THE POWER-SAVING MANIN-PEYRE CONJECTURE
FOR A SENARY CUBIC

SANDRO BETTIN AND KEVIN DESTAGNOL

ABSTRACT. Using recent work of the first author [3], we prove a strong version of the Manin-Peyre’s
conjectures with a full asymptotic and a power-saving error term for the two varieties respectively
in P? x P2 with bihomogeneous coordinates [x1 : =2 : z3],[y1 : y2,¥y3] and in P! x P! x P! with
multihomogeneous coordinates [z1 : y1], [®2 : y2],[z3 : y3] defined by the same equation z1y2y3 +
z2y1ys + x3y1y2 = 0. We thus improve on recent work of Blomer, Briidern and Salberger [8] and
provide a different proof based on a descent on the universal torsor of the conjectures in the case
of a del Pezzo surface of degree 6 with singularity type A1 and three lines (the other existing proof
relying on harmonic analysis [17]). Together with or with recent work of the second author [21],
this settles the study of the Manin-Peyre’s conjectures for this equation.
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In the late 80s, Manin and his collaborators [22] proposed a precise conjecture predicting, for smooth
Fano varieties, the behaviour of the number of rational points of bounded height (with respect to an
anticanonical height function) in terms of geometric invariants of the variety. The conjecture was later

generalised by Peyre [26] to “almost Fano” varieties in the sense of [26, Définition 3.1].

1991 Mathematics Subject Classification. 11D45, 11N37, 11M41.
Key words and phrases. Manin-Peyre’s conjectures, divisor function.

1



2 SANDRO BETTIN AND KEVIN DESTAGNOL

Conjecture 1.1 (Manin, 1989). Let V be an “almost Fano” variety in the sense of [26, Définition
3.1] with V(Q) # @ and let H be an anticanonical height function on V(Q). Then there exists a Zariski
open subset U of V' and a constant cg,y such that, for B > 1,

Ny,u(B) = #{z € U(Q) | H(z) < B} = cu,v Blog(B)" (1 +o(1)),
where p = rank(Pic(V)).

Peyre [26], and then Batyrev and Tschinkel [2] and Salberger [28] in a more general setting, also
proposed a conjectural expression for the constant cg - in terms of geometric invariants of the variety.
We do not record this conjecture here in any more details and refer the interested reader to [27]
for example. There are a number of refinements of the Manin-Peyre conjectures and we will focus
throughout this paper on the following one [15].

Conjecture 1.2 (Refinement of the Manin-Peyre’s conjectures). Let V' be an “almost Fano”
variety in the sense of [26, Définition 3.1] with V(Q) # @ and let H be an anticanonical height function
on V(Q). Then there exists a Zariski open subset U of V, a polynomial Py g of degree p and § €]0,1]
such that, for B > 1

Nu.u(B) = BPy,u(log B) + O(B'™°),
where p = rank(Pic(V')) and the leading coefficient of Py g agrees with Peyre’s prediction.

There has been very little investigations on the lower order coefficients and this seems to be a diffi-
cult question but the examples we study in this paper might be an interesting testing ground.

These two conjectures have been the center of numerous investigations in the past few years using
techniques from harmonic analysis in the case of equivariant compactifications of some algebraic groups
(see for example [T}, [30]) or from analytic number theory and more specifically the circle method in the
case where the number of variables is large enough with respect to the degree (see for example [5] [16]).
In the remaining cases, the only available method relies on a combination of analytic number theory or
geometry of number and on a descent on some quasi-versal torsors in the sense of [I8]. Most of these
investigations (especially in cases relying on a descent) are concerned with surfaces (see for example
works of Browning, La Bretéche, Derenthal and Peyre [11 12| [14]), whereas very little is known in
higher dimensions. In particular there are only very few examples of varieties in higher dimension
for which Conjecture [I.2] or even Conjecture [I.I] is known to hold using such a descent argument
(see [9, 29, [7, 21]). The goal of this paper is to give another such example.

In this paper we shall consider the solutions to the equation

(1.1) T1Y2Y3 Yo + T2Y1Y3 - Yn + 0+ Tpy1Ya - Yno1 = 0.

Notice that, upon excluding the points for which y; - - - y,, = 0, one can also rewrite the above equation
as a linear equation between fractions

We shall focus on the case n = 3 in the present paper. The cases n > 4 will be the subject of future
work.

One can view equation in three natural ways. First, one can consider the singular projective
hypersurface of P?"~! with homogeneous coordinates [z1 : --+: @, : Y1 : - : yp] defined by . This
was done in 2014 by Blomer, Briidern and Salberger who in [7] proved Conjecture for n = 3 using a
combination of lattice point counting and analytic counting by multiple Mellin integrals. This setting
was also studied by the second author [2I] who, by elementary counting methods, proved Conjecture
when n > 2 for the following anticanonical height function

H(lwy: o iap iy yn)) = max max{|x;|, |yi|}"-

It is worth noticing that in this case, the varieties under consideration are equivariant compactifications
of the algebraic groups G"~! x G 1. Harmonic analysis techniques might also be able to handle this
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case and to prove Conjecture [I.2] for every n > 4. To our knowledge this hasn’t been done so far, but
it would be interesting to compare this approach with a generalization of the methods of [7] or of the
present paper.

One can also think of as defining the singular biprojective variety Wn of (}P’"’l)2 with biho-
mogeneous coordinates [z1 : -+ : @p], [y1 1 -+ : y,] defined by the equation (I.I). An anticanonical
height function is then given by

H(fwy: - aalfyr oo yal) = max fa|" ™ max Jyil.

In this case, the varieties under consideration are not equivariant compactifications, the rank of the
Picard group of W, is 2" —n and the subset where z1 - - - z,y1 - - - y, = 0 is an accumulating subset. In

recent work [§], Blomer, Briidern and Salberger showed that Conjecture holds for Wg using Fourier
analysis. Using recent results of the first author [4], we are able to refine the aforementioned result [g]

proving the stronger Conjecture u 2| for W3

Theorem 1. Let U be the Zariski open subset of Wg giwen by the condition x1x9x3y1y2ys # 0. There
exist & > 0 and a polynomial Py of degree 4 such that

ngﬁ(B) = #{([xl cxotx3], (Y1t Y2 i ys]) € [7(@) | I;T(x,y) < B} = BP;(log B) + O(Bl_gl).

The leading coefficient of Py is equal to 61242, where
1\° 5 5 1
Sy = (1—) (1+++>,
1;[ p p p P
1 L2 dy1dys 2
1:= X[0,1/]z]] (7 + 7) dridrodz - ——— = 7" + 24log2 — 3
[-1,1]3x][0,1]2 Y1 Y2 Y1Y2

and xx denotes the characteristic function of a set X.

The work of [8] shows that S1-L coincides with Peyre’s prediction for this variety and so Theorem

144
gives Conjecture u for Wg
Finally, a third interpretation of (1.1)) is as the singular subvariety W of (]P’l) with multihomoge-
neous coordinates [z1 : y1],..., [Ty : yn] The only record of study of an analogous equation is from
La Breteche [I0] but with a non anticanonical height function. An anticanonical height is given in this
setting by

{(CREPARENAES | XA

We prove the two following theorems which, combined, give that Conjecture holds for Wg.

Theorem 2. Let U be the Zariski open of /VI73 defined by the condition y1y2ys # 0. Then there exist
& > 0 and a polynomial Py of degree 3 such that

N, a(B) = #{ (w1 s i), [o2 s 2] o5+ ws)) € D(@) | H(x,y) < B} = BPy(log B) + O(B'"%).

The leading coefficient of Ps is equal to ﬁ, where T is as in Theoreml and

o) (o 23)

p

Theorem 3. The variety /Wg is isomorphic to a del Pezzo surface of degree 6 with singularity type Aq
and 8 lines over Q and the leading constant of the polynomial Py in Theorem [J agrees with Peyre’s
prediction.
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We remark that by Theorem [3[ and [25] one has that W is an equivariant compactification of G2.
In particular Theorem [2] follows from the more general work of Chambert-Loir and Tschinkel [I7].

The purpose of giving a new independent proof of Theorem [2]is double. First, the method presented
here uses a descent on the versal torsor and thus it is different from the method in [I7] which relies on
harmonic analysis techniques and the study of the height zeta function. To our knowledge this is the
first time that a full asymptotic with a power-saving error term is obtained on this del Pezzo surface
by means of a descent on the versal torsor. The best result using such a method can be found in [15]
Chapter 5] where Browning obtains a statement somewhere in between Conjectures and

Secondly, following the same approach for proving Theorem [I] and [2] allows one to appreciate the
difference in the structure of the main terms in these two cases, showing how the extraction of the main
term in the first case becomes substantially harder as well as allowing the use the proof of Theorem
as a guide for that of Theorem

Remark. We prove Theorem [3 for any & < 0.00228169... One can easily give an explicit power
saving also in the case of Theorem 1] as well as improving the allowed range for &, but in order to
simplify the presentation we choose not to do so, since in any case the values obtained could be greatly
improved by tailoring the methods of [4] to these specific problems.

The proofs of Theorem [I] and [2 roughly proceed as follows. We use the same unique factorization
as in recent work of the second author [2I] to parametrize the counting problem combined with recent
work of the first author [4]. More precisely, by means of a descent on the versal torsor we can transform
the problem of counting solutions to to that of counting solutions to aix121 +asxsz3+asrszs =0
with some coprimality conditions, with certain restraints on the sizes of z;, z; (depending on the height
we had originally chosen), and with aj, az2,as that can be thought of being very small. By [4] (see
also [3]) we have the meromorphic continuation for the “parabolic Eisenstein series”

Z Tay,B1 (ml)TOéz,Bz (7713)7-&3,53(Tn3)7 %(8) N % o min(%(ai), 3%(61)) Vi=1,2,3

(mimaomg)®

my,mg,m3E€Lsq
aymi+agmygtagmz=0

where 7o, 5,(M) = > 4 go—m dydy " for (o, ag, a3), (81, B2, B3) € C3. Using this we obtain that the
counting problem in both cases is given by a certain multiple complex integral of the products of T’
and ( functions, up to a power saving error term. The main part of the paper is then devoted to
the use of complex analytic methods to extract the main terms from such integrals. This process is
reminiscent of the work [I9] of La Breteche, where he showed how to deduce asymptotic formulas for
generic arithmetic averages from the analytic properties of their associated Dirichlet series. However,
his work is not directly applicable to our case. Indeed, in his setting all variables are summed in boxes,
whereas in our case the main action happens at complicated hyperbolic spikes. Of course, one could
use La Breteche’s work in combination with some suitable version of the hyperbola method, but in
fact this would not simplify substantially the problem and would still eventually require arithmetic and
complex-analytic computations essentially equivalent to ours. For this reason, we prefered to approach
the relevant sums in a more direct way.

The paper is structured as follows. First, in Sectionwe reparametrize the solutions to using a
descent on the versal torsor. In Section [3]we prove Theorem [3] In Section [@] we state the main Lemma
on the parabolic Eisenstein series and a smoothing lemma useful to avoid problems of sharp cut-offs.
Then, in Section [ [f] and [7] we prove Theorems [2 and [I] in three steps of increasing difficulties: first
Theorem [2| without the aforementioned coprimality conditions, then we include these conditions and
finally we prove Theorem

NOTATIONS

We use the vector notation v = (vy,...,v;) where the dimension is clear from the context. Also,
given a vector v € C* and ¢ € C with v + ¢ we mean (v; +c,...,v; +¢). With [[ we indicate the
integration with respect to several variables, whose number is clear from the context. For ¢ € R, with
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/; () We indicate that the integral is taken along the vertical line from ¢—ico to ¢+ioco. Also, we indicate
with ¢, the line of integration corresponding to the variable z. Given, a1,...,a;r € Z we indicate the
GCD and the HCF of aq,...,ax by (a1,...,ax) and [aq, ..., ax] respectively.

We indicate the real and imaginary part of a complex number s € C by ¢ and t respectively, so that
s = o +it. Also, ¢ will denote an arbitrary small and positive real number, which is assumed to be
sufficiently small and upon which all bounds are allowed to depend. Finally, in Section [7] we denote
by C1,C5,Cj3, ... a sequence of fixed positive real numbers.

2. THE DESCENT ON THE VERSAL TORSOR

For n > 2, we let N =2" — 1. For every h € {1,..., N}, we denote its binary expansion by

h= Y €(h)2 !,

1<j<n

with €;(h) € {0,1}. We will let s(h) = > ;5 €;(h) be the sum of the bits of h. We will say that
a integer h is dominated by ¢ if for every j € N, we have ¢;(h) < €;(¢). We will use the notation
h = £ to indicate that h is dominated by ¢. We will say that an N—tuple (z1,...,2y) is reduced if
ged(zp, z¢) =1 when h A £ and € £ h.

We give the following lemma which gives a unique factorization for the variables y; inspired by
[24) [13] and [10] and which will be very useful to parametrize rational solutions of (L.I).

Lemma 1 ([I0]). There is a one-to-one correspondence between the n—tuples of non negative integers
(yi)1<i<n and the reduced N—tuples (zn)1<n<ny 0f non negative integers such that

. ej(h
Viell,n], y = H zhj( ) and Y1, yn] = H Zh.
1<hEN 1<h<N

2.1. The case of ﬁ/\n Let n > 2. We want to estimate, for B > 1, the quantity

Nip, a(B) = #{ (o1 smn). - o)) € 0@ | Hixy) < B},
Clearly, we have
S _ n n . ﬁ(XJ’) < B
NWMH(B) = #{(X,Y) €LY XLz - (x,y) satisfies (L.1), ged(z;,y:) =1 }

Using Lemma [I| the equation (1.1]) can be rewritten as

n
(2.1) Sdjz;=0 with di= ] = " vie[1n].
j=1 1<hSN
We then obtain the divisibility relation zg;-1 | z; for every j € {1,...,n}. Since we have the conditions

ged(z;,y;) =1 and z95-1 | y;, we can deduce that for every j € {1,...,n}, z9,-1 = 1. Finally, we have

ﬁmax{|xi|, H zh|€i(h)}<B

n N—-n ., i=1 <h<N

(B) =#14 (x,2) € Z" X ZS5 " - 1< .

(zn)1<n<w reduced, indi -0
i=1
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In the case n = 3, renaming for simplicity zg by 21, z5 by 2o and z7 by z4, one gets the following
expression for N 5(B)

(2.2)

Ny, 7(B) =

ng(fEl, 222324) = ng(I’Q, 212’32’4) = ng(LEg, 212224) =1
ged(z1, 22) = ged(z1, 23) = ged(ze,23) =1

max{|z1], 202324} X max{|za|, 212324} X max{|zs|, 212224} < B
T121 + X922 + 1323 =0

#< (x,2) €2 x 7%, :

As explained in Section [3| the open subvariety of A7 given by the equation x12z, + 2a2o + 2323 = 0
along with the conditions

(1, 222324) # (0,0), (w2,212324) # (0,0), (x3,212224) # (0,0)
and
(21,22) #(0,0), (21,23) # (0,0), (22,23) # (0,0)
is the versal torsor of the minimal desingularisation of Wg and hence, through this parametrization,
we just performed a descent on the versal torsor of this minimal desingularisation of Wg

2.2. The case of Wn Let n > 2. We now want to estimate, for B > 1, the quantity

1 H(Xay) < B
Ny, q(B) = (#4 (x,y) € 2" x Lo = (x,y) satisfy (LI)
ged(xy, ..., 2n) = ged(Yr, - yn) =1

Clearly, we have

H(x,y)< B
Ny 5(B) =2""2#¢ (x,y) € Z" x ZLy : (x,y) satisfy (L)
ged(zy, ..., 2n) = ged(y1, ..oy Yn) =1
We can still rewrite the equation (L.1)) as (2.1)) using Lemma [1| but we can no longer deduce that
zoj-1 = 1. We only have the divisibility relation z;-1 | x;. However, we have zy = 1.
Finally, one gets

g fo " max [T AT < B
n N-1 1<hKN-1
Ny, 5(B) =2#¢ (x,2) € 2" x 255 : =
> widi =0
i=1
ged(z1, .., n) = 1, (2n)1<hgv—1 reduced

and particularly, in the case n = 3, we obtain
max |z;|% max{z 2325, 202326, 242526 } < B
, 1<i<3
ngﬁ(B) =2#< (x,2) € 73 x Z(;O I T12924%6 + Toz12425 + X3212223 = 0
ged(z1, 2, 23) = 1, (2n)1<ng6 reduced
2
max{z1 |2} |, z2|xh|, z4|2h|}” max{z12325, 222326, 242526} < B

(2.3) =2#{ (x,2) €ZP x 28+ @z + ahs + ahzz =0

! ! /
ged(z12h, 202, zah) = 1, (2n)1<n<e reduced

It is easily seen that the coprimality conditions given by ged(z12), 2225, za2%) = 1, and (21)1<n<e6
reduced are equivalent to

ng(xlla zéaxé) = ng(zlla'r/% Z3) = ng(xllr Z5,$g) = ng(Z&x/Qa Jig) =1



THE MANIN-PEYRE CONJECTURE FOR z1y2ys + 2y1ys + 3y19y2 = 0 7

together with the fact that (zj,)1<n<e is reduced. It then follows from [6] that the open subvariety of
A? given by the equation 7 26 + hz5 + 2523 = 0 along with the conditions

(), 25, 25) # (0,0,0), (x7,23,23) # (0,0,0, (24,25, 23) # (0,0,0), (26,25,25) # (0,0,0)
and
(21,22) #(0,0), (21,24) # (0,0), (21,26) # (0,0), (22,24) # (0,0), (22,25) # (0,0),
(23,24) # (0,0), (23,25) # (0,0), (23,26) # (0,0), (25,26) # (0,0)

is the versal torsor of the minimal desingularisation of Wg) and hence, through this parametrization,
we just performed a descent on the versal torsor of this minimal desingularisation of W3.

3. GEOMETRY AND THE CONSTANT IN THE CASE P! x P! x P!

We give in this section the proof of the Theorem 3| For example, [15] yields that the surface S C PS
cut out by the following 9 quadrics

X2 - XoXy = X1 X5 — X3Xy = X1 X3 — XoX5 = X1 X5 — X3X5
= XoXs— X5 =Xy X — X2 =X? - X1 X4+ X5 X7
=X? - X1 Xy — X3X7 = X1 X3 — X1 X5+ X X7 =0
is a del Pezzo surface of degree 6 of singularity type A; with three lines, the lines being given by
X1=Xo0=X35=X5=X5=0, X17=X35=X4y=X5=X5=0
and
Xs=Xs=Xs=X1 - Xy =X; — X2 =0.
The maps f : Wg — S given by

X1 = —y3T172

Xo = —x1(22y3 + T3Y2)
X3 = —1y2y371

Xy = —wa(21y3 + 2391)
X5 = y1y372

X6 = y1Y2Y3

X7 =z17273

and g: S — Wg given by
g([ Xyt X7]) = ([X1 : = X5], [X5 : Xe, [X7: —X1])

are well defined and inverse from each other. Thus Wg ~ S and is therefore a del Pezzo surface of
degree 6 of singularity type A; with three lines, the lines being given by y; = y; =0 for 1 <17 # j < 3.
As mentioned in the introduction, it follows then from [25] and from this isomorphism that Ws is
an equivariant compactification of G2 and Theorem [2| can be derived from the more general work of
Chambert-Loir and Tschinkel [17]. However, the method presented here using a descent on the versal
torsor is different from the method in [I7] and it is always interesting to unravel a different proof.

Let us denote by W3 the minimal desingularisation of W3. The fact that the open subvariety O C A7
given by
T121 + X920 + 323 =0
with the conditions
(z1,222324) #0, (2,212324) #0, (23,212224) #0
and

(21,22) #0, (21,23) #0, (22,23) #0
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is the versal torsor of Wg)* is a consequence of work of Derenthal [20].
To conclude, let us briefly justify why the leading constant of Theorem [2]

1 NN/ 4 1
2
— 241og(2) — 1—-- 1+-+ =
g (" +240E0) 3)1;[< p) < +p+p2)
agrees with Peyre’s prediction. s
First of all, the variety W5 being rational, we know that (W5) = 1 and work from Derenthal [20]
immediately yields a(Wy) = 1. We now have that

144"
wH (VNVék(A@)) =weo [Jwp
p

with wy, and ws being respectively the p-adic and archimedean densities. It is now easy to get that

#O(F n* 4 1
=15 (23) (50 5)

either by direct computation or by calling upon a more general result of Loughran [25]. Turning to the
archimedean density and reasoning like in [7] one gets that we is given by the archimedean density on
the open subset y; # 0, y2 # 0 and y3 # 0 of W3. This is the affine variety given by the equation

u1 + ug + ug = 0.

Using a Leray form to parametrize in ug, one finally obtains

/+°° /+°° duydus

Woo = .
*° coo Jooo max(Jui], 1) max(|ug|, 1) max(|us + uz|, 1)
An easy computation now yields

oo oo duldu2 2
=7°+24log(2) — 3
/_OO /_OO max(|uy|, 1) max(|uz|, 1) max(|u; + us|, 1) &(2)

which finally shows that the conjectural value of Peyre’s constant is

o(W3)B(W5)wn (W;(AQ)) = ﬁ(ﬁ +2410g(2) — 3) H<1 - ;)4 (1 + % n p12>

and hence that the leading constant in Theorem [2| agrees with Peyre’s prediction.

4. THE PARABOLIC EISENSTEIN SERIES AND SMOOTH APPROXIMATIONS
We quote the following lemma from [4, Lemma 4 and Remark 2].

Lemma 2. Let

1 1
Aa «, =3 i
(4.1) @ B= g 2 e P el s P g o s
ni,n2,n3,mi,mz,ms€~Lxzo,
ainimi+aznzma+aznzmz=0

where a = (a1, az,a3) € Z‘:’éo and a = (a1, as,a3), 8 = (B1, B2, B3) € C® such that R(«;), R(B;) > 1 for
all i € {1,2,3}. Then Aq(cr, B) converges absolutely if R(cv;), R(8;) > 2 for alli € {1,2,3}. Moreover
for 2 +e <R(w),R(Bi) < 15 it satisfies Ag(a,8) < 1 and

(4.2) Aa(aaﬁ) = Ma(aaﬁ) + gﬂ(aﬂﬁ)

where

2/7 Sq(a*, 3%) ( SC(l—ar+Br) T(—9 4 oitaites )

6
Off + a§ + a; —9 1+a’1‘+3a§+a§ F(1+2a;‘ B 1+oq+6a§+a§)

Ma(aa /8) =
a* B eC?

{o‘: 16:}:{0411:81}
vie{l,2,3}

=1 |a;| 7T
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with
* gk (0176)1_0‘T+5r (CLQ,f)l_a;"—ﬁ; (as’é)l—ag‘*‘ﬁ;
Sa(a ?ﬁ ) = Z 6372?:1(0‘:76;) <p(€)’

>1

and where Eq(ax, B) is an holomorphic function on

(43) Qs = {(a7ﬁ) € CG | %(al)ﬂ%(ﬂl) [12 +57 12 5] Vi e {1a273}7 n < % - 5}

for all e > 0 with n := E?Zl(|§R(()éi) = 2|+ |R(B;) — §|) Moreover, for (o, 3) € Q. one has
2

(4.4) Ealr, B) < ((fgax jad) ™ (1 + max (19 (0| +3(5)))) )

Remark. Note that the sum over a*,3* € C3 such that {af,B;} = {ay, Bi} for all i € {1,2,3}
appearing in the definition of the quantity Mg (c, 3) contains eight terms given by

(O‘LO‘;?O‘;) (Oél,O{Q,Oég) and (5?76576%3 (ﬂlyﬁ%/@i’»)
(OLT 052,0[3) (61,0[2,043) and (6?55;75;;) (alvﬁ%ﬁf’))
(a7, a53,a3) = (a1, B2,a3)  and  (B7,B5,83) = (B1, a2, B3)
(O‘T>a aﬁ) (O‘17a2763) and (/Bik76576§) (ﬁbﬁ%ad})
(aylﬂ,a a;) (617627&3) and ( f,ﬂ;,ﬁ;:) (al,aQ’ﬂi’))
(0470‘ O‘;) (/Blva%ﬂ?)) and (faﬂ§76§) (041,62, 3)
(OLT,O@,O@) (alvﬂ2a63) and ( Taﬂgvﬂg) - ( 1,0&2,043)
(af,05,a3) = (B1,B2,B3) and  (B1,53,535) = (a1, a2, a3).

Proof. Let a = (a1, a2,a3) € Z;éo and a = (a1, az2,a3),8 = (b1, B2, B3) € C? such that R(«;), R(B;) >
1 for all i € {1,2,3}. It is easy to see that Aqg(c, 3) converges absolutely if R(c;), R(8;) > 2 for all
i € {1,2,3} by alluding to inequalities of the form x +y > 2,/zy for x,y > 0.

We also clearly have

« 2
Aa<a7ﬂ) = A(fs1a1,62a2,53a3)(aaﬁ) = ‘Aa,a—%ﬂ—% (3)

with the notations of [4 Section 2, (2.7)]. Therefore, [4, Lemma 4] with £ = 3 and 3¢ instead of ¢
implies the first part of the lemma, namely that for 2 +& < R(;), R(8;) < 15 we have Ag(a, 8) < 1
and

(45) Aa(a,ﬁ) = Ma(ayﬁ) + é'a(a,ﬁ)

with Mg (e, B) being given by the quantity ./\/l;‘l _2p-2 (2) in [4, Remark 2] with k = 3 and Eq(cv, 3)
being defined by Aq(a, 8) — Ma(e, 3). Now, the expressmn at then end of [4, Remark 2] in which
one has only one summand corresponding to Z = {1,2,3} and J = (} in the case k = 3 immediately
yields the expression of M, (a, 3) given in the statement of the lemma.

The final part of the lemma follows from [4, Theorem 3] for & = 3, with 3¢ instead of ¢ and after
noticing that, contrary to [4], we don’t have the fraction % in front of the sum in the definition of 7.
Hence, in particular, 7 is given by %nOﬁ 2 2 with the notations of [4] Theorem 3]. ]

Since Lemma 2] constitutes the main tool for our proof of Theorems[I]and 2] we say a few words about
its proof. First, one divides the variables r; = n;m; in various ranges and eliminates the largest one (say
71) using the linear relation among them. In order to do this one has to write >, . _ |ni|7%![my | =5
in an efficient way in terms of the remaining variables. This is done by using (a shifted version of) the
identity of Ramanujan for the divisor function 7 in terms of Ramanujan sums, in combination with
a careful use of Mellin transforms to separate variables in expressions such as (ra & r3)°. After the
variables are completely separated, one applies Voronoi’s summation formula to the sums over 7o and
r3. The main terms will then give the polar structure, whereas the error term will produce functions
which are holomorphic on the stated range.
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The following lemma allows us to replace the characteristic function of the interval [0, 1] by a smooth
approximation at a cost of a controlled error.

Lemma 3. Let f(z) = e~1/(@=a%) for0 <z <1 and f(x) =0 otherwise. Let C := fo y)dy and for

0<d<1/2, let
+oo
y—1+(1F1)5/2 +
F5 = 56’/ ( 5 dy, zeR™.

TheanGCoo(RJr),F&()flforx <1-6, Ff(x)=0 forz>1+6 and, forx >0,
0 < Fy (z) < xpy(2) < Fyf (2),

where Xjo,1) s the indicator function of the interval [0,1]. Moreover, the Mellin transform ﬁ‘(si( ) of

F(;i( ) is holomorphic in C\ {0} with a simple pole of residue one at s =0 and for all n > 0 it satisfies
for all s € C\ {0}

(4.6) FE(s) <o F(s) — - < min(s, (1 +s) 7).

(1 + [s[)m

Proof. The statements on FéjE are immediate from the definitions. Moreover, assuming #(s) > 0 and
integrating by parts we have

—+o00 T — 1
F;(s):rés/o xﬁf( ”(;“)5/2)(130:81(7/0 (1462 — (15 1)5/2)*f(z) da,

the last inequality resulting from a change of variable. This already shows that Ff is holomorphic
in C\ {0} with a simple pole of residue one at s = 0. Integrating by parts n times then yields
Fif(s) <, 07™(1 + |s|)=""1, which also implies the second bound in if 6 > 1/|s|. Finally, if
d < 1/|s| we have

F(s)— £ = %/O (1482 — (15 1)6/2)° — 1) f(z) dx <

S

since (1+z)* =1+ O(|sz|) for |sz| < 1, |z| < 3. O

5. PROOF OF THEOREM 2] NEGLECTING THE COPRIMALITY CONDITIONS
By Section 2.1 we need to count the integer solutions to
(5.1) 121 + Toz3 + 1323 =0

satisfying the inequality max{|z1|, 222324} x max{|za|, 212324} X max{|z3|, 212224} < B and the copri-
mality conditions

(5.2)
ged(zy, 22) = ged(z1, 23) = ged(z2,23) =1, ged(xy, 292324) = ged(xa, 212524) = ged(xg, 222324) = 1

with 21, 20,23,24 > 0. The case where xi1z2x3 = 0 can be dealt with easily and we postpone its
treatment to section [6] so we focus on the case where zixox3 # 0. We start with the following
proposition which gives an asymptotic formula for the number of solutions to the more general equation
a1x121 + a2x223 + azrszzz = 0 without imposing any coprimality condition. These conditions do not
factor out immediately at the beginning of the argument, so one cannot deduce Theorem [2| directly
from the Proposition [I, however it is instructive to prove this result first, as all the analytic difficulties
are exactly the same but the notations and the arithmetic are simplified. In Section [6] we shall give
the proof of Theorem [2| by performing the required arithmetic computations and indicating the minor
differences in the analytic argument.
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Proposition 1. Let B> 1 and e > 0. Let a = (a1, az,a3) € Zio and
(5.3)

3 4 A1T121 + Q22222 + A3X323 = 0
Kao(B) := 41 (x,2) € Lo X L5

max{ |z, 202324} X max{|za|, 212324} X max{|zs|, 212224} < B
Then there ezists a polynomial P, of degree 3 such that

(5.4) Ka(B) := BPa(log B) + O (BF+* max |ai|'").

where the implied constant only depends one. The coefficients of the polynomial Pa are O(maxi<i<s |a;|®)
and the leading coefficient is ﬁIGGQ, where

T1 dyrd
(5.5) Lo = // X[0,]as/z] (alf +as— )dxld odz ———= 91¢Y2
[—1,1]3x[0,1]2 Y Y2 las|y1ye

and

> al,ﬂ az,é ag,f 14
S (01 Ofaz. ) (a2 O(0)

&l = B

=1

Proof. In the set defining K, (B) we have 8 inequalities coming from all the possible values taken by
the maxima. In other words, given each subset I C S3 := {1,2,3} we have the condition

2122232’4 H |QL‘ | H o
1 \

iel jeJ

where J := S5\ I. Now, let 0 < § < 3 and F5 be as in Lemma Then we have K, (B) < Kq(B) <
K} (B), where

K;t(B) o Z H Fi< 212’22’32’4 H‘l’z‘ HZ )

(m,z>ez;0xz4>0 ICSs i€l jeJ
ayxy2z]tagrozotagzrgzz=0

Clearly it is sufficient to show that (5.4) holds for both K (B) and K/ (B) with the same polynomial P.
We now write each Fj * in terms of its Mellin transform using the variable s; for the cut-off function
corresponding to the set I. For brevity we shall often indicate for example with s123 the variable s 2 3y
and with ¢y 23y or c123 the corresponding line of integration, and similarly for the other variables. In

particular, we will denote by s the variable sy. As lines of integration, we take c¢; = ‘ ‘ + ¢ for all I for
a fixed € > 0 small enough. Doing so we obtain
KiB) = Y i H R A |
@ B (2mi)® J J Zz s1(3=11) i (s1)dsr
(w,z)EZ3 x74 cr

>0

a1z121+a2w222+a3L3z3:O
where §;c; = 1if i € I and d;c; = 0 otherwise and where the sums inside the integrals are over I C Sj3.
Notice that with this choice we have

2
dear=1+8, Y o= 7+45 201(2+6i61—|l|):§+85, > eB-|I) =1+12e.

ICSs 1€8s ICSs ICSs
i
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In particular the above series are absolutely convergent by Lemma [2] Now, write

f:z (28+81 + 82 + 83 —5123)

2
Q= %(28—}-381+SQ+S3+2812+2813+8123 ZSI-i-f ZS[ 2+(51€]—|I|)
lerl
(56)  qy:= 225+ 51+ 35y + 53 + 2512 + 2593 + 5123) = »_s1+§ = ZSI 2+ d2er — 1) -
2el
Qg = %(28+81+82+383+2813+2823+8123 ZS]+£ ZS] 2+($3€]—|I|)
3erl

where we are neglecting here the dependencies on the variables s; in the notations in order to simplify
the exposition. Notice then that

Z S = %(Cvl + oo + a3 —f), Z 81(3 — |I|) = %(al + as + a3 +3§)
ICS; ICSs

Thus, summing the Dirichlet series we have

1 1 -
T / 5 Blertortas=O¢(L(a; + ag + ag + 36)Aa(a — € a+ &) [] FE(s1)dsy
Cr I

with the notation of Lemma By Lemma and using the notations (4.5)), we can split A, (a—¢&, a+¢§)
into

Ko (B) =

Aa(a_faa+§) :Ma(a—g,a—i—g)—i—&l(a—f,a—i—g)
thus obtaining the corresponding decomposition KI(B) = MF(B) + EX(B), with
(5.7)

+ Py 1 l0¢1 Qg T+Q3—
ME(B) ,_W//(CI)BZ< eat0s=O¢(L(ay + ay + as + 36))Ma(a — £ 0 + &) H (s1)dsr

1 1
Ei B) = s(ar+ostaz—&) (1
a(B): (2m’)8/(61)32 crreeTesTt) (5 (o +ag +az + 38))Ea(a — §,a +§) |1| (sr)dsy.

In the latter integral we move the line of integration cg, to cs, = 7 — 2—7 + 6e = —98 + 6¢. Notice that
doing so, in the new lines of integration, we have R(o; +&) = g—|—8€ and R(a; —&) = % %4—95 = £+9E
for all i € {1,2,3}. In particular we have n = 320, (|R(ci — &) — 214 [R(a; + &) — 2|) = 2 — 3¢ on the
new lines of integration. Moreover, since
a1 + ag + ag + 3
2
is independent of s123, we have R(2 (a1 +as +as+3¢)) =1+ 125 on the range o +6c < cg, < §+e¢
and hence we stay on the right of the pole of the {-function. By (4.4) we then have for & small enough,

EX(B) < A14BQ7+136//(CI) (1+mlax|31|) U ‘Ff(s;ﬂds]

(5.8)

=35+ 2(s1 + 82 + s3) + S12 + S13 + S23

where A := max |a;]. Now, we have
1<i<

+oo 1 5
/1 rnm( o 2)d$<<|log5| L 07

“+o00 1 1 1/5 “+o0
/ J)21 min ( ﬂ)dl‘ < / 1‘20 dz + 6_22 / x_2 dz < (5_21
1 z’ 622y 1 1/8

and so, using Lemma [3] we find

(5.10) EX(B) < AMp3rtideg—2l-c

(5.9)
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Now, we consider the main term M} (B) defined in (5.7). We can write Mg (a — &, a4 €) as

3
1+ 28)"¢(1 - 2¢)>*
oa—§, o+ «
Mal ¢ &= z:o o + as + as + (3 —2k)E — 2 ( ¢)
with
1+2€1£ g 1+2€2£( £)1+263f
(a1, ¢ asz, as,
Qa il §) 1= Z Z (g3+2()2k73)5 o(0)
( ) #{Ee\{ﬂ}}s k =t
5.11 ileg=1
3 —aite€é | 1+aitoastaz+(3—2k)¢
X 2m? H 1+u£r((12+'123+(3:2i)£ 14+a, 6. 1+ 1 +as+(3—2k)¢
iy |ai‘_ai+€i§+ 3 F( +O¢z2_61€ _ a1tasg 60ts )

and where the sum is over € = (1, €2, €3) € {£1}3. Notice that in the region

(512 00t g+ Rt IO (0 vicnag), mEl<-.
we have that Qg (o, £) is holomorphic and satisfies
(5.13) Qai(a, &) < APTERE)
uniformly in a, by the bound |(a, £)*/¢°| < (|a|/£)®) for R(s) > 0, and since
(5.14) D(3)/T(352) <o (1+[t)77%
by Stirling’s formula [23] (8. 328 1)].

Then, we write Mz ( Z ) where

k=

C(1+28)R¢(1 —2¢)37*F
ar + ag +ag+ (3 —2k)§ —

1

// Bileatastaz— S)C(%(al + ag + as + 3¢))
CI

X Qa,k(a7§) H F(Si(sl)dsl
I

+
Mak

and with all the lines of integration still at ¢; = \I\ + e for all I. If k € {0,1} we move the line of

integration cg, and ¢y to cg, = i 8 +ecand c= & + € without passing through any pole. Indeed,

by (5.8), we have

29
14126 < R(3(oq + az 4+ az + 3¢)) < <512

and %(f) R(s) — %(8123) + & + 3 satisfies R(¢) > 2¢ in the range  + ¢ < cg, < 5 + ¢ and
e < ¢y < & +e Thus, for ke {0 1} we have

5.15 MZ* (B) < A% T12epatse 1+maX s1l) F (sr)|dss < A5 H12epEit8es-l—ec
a.k

since we are inside the region and since [¢(1 — 2§)|3 < 1+ [¢] for R(€) = £ + ¢ by the convexity
bound [32] (5.1.4)].

Now, consider the case k € {2,3}. In those cases and for £ small enough we move the line of
integration cg, to cs, = 108 + £ passing through the pole at a; + as + a3 + (3 — 2k)§ — 2 = 0, namely
S1285=%—F > g 5, (2= [I[)(3—Fk)+|I])s; with respect to s123, but without crossing the poles of the ¢
functions by and since we increased R(§) from 2¢ to 2% + 2¢. The contribution of the integral
on the new lines of integration is easily seen to be O(A%HQEB %”56’1’5) and so we are left with

examining the contribution of the residue.



14 SANDRO BETTIN AND KEVIN DESTAGNOL

First we consider the case k = 2. As mentloned above, Wlth respect to si23 the pole is located at
S103 = 1— Z Also we can replace each F* 5 (s1) Wlth = at a cost of committing an error which,
by . ) and since is satisfied, is bounded by

< B max // ABTORE) (1 — 2£)mln< ) H H dsy
0SS5 ) Jier)rus, “srl oy [s1] 1\ 5,

where s123 := 137, ¢ s7. In particular R(s123) = 1 — Te. Also, R(£) = 6¢ and so [((1 —2¢)| < [¢]™®
by the convexity bound [32] (5.1.4)]. Thus, the above is, for I’ # Ss,

(5.16)
§A3t36ep 7e A3+36e 7e d
< Jfln, Db L L [, e
\sl,|<§3 1£8: 510 ps, I#83 IsI,|>53 183 211 g, 191
< A3+365351 Te

and a similar argument gives the same bound also for I = S3. It follows that

(5.17) M7,(B) = W,B + O<A%+12533—§+855—1—s n A3+36eB(51—85)
where
1+ 2 ds
§c = %) Qas(e,§) [ —
(cr)1ss ZI#S SI) 1#£8Ss S1

and where o and £ are given by with s123 replaced by 1 — Zl;ésg sy. Notice that by (5.13)), we
have W, < A5.

Now, let us consider the case k = 3. We proceed as above replacing Féi(sl) by 8;1 for all I # 0.
We can 't do the same for I = () yet because the pole giving the residue is, for £ small enough, at
S123 =5 — 3 Z#S |I|s; with respect to s123 which does not depend on s and thus the integral with

Fa (s ) replaced by 1/s is not absolutely convergent. We arrive to

8 ~ d
M;SS(B) = 4(2;1)7 //(‘ : B1+§C(1+3€>C<1+2§) Qag(a,E)SF(;i(s) S1
CI)I#Sg

2= 1z, Hls1 ’ 75, o1

+0 (A%+12EB§%+855—1—5 + A3+36531+4551—8a)’

where the lines of integration are still at ¢; = |I| + ¢ for all I # S3. Next, we move the lines of
integration ¢; to ¢; = € for all T satisfying |I| = 1 This has the effect of moving R(£) from 4e to
—t+4deand R(3 -1 > rzs, |1]s1) from + —3¢ to 1 —3e. In particular we stay on the right of the poles
at sy = 0 for all I and we encounter a quadruple pole at s := § — % > 1405, (3 — [I])s1 with respect to
s. Note that we have £ = 0 at the quadruple pole. The contribution of the integrals on the new lines

of integration is, as in ([5.9)

§
< A2+24€B%+45 // maxy |SI| | H dSI < A2+246B6+4567—76
(er)r0,55 | ZI;AS;; |I|SI| I#85

since we are on the region and since, by the convexity bound [32] (5.1.4)], |§(1 +36)C(1+2¢)P <«
€] for R(E) = —4 T+ de. As for the residue, we notice that we can replace sF; (s) by 1 at a cost of
an error which is O((5A3+6€B 1+5€) Indeed, we can write the residue as an mtegral in s along a circle
of radius £ around % — %21#0753 (3 —|I))sr = O(¢). We then use sF5*(s) — 1 = O(|s]6) coming from
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(4.6) and bound trivially the integrals. Thus, we have

C(1+38)¢(1+2¢)3 ds
MtzltS o Bl+£ ( 38) (S ) Qa,S(aag) H 871
(cr)rs#sy 5= 123 I1#0,53 I
—i—O( BB +8eg—1—c Bl+556>
with
1 1 2 1
(5.18) si=2 - > B=1)sr, si2s = 373 > s,
1#0,5; I#8s

a given by (5.6) with si23 and s replaced by (5.18) and lines of integration which we can take to be
cr = 1—12 for all T # S3,(). Note that computing the residue in £ rather than in s doesn’t change the
result. Computing the residue then gives

(5.19) M ;(B) = BP,(log B) + O<A%+1253%+855—1—5 n A3+365B1+5551—76)’
where P, is a degree 3 polynomial with leading coefficient
1 Qa3(a,0) dsy

Pa = 7/ =N’ 7 _
(520) 3 (27T’L)6 (le) 432 5123 S I;!;S;; Sr
with s and s123 given by (5.18)),
(5.21)

oy = $(2+ 283 — 51 — 53+ 512 + S23 — 2513), o3 = £(2+ 253 — 51 — 53 + S13 + S23 — 2512),

and a3 = 2 — as — a3, where again we neglect the dependencies on s; for I # (), S3 in the notations.
Note that we will establish later that Py 3 = 17 4I G/, with the notations of Proposition |1 and hence
Py 3 # 0. Also, by and the corresponding bound for the derivatives of Qg x(ct, §) with respect
to &, we have that the coefficients of P, 3 are O(A%).

Collecting the estimates (5.10)), (5.15)), (5.17) and (5.19) we have

K=(B) = BP,(log B) + Wa B+O(A3+36531+5551 Te | Al BB 13521 s)

= BP,(log B) + WaB + O(A14333?+145)

upon choosing & = B~ 7. Thus, it remains to show that P, 3 = 14114I &/, with the notations of
Proposition
First, we notice that, for oy + as + a3 =2 and £ = 0, Qq 3(c, &) simplifies to
)

11—y

r
Qag(a O) —271' G/ Hall(afr‘(al)
2

Next, we use as, ag as new variables, writing sy and s3 as

(5.22) S = —2+ 203 + ag + 1 + S13 — S23, §3 = —2+ 203 + a2 + 51 + S12 — S23.
Note that with this change of variables, we also have

(5.23) S123 =2 — g — a3 — S1 — S12 — S13, §=3— 202 — 203 — 251 — S12 — 513 + 523

and remind that a; = 2 — as — a3. The lines of integration for as, ag are at real part equal to 3 Since
the Jacobian of the above change of variables is equal to 3 we find, with (5.22)) and (5.23 -

1 dsidsiods ds
Pos = —/ Qa3 // LTS dagdas.
’ (277’&)2 ( ) 2 Z 144 5123 §525351512513523
The inner integrals can be evaluated by moving each integral to —oo (or, equivalently, to 4+00), re-
peatedly applying the residue theorem. For example, one can start by moving cs, to —oo encountering
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poles at s1 =0, 1 =2 — 2a2 — a3 — 89 — S13 + S23 and 51 = 2 — 2a3 — g — S3 — S12 + So3. Inserting
the contribution of the residues and moving the remaining integrals in the same way one finds, after a
simple but tedious calculation which can be readily checked using Mathematica, that

_Qa 3( )
P,3= - dasod
S (2mi)? //(2) 144a1a2a3(a1 —D(ag —1)(az —1) azdas

273 NG
daad
277@ //( 2) 144 L Qi (1 = ag)|ag|t = T(F) @2das

with a; = 2 — as — a3 and the result follows by the following lemma. O

Lemma 4. Fora € Zg’éo we have

1—0(1'

1 i 3 INES
(5.24) Lo = @mi? //() H = an)as azr(%)dazda?,

i=1

where aq := 2 — ap — a3. Moreover, Ty = w2 + 241og 2 — 3.

Proof. For ay + ag + ag = 2, we have the I" identity (see (2.8) in [4])

=

™

ﬁr (32) &T 17041 (1—a2)D(1 — a)
n — (1 — a;)T(ey)

2
047
2

i=1 =1

and, considering ai; = 2 — ap — ag as a function of ay with aj fixed, we have the Mellin transforms [31]
(7.7.9) and (7.7.14-15)] for > 0

(1 — .’L‘)_OCBX[OJ] (.’I}) le =1
g2t dag =< (z — 1)_0‘3)([1’00) () ifi=2
(14x)-0s ifi =3

1 F(l — al)F(l — ag)l“(l — OZ3)

(5.25) 2 I'(1— ;) (ey)

for ¢ > 0 and R(az) < 1ifi=1,¢>0, Rlawg) > 0if i =2 and 0 < ¢ < N(az) if ¢ = 3. Also, for
0 < R(a2),R(a3) < 1, we have the identity

1
011(041 — 1)0&2(0{2 — 1).

/ (21/y1)* 279 (22 /y2) "2 (y1y2) ' dordaadyidys =
[0,1]4

It follows that, in the case i =1,

I(1—a)l(1 — ag)las|'~*2~*2[ag|*2 " a|* "
dOéQdOég
(2mi)? J Jz) aragaz(l —ag)(l — a2)(1 — az)T(aq)

_ L/ (laalz1/ys — |ag|za/y2) =2 |ag|** !
- J2)

das(y1y2) " daydaadyi dys

4 —
jarlo1 /u1 a1z /s 30 as(l —as)
_ / . (Jaslyry2) ~ dary dady; dyadz,

O0<lay|zy/y1—lazl®wa/ya<laz|/z

since ﬁ f(g) T Sﬁ = fol X[o,1/2)(%)dz, for 2 > 0. One evaluates similarly the cases arising from

i € {2,3} and (5.24) easily follows.
Finally, in the case where a = (1,1, 1), we notice that after using the Gamma identity cos(%*)I'(s) =
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m1/225710(%) /T (152), which follows from the reﬂection and duplication formulae for the Gamma func-
tion, the mtegral on the right hand side of (| reduces to

3 ra —ai)cos(w)

2 042'(1 - Ozi)

'3
8 22)D(1 — 21 — 22) cos(Z2L) cos(T22) cos<7ﬂ(l_§1_z2)>
= 2 ledZQ
i)

; leg(l—zl —22)(1—2’1)(1—22)(2’1 +22)

8

dagdag

q

after the change of variables z; = as and z3 = a3 and remembering that a; = 2 — as — a3. The last
integral above is computed in Lemma 2.10 of [§], where it was shown to be equal to 7% + 24log2 — 3
by means of a long calculation. One could also give a shorter proof of this identity (still requiring
some computations) by writing (a(a; — 1)az(ag — 1)) 7! in terms of its (1-variable) Mellin transform,
applying and evaluating the resulting integrals. O

6. PROOF OF THEOREM [2

We now move to the proof of Theorem 2, namely counting points satisfying and the coprimality
conditions . First, we give three lemmata which respectively remove the extra coprimality condi-
tions by mean of Mobius inversion formula, show the convergence of the resulting sums, and compute
the Euler product arising in the main term.

Lemma 5. Let f : R” = C a function of compact support. Then,

/
E f(x1, 21,22, 22,3, 23, 24)
(w,z)EZ:;O xXZ%
= E p(e,d, ) E f(biz1, c121,baxa, ca2a, b3, €323, Ca24),
e,£eN3 (m,z)EZL;O XZ‘;O

deNe

where here and below Z' indicates that the sum is restricted to satisfy the coprimality conditions
(21,22) = (21,23) = (22,23) = 1, (@1, 222324) = (%2, 212324) = (T3, 212224) = 1
and where e := (€1, ez, e3), d = (d12,d13,da1,d23,d31,d32), £ := ({12,013, l23),
by := [e1,di2,d13], b = [e2,da1, d2s], b3 := [e3,ds1, d32]

6.1
(6.1 c1 = [da1,ds1, l12,l13], 2 = [d12,ds2, l12,la3], c3 1= [d13,d23, {13, 23], ¢4 := [e1, €2, €3]

and, with a slight abuse of notation,

p(e,d, L) == p(lia)p(l13)p(fa3) H p(eq) H p(diz).

1<i<3 1<4,5<3
i
Proof. This is just an immediate application of M6bius’ inversion formula. O

Lemma 6. With the notations of (6.1) and for real numbers uy,us, us, wi, ws, W3, wq satisfying

U, Wi, u; +wg —1—e 2k, Vi€ {1,2,3}; ws=20; k=0

6.2
(6.2) ui+w;—k>1+¢e Vi,je{l,2,3}i#j;, w,+w;—rk>14e, Vi,je{1,2,3},i<j;
we have
max(bycy, baca, b3cs)"”
Ui pU2pU3 W1 W2 W3 W 1.
(6.3) bytba?b3® ey ep* ez eyt

e,£eN3
deN6
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Proof. We have the formal Euler product formula

1 _ H Z p—(b’lul +bhus+bhus+ciwi +chwe+chws+chwa)
(64) E bu1 bgz b1313 C11U1 67;2 Céus CZLUAL ’

efeeNl\éB 1 p e'}z’ezgo,d/ezgo

where
/ ! ! ! / ! ! ! / ! ! ! / / !/ !
by = max(ey, dyy,dy3), by = max(ey,dy,,dsys), by = max(es, dy, dss), ¢y = max(e], e, €s)

6.5
O5) 4 max(diy, di, €, Ors), ¢ = max(dig, dg, s Uy, ¢ = mix(dy, dss s Uy

We have that the p-factor of the Euler product is
1<i<3 1<4,5<3, 1<i<5<3
i#
and thus both sides of ([6.4]) converge whenever each of the exponents above are smaller than —1.
As for (6.3)), we notice that by symmetry it suffices to consider the contribution to the series coming

from the terms with bycq > baco, bycs. This is less or equal than the left hand side of (6.4)) with (w1, w1)
replaced by (u; — k, w1 — k) and the lemma follows. ]

Lemma 7. With the notations of and for a = (a1,a2,a3) € Z‘;’éo, let

* vl aibici, q)(agbaca, q)(asbscs, q
6(1::2% Zu(e,d,f)(lll )(azbacz, g)(asbses, @)

(66) b1b2b301626304

q=1 e, LenN3
denNé

Then 6’("1’171) = &, with Gy as in Theorem @

Proof. With the same notations as in (6.5)), we have that for @ = 1, the right hand side of is
equal to

(p — 1)pq' (71)6'1+e’2+e'3+d'12+d’13+d’21+d'23+d’31+d’32+2'12+6'13+€’23
H Z p2q’+pq/ +b] b, +bs +c) +ch+ch+c) —min(q’ ,b] +c ) —min(q’,by+c5) —min(q’, b5 +ch)
P \q'€Zso,d €{0,1}°
e £'c{0,1}®

where pp = 0 and py = 1if ¢’ > 1. As in lemma 2.7 of [§] we observe that the terms with ¢’ > 2 do not
contribute. Indeed, if ¢’ > 2, then min(¢’, b, + ¢;) = b} + ¢} so that the exponent of p above is 2¢’ + ¢
and so it does not depend on d},. In particular the contributions of dj, = 0 and d}, = 1 cancel out.
After restricting the sum over ¢’ to ¢’ € {0,1}, we are just left with performing a finite computation
over the 2! possible values of the variables. With the help of a mathematical software we then obtain
the claimed Euler product formula for 6?17171). |

We are now ready to prove our Theorem

Proof of Theorem[3 Let K}(B) as in (5.3) but imposing also the coprimality conditions (5.2). In
particular, by (2.2)) we have

(6.7) Nep, 5(B) = K{i11)(B) "’NLVVS)’;I(B):

where NLW\ ﬁ(B) counts the number of points in Ws of height less than B which also satisfy x1zex3 = 0.
3

Now, for 23 =0 (and thus ys = 1) then (1.1} reduces to 7+ 72 = 0. Since we have (z1,y1) = (2,92) =
1, then x1 = —x2, y1 = y2 and thus

36
(B)=1+3 Z 1:723+O<B%10gB).
z€Z40,yEN, (z,y)=1 T
lol.y<B1/2

N
(6.8) Wa, 1
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In particular, it suffices to prove an asymptotic formula with power saving error term for K (*1’1’1)(3).
Since it doesn’t introduce any difficulties, in the following we shall compute an asymptotic formula
for K} (B) for all ac Z

Let 0 <6 < =. Using the same approach used for Proposition I and with the notations of Lemma
and of the proof of Proposition [T} we need to compute an asymptotic formula for

Ki*(B) = 3 I1 7 H|xz|Hz

(e, z)ez?ﬁoxz‘l I1CS3 el jedJ
ajxq2]tagrgzotazrzzz=0

!/

With the notations of Lemma [bl we can rewrite this as

K5B)= Y pledt) Y [ ri | emememesd T Ty T ) .

e;§§§, (m.z)ezioxz‘;o ICS3 el jedJ

a¥wyz+afwgzytalezzz=0

where a* := (a},a3,a}) = (a1bicy, azbaca, agbscs) with b, ¢; as in (6.1). Thus, proceeding as in
Proposition [I] and using the same notations and lines of integrations we find the following expression
for K:*(B)

S[ dS[

6 d£ B2 (1 +aataz— E)C( (a1+052+043+3§)) (a—g,a+§
//(('1) H

27TZ Z(al+a2+a3+3f)bi¥1 Sbg@ Eb?S £C?1+Ecg2+§C?3+§

e, £6N3 I

aend
Notice that by . ) with kK = 0 the outer series converges absolutely. We keep following the same
approach as the proof of Proposition 1| I splitting Ag into My + &g and thus K% (B) into M}*(B) +
E%(B). We can treat E:*(B) as above with the only difference that in this case we move cg, to
i — 27 + 6¢, where v := 32= V0185273 (this value is the smallest one can take under the condition that
the inequalities are satisfied). With this choice, (4.4) and ( give the bound

max a1b101 a2b202 a,3b3,03 2 277 567y
E;i(B) < § : ( ) ) ) Bl—27+13e 1+max|31| 2 27~ H ‘Fg SI ‘dS[
coos. AT (bybobs)3 274‘950305’0:;:’ (c1)
dené

_ 567y
<A 3172v+1356 3—274 57

where A := maxjgics |a;|. As for M}*(B), we treat it exactly as in Proposition [1} splitting it into
Mi¥(B) = 5_o E;%(B). As above we have that M5 (B), M;%5(B) <4 B%+55717¢ where the
sums in the error terms are immediately seen to be convergent by (5.13) and (6.3). For M;%(B) we
find similarly as in the proof of Proposition

d,r) B¢ 3Qax 3 d
Mg5(B)= > ;m //(0)50( C(1+38)¢(1 +2€)°Qa- 5(, §) ) I %

1438 a1 —§pas—E{azs—¢ 041+E a2+5 a3+§
b] b b 140,55 ST

c.ten, 35123 ¢4 3

deN6

+04 (B%HE(S*H + B1+5€51’75)

with s = % — %E[;ﬁbsg(g — |I|)s1, S123 := % — 3 217553 |7|s7, lines of integration ¢; = 12 for all
I # 53,0, Qg+ 3 asin (5.11) and a and £ given by (5.6) with s123 and s replaced by - Computing
the residue then gives

MZE,(B) = BP;(log B) + Oa (B%+855—1—€ + Bl+5651—78)
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where P is a degree 3 polynomial with leading constant

(e,d,£) // Qa- 3(ax,0) H dsr
2m (%) 432 5193 5 €407 032053 ] 5% c5® ST

e£€N3 I#@,S;;
dend
and ag, asz as in (5.21) and a3 = 2 — as — as. Now,
o0 a
1 (a1byc1,€)(azbacy, ) (asbses, £) L)
«3(a,0) =272 .
Qo o(ex,0) =212 ) 7 H )
and hence by the same computation as in Proposition [l| we find P, 3 = 1}146 Ta with G, as in

Lemma,
Finally, we treat M ;iQ (B) exactly as in Proposition [Ifand so, collecting the various asymptotics and
bounds, we arrive to

K5(B) = BP;(log B) + Wi B + 04 (B1001 7 4 ploiiicg 3555 7)

for a certain W7 € R. Choosing ¢ = B~ we obtain
K3(B) = BP;(log B)® + Wi B + 0, (B!~ Hiz +1%)

In particular, by (6.7] ., and Lemma |7| and recalling that v = 391_1V0185273 we obtain Theoreml
for all & < HE=2VI52T5T — (0.00228169 . O

7. PROOF OF THEOREM [1]

By (2.3) and renaming for simplicity zg = d1, 25 = da, 23 = d3 and z4 by 23 we have to count the
solutions to

£L'1d1 + .’E2d2 + $3d3 =0

where x € Zio,d,z € N3 with © = (21,29, 73),d = (dyi,da,d3),z = (21, 22, 23) subject to the copri-

mality conditions
(1) (1,22, 23) = (@i, x5,2,) =1 Vi, j, k such that {4, 7, k} = {1,2,3},

and

max {|J}lzl|2d1d2d3;]} < B.
J

1<4,5<3
Let 0 < 6§ < % This parametrization and 2.3 then imply that we just need to consider

(7.2) N (B) =2 Z/ H Fi( 2d13jd3 Zé)’

zezd d,zeNd  1<4,5<3
x1dy+axodo+x3dz=0

where Y indicates the coprimality conditions (7.1]), since for all § > 0 we have
N; (B) < Nig, 5(B) < Ni (B).

We shall prove

(7.3) Ni(B) = BP,(log B) + O(Bl+€51—05 + B9

1 o L with the notations of Theorem I and
for some C, K > 0 and € > 0 small enough, so that choosing § = B~5/(C+1) e obtain Theorem
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7.1. Initial manipulations. We write the F (;i in term of its Mellin transform using the variable s;;
for the cut-off function corresponding to (7, j) and choosing

1 _1 _ 1
Csy; =5 1HE Csyy =3 t4e, csy; =5 +06e

as lines of integration for all j € {1,2,3}. We obtain

>
tipy ! B FE (s Vds, .
N6 (B) =2 Z 27T’L //Cs ) Hk 22 sk]d i,j £k St 22 Skjt20 Sik HF6 (Sm)dsz]

wEZiO,d,zeN:; i
xqdy+xodog+x3d3z=0

-9 Z

zezd,),d,zeN3
z1dy+agdy+wgdz=0

!

27” //(c BRI fkdawiz« % HFa (sij)dsi;

where
1 1
5 § Sij + E Skj — § Sik, fk = § § Sij — § Skjs Vk € {17233}
1<i,5<3 1<5<3 1<z<3 1<i<3 1<5<3
i
E Sij
1<4,7<3
so that

ar — & =2 Z Skj op + & = Z Sig-

1<5<3 1<i,j<3
7k
Note that we have
(7.4) &L+6+E=0, ag+artag=2s"

and that, like in the proof of Theorem [2] we are neglecting the dependencies of these notations on
variables s;; in order to simplify the exposition. Also, notice that with the above lines of integration
we have

R(&) =8, R(&) =—e, R(&)=—T¢, R(s*) =1+ 33¢

(7.5) 2 2 2
%(041) = g + 14e, %(Ozg) = g + 23e¢, %(ag) = g + 29¢

so that in particular the above series are absolutely convergent by Lemma
We make a change of variables, discarding the variables si1, S22, S13, S23, S33, and introducing the
variables aq, ag, &1, & and s*. The inverse transformations are

* *
s11=8" —a; — & — S21 — S31, S22 =8 — g — & — S12 — S32,
(7.6)  si3=—s"+ 31 + 16 — 5124 s21 + s31, So3 = ="+ Sap + £& + s12 — S21 + 32,
* 1
s33 = 8" — 51 + g — & —&2) — 831 — 832

and the Jacobian is equal to 1. In the following, to simplify the exposition, we shall keep using also
the older variables (as well as £5 and a3 given by (|7.4)), treating them as function of the new ones.
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7.2. Resolving the coprimality conditions. For R(ay +&;) > 3 2 and R(s* —2&;) > 1, using Mobius
inversion formula to remove the coprimality conditions (7.I]) (this is lemma 2.1 of [8]) we obtain

Z H Oék §kdak+§k 9 —2&k

mEL;O d,zeN3
@1d)+aodg+w3d3=0

_ - bi) (el fi)lgn)
(7.7) n Z Z 1;[ (r1 pan) s~ fk(r2 )i )0 +Er (13 g2y, )5 260

b,c,f,geN3, mezio d,zeN3
heN
S8 _ | reesdp=0

- Z (H luak —&k ak-‘rﬁl‘fkg)"k—(QE )C( 2£k)>"47‘(a 7€’a+£)7

b.e,f.geN3, k=1 "1,k Tok
heN

with the notation of Lemma 2] and where for {i,j, k} = {1,2,3} we defined

(7.8) Tk = (90, 95, D], rok = [bi, b, frl, T3k = [Ci, Cj, frr GR)s Tk 1= T1kT2,k-

For future use we also observe that for o > + e, with € > 0, we have

Z H — H < Z p—o >k (max(g”gj,h )+max(b' b/,fk)-‘rmax(c cJ,fk,gk))>
p

b,e, f QEN3 k=1 7’1 K T2,kT3, k b/,e!,f/,g’ €N3,
h'/€eN
(7.9) =[[a+o™)) <1,

p

where, in the sum over k in the first line, 7, j are such that {4, j, k} = {1, 2, 3}.
Now, by (7.7)), we have

NE(B) =2

(T ) o
k=1 3k

bedo eNS 1k

Ar<a—aw@(ﬂﬁf@iﬂ)d«--),

where, here and below, we indicate by f(___) d(---) an integral with respect to the variables s*,a1,a9,01,02

and s12,521,531,532, along the lines of integration previously indicated, with the exclusion of the variables
which have been eliminated by the computation of a residue.

7.3. Applying Lemma |2 l. We write Ap(a —€&,a+ &) as M (a—&Ea+ &) +E(a—&a+€) and
we split accordingly N3 (B) into

(7.10) Ni(B) = M{(B) + E5 (B).

Differently from the case of Theorem |2 here Egt (B) also contributes to a main term, of size B, which
can be extracted as follow.

We move the lines of integration c¢,, cg, and ce+ in the integrals defining Egt (B) to ce, = 2K,
c¢, = —K and ¢+ = 1 — K for some fixed real number K > 0 small enough, passing through the simple
pole of the integrand at s* = 1 4 2&;. If K is sufficiently small then we don’t pass through any other
pole and we stay inside the region where &, is holomorphic and where the sums are absolutely
convergent. For the integral on the new lines of integration we use and a trivial bound for ¢ and
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we obtain that, for K small enough, the integral is bounded by

3 * ClK
<BK Y //( (sl 1]+ 661) )

boe, f.0EN3, (ripro ks r) s~
heN

< BIEK§-C:K

where the second line is obtained as for using and , after reintroducing the original
variables s;;. Also, we remind that, here and below, C;,C5,Cs,... will indicate fixed positive real
numbers.

Collecting the contribution of the residue we obtain

HF(; (sij)

3
E(si(B) =2 Bl+2a ( i(blzz ikﬁgk({lj-)%l( 2?5 ><(1+2§1 — 289)C(1+4& + 28)
b,c,f.g EN3 () k=1 Tl k T2 k

heN

Er(a—& a+§) ( 11 Fg(sij)>d(- )+ O(B K=K,
i,
since {3 = —£1 —&; and with the notations (7.6). We then move the line of integration c¢, to ce, = —K/2
passing through the pole at £ = —& /2. The integral on the new lines of integration can be bounded
as above, whereas in the integral coming from the contribution of the residue, we move c¢, to ce, = K
passing through a simple pole at & = 0 (in which case £5 = 0). Bounding once again the contribution
of the integral as above we arrive to

BE-5 % e /] (Hﬂbkr?zrmi(gk)>5"(“"")(gpf e))at

b.e f
;LeN

+O(B'H5m k).

The product [, ; ﬁ‘éi (si) can now be replaced by [], ; S— at a cost of an error which is O(B§'~%5¢).
Indeed, by (4.4) and (7.9) we have

(H,ubk i ak (S ) (g )>5r(a,a)<HF5i(3ij)_S:)d("')

() T1,k72,k73,k J

“ // (I

by proceeding as in after remtroducing six of the variables s;; (with the remaining three variables
kept as functions of those), since we now have the extra relation Zlgi <3 Sij = s* = 1. Collecting the
above computations, we then get

(7.11) E5(B) = BPy + O(B§' ¢ + B K50 K)

b,c, f geN3~

T | = [l Jat ) < -
U

for some Py € R.
We now move to the analysis of M (B). Following the definition of M,., we split M (B) in the
following way

+ +
(7.12) MF(B)= ) M;.(B),
ec{+1}3
where the sum is over € = (e1, €2, €3) € {£1}3 and

o Lk €(s™ — 26)¢(1 +2€k§k (HF:t S”) )

2s* — €181 — €282 — €363 — 2

(7.13)  M(B)
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with lines of integration as given in Section (in particular ([7.5)) is satisfied) and where

. /J' fk:) ( ) (7«1’ €)1+2€1£1 (7"2, €)1+2€2§2 (737 £)1+263£2
Qe(a7 £) = Z ( H Tak Ek ak+§k s*—28x 3+2€1€1+2€282+2€383 QO(Z)
b,c,f,geN3, k=1 "1,k 2 3,k
h,LEN
3 —aitei& 1425" €181 —€eaéa—e3és
x 2% H L s 5 )
—a;te; &+ NEELS T e L L1 14a;—e;&; 142s*—€e1&1 —€ex€2—€3&
=17 3 I‘( 12117 11622 33)

where we recall that 2s* = a1 + as + a3 and the notations . Notice that by and we
have that Qc(a, &) is holomorphic and bounded for

(R(s™ = D, [R(&)], R(e: — 3)| < 20K,
with K small enough.

Now, we move the lines of integration cg«, ¢, , ce, in tocex =1 — K, ce; = 16K, c¢, = —14K
(so that on the new lines of integration R(£3) = —2K since & + & + & = 0) passing through simple
poles at s* =1+ 2§ and, if € # (—1,1,1), (—1,-1,1), (—=1,1,—1), at s* =1+ $(e1&1 + €26 + €3E3).
Indeed, the denominator has positive real part on the original lines of integrations whereas on the new
lines of integrations it has real part equal to 2(— K — 8¢y K + Tea K + €3 K) which is negative if and only
if e =1 or ¢ = ea = €3 = —1. Also note that we stay on the same side of the poles of the other ¢
factors. Alluding to , a trivial bound for ¢ and the fact that Q. is bounded, we can use the same
argument used several times in Sections in order to bound trivially the contribution of the integral

on the new lines of integration obtaining that its contribution is O(BI_K/2§_C7).
It follows that

M (B) = M2, (B) + MZy(B),

where M:l denotes the contribution of the pole at s* = 1+ 2&; and M, :2 (B) is the contribution of
the pole at s* =1+ %(6151 + e2éo +€383) if e ¢ {(—1,1,1),(—-1,-1,1),(-1,1,—-1)} and MiQ(B) =0

otherwise.
7.4. The pole at s* =1+ 2¢ when € # (1,—1,1). Using the fact that & = —&; — & we have

2 / / ez i €01+ 26 = 26) Ty €1+ 266)
(2mi)% ) ). (4 —€1)&1 — €2€o — €383
X Qe(a,§)<]:[ Fg(sij)> ac--)
,J
_ 2 1426, C(1 4 2€1€1)C(1 + 281 — 262)((1 + 2€28)
(714) (27Ti)8 //( ) B (4 — €1+ 63)51 + (762 + 63)62

Mej,El(B) =

G0+ 461+ 2620001 — 26 + ) Qu(a &) [ B ) a0
i,

with ¢, = 8¢ and ¢¢, = —e. Notice that for € = (1,—1,1) one has a double pole when 4& + 26, =0
which causes some (mostly notational) issues when moving the lines of integration as we shall do
throughout this section. For this reason, we prefer to defer to the next section the treatment of this
term.

Next, we move the lines of integration c¢, and cg, to ¢, = —K and ¢g, = —4K passing through
several poles. As before, the integral on the new lines of integration is O(Bl’K 5’08). The poles we
encounter are the following;:

(a) a pole at & = 0 which is simple if €3 # €3 and is double if €3 = €3;
(b) a simple pole at & = —%fg;
(¢) a simple pole at & = —&o;
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(d) a simple pole at & = —1& if e = (—1,—1,1).
We now examine the contribution of the residue of each of these poles.
(a) We write the contribution of the residue at £&; = 0 as a small circuit integral

2B 1 C(1+26161)C(1 + 28 — 289)C(1 + 2€2€p)
(2mi)7 //() o ]{1=8/2 <(1 +2¢ log B) (4—e1 + )1 + (—e2 + €3)E

<G+ 46+ 261 206+ €2)ulen ) T Ff(&j))) -

where we can assume that the line of integration cg, is at cg, = —¢ . The next step is to observe that
we can replace [, ; Fi(si) by [1; ; L at a cost of an error which is
, J sig

(7.15) O(B'tegt=s).

To show this we first observe that, by the convexity bound [32, (5.1.4)], on the lines of integration the
integrand is

<log B (1+ [&a] +1€) TTIF (siy)] < log BT IF5 (si) (1 4 Jsig ) <.
(2] 0,J
We go back to using the s;; as variables (excluding for example the variable s1; because we have
a variable less) and observe we have s* = >, ;58 = 1+26 =1 + O(e) and thus s11 = 1 —
Z(i,j);ﬁ(l,l) si; +O(e). Thus, proceeding as for (5.16]) we can replace H” Féi(sij) by Hi’j si at a cost
of an error which is bounded by ([7.15). In the end, we find that the contribution of the pole at & = 0
is
BPE,l,l(log B) + O<Bl+851—CQE + Bl—K&—Cg)
where P11 is a polynomial of degree 0 or 1 (not depending on the choice for § and + in Néi(B))
obtained by evaluating the above integral with the ] i instead of [, ; F5(s45)-
(b) The contribution of the pole at & = 7%52 is

- 16, C(1 — e1&2)C(1 = 3&)C(1 4 2€262)¢ (1 — €e32) e
(2m0)” //() b (4 — €1+ 262 — €3)&2 : Qe(a,§)<g Fai(szj)> d(--).

,J

We move the line of integration cg, to cg, = K passing through a pole at do = 0. The contribution
of the integral on the new lines of integration is O(Bl_K 5_012). For the contribution of the residue,
we follow the same approach as above writing it as a small circle integral and observing that since
again s =3, i 38ij =1+26 =1—& =1+ 0O(e) we can replace [, ; Fi(sij) by IL; % at the
cost of an error which is O(B”E(Sl_cl?’a). Then, computing the integral we find that the contribution

to (7.14) from the pole at & = —1& is
BP. 1 2(log B) + O(B'tegt e  p1-K5-C12)

where P ;2 is a polynomial of degree 4 of leading coefficient
€1€2€3
2-3-(4—61+262—63)j

where
(7.16) 7= i,(%lm/() Qe(a,0)<H;> ().

It is noteworthy that, since & = 0, J does not depend on €. Moreover, we will see below with (7.17))
that J # 0.
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) The contribution of the pole at §& = —&; is

o C(1 —26162)¢(1 — 462)¢(1 + 2e282)¢(1 — 252) < B
// B1 25 (4—614—62)52 ( §2a£2> (HF zg) )

and proceeding as above we have that this is
BPe 1 3(log B) + O(B'*¢§'~1e 4 B~ K5 Cs)
where P 1 3 is a polynomial of degree 4 of leading coeflicient

€1€2€3
2. (4 — €1 + 62)

with the notation (7.16]).

(d) The contribution of the pole at & = —1& with € = (—1,—1,1) is
Sy [ B B0 - S -2

) (14 26)C(1 - 262) Qulas€) (H (s, )d< )

2%

and, proceeding as above, we have that this is
BP671,4(10g B) + O(Bl+561—0165 + Bl_K(S_CU)

where P 1 4 is a polynomial of degree 4 of leading coefficient

1

24-3‘7'

Regrouping the above four contributions, we obtain that for € # (1, —1,1) we have

M ,(B) = BP.1(log B) + O(B'<§' ~1s¢ 4 B1= K45~ Co)

a,e,l

where P, ; is a degree 4 polynomial with leading coefficient
€1€2€3 + €1€2€3

2-3~(4—61—|—262—63) 2'(4—61—1-62)

1

21

with the notation (7.16]).

7.5. The pole at s* = 1+2¢; for € = (1,—1,1). For brevity, in this section we write €* := (1,—1,1).

We have

ife#(—-1,-1,1),(1,-1,1)
J X
if e = (—1,—1,1),

+ __2 110g, C(1+261)C(1 + 261 — 2€3)((1 — 2&)
B = e ], o
X C(1+ 46 + 262)0(1 261 +€2) (H B () (-

Here, we move c¢, to cg, = 2K, passing through simple poles at {; = 0 and &, = &;. For the integral
on the new lines of integration, we move cg, to ¢g;, = —K/2 passing through a pole at & = 0. If K
is sufficiently small, the integral on these new lines of integration can then be estimated trivially by
O(B 1=K 5_020). Thus, overall we shall compute the following residues arising for the following poles

(a) a simple pole at & =0

)
(b) a simple pole & = &;;
(c) a simple pole at §; = 0 (with c¢, > 0).
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(a) The contribution of the residue at & =0 is

2 _ s
(27;)7 //() Bl+2£1C(1 +2&) 4(14;451)«1 2&)95* (a7£)<1;[ Féﬂ:(sij)> d(--)

and, as in the previous section, one sees that this is
BPe- 4(log B) + O(B'te5' e 4 17K g722)
with P« 4,1 of degree 4 with leading coefficient

1

_273‘_77

with the notation ([7.16]).

(b) The contribution of the residue at & = & is

Bl+26 C(1+2&)¢(1 — 2516)51(1 +6&)¢(1 — 4&1) Qe*(a7£)<H th(sij)> d(-- )

— BPE*,1,2(1OgB> + O(Bl+661—023€ +Bl—K6—Cz4)

with P« 1 o of degree 4 with leading coefficient
L
22 32
(c¢) The contribution of the residue at & =0 is
¢(1-2 1+2
- 52;«52( o (HF 5”) )
= Py 3B + O(BYe61-Ce 4 BI=K 5=Cao)

J.

with Pe*71,3 € R.

Collecting the various terms, we then find that
ME:E’I(B) — BPE*’l(IOg B) + O(Bl+561—0275 + BI—K(S—CzS)

where P« is a polynomial of degree 4 with leading coefficient

7

e

7.6. The pole at s* = 1+%(61£1 + €285 + €3&3). Recall that Méi’Q(B) =0ife=(-1,1,1), (-1,-1,1),
(=1,1,—-1). In all other cases we have

M:Q(B) _ ﬁ //() B1+%(61€1+6252+63§3) ];[C(l + %(6151 + 6252 =+ 6353) - ka) C(l + 26kfk)

X Qc(a (HF(; s”> ().

If e, = €2 = €3, then the exponent of B is 1. In particular, since in this case we have the relation

s* = Z” sij = 1 because & + & + &3 = 0, we can replace H” Ff(sij) by Hi,j si_jl at a cost of an

error which is O(Bl+551—czse> like in Section Thus, for € = (1,1,1), (=1, —1,—1) we have
M o+(py = Pep1B + O(B' 1551~ C¢)

for some Pe 21 € R.
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Therefore, we are left with considering the cases where €, = —ex, = —eg, with {r, k1, k2} = {1,2,3}
and k1 < k9. Notice in particular that since & + & + &5 = 0, then we have €1&1 + €2€5 + €3&3 = 2¢,.€,..
Thus,

1
Meseisn = g [ B0+ (6 = 2060000+ 2608000 + 606 = 260)600 + 2006

X C(1+ (6 +2)& 4 265, )C(1 — 261, (& + €k1))Qe(a,£)<H F(si(sij)> d(---).

Notice that we made a change of variables (of jacobian +1, since &1 + &2 + &3 = 0) using &, {k, rather
than fl, 52.

Next, we move the lines of integration cg,, cg, to cg, = cg, = —€.K. In doing so we pass through
a double pole at &. = 0 and, if r = 1, through the simple poles of the ¢ factors on the second line at
& = —%fg and & = —&. Thus, as in the previous sections, if € = (1,—1,1), (1,1, —1) we find

Me,Zi(B) = BPe)Q’Q(IOg B) —|— O(Bl-i_eél_cwE + BI_K(S_CM)

with Pe 2 2(log B) of degree at most 1 and the same holds for the contribution of the pole at &. = 0
when r = 1. We are therefore left with computing the contributions of the two remaining poles when
e=(1,—-1,-1) and (r, k1, k2) = (1,2,3). The contribution of the pole at & = —%52 is

11 e ) )
3 i) //() B30 ((1+ 26)7C(1 - 3&)C(1 - 5&)¢c1 - 252)9(1,1,1)(01’5)(!;[ F(si(sz‘j)) d(---),

and this is BP(,_1,-1),2,3(log B) + O(BHE(SPCME + Bl’K(S’C?’?) with P, _1,_1),2,3 a polynomial of
degree 4 and leading coefficient
1
237

with the notation (7.16]).

The contribution of the pole at &1 = —&3 is

1 1 _ ~
o | /( B+ )00 - 2670 36001 - €)@ -1y (@8 (1 s )t
id
and this is BP(y,_1,_1)2,4(log B) + O(BH‘E(Sl_C336 + Bl_K(S_C“) with Py _1,_1),2,4 of degree 4 with
leading coefficient
_ 1
23.3

Thus, summarizing for all € € {1, —1}® we have

J.

MZ,(B) = BP.s(log B) + O(B'*¢§'~ ¢ 4 B1-K - C0)

where P, o is a polynomial of degree at most 1 unless € = (1,—1,—1) in which case Pe 5 is of degree 4
with leading coefficient
1

_24~3j'

7.7. Regrouping the various contributions. By (7.10)) and (7.11)), (7.12) and regrouping the con-
tributions from Sections and we find
N (B)=B Y (Pei(logB)+ Pep(log B)) + BPy + O(B'*6' ¢ 4 Bl =K~ Cs)
ee{1,—1}3
_ BPl(log B)) + O(Bl+651—0376 + Bl_K(S_CSS)
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where P; is a polynomial of degree 4 with leading coefficient

1 7 1 ( €1€2€3 €1€2€3 ) 1
————— - - J==—J.
(16 72 48 #(1,%:),(1,1,1) 2-(4—e1+e) 2-3-(4—€ + 26— e€3) 48

The estimate (7.3) and then the Theorem [I| then follows by the final next lemma.
Lemma 8. With the notations of Theorem and , we have J = %1'61.

Proof. First, we observe that for s* = 1 we have

3 1—ay
Q(e,0)= Y ) <H 11(br) ok k(f;)k 19k )) (rl,ﬁ)(rzéﬁ)(ra,é)(p(é) 2nt [T Lj)

3 o
L(5)

1
= 61 .2 —_
H (%)
where in the second row we computed the Euler product thanks to the lemma 2.7 of [8]. Therefore, we
have

3 l—ay
r L 1 dsyodsoidssid
// ( ( 3 )) % .4/ 5120521dS5310AS532 dasdas,
4' 27T’L C017C{12) i ].—‘(71) (27T’L) ( 6521) L(a,312,321,531,332)

1 Cs12:Cs31:Cs32

where the lines of integrations can be taken at c¢s,, = §, ca, = ca, = 2 and, by (7.6),
L(ev, 512,521, 831, 832) = (1 — a1 — 821 — 831)(1 — g — 512 — 532)(*1 + 30y — s12 + S21 + 531)
X (=14 S+ 512 — 521 + 532) (1 — J1 — 02 — S31 — 832)512521531532.
In the same way as in the end of the proof of Proposition [I, one has that the inner integral over
S12, S21, S31, S32 can be evaluated by moving each line of integration to —oo and collecting the residues
of the poles encountered in the process. After this simple but a bit lengthy calculation, which can be

easily performed with the help of Mathematica, one finds that the inner integral is equal to 8(aj a3 (1—
a1)(l —a)(1 —a3))~t, with az = 2 — a3 — ag. Thus, we finally get

3 1 al) 1
1
7.17 = 22 —d dag=-61-7
(7.17) J = 2m //cal’ca2 7r2i|:|1 ol —a I (5 azdas = 26,

by Lemma [ O
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