian group M (which is not necessarily
finitely generated).
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by a finite connected étale Galois cover rS Ñ S. We discuss some ways to obtain isotrivial S-group
schemes of multiplicative type.
Lemma A.1.5. Let S be a connected scheme. Then any finite S-group scheme G of multiplicative
type is isotrivial.

Proof. Let F denote the fppf sheaf of abelian groups DSpGq. Since S is connected, there is an fppf
surjection rS Ñ S such that F

rS
is isomorphic to the constant sheaf M

rS
for a finite abelian group M .

The descent data of F
rS

allow us to construct an AutpMq-torsor P over S such that F is the fppf
sheaf of abelian groups induced from P. Since AutpMq is finite, P is representable by a finite étale
surjection rS1 Ñ S. In particular, P is trivialized by rS1. It follows that G is split by rS1. □

The same argument proves more generally that an S-group scheme of multiplicative type whose
maximal torus has rank ď 1 is isotrivial. This fact can be compared with Lemma A.1.6(ii) below.
Lemma A.1.6. Let S be a connected scheme. Given a short exact sequence of S-group schemes of
multiplicative type:

1 Ñ G1 Ñ G Ñ G2 Ñ 1,

(i) if G is diagonalizable (resp. isotrivial), then both G1 and G2 are diagonalizable (resp. isotrivial);

(ii) if G1 is isotrivial and G2 is finite, then G is isotrivial.

Proof. Statement (i) is established in [SGA 3II, Exposé IX, Proposition 2.11]. To prove statement
(ii), we may assume that both G1 and G2 are diagonalizable by replacing S with a connected
finite étale cover. Since DS is an anti-equivalence on reflexive fppf sheaves of abelian groups
[SGA 3II, Exposé VIII, Proposition 1.0.1], it restricts to an exact functor on the full subcategory
of S-group schemes of multiplicative type. In particular, we obtain a short exact sequence of fppf
sheaves of abelian groups:

1 Ñ M2,S Ñ DSpGq Ñ M1,S Ñ 1.

Here, Mi,S (for i “ 1, 2) denotes the constant sheaf associated to a finitely generated Z-module Mi.
The finiteness of G2 allows us to assume that M2 is finite.

It remains to show that any class in Ext1fppfpM1,S ,M2,Sq comes from Ext1ZpM1,M2q after passing
to a finite étale cover rS Ñ S. For this statement, it suffices to treat the case where M1 is a cyclic
group. For M1 “ Z, we have Ext1fppfpZS ,M2,Sq – H1

fppfpS,M2q – H1
étpS,M2q, and because M2 is

finite, any class in H1
étpS,M2q vanishes over a finite étale surjection rS Ñ S. For M1 “ Z{n for an

integer n ě 1, we have an exact sequence:

HompZ,M2q
n
ÝÑ HompZ,M2q Ñ Ext1fppfppZ{nqS ,M2,Sq Ñ Ext1fppfpZS ,M2,Sq.

By the same argument as above, any class in Ext1fppfppZ{nqS ,M2,Sq has zero image in Ext1fppfpZS ,M2,Sq

after passing to a connected finite étale cover rS Ñ S. Equivalently, this means that over rS, the class
comes from Ext1ZpZ{n,M2q. □

Remark A.1.7. In Lemma A.1.6(ii), the finiteness hypothesis on G2 cannot be dropped. Indeed,
whenever H1

étpS,Zq ‰ 0, there exist self-extensions of Gm which are not isotrivial. To see this, we
use the isomorphism Ext1fppfpGm,Gmq – H1

étpS,Zq and the fact that any class of H1
étpS,Zq which

vanishes on a finite étale cover of S must already be zero (because H1
étpS,Zq ãÑ H1

étpS,Qq).
A.1.8. There is a convenient condition on the base scheme S which guarantees that all multiplicative
type S-group schemes are isotrivial.
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A local ring R is geometrically unibranch if its strict Henselization Rsh has a unique minimal prime,
see [SP, Definition 0BPZ and Lemma 06DM]. A scheme S is geometrically unibranch if so are its
local rings. For example, a normal scheme (in the usual sense that its local rings are normal domains)
is geometrically unibranch. Every connected component of a locally Noetherian, geometrically
unibranch scheme is irreducible (see [GW20, Exercise 3.16 (a)]).

Let S be a locally Noetherian, geometrically unibranch scheme. By [SGA 3II, Exposé X, Théorème 5.16],
every S-group scheme G of multiplicative type splits over a finite étale surjection rS Ñ S. When S is
connected, we may further assume that rS Ñ S is a connected Galois cover.

A.2. Flasque and coflasque tori

In this section, we focus on isotrivial tori. The study of these objects is equivalent to that of Galois
modules with integral coefficients. We discuss several conditions on isotrivial tori (quasi-trivial,
flasque, and coflasque) which are “of Galois cohomology nature”.
A.2.1. Suppose that S is a connected scheme and let rS Ñ S be a connected finite étale Galois cover.
By [SGA 3II, Exposé X, Proposition 1.1], the construction D

rS
induces an equivalence of categories

between

(1) group schemes G Ñ S of multiplicative type split by rS;

(2) finitely generated Z-modules M equipped with a Galp rS{Sq-action.

Under this equivalence, tori T Ñ S split by rS correspond to finitely generated free Z-modules M

equipped with a Galp rS{Sq-action—such an M is called the character lattice of T , and we denote it
by Λ̌

T, rS
. Its Z-linear dual is called the cocharacter lattice of T , which we denote by Λ

T, rS
.

A.2.2. Let Γ be a finite group. A Γ-lattice Λ, i.e., a finitely generated free Z-module equipped with
a Γ-action, is called quasi-trivial if it has a Γ-stable Z-basis. Clearly, Λ is quasi-trivial if and only if
its Z-linear dual Λ̌ :“ HomZpΛ,Zq, equipped with the contragredient Γ-action, is quasi-trivial.

The following lemma describes the conditions that end up defining flasque tori.
Lemma A.2.3. Let Γ be a finite group and let Λ be a lattice equipped with a Γ-action. The following
conditions are equivalent:

(i) H1pΓ1,Λq “ 0 for any subgroup Γ1 Ă Γ;

(ii) Ext1ZrΓs
pP,Λq “ 0 for any quasi-trivial Γ-lattice P .

Proof. The key observation is as follows. Suppose that P is a quasi-trivial lattice with a basis X
that consists of a single Γ-orbit. Fix an x P X and let Γ1 Ă Γ be the stabilizer of x. Then we have an
isomorphism P – ZrΓ{Γ1s of ZrΓs-modules, and so an isomorphism Ext1ZrΓs

pP,Λq – H1pΓ1,Λq. □

A.2.4. Let Γ be a finite group. A Γ-lattice Λ is called

(1) coflasque if it satisfies the equivalent conditions of Lemma A.2.3; and

(2) flasque if its Z-linear dual Λ̌ satisfies the equivalent conditions of Lemma A.2.3.12

By Shapiro lemma, any quasi-trivial Γ-lattice is both flasque and coflasque.

12We refer to the original paper of Colliot-Thélène–Sansuc [CTS87, Section 0.5] for other equivalent characterizations
of flasque lattices, including the one involving Tate cohomology, which often appears in the literature.

50

https://stacks.math.columbia.edu/tag/0BPZ
https://stacks.math.columbia.edu/tag/06DM


A.2.5. In the setting of §A.2.1, a torus T Ñ S split by rS is called quasi-trivial (resp. flasque;
resp., coflasque) if its character lattice Λ̌

T, rS
is quasi-trivial (resp. flasque; resp., coflasque). By

[CTS87, Lemma 1.1], these notions are independent of the choice of the Galois cover rS.

For any scheme S, a torus T Ñ S is called quasi-trivial (resp. flasque; resp., coflasque) if every
connected component of S admits a connected finite étale Galois cover rS such that T is split by
rS and quasi-trivial (resp. flasque; resp., coflasque) with respect to rS (again, these notions do not
depend on rS). If a torus T Ñ S is quasi-trivial (resp. flasque, coflasque), then so is its base change
along any morphism S1 Ñ S with S1 still connected.

Quasi-trivial tori are both flasque and coflasque, and they can be made more explicit as follows.
Lemma A.2.6. Let S be a connected scheme. A torus T Ñ S is quasi-trivial if and only if it is a
finite product of Weil restrictions of Gm along finite étale surjections S1 Ñ S.

Proof. Suppose that T Ñ S is quasi-trivial. Let rS Ñ S be a connected finite étale Galois cover such
that T is split by rS. Without loss of generality, we may assume that Λ

T, rS
has a basis X that consists

of a single Galp rS{Sq-orbit. Then the Galp rS{Sq-set X gives rise to a finite étale cover S1 Ñ S, and,
by §A.2.1, we have an isomorphism T » ResS1{SpGmq. The converse is analogous. □

Flasque and coflasque tori enjoy the following pleasant splitting property.
Lemma A.2.7. In the setting of §A.2.1, a short exact sequence of S-tori split by rS

1 Ñ T1 Ñ T2 Ñ T3 Ñ 1

is split if either of the following conditions holds:

(i) T1 is quasi-trivial and T3 is coflasque;

(ii) T1 is flasque and T3 is quasi-trivial.

Proof. By considering character lattices, we translate the problem to splitting the exact sequence

0 Ñ Λ̌
T3, rS

Ñ Λ̌
T2, rS

Ñ Λ̌
T1, rS

Ñ 0 (A.2.7.1)

of Galp rS{Sq-lattices. Suppose that T1 is quasi-trivial and T3 is coflasque. Then, by definition,

Ext1ZrGalp rS{Sqs
pΛ̌

T1, rS
, Λ̌

T3, rS
q “ 0,

so (A.2.7.1) splits. Suppose that T1 is flasque and T3 is quasi-trivial. Then the dual of (A.2.7.1)
splits for the same reason, so, by dualizing again, (A.2.7.1) splits as well. □

Next, we shall construct “resolutions” of S-group schemes of multiplicative type split by rS in terms
of flasque and coflasque tori. The following Lemma of Colliot-Thélène–Sansuc [CTS87] will be the
basis of our construction of resolutions of reductive S-group schemes.
Lemma A.2.8. In the setting of §A.2.1, let G Ñ S be a group scheme of multiplicative type split by
rS. There exist S-tori T1 and T2 split by rS that fit into a short exact sequence of S-group schemes

1 Ñ G Ñ T1 Ñ T2 Ñ 1. (A.2.8.1)

Furthermore, we may arrange (A.2.8.1) so that either of the following conditions is satisfied:

(i) T1 is flasque and T2 is quasi-trivial;

(ii) T1 is quasi-trivial and T2 is coflasque.
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Proof. By §A.2.1, the problem translates into one concerning finitely generated Z-modules equipped
with a Galp rS{Sq-action, which is addressed in [CTS87, Lemma 0.6]. □

Remark A.2.9. In the setting of §A.2.1, let T Ñ S be a torus split by rS. In the same vein as
Lemma A.2.8, [CTS87, Lemma 0.6] implies the existence of resolutions by tori split by rS:

1 Ñ T1 Ñ T2 Ñ T Ñ 1,

such that either

(i) T1 is flasque and T2 is quasi-trivial; or

(ii) T1 is quasi-trivial and T2 is coflasque.

These resolutions are the flasque, respectively coflasque resolutions of the torus T . The main result
we shall prove (Theorem A.4.1) can be viewed as its generalization where T is replaced by a reductive
S-group with isotrivial radical. In its proof, however, we will only need a special case of the result
for T : the existence of a surjection P ↠ T from a quasi-trivial torus P split by rS.

A.3. Central isogenies and the simply connected cover

Before proceeding to construct the promised resolutions of reductive groups in §A.4, we review the
notion of central isogenies that plays an important role there. Recall the notion of the center ZG of
a reductive group scheme G Ñ S as defined in §1.3.3.
A.3.1. For a scheme S, a morphism f : G1 Ñ G of reductive S-group schemes is called a central
isogeny if

(1) f is finite, flat, and surjective;

(2) kerpfq lies in the center of G1.

We only define the notion of central isogenies for reductive S-group schemes, as is done in [SGA 3III new,
Exposé XXII, Définition 4.2.9]. One may generalize this notion to other S-group schemes, but it may
become pathological: for example, the composition of two central isogenies may fail to be central,
see [Con14, Exercise 3.4.4(ii)]. We now show that such phenomena do not occur for reductive group
schemes and then we use central isogenies to define the simply connected cover of a semisimple group
scheme in Proposition A.3.4.
Lemma A.3.2. Let f : G1 Ñ G be a central isogeny of reductive S-group schemes.

(i) The induced map ZG1 Ñ f´1pZGq is an isomorphism.

(ii) For any other central isogeny g : G2 Ñ G1 of reductive group schemes over S, the composition
f ˝ g : G2 Ñ G is also a central isogeny.

Proof. In (i), the problem is étale local on S, so we may assume that G contains a split maximal
torus T , whose inverse image T 1 :“ f´1pT q is then a split maximal torus of G1. Since f is a central
isogeny, the induced map on character lattices Λ̌T Ñ Λ̌T 1 restricts to a bijection between the roots
of pG,T q and pG1, T 1q, see [Con14, Example 6.1.9]. The result then follows from the characterization
of ZG as the kernel of the adjoint action T Ñ GLpLiepGqq (see §1.3.3), that is, as the intersection of
the kerpαq over all the roots α : T Ñ Gm of pG,T q.

In (ii), f ˝ g is finite, flat, and surjective, so we need to verify that kerpf ˝ gq Ă ZG2 . Indeed, we have

kerpf ˝ gq – g´1pkerpfqq Ă g´1pZG1q – ZG2 ,

where the last isomorphism comes from (i). □
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Remark A.3.3. Suppose that f : G1 Ñ G is a central isogeny of reductive S-group schemes. Then
kerpfq is an S-group scheme of multiplicative type. Indeed, ZG1 is of multiplicative type (see §1.3.3)
so this assertion follows from the closure property in §A.1.3.
Proposition A.3.4. Let S be a scheme and let G be a semisimple S-group scheme. Consider
the category of pairs pG1, fq consisting of a semisimple S-group scheme G1 and a central isogeny
f : G1 Ñ G, with morphisms pG1

1, f1q Ñ pG1
2, f2q being given by central isogenies α : G1

1 Ñ G1
2 such

that f1 “ f2 ˝ α. This category has an initial object pGsc, fq, the simply connected cover of G.

Proof. The proof relies on the classification of pinned reductive groups by root data ([SGA 3III new,
Exposé XXV, Théorème 1.1] or [Con14, Theorem 6.1.16]). The universal property allows us to work
étale locally on S, so we may assume that G is split with respect to a split maximal torus T Ă G.

The split maximal torus T allows us to extract the root data pΛT ,Φ, Λ̌T , Φ̌q. Let Λr
T Ă ΛT denote

the sublattice generated by the coroots Φ. There is a morphism of root data:

pΛr
T ,Φ, Λ̌

r
T , Φ̌q Ñ pΛT ,Φ, Λ̌T , Φ̌q (A.3.4.1)

which induces the identity maps on Φ and Φ̌. The root data pΛr
T ,Φ, Λ̌

r
T , Φ̌q define a pinned

reductive S-group Gsc with split maximal torus T sc and (A.3.4.1) comes from a central isogeny
f : Gsc Ñ G compatible with the splitting (i.e., mapping T sc to T ), but f is only unique up to
conjugation by pT {ZGqpSq ([Con14, Theorem 6.1.16(1)]). The pair pGsc, fq, however, is canonically
defined thanks to the isomorphism T sc{ZGsc – T {ZG induced by f . Next, we argue that pGsc, fq

is canonically independent of the choice of the split maximal torus T Ă G. Indeed, conjugation
defines an isomorphism between G{NGpT q and the scheme parametrizing maximal tori of G ([Con14,
Theorem 3.1.6]) so the claim follows from the isomorphism Gsc{NGscpT scq – G{NGpT q induced by f .

To show that the pair pGsc, fq satisfies the universal property of an initial object, we suppose being
given another central isogeny f 1 : G1 Ñ G. For a split maximal torus T Ă G as above, we write
T 1 Ă G1 for the induced maximal torus. Arguing with root data as above, we find a central isogeny
α1 : G

sc Ñ G1 such that f and f 1 ˝ α1 differ by conjugation by an element of pT {ZGqpSq. The
isomorphism T 1{ZG1 – T {ZG then allows us to construct the unique central isogeny α : Gsc Ñ G1

which satisfies f “ f 1 ˝ α. □

Remark A.3.5. Another definition of the simply connected cover is given in [Con14, Exercise 6.5.2(i)],
which characterizes the central isogeny f : Gsc Ñ G by the fact that the geometric S-fibers of Gsc

are simply connected, i.e., they admit no nontrivial central isogenies from semisimple groups. It is
easy to see that the two definitions agree. In particular, the formation of the simply connected cover
Gsc of G commutes with arbitrary base change S1 Ñ S.

A.4. Existence of resolutions

In this section, we construct flasque and coflasque resolutions of reductive group schemes with
isotrivial radical tori. Recall that to a reductive S-group scheme G, we have associated several other
reductive S-group schemes in the main text: the derived subgroup Gder, which is semisimple, and
the tori radpGq and coradpGq :“ G{Gder (see §1.3.3).
Theorem A.4.1. Let S be a connected scheme and let G be a reductive S-group scheme such that
radpGq is isotrivial. Fix a central isogeny f : G1der Ñ Gder. There exists a central extension

1 Ñ T1 Ñ G1 Ñ G Ñ 1 (A.4.1.1)

of reductive S-group schemes such that radpG1q is isotrivial and G1 Ñ G induces f on derived
subgroups. Furthermore, setting T2 :“ coradpG1q, we may arrange (A.4.1.1) so that one of the
following conditions is satisfied:
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(a) T1 is a flasque torus and T2 is a quasi-trivial torus;

(b) T1 is a quasi-trivial torus and T2 is a coflasque torus.
Remark A.4.2. The most typical application of Theorem A.4.1 is with f : G1der Ñ Gder being the
simply connected cover reviewed in Lemma A.3.4. In this case, we obtain a resolution (A.4.1.1)
where G1 has a simply connected derived subgroup and the tori T1, T2 satisfy the conditions above.
These are called flasque, respectively coflasque resolutions of G.

Note that if an S-torus T admits a flasque (or coflasque) resolution, then it must be isotrivial
(Lemma A.1.6(i)). Thus the hypothesis that radpGq be isotrivial cannot be dropped.

Finally, we remark that if S is locally Noetherian and geometrically unibranch (such as a normal
scheme), then the isotriviality condition on radpGq is automatically satisfied (see §A.1.8).

Proof of Theorem A.4.1. By composing the canonical central isogeny Gder ˆ radpGq Ñ G of (1.3.3.1)
with f ˆ idradpGq, we obtain a central isogeny of reductive S-group schemes:

1 Ñ H2 Ñ G1der ˆ radpGq Ñ G Ñ 1. (A.4.2.1)

In particular, H2 is a finite S-group scheme of multiplicative type (Remark A.3.3).

Let us denote by rS Ñ S a connected finite étale Galois cover which splits radpGq. By Remark A.2.9,
we may choose a short exact sequence of tori split by rS:

1 Ñ H1 Ñ P Ñ radpGq Ñ 1. (A.4.2.2)

where P is quasi-trivial. Compose the central isogeny (A.4.2.1) with the surjection P Ñ radpGq, we
obtain a central extension of reductive S-groups:

1 Ñ M Ñ G1der ˆ P Ñ G Ñ 1. (A.4.2.3)

Let us study the commutative S-group scheme M . By construction, it is an extension of H2 by
H1. Since H1 is an isotrivial torus and H2 is a finite S-group scheme of multiplicative type, M is
of multiplicative type (§A.1.3) and even isotrivial (Lemma A.1.6(ii)). Thus, we may take another
connected finite étale Galois cover rS1 Ñ rS and assume that M is split by rS1. Using Lemma A.2.8,
we find a resolution of M by S-tori which are also split by rS1:

1 Ñ M Ñ T1 Ñ Q Ñ 1, (A.4.2.4)

where either

(1) T1 is flasque and Q is quasi-trivial; or

(2) T1 is quasi-trivial and Q is coflasque.
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Let us form the push-out of the extension (A.4.2.3) along the map M Ñ T1. This gives rise to a
central extension of G by T1 that fits into a commutative diagram

1

1 M G1der ˆ P G 1

1 T1 G1 G 1

Q

1

α –

By construction, the map α induces an isomorphism on derived subgroups. Hence, the morphism
G1 Ñ G induces the given central isogeny f : G1der Ñ Gder on derived subgroups. Recall that
the formation of radicals is preserved under quotient maps. (This statement may be verified over
geometric points, where it is [SGA 3III new, Exposé XIX, Section 1.7].) Hence radpG1q is a quotient
of the torus T1 ˆ P . Since the latter is split by rS1, so is radpG1q (Lemma A.1.6(i)).

Finally, we show that the two types of resolutions (A.4.2.4) give rise to the two conditions in the
statement of Theorem A.4.1. Indeed, write T2 :“ coradpG1q. Since T2 is a quotient of radpG1q, it is
also split by rS1. We have a short exact sequence of S-tori split by rS1:

1 Ñ P Ñ T2 Ñ Q Ñ 1. (A.4.2.5)

Since P is quasi-trivial and Q is at least coflasque, Lemma A.2.7 shows that (A.4.2.5) splits. In
particular, T2 is quasi-trivial (resp. coflasque) whenever Q is. □

A.5. An application to the Grothendieck–Serre conjecture

We use Theorem A.4.1 to reduce the Grothendieck–Serre conjecture 3.1.1 to the case when the group
G has a simply connected derived subgroup. This argument is suggested to me by K. Česnavičius.
Proposition A.5.1. Let R be a regular local ring, let K :“ FracpRq, let G be a reductive R-group
scheme, and consider the pullback map

H1
étpR,Gq Ñ H1

étpK,Gq. (A.5.1.1)

If this map has trivial kernel whenever G is replaced by some central extension G1 of G whose derived
subgroup G1der is simply connected, then it has trivial kernel for G itself.

Proof. By Theorem A.4.1, we may find a central extension of reductive R-group schemes

1 Ñ T1 Ñ G1 Ñ G Ñ 1,

such that the map G1 Ñ G induces the simply connected cover G1der – pGderqsc Ñ Gder on the
derived subgroups and T1 is a quasi-trivial torus.13 By (1.2.2.1), this extension gives rise to the

13Information about T2 :“ coradpG1
q is not needed for this proof.
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following map of exact sequences of pointed sets:

H1pR, T1q H1pR,G1q H1pR,Gq H2pR, T1q

H1pFracpRq, T1q H1pFracpRq, G1q H1pFracpRq, Gq H2pFracpRq, T1q.

α1 β1 β α2

Since T1 is a quasi-trivial torus, by Lemma A.2.6, it is isomorphic to a finite product of tori of the
form ResR1{RpGmq for some finite étale maps R Ñ R1. In particular, Hilbert 90 implies that α1 is an
isomorphism between singletons. Grothendieck’s theorem on the Brauer group [Gro68, Corollaire 1.8]
implies that α2 is injective. Therefore, if β1 has trivial kernel, then so does β, as desired. □
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