
COISOTROPIC RIGIDITY AND C0–SYMPLECTIC
GEOMETRY

VINCENT HUMILIÈRE, RÉMI LECLERCQ, SOBHAN SEYFADDINI

Abstract. We prove that symplectic homeomorphisms, in the sense of
the celebrated Gromov–Eliashberg Theorem, preserve coisotropic sub-
manifolds and their characteristic foliations. This result generalizes the
Gromov–Eliashberg Theorem and demonstrates that previous rigidity
results (on Lagrangians by Laudenbach–Sikorav, and on characteristics
of hypersurfaces by Opshtein) are manifestations of a single rigidity phe-
nomenon. To prove the above, we establish a C0–dynamical property
of coisotropic submanifolds which generalizes a foundational theorem
in C0–Hamiltonian dynamics: Uniqueness of generators for continuous
analogs of Hamiltonian flows.

1. Introduction and main results

A submanifold C of a symplectic manifold (M,ω) is called coisotropic if
for all p ∈ C, (TpC)ω ⊂ TpC where (TpC)ω denotes the symplectic orthogonal
of TpC. For instance, hypersurfaces and Lagrangians are coisotropic. A
coisotropic submanifold carries a natural foliation F which integrates the
distribution (TC)ω; F is called the characteristic foliation of C. Coisotropic
submanifolds and their characteristic foliations have been studied extensively
in symplectic topology. The various rigidity properties that they exhibit have
been of particular interest. For example, in [7] Ginzburg initiated a program
for studying rigidity of coisotropic intersections. In this paper, we prove
that coisotropic submanifolds, along with their characteristic foliations, are
C0–rigid in the spirit of the Gromov–Eliashberg Theorem.

This celebrated theorem states that a diffeomorphism which is a C0–limit
of symplectomorphisms is symplectic. Motivated by this, symplectic home-
omorphisms are defined as C0–limits of symplectomorphisms (see Definition
9 and Remark 10). Area preserving homeomorphisms, and their products,
are examples of symplectic homeomorphisms. Here is our main result.
Theorem 1. Let C be a smooth coisotropic submanifold of a symplectic man-
ifold (M,ω). Let U be an open subset of M and θ : U → V be a symplectic
homeomorphism. If θ(C ∩U) is smooth, then it is coisotropic. Furthermore,
θ maps the characteristic foliation of C ∩ U to that of θ(C ∩ U).
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An important feature of the above theorem is its locality: C is not as-
sumed to be necessarily closed and θ is not necessarily globally defined. Here
is an immediate, but surprising, consequence of Theorem 1.

Corollary 2. If the image of a coisotropic submanifold via a symplectic
homeomorphism is smooth, then so is the image of its characteristic foliation.

Theorem 1 uncovers a link between two previous rigidity results and
demonstrates that they are in fact extreme cases of a single rigidity phe-
nomenon.

One extreme case, where C is a hypersurface, was established by Opshtein
[23]. Clearly, in this case, the interesting part is the assertion on rigidity of
characteristics, as the first assertion is trivially true.

Lagrangians constitute the other extreme case. When C is Lagrangian, its
characteristic foliation consists of one leaf, C itself. In this case the theorem
reads: If θ is a symplectic homeomorphism and θ(C) is smooth, then θ(C)
is Lagrangian. In [11], Laudenbach–Sikorav proved a similar result: Let
L be a closed manifold and ιk denote a sequence of Lagrangian embeddings
L→ (M,ω) which C0–converges to an embedding ι. If ι(L) is smooth, then
(under some technical assumptions) ι(L) is Lagrangian. On one hand, their
result only requires convergence of embeddings while Theorem 1 requires
convergence of symplectomorphisms. On the other hand, Theorem 1 is local:
It does not require the Lagrangian nor the symplectic manifold to be closed.

The above discussion raises the following question.

Question. What can one say about C0–limits of coisotropic embeddings
and their characteristic foliations?

We would like to point out that Theorem 1 is a coisotropic generalization
of the Gromov–Eliashberg Theorem. Indeed, it implies that if the graph of
a symplectic homeomorphism is smooth, then it is Lagrangian.

As we shall see, the proof of Theorem 1 relies on dynamical properties of
coisotropic submanifolds. In particular, we use C0–Hamiltonian dynamics
as defined by Müller and Oh [22]. To the best of our knowledge, this is one
of the first extrinsic applications of this recent, yet promising, theory.

Following [22], we call a path of homeomorphisms φt a hameotopy if there
exists a sequence of smooth Hamiltonian functionsHk such that the isotopies
φtHk

C0–converge to φ and the HamiltoniansHk C
0–converge to a continuous

function H (see Definition 11). Then, H is said to generate the hameotopy
φt, and to emphasize this we write φtH ; the set of such generators will be
denoted C0

Ham. A foundational result of C0–Hamiltonian dynamics is the
uniqueness of generators Theorem (see [26, 3]) which states that the trivial
hameotopy, φt = Id, can only be generated by those functions in C0

Ham which
solely depend on time (see also Corollary 4 below).

Let H ∈ C∞([0, 1] ×M). Recall the following two dynamical properties
of a coisotropic submanifold C: Assume that C is closed as a subset,



COISOTROPIC C0–RIGIDITY 3

1. H|C is a function of time if and only if φH (preserves C and) flows along
the characteristic foliation of C. By flowing along characteristics we mean
that for any point p ∈ C and any time t > 0, φtH(p) ∈ F(p), where F(p)
stands for the characteristic leaf through p.
2. For each p ∈ C, H|F(p) is a function of time if and only if the flow φH
preserves C.

We will show that the above two properties hold for continuous Hamilto-
nians. The C0–analog of the first property, stated below, plays an important
role in the proof of Theorem 1.

Theorem 3. Denote by C a connected coisotropic submanifold of a sym-
plectic manifold (M,ω) which is closed as a subset1 of M . Let H ∈ C0

Ham
with induced hameotopy φH . The restriction of H to C is a function of time
if and only if φH preserves C and flows along the leaves of its characteristic
foliation.

This result answers a question raised by Buhovsky and Opshtein who
asked if the above holds in the particular case where C is a smooth hy-
persurface. It also drastically generalizes the aforementioned uniqueness of
generators Theorem. Indeed, if C is taken to be M , then the characteristic
foliation consists of the points of M and the theorem follows immediately:

Corollary 4. H ∈ C0
Ham is a function of time if and only if φtH = Id.

After the first draft of this article was written, we were asked by Opshtein
if the second of the aforementioned properties holds for C0 Hamiltonians.
Our next result provides an affirmative answer to Opshtein’s question.

Theorem 5. Denote by C a connected coisotropic submanifold of a symplec-
tic manifold (M,ω) which is closed as a subset of M . Let H ∈ C0

Ham with
induced hameotopy φH . The restriction of H to each leaf of the characteristic
foliation of C is a function of time if and only if the flow φH preserves C.

When C is a Lagrangian, Theorems 3 and 5 coincide and both state that:
The restriction of H to L is a function of time if and only if φtH(L) = L for
all t. In an interesting manifestation of Weinstein’s creed, “Everything is a
Lagrangian submanifold!”, the general case of Theorems 1, 3 and 5 will be
essentially deduced from the a priori particular case of Lagrangians.

The results of this paper establish C0–rigidity of coisotropic submani-
folds together with their characteristic foliations. It would be interesting
to see if isotropic or symplectic submanifolds exhibit similar rigidity prop-
erties: If a smooth submanifold is the image of an isotropic (respectively
symplectic) submanifold under a symplectic homeomorphism, is it isotropic
(respectively symplectic)? Note that if in these questions one considers, in-
stead of symplectic homeomorphisms, C0–limits of isotropic (respectively

1 It is our convention that submanifolds have no boundary. Note that a submanifold
is closed as a subset if and only if it is properly embedded.
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symplectic) embeddings then Gromov’s results on the h-principle provide
negative answers in general. In short, isotropic and symplectic embeddings
are not C0–rigid. (See [9, Section 3.4.2], or [5, Theorems 12.1.1 and 12.4.1].)

Defining C0–coisotropic submanifolds. As we will see in Section 6, an
interesting feature of Theorem 1 is that it allows us to define C0–coisotropic
submanifolds along with their C0–characteristic foliations. Roughly speak-
ing, a C0–coisotropic will be defined to be a C0–submanifold of a symplectic
manifold which is locally symplectic homeomorphic to a smooth coisotropic.
The well-definedness of this notion is a consequence of Theorem 1. Further-
more, from the same theorem we conclude that a C0–coisotropic submanifold
admits a unique C0–foliation which will be referred to as its C0–characteristic
foliation.

As a consequence, we obtain a definition for C0–Lagrangian submanifolds
as C0–coisotropic submanifolds of dimension n. Graphs of symplectic home-
omorphisms and graphs of C0 1–forms, closed in the sense of distributions,
constitute examples of C0–Lagrangians. For further details, we refer the
interested reader to Section 6.

Main tools: Lagrangian spectral invariants. In order to prove the main
results, we use the theory of Lagrangian spectral invariants. One conse-
quence of this theory is the existence of the spectral distance γ on the space
of Lagrangians Hamiltonian isotopic to the 0–section in cotangent bundles
introduced by Viterbo in [25].2

More precisely, we establish inequalities comparing γ to a capacity re-
cently defined by Lisi–Rieser [15]. This capacity, which we denote by cLR, is
a relative (to a fixed Lagrangian) version of the Hofer–Zehnder capacity. We
will now define cLR. Fix a Lagrangian L. Recall that a Hamiltonian chord
of a Hamiltonian H, of length T , is a path x : [0, T ] → M such that x(0),
x(T ) ∈ L and for all t ∈ [0, T ], ẋ(t) = Xt

H(x(t)). A Hamiltonian is said to
be L–slow if all of its Hamiltonian chords of length at most 1 are constant.
We denote by H(U) the set of admissible Hamiltonians, that is, smooth
time-independent functions with compact support included in U , which are
non-negative and reach their maximum at a point of L. For an open set U
which intersects L, the relative capacity of U with respect to L is defined as

cLR(U ;L) = sup{max f | f ∈ H(U) L–slow} .
For instance, if B is the open ball of radius r in R2n and L0 = Rn × {0},
then cLR(B;L0) = πr2

2 ; see [15].
In what follows, we denote by L0 the 0–section of T ∗L. The first energy-

capacity inequality used in this paper is the following:

Lemma 6. Let L be a smooth closed manifold and U− and U+ be open
subsets of T ∗L, so that U± ∩ L0 6= ∅. If a compactly supported Hamiltonian

2One of the main features of γ is that it is bounded from above by Hofer’s distance on
Lagrangians. In particular, Lemmas 6 and 7 also hold with γ replaced by Hofer’s distance.
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H satisfies H|U± = ±C± with C± ∈ R so that C± > cLR(U±;L0), then
γ(φ1

H(L0), L0) > min{cLR(U−;L0), cLR(U+;L0)}.
This is the Lagrangian analog of the energy-capacity inequality proven

for the Hamiltonian spectral distance in [10, Corollary 12]. Then, as in [10],
we will derive a similar inequality for Hamiltonians (not necessarily constant
but) with controlled oscillations on U±, see Corollary 14.

Lemma 6 can also be established on compact manifolds for weakly exact
Lagrangians via Leclercq [12] and for monotone Lagrangians via Leclercq–
Zapolsky [13].

The second energy-capacity inequality is due to Lisi–Rieser [15]. This is
a relative version of the standard energy-capacity inequality, see for example
Viterbo [25].

Lemma 7. Let L be a smooth closed manifold. Suppose that U is an open
subset of T ∗L, with L0∩U 6= ∅. Assume that L′ is a Lagrangian Hamiltonian
isotopic to L0 such that L′ ∩ U = ∅. Then γ(L′, L0) > cLR(U ;L0).

A special case of this specific inequality appears in Barraud–Cornea [1]
and Charette [4]. A similar inequality is worked out in Borman–McLean [2].

Finally, we will need an inequality which provides an upper bound for the
spectral distance. Let g denote a Riemannian metric on a closed manifold
L and denote by T ∗r L = {(q, p) ∈ T ∗L | ‖p‖g 6 r} the cotangent ball bundle
of radius r. Suppose that φtH(L0) ⊂ T ∗r L for all t ∈ [0, 1]. Viterbo has
conjectured [27] that there exists a constant C > 0, depending on g, such that
γ(φ1

H(L0), L0) 6 Cr. This conjecture has many important ramifications; see
[18, 27]. Lemma 8 below is a special case of Viterbo’s conjecture; a more
precise version of the lemma appears in [21, Theorem 9.7].

Lemma 8. Let L be a smooth closed manifold, V a proper open subset of
L, and V = π−1(V) ⊂ T ∗L, where π : T ∗L → L is the standard projection.
There exists C > 0, depending on the set V, such that: For all r > 0, if H is
a smooth, compactly supported Hamiltonian on T ∗L such that H|V = 0, and
φtH(L0) ⊂ T ∗r L for all t ∈ [0, 1] then γ(φ1

H(L0), L0) 6 Cr.

Organization of the paper. In Section 2, we review the preliminaries on
C0–Hamiltonian dynamics and Lagrangian spectral invariants. In Section
3, we prove energy-capacity inequalities (Lemmas 6 and 7) as well as the
upper bound on the spectral distance (Lemma 8). In Section 4, we use these
inequalities in order to prove localized versions of Theorem 3 in the special
case of Lagrangians. In Section 5, we prove Theorems 1, 3, and 5 using the
results of Section 4. In Section 6, we define C0–coisotropic submanifolds and
their characteristic foliations. In the same section, we provide examples of
such C0–objects.

In Appendix A, we provide relatively simple, and hopefully enlightening,
proofs of Theorems 1 and 3 in the special case of closed Lagrangians in
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cotangent bundles. We hope that this appendix will give the reader an idea
of the proofs of the main results while avoiding the technicalities of Sections
4 and 5.
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2. Preliminaries

2.1. Symplectic and Hamiltonian homeomorphisms. In this section
we give precise definitions for symplectic and Hamiltonian homeomorphisms
and recall a few basic properties of the theory of continuous Hamiltonian
dynamics developed by Müller and Oh [22].

Given two manifolds M1, M2, a compact subset K ⊂ M1, a Riemannian
distance d on M2, and two maps f, g : M1 →M2, we denote

dK(f, g) = sup
x∈K

d(f(x), g(x)).

We say that a sequence of maps fi : M1 → M2 C
0–converges to some map

f : M1 → M2, if for every compact subset K ⊂ M1, the sequence dK(fi, f)
converges to 0. This notion does not depend on the choice of the Riemannian
metric.

Definition 9. Let (M1, ω1) and (M2, ω2) be symplectic manifolds. A con-
tinuous map θ : U →M2, where U ⊂M1 is open, is called symplectic if it is
the C0–limit of a sequence of symplectic diffeomorphisms θi : U → θi(U).

Let U1 ⊂M1 and U2 ⊂M2 be open subsets. If a homeomorphism θ : U1 →
U2 and its inverse θ−1 are both symplectic maps, we call θ a symplectic
homeomorphism.

Clearly, if θ is a symplectic homeomorphism, so is θ−1. By the Gromov–
Eliashberg Theorem a symplectic homeomorphism which is smooth is a sym-
plectic diffeomorphism.
Remark 10. More generally, one can define a symplectic homeomorphism
to be a homeomorphism which is locally a C0–limit of symplectic diffeomor-
phisms. For simplicity, we do not use this more general definition, however
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it is evident from the proof of Theorem 1 that it does hold for such homeo-
morphisms as well.

We now turn to the definition of Hamiltonian homeomorphisms (called
hameomorphisms) introduced by Müller and Oh [22].

Definition 11. Let (M,ω) be a symplectic manifold and I ⊂ R an interval.
An isotopy (φt)t∈I is called a hameotopy if there exist a compact subset K ⊂
M and a sequence of smooth Hamiltonians Hi supported in K such that:

(1) The sequence of flows φtHi
C0–converges to φt uniformly in t on every

compact subset of I,
(2) the sequence Hi(t, ·) C0–converges to a continuous function H(t, ·)

uniformly in t on every compact subset of I.
We say that H generates φt, denote φt = φtH , and call H a continuous Hamil-
tonian. We denote by C0

Ham(M,ω) (or just C0
Ham) the set of all continuous

functions H : [0, 1] ×M → R which generate hameotopies parametrized by
[0, 1]. A homeomorphism is called a hameomorphism if it is the time–1 map
of some hameotopy parametrized by [0, 1].

A continuous function H ∈ C0
Ham generates a unique hameotopy [22].

Conversely, Viterbo [26] and Buhovsky–Seyfaddini [3] proved that a hameo-
topy has a unique (up to addition of a function of time) continuous generator.

One can easily check that generators of hameotopies satisfy the same
composition formulas as their smooth counterparts. Namely, if φtH is a
hameotopy, then (φtH)−1 is a hameotopy generated by −H(t, φtH(x)); given
another hameotopy φtK , the isotopy φtHφ

t
K is also a hameotopy, generated

by H(t, x) +K(t, (φtH)−1(x)).
Moreover, we will repeatedly use the following simple fact: IfH ∈ C0

Ham(V )
for some open set V in a symplectic manifold (M,ω) and if θ : U → V is a
symplectic homeomorphism, then H ◦ θ belongs to C0

Ham(U) and generates
the hameotopy θ−1φtHθ. This, in particular, holds for smooth H : [0, 1] ×
M → R supported in V .

2.2. Lagrangian spectral invariants. In [25], Viterbo defined Lagrangian
spectral invariants on R2n and cotangent bundles via generating functions.
Then Oh [19] defined similar invariants via Lagrangian Floer homology in
cotangent bundles which have been proven to coincide with Viterbo’s in-
variants by Milinković [16]. They have been adapted to the compact case
by Leclercq [12] for weakly exact Lagrangians and Leclercq–Zapolsky [13] for
monotone Lagrangians. However, for the type of problems which we consider
here (C0–convergence of Lagrangians), we can restrict ourselves to Weinstein
neighborhoods and thus work only in cotangent bundles. We briefly outline
below the construction of these invariants via Lagrangian Floer homology
and collect their main properties in this situation. We refer to Monzner–
Vichery–Zapolsky [18] which gives a very nice exposition of the theory.

Let L be a smooth compact manifold, L0 denote the 0–section in T ∗L, and
λ the Liouville 1–form. To a compactly supported smooth time-dependent
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Hamiltonian H ∈ C∞c ([0, 1]× T ∗L) is associated the action functional

AH : Ω(T ∗L)→ R , γ 7→
∫ 1

0
Ht(γ(t)) dt−

∫
γ∗λ

where Ω(T ∗L) = {γ : [0, 1] → T ∗L | γ(0) ∈ L0, γ(1) ∈ L0}. The critical
points of AH are the chords of the Hamiltonian vector field XH which start
and end on L0. The spectrum of AH , denoted by Spec(AH), consists of the
critical values of AH . It is a nowhere dense subset of R which only depends
on the time–1 map φ1

H , hence we sometimes denote it by Spec(φ1
H).

Following Floer’s construction, for a generic choice of Hamiltonian func-
tion, crit(AH) is finite and one can form a chain complex (CF∗(H), ∂H,J)
whose generators are the critical chords and whose differential counts the
elements of the 0–dimensional component of moduli spaces of Floer trajec-
tories (i.e pseudo-holomorphic curves perturbed by H) which run between
the critical chords (with boundary conditions on L0). The differential relies
on the additional data of a generic enough almost complex structure, J .

This complex is filtered by the values of the action, that is, for a ∈ R
a regular value of AH , one can consider only chords of action less than a.
Such chords generate a subcomplex of the total complex CF a∗ (H) (because
the action decreases along Floer trajectories). We denote by ia∗ the inclusion
CF a∗ (H) → CF∗(H). By considering homotopies between pairs (H,J) and
(H ′, J ′), one can canonically identify the homology induced by the respective
Floer complexes H∗(CF (H), ∂H,J) and H∗(CF (H ′), ∂H′,J ′) and by consid-
ering C2–small enough Hamiltonian functions, one can see that the resulting
object HF∗(L0) is canonically isomorphic to the singular homology of L.

Thus, one can consider spectral invariants associated to any non-zero
homology class α of L, defined as the smallest action level which detects α:

`(α;H) = inf{a ∈ R |α ∈ im(H∗(i
a))}

In what follows we will only be interested in the spectral invariants associated
to the class of a point and the fundamental class which will be respectively
denoted by `−(H) = `([pt];H) and `+(H) = `([L];H).

These invariants were proven to be continuous with respect to the C0–
norm on Hamiltonian functions so that they are defined for any (not neces-
sarily generic) Hamiltonian. Moreover, they only depend on the time–1 map
φ1
H induced by the flow of H; hence they are well-defined on Hamc(T ∗L, dλ).

Their main properties are collected in the following theorem, which cor-
responds to [18, Theorem 2.20], except for (7) which we prove below. Note
that, except for (6) and (7), these properties already appear in Viterbo [25].

Theorem 12. Let L be a smooth closed connected manifold. Let L0 denote
the 0–section of T ∗L. There exist two maps `± : Hamc(T ∗L, dλ) → R with
the following properties:

(1) For any φ ∈ Hamc(T ∗L, dλ), `±(φ) lie in Spec(φ).
(2) `− 6 `+.
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(3) For any two Hamiltonian functions H and K,∫ 1
0 min(Ht −Kt) dt 6 `−(φ1

H) − `−(φ1
K) 6

∫ 1
0 max(Ht −Kt) dt, and∫ 1

0 min(Ht −Kt) dt 6 `+(φ1
H)− `+(φ1

K) 6
∫ 1

0 max(Ht −Kt) dt.
(4) For any φ and φ′ ∈ Hamc(T ∗L, dλ), `+(φφ′) 6 `+(φ) + `+(φ′).
(5) For any φ ∈ Hamc(T ∗L, dλ), `±(φ) = −`∓(φ−1).
(6) If H|L0 6 c (respectively H|L0 > c or H|L0 = c), then `±(φ1

H) 6 c
(respectively `±(φ1

H) > c or `±(φ1
H) = c).

(7) If f is a L0–slow admissible Hamiltonian, then `+(φ1
f ) = max(f |L0)

and `−(φ1
f ) = 0.

(8) For any φ and φ′ ∈ Hamc(T ∗L, dλ) such that φ(L0) = φ′(L0),
`+(φ)− `−(φ) = `+(φ′)− `−(φ′).

Proof of item (7). Since f is L0–slow, Spec(φ1
f ) consists of critical values of

f corresponding to critical points lying in L0. Now for all s ∈ [0, 1], since
f is autonomous, Spec(φsf ) = Spec(φ1

sf ) = s · Spec(φ1
f ). Since in cotangent

bundles spectral invariants lie in the spectrum regardless of degeneracy of
f , by continuity of `± there exist p± ∈ crit(f) ∩ L0 such that `±(φsf ) =

s·f(p±). Now we claim that for small times s, `+(φ1
sf ) (respectively `−(φ1

sf ))
is the maximum (respectively the minimum) of sf so that f(p+) = max(f)
(respectively f(p−) = min(f)) which concludes the proof.

It remains to prove the claim. Since f is autonomous, the path of La-
grangians it generates is a geodesic with respect to Hofer’s distance for small
times, see Milinković [17, Theorem 8]. That is, for s ∈ (0, 1) small enough

max(sf)−min(sf) = length({Lt}t∈[0,s]) = dHof(L0, Ls)(1)

with Lt = φtf (L0). (As f reaches its extrema on L0, the extrema of sf
over T ∗L and L0 coincide and we remove them from the notation.) On the
other hand, by choosing s small enough we can ensure that Ls = ΓdS , the
graph of the differential of some smooth function S : L→ R. Now in general
dHof(L0,ΓdS) 6 osc(S) and by [17, Proposition 1.(6)]: osc(S) = `+(φ1

S̃
) −

`−(φ1
S̃

) where S̃ lifts S to T ∗L by pullback via the natural projection and
cutoff far from the Lagrangian isotopy. Since φ1

S̃
(L0) = ΓdS , by Property (8),

we can replace φ1
S̃
by φ1

sf thus (1) leads to the inequality max(sf)−min(sf) 6

`+(φ1
sf )− `−(φ1

sf ). Finally, since min(sf) 6 `−(φ1
sf ) 6 `+(φ1

sf ) 6 max(sf),
we deduce that `−(φ1

sf ) = min(sf) and `+(φ1
sf ) = max(sf). �

In view of Property (8), Viterbo (followed by Oh) derived an invariant γ
of Lagrangians Hamiltonian isotopic to the 0–section, defined as follows.

Definition 13. For a Hamiltonian diffeomorphism φ ∈ Hamc(T ∗L, dλ) we
set γ(φ) = `+(φ) − `−(φ) and for a Lagrangian L Hamiltonian isotopic to
the 0–section, we set γ(L,L0) = γ(φ) for any φ ∈ Hamc(T ∗L, dλ) such that
φ(L0) = L.
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From the properties of spectral invariants, it is immediate that for all φ
and ψ ∈ Hamc(T ∗L, dλ), 0 6 γ(φψ) 6 γ(φ)+γ(ψ), and that γ(φ) = γ(φ−1).
Moreover, γ(L,L0) = 0 implies L = L0 as proven in [25].

One of the main properties of γ which will be used in what follows is the
fact that

γ(φ1
H(L0), L0) = γ(φ1

H) 6 max
t∈[0,1]

(osc(Ht|L0))(2)

where osc(Ht|L0) = max
L0

(Ht) − min
L0

(Ht). This inequality can be directly

derived from Property (6) of Theorem 12. Note that this yields

∀t0 ∈ R, γ(φt0H(L0), L0) 6 t0 · max
t∈[0,t0]

(osc(Ht|L0)).

3. Energy-capacity inequalities

3.1. The energy-capacity inequality for Hamiltonians constant on
open sets. We prove Lemma 6 by mimicking the proof of the corresponding
inequality in [10] (here for Lagrangians, in the easier world of aspherical
objects). Then we prove a corollary which will be used in the proof of the
main result.

Proof of Lemma 6. First, assume that `−(φ1
H) 6 0. Then for any admissible

L0–slow function with support in U+, f ∈ H(U+), we define the 1–parameter
family of Hamiltonians Hs(t, x) = H(t, x) − sf(x) with s ∈ [0, 1]. Since H
is constant on U+, Hs generates φ1

Hs
= φ1

Hφ
−s
f . By triangle inequality and

duality (i.e Properties (4) and (5)) of spectral invariants, we get

`+(φsf ) 6 `+(φ−1
Hs

) + `+(φ1
H) = `+(φ1

H)− `−(φ1
Hs

) .(3)

Then notice that

Spec(AHs) = Spec(AH) ∪ {C+ − sf(p) | p ∈ crit(f) ∩ U+} .

Since for all p ∈ crit(f) ∩ U+, sf(p) 6 max(f) 6 cLR(U+;L0) < C+, there
exists ε > 0, such that Specε(AHs), defined as Spec(AHs)∩(−∞, ε), does not
depend on s and coincides with Specε(AH) which is totally discontinuous.
Since the map s 7→ `−(φ1

Hs
) is continuous and maps 0 to Specε(AH), it has

to be constant so that `−(φ1
H1

) = `−(φ1
H) and, from (3), Property (7) of

spectral invariants immediately leads to

max(f) = `+(φ1
f ) 6 `+(φ1

H)− `−(φ1
H) = γ(φ1

H(L0), L0).

Since this holds for any L0–slow function in H(U+), we get γ(φ1
H(L0), L0) >

cLR(U+;L0).
Now, assume that `−(φ1

H) > 0 and consider H̄(t, x) = −H(t, φtH(x)). By
assumption, φtH is the identity on U− and H̄|U− = −H|U− = C−. Since H̄
generates φ1

H̄
= (φ1

H)−1,

`−(φ1
H̄) = −`+(φ1

H) 6 −`−(φ1
H) 6 0.
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Then the first case gives that γ(φ1
H̄

) > cLR(U−;L0). Since γ(φ1
H̄

) = γ(φ1
H) =

γ(φ1
H(L0), L0), we get that when `−(φ1

H) > 0, γ(φ1
H) > cLR(U−;L0).

So γ(φ1
H) > min{cLR(U−;L0), cLR(U+;L0)} regardless the sign of `−(φ1

H)
which concludes the proof. �

From this (and as in [10]) we infer the same result but for Hamiltonian
functions which are allowed to have controlled oscillations on U±.

Corollary 14. Let L be a smooth closed manifold and U± be open subsets of
T ∗L such that U± ∩L0 6= ∅. Let H be a Hamiltonian so that for all t ∈ [0, 1]

(1) Ht|U+ > cLR(U+;L0), and Ht|U− < −cLR(U−;L0),
(2) osc(Ht|U±) < ε, for some ε > 0.

Then, γ(φ1
H(L0), L0) > min{cLR(U−;L0), cLR(U+;L0)} − 2ε.

Proof. Fix η > 0. We choose disjoint open subsets V± such that U± b V±
(with b denoting compact containment) and3 oscV±(H) < oscU±(H)+η. We
also choose cut-off functions ρ± with support in V±, such that 0 6 ρ± 6 1
and ρ±|U± = 1. Then we define

h = H − ρ+(H − C+)− ρ−(H + C−)

with C+ = inf(H|[0,1]×U+
) and C− = − sup(H|[0,1]×U−). By triangle inequal-

ity, we get γ(φ1
H) > γ(φ1

h)− γ((φ1
H)−1φ1

h) and we now bound the right-hand
side terms.

First, notice that h satisfies the requirements of Lemma 6: h|U± = ±C±
with by assumption C+ > cLR(U+;L0), and C− > cLR(U−;L0). Thus
we immediately get that γ(φ1

h) > min{cLR(U−;L0), cLR(U+;L0)}. Now by
Property (3) of spectral invariants,

γ((φ1
H)−1φ1

h) 6 oscT ∗L
(
(H − h) ◦ (φH)−1

)
6 oscV−∪V+(H − h)

so that

γ((φ1
H)−1φ1

h) 6 oscV+
(
ρ+(H − C+)

)
+ oscV−

(
ρ−(H + C−)

)
6 oscV+(H) + oscV−(H) 6 oscU+(H) + oscU−(H) + 2η

6 2ε+ 2η.

Finally, γ(φ1
H(L0), L0) > min{cLR(U−;L0), cLR(U+;L0)} − 2ε − 2η for any

η > 0. �

3.2. The energy-capacity inequality for Lagrangians displaced from
an open set. We give a proof of Lemma 7 from Lisi–Rieser [15], for the
reader’s convenience. The method of proof is now classical and goes back to
Viterbo [25] (see also Usher’s proof of the analogous result [24] for compact
manifolds, itself heavily influenced by Frauenfelder–Ginzburg–Schlenk [6]).
Recall that in cotangent bundles the spectral invariants only depend on the
endpoints of Hamiltonian isotopies; this drastically simplifies the proof.

3In the next few lines we loosely denote maxt∈[0,1] osc(ft|U ) by oscU (f) for readability.
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Proof of Lemma 7. Assume that φ1
H(L0)∩U = ∅. Choose a L0–slow function

f in H(U). For s ∈ [0, 1], consider the Hamiltonian diffeomorphism φ1
sfφ

1
H .

It is the end of the isotopy defined as the concatenation

θt =

{
φ2t
H , t ∈ [0, 1/2],

φ2t−1
sf φ1

H , t ∈ [1/2, 1].

A Hamiltonian chord of θ is a path t 7→ γ(t) such that γ(0) ∈ L0, γ(1) ∈ L0

and for all t, γ(t) = θt(γ(0)). In particular, for such a chord, φ1
sfφ

1
H(γ(0)) ∈

L0. However, since by assumption φ1
H(L0) ∩ supp(sf) = ∅, necessarily

φ1
H(γ(0)) is not in the support of f and γ(t) = φ2t

H(γ(0)) for all t 6 1/2
and remains constant γ(t) = φ1

H(γ(0)) for t > 1/2.
This means that for all s, the set of Hamiltonian chords remains con-

stant and so does Spec(φ1
sfφ

1
H). Since this set is nowhere dense and `+

is continuous (and takes its values in the action spectrum), the function
s 7→ `+(φ1

sfφ
1
H) is constant so that `+(φ1

H) = `+(φ1
fφ

1
H). Thus,

`+(φ1
f ) 6 `+(φ1

fφ
1
H) + `+((φ1

H)−1) = `+(φ1
H)− `−(φ1

H) = γ(φ1
H)

by Properties (4) and (5) of spectral invariants. Since this holds for any
L0–slow function f ∈ H(U) and since for such a function max(f) = `+(φ1

f )

by Property (7) of spectral invariants, the result follows. �

Remark 15. Lemma 7 can be reformulated as follows:
Let L,L0, and U be as in Lemma 7. Suppose that H is a smooth Hamil-

tonian such that L0 ∩ φ1
H(U) = ∅. Then, γ(φ1

H(L0), L0) > cLR(U ;L0).
The equivalence of the above statement to Lemma 7 follows easily from

the fact that γ(φ1
H(L0), L0) = γ((φ1

H)−1(L0), L0).

Remark 16. Let L,L0, and U be as in Lemma 7. Suppose that H is a
smooth Hamiltonian such that either φ1

H(L0) ∩ U = ∅ or L0 ∩ φ1
H(U) = ∅.

Then, it follows from Lemma 7, the previous remark, and Inequality (2) that
maxt∈[0,1](osc(Ht|L0)) > cLR(U ;L0).

3.3. An upper bound for the spectral distance. In this section we prove
Lemma 8 which establishes Viterbo’s conjecture in a special case. The fact
that Viterbo’s conjecture holds under the additional assumptions of Lemma
8 seems to be well known to experts; we provide a proof here for the sake of
completeness.

Proof of Lemma 8. Note that since φtH(L0) ⊂ T ∗r L for all t ∈ [0, 1], modify-
ing H outside of T ∗r L leaves φ1

H(L0), and hence γ(φ1
H(L0), L0), unchanged.

Therefore, by cutting H off outside of T ∗r L and replacing r with 2r we may
assume that H is supported inside T ∗r L \ V .

Pick f : L→ R to be a Morse function on L whose critical points are all
contained in the open set V. Because f has no critical points inside L \ V,
we may assume, by rescaling, that

(4) ‖df |L\V‖g > 1.
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Let β : T ∗L → R denote a non-negative cutoff function such that β = 1
on T ∗RL, where R is picked so that R � r. Let F = βπ∗f : T ∗L → R. By
picking R to be sufficiently large, we can ensure that, for t ∈ [0, 2r] and (q, p)
in a neighborhood of T ∗r L, the Hamiltonian flow of F is given by the formula

φtF (q, p) = (q, p+ tdf(q)).

This, combined with (4), implies that φtF (q, 0) /∈ T ∗r L for r < t 6 2r and any
point q ∈ L \ V. Hence, we see that φtF (L0) is outside the support of H for
r < t 6 2r. Therefore, φ1

Hφ
2r
F (L0) = φ2r

F (L0), and so

γ(φ1
Hφ

2r
F (L0), L0) = γ(φ2r

F (L0), L0).

Thus we get,

γ(φ1
H(L0), L0) = γ(φ1

H) 6 γ(φ1
Hφ

2r
F ) + γ((φ2r

F )−1) = γ(φ2r
F ) + γ(φ2r

F )

6 4r osc(F ) = 4r osc(f)

and the result follows with C = 4 osc(f). �

4. Localized results for Lagrangians

The main goal of this section is to establish a suitable localized version
of Theorem 3 for Lagrangians; since we seek localized statements we do
not assume that the Lagrangians in question are necessarily closed. Not
surprisingly, in this new setting Theorem 3 does not hold as stated. The
localized results of this section, which have more complicated statements
and proofs, are more powerful and they constitute the main technical steps
towards proving Theorems 1 and 3.

We prove the analog of the direct implication of Theorem 3 in Section
4.1. The analog of the converse implication is proven in Section 4.2. Since
L is a Lagrangian, its characteristic foliation has a single leaf, L itself, and
thus in this section we make no mention of characteristic foliations.

4.1. C0–Hamiltonians constant on a Lagrangian preserve it. In this
subsection, we show that if the restriction of H ∈ C0

Ham to a Lagrangian L is
a function of time, then the associated hameotopy φH preserves L, locally.
More precisely,

Proposition 17. Let L ⊂ M denote a Lagrangian (not necessarily closed)
and H ∈ C0

Ham with associated hameotopy φH . If H|L = c(t), is a function
of time, then for any point p ∈ L there exists ε > 0 such that φtH(p) ∈ L for
all t ∈ [0, ε].

Our proof of the above proposition will use the following simple lemma
on the local structure of Lagrangians.

Lemma 18. Let L ⊂ M denote a Lagrangian. Around each point p ∈ L
there exists a neighborhood Lp ⊂ L such that Lp is contained in a closed
Lagrangian torus T ⊂M .
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Proof. Let U denote a Darboux ball around p, equipped with the standard
coordinates (xi, yi), such that L ∩ U = {(xi, yi) | − a < xi < a, yi = 0}. Let
Lp = {(xi, yi) | − a

2 6 xi 6 a
2 , yi = 0}. Then, for all k, the projection of Lp

onto the 〈xk, yk〉 plane is the segment [−a
2 ,

a
2 ]×{0} which can be completed

to a smooth embedded loop, say Tk, in the 〈xk, yk〉 plane. Here, we can
make sense of the projection onto a coordinate plane by identifying U with
a standard ball in R2n. We set T = T1×· · ·×Tn. This is a Lagrangian torus
inside U containing Lp. �

Proof of Proposition 17. By replacing H by H − c(t) we can suppose that
H|L = 0. Apply Lemma 18 to obtain Lp and T as described in the lemma
and note that by replacing L with Lp we may make the following simplifying
assumption: there exists a Lagrangian torus T in M such that L ⊂ T .

We will now prove the proposition under this simplifying assumption. Let
Hi : [0, 1]×M → R denote a sequence of smooth Hamiltonians such that Hi

converges uniformly to H and φHi converges to φH in C0–topology. Take
W b V to be open subsets of M such that

(5) p ∈W ∩ L and V ∩ (T \ L) = ∅.
Recall that the symbol b denotes compact containment and V denotes the
closure of V . The second condition in (5) allows us to pick a cutoff function
β : M → R such that β|V = 1 and β|T\L = 0. By shrinking V , if needed, we
may assume that β is supported in a Weinstein neighborhood of T .

Let Gi = βHi and G = βH. Observe that Gi converges uniformly to G
and G|T = 0. We pick ε > 0 such that

(6) ∀t ∈ [0, ε], φtH(W ) ⊂ V.
For i large enough φtHi

(W ) ⊂ V for all t ∈ [0, ε]. Since, Gi|V = Hi|V we
conclude that, for large i,

(7) ∀(t, x) ∈ [0, ε]×W, φtGi
= φtHi

.

For a contradiction, suppose that φt0H(p) is not contained in L for some
t0 ∈ [0, ε]. From (5) and (6) we conclude that φt0H(p) /∈ T . Hence, we can
find a small ball B ⊂W around p which intersects T non-trivially and such
that φt0H(B) ∩ T = ∅. Hence, for i large enough, we have φt0Hi

(B) ∩ T = ∅.
From (7) we get that φt0Gi

(B) ∩ T = ∅.
We picked β such that the HamiltoniansGi all have support in aWeinstein

neighborhood of T . Therefore, we can pass to T ∗T , apply Lemma 7 and its
consequences as stated in Remarks 15 and 16 and conclude that

t0 · max
t∈[0,t0]

(osc(Gi(t, ·)|T0)) > cLR(B;T0),

where T0 stands for the 0–section in T ∗T . Here, we have used the fact that
φt0Gi

is the time–1 map of the flow of the Hamiltonian t0Gi(t0t, x). Since
Gi converges uniformly to G, the same inequality must hold for G but this
contradicts the fact that G|T = 0. �
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4.2. C0–Hamiltonians preserving a Lagrangian are constant on it.
In this subsection, we show that if H ∈ C0

Ham generates a hameotopy φH
which (locally) preserves a Lagrangian L then, the restriction of H to L is
(locally) a function of time. More precisely,

Proposition 19. Let L ⊂ M denote a Lagrangian, U an open subset of L,
and H ∈ C0

Ham with associated hameotopy φH . Suppose that φtH(U) ⊂ L for
all t ∈ [0, 1] and let V denote the interior of ∩t∈[0,1]φ

t
H(U). Then, H(t, ·)|V

is a locally constant function for each t ∈ [0, 1].

We were recently informed by Y.-G. Oh that it is possible to extract the
above proposition from [20, Theorem 4.9]; the techniques of [20] are different
than ours.

Our proof of the proposition uses the following consequence of Corollary
14. This result can be viewed as a Lagrangian analog of the uniqueness of
generators Theorem [10, Theorem 2]. The argument presented here is similar
to the proof of the mentioned uniqueness theorem.

Proposition 20. Let L be a smooth closed manifold and {Hk}k a sequence of
smooth, uniformly compactly supported Hamiltonian functions on T ∗L (that
is, there exists a compact K such that ∪ksupp(Hk) ⊂ K), so that

(1) for all t ∈ [0, 1], γ(φtHk
(L0), L0) converges to 0, and

(2) {Hk}k uniformly converges to a continuous function H.
Then, H restricted to L0 is a function of time.

The proofs of this section repeatedly use the following simple fact: Let
H denote a Hamiltonian, C0 or smooth. The time–t flow of H̃(t, x) =
aH(t0 + at, x) is given by the expression: φt

H̃
= φt0+at

H (φt0H)−1.

Proof of Proposition 20. If H|[0,1]×L0
is not a function of time, there exist

t0 ∈ [0, 1) and x+, x− ∈ L0 such that Ht0(x+) > Ht0(x−). Up to a shift (and
cutoff far from K ∪L0), we can assume that Ht0(x+) = −Ht0(x−) = ∆ > 0.

Now, let ε = ∆/4 and notice that there exist δ ∈ (0, 1] and r > 0 such
that [t0, t0 + δ] ⊂ [0, 1] and that there exist symplectically embedded balls,
centered at x±, B± = ι±(BCn(0, r)), with real part mapped to L0, which are
disjoint and such that

osc[t0,t0+δ]×B±H < ε.

By shrinking either δ or r, we can assume that the Lisi-Rieser capacity of
the balls with respect to L0 satisfy

cLR(B±;L0) = δ(∆− ε).

Then set Fk(t, x) = δHk(t0 + δt, x) and define F accordingly. By construc-
tion, the function F satisfies

∀(t, x) ∈ [0, 1]×B+, F (t, x) > cLR(B±;L0),

∀(t, x) ∈ [0, 1]×B−, F (t, x) < −cLR(B±;L0)
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and
osc[0,1]×B±(F ) < δε.

Since the Hamiltonians Fk converge uniformly to F , they satisfy the same
inequalities for k large enough. Thus, by Corollary 14,

γ(φ1
Fk

(L0), L0) > cLR(B±;L0)− 2δε = δ(∆− 3ε) = 1
4δ∆ > 0.

Hence, γ(φ1
Fk

(L0), L0) is uniformly bounded away from 0. However, φ1
Fk

=

φt0+δ
Hk

(φt0Hk
)−1 so that, by Properties (4) and (5) of spectral invariants,

γ(φ1
Fk

(L0), L0) = γ(φ1
Fk

) 6 γ(φt0+δ
Hk

) + γ((φt0Hk
)−1) = γ(φt0+δ

Hk
) + γ(φt0Hk

)

6 γ(φt0+δ
Hk

(L0), L0) + γ(φt0Hk
(L0), L0)

which goes to 0 when k goes to infinity because of Assumption (1) and we
get a contradiction. �

Proof of Proposition 19. Assume, for a contradiction, that the conclusion of
the proposition fails to hold. We can therefore find p ∈ V and t0 ∈ [0, 1)
such that H(t0, ·) is not constant on any neighborhood of p in V. First, note
that, up to time reparametrization, we may assume that t0 = 0. Indeed,
replace H with H̃(t, x) = aH(t0 + at, x), where a = 1 − t0, and U with
Ũ = φt0H(U). Then, V is contained in the interior of ∩t∈[0,1]φ

t
H̃

(Ũ) and H̃(0, ·)
is not constant on any neighborhood of p.

Apply Lemma 18 to obtain Lp and T as described in the lemma. By
shrinking Lp, if needed, we may assume that Lp b V. Let U ⊂ M denote
a small open set around p which is contained in a Weinstein neighborhood
of T and such that Lp ∩ U = L ∩ U = T ∩ U b Lp. Furthermore, towards
the end of this proof we will need to apply Lemma 8, and so we pick U such
that the projection of U to T along the cotangent fibers in the Weinstein
neighborhood is a proper subset of T whose complement contains a ball.

Since Lp ∩ U b Lp b V, it follows that there exists a small ε > 0 such
that φtH(Lp ∩ U), (φtH)−1(Lp ∩ U) b Lp for all t ∈ [0, ε]. Replacing H with
H̃(t, x) = εH(εt, x), we may assume that

φtH(Lp ∩ U), (φtH)−1(Lp ∩ U) b Lp for all t ∈ [0, 1].

Next, let B denote an open neighborhood of p which is compactly con-
tained in U . Once again, as in the previous paragraph, by a reparametriza-
tion in time, where H is replaced with H̃(t, x) = εH(εt, x) for a sufficiently
small ε, we may assume that φtH(B), (φtH)−1(B) b U for all t ∈ [0, 1].

Pick q ∈ B such that H(0, p) 6= H(0, q) and take a symplectomorphism ψ
supported in B such that ψ preserves T and ψ(p) = q. Consider the continu-
ous HamiltonianG = (H◦ψ−H)◦φH . It is supported in ∪t∈[0,1](φ

t
H)−1(B) b

U , and moreover, the flow of G is (φtH)−1ψ−1φtHψ. We will now prove that
this flow preserves T globally. Note that the flow is supported in U and pick
x ∈ T ∩ U ⊂ Lp. Since φtH(T ∩ U) ⊂ T , and ψ(x) ∈ T ∩ U , we see that
φtHψ(x) ∈ T . First, suppose that φtHψ(x) /∈ B. Then, φtHψ(x) is outside
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the support of ψ−1 and so (φtH)−1ψ−1φtHψ(x) = ψ(x) which is in T . Next,
suppose that φtHψ(x) ∈ B∩T . Then, ψ−1φtHψ(x) ∈ B∩T , and so it suffices
to check that (φtH)−1(B ∩ T ) ⊂ T : this is because B ∩ T ⊂ U ∩ T ⊂ U ∩ Lp
and (φtH)−1(Lp ∩ U) b Lp for all t ∈ [0, 1]. We have proven that the flow of
G preserves T globally.

Note that G|T∩U is not a function of time only: G(0, p) = H(0, q) −
H(0, p) 6= 0 and G = 0 near the boundary of U . Hence, we have obtained a
C0–Hamiltonian G, supported in U , whose flow φtG preserves T globally, but
G(0, ·) is not constant on T . Because G ∈ C0

Ham there exist smooth Hamil-
tonians Gi such that {Gi} converges uniformly to G and {φGi} converges to
φG. Furthermore, we can ensure that all Gi’s are supported in U . This can
be achieved by picking a corresponding sequence of smooth Hamiltonians Hi

for H and defining Gi = (Hi ◦ ψ −Hi) ◦ φHi . For large i, Gi is supported in
U .

Since U is contained in a Weinstein neighborhood of T , we can pass to
T ∗T and work with the Lagrangian spectral invariants of the 0–section T0

associated to the Hamiltonians Gi. Recall that in the second paragraph of
the proof we picked the set U so that Lemma 8 could be applied. For any
fixed r > 0, because φtG preserves T0, we have φtGi

(T0) ⊂ T ∗r T for sufficiently
large i. The Hamiltonians Gi are all supported in U and hence using Lemma
8 we conclude that γ(φ1

Gi
(T0), T0) 6 Cr, i.e. γ(φ1

Gi
(T0), T0)→ 0. Of course,

by the same reasoning we obtain that γ(φtGi
(T0), T0) → 0 for all t ∈ [0, 1].

Then, Proposition 20 implies that G|T = c(t), which contradicts the fact
that G|T is not a function of time only. �

5. C0–rigidity of coisotropic submanifolds and their
characteristic foliations

This section is devoted to the proofs of Theorems 1, 3 and 5. We begin
by proving Theorem 3 and then deduce Theorems 1 and 5 from it.

Before going into the proof, recall (see [14, Proposition 13.7] and [8]) that
coisotropic submanifolds admit coisotropic charts, that is, for every point
p ∈ C, there is a pair (θ, U) where U is an open neighborhood of p and
θ : U → V ⊂ R2n is a symplectic diffeomorphism which maps p to 0 and C
to the standard coisotropic linear subspace

C0 = {(x1, . . . , xn, y1, . . . , yn) | (yn−k+1, . . . , yn) = (0, . . . , 0)}.

Such a diffeomorphism sends the characteristic foliation of C to that of C0,
whose leaf through a point q = (a1, . . . , an, b1, . . . , bn−k, 0, . . . , 0) ∈ C0 is the
affine subspace

F0(q) = {(a1, . . . , an−k, xn−k+1, . . . , xn, b1, . . . ,bn−k, 0, . . . , 0)

| (xn−k+1, . . . , xn) ∈ Rk} .



18 VINCENT HUMILIÈRE, RÉMI LECLERCQ, SOBHAN SEYFADDINI

The first step of the proof, is establishing the next lemma which is a ver-
sion of the first implication of Theorem 3 that does not require the coisotropic
submanifold to be a closed subset but holds only for small times.

Lemma 21. Let (M,ω) be a symplectic manifold and C a coisotropic sub-
manifold of M . Let H ∈ C0

Ham(M,ω) with induced hameotopy φH . Assume
that the restriction of H to C only depends on time. Then, for every p ∈ C,
there exists ε > 0 such that for all t ∈ [0, ε], φtH(p) belongs to F(p), the
characteristic leaf of C through p.

Before going into the details of the proof of Lemma 21, we make the follow-
ing observation. The lemma holds for coisotropic submanifolds of arbitrary
codimension but its proof will follow from the particular case of Lagrangians.
As mentioned in the introduction, this is not surprising in view of Weinstein’s
creed: “Everything is a Lagrangian submanifold!” [28].

Proof. Let p ∈ C and let (U, θ) be a coisotropic chart as defined above. For
i ∈ {1, . . . , n− k} consider the Lagrangian linear subspaces

Λi = {(x1, . . . , xn, y1, . . . , yn) |xi = 0 and ∀j 6= i, yj = 0},
and their pull backs Li = θ−1(Λi). Clearly, for all i ∈ {1, . . . , n − k}, Li ⊂
C ∩ U and

F(p) ∩ U =
n−k⋂
i=1

Li.

Let H be as in the statement of Lemma 21. Then for any i, the restriction of
H to Li is a function of time since Li is included in C. Thus by Proposition
17 there exists εi > 0 such that for all t ∈ [0, εi], φtH(p) ∈ Li. Taking
ε = min{ε1, . . . , εn−k}, we get

∀t ∈ [0, ε], φtH(p) ∈
n−k⋂
i=1

Li ⊂ F(p).

�

We can now prove Theorem 3.

Proof of Theorem 3. Let H ∈ C0
Ham such that H|C is a function of time

only and pick p ∈ C. For a contradiction, assume that for some t > 0,
φtH(p) /∈ F(p) and set t0 = inf{t > 0 |φtH(p) /∈ F(p)}. Note that since C is a
closed subset, the point φt0H(p) belongs to C. Then, consider the Hamiltonian
Kt = −H−t+t0 , so that φtK = φ−t+t0H (φt0H)−1. Its restriction to C is also a
function of time. Lemma 21 applied to K at the point φt0H(p) implies that
for some small t > 0, φt0−tH (p) ∈ F(φt0H(p)). But by definition of t0, we also
have φt0−tH (p) ∈ F(p), hence φt0H(p) ∈ F(p). Now apply Lemma 21 again to
Ht+t0 at the point φt0H(p). We get that for some ε′ > 0 and all t ∈ [t0, t0 +ε′],
φtH(p) ∈ F(p) which contradicts the definition of t0. Thus, φtH(p) ∈ F(p)
and the direct implication of Theorem 3 follows.
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We now prove the converse. Assume that the flow of H ∈ C0
Ham preserves

each leaf of the characteristic foliation. We are going to show first that the
function H0 is locally constant.

Let p ∈ C and θ : U → V be a coisotropic chart around p, with θ(p) =
0. For σ > 0 small enough, the set ∩t∈[0,σ](φ

t
H)−1(U) contains p in its

interior. Denote by U ′ this interior for some fixed σ. Similarly, for s ∈ (0, σ]
small enough, ∩t∈[0,s]φ

t
H(U ′) contains p in its interior. Let U ′′ be an open

neighborhood of p contained in this interior, and with the property that
θ(U ′′) is convex. Let q be any other point in U ′′ and Λ be a linear Lagrangian
subspace included in C0, containing θ(q) and the standard leaf F0(0). The
subspace Λ can be written as the union of the leaves F0(x) for all x ∈ Λ.

Now, consider the Lagrangian L = θ−1(Λ ∩ V ). Let U = L ∩ U ′ and
V = L ∩ U ′′. By construction, q ∈ V. By assumption φtH(U) ⊂ L for all
t ∈ [0, s]. We may apply Proposition 19 to L and the continuous Hamiltonian
Kt(x) = sHst(x) which generates the hameotopy φstH . We get that for any
t ∈ [0, 1], Kt is locally constant on V. Equivalently, for any t ∈ [0, s], Ht is
locally constant on V. Now since θ(U ′′) is convex and Λ is linear, θ(U ′′)∩Λ is
connected. It follows that V is also connected and therefore Ht(p) = Ht(q).
To summarize, we proved that for t small enough, Ht is constant on U ′′ ∩C.
In particular, H0 is locally constant on C.

Since C is assumed to be connected, this means that H0 is constant on
C. The argument we followed for t = 0 applies for any other initial time.
Thus, Ht must be constant on C for any t. �

The proof of Theorem 1 relies on the first implication of Theorem 3 and
the following characterization of coisotropic submanifolds and their charac-
teristic foliations:

A submanifold is coisotropic if and only if the flow of every autonomous
Hamiltonian constant on it preserves it. Moreover, the leaf through a point p
is locally the union of the orbits of p under the flows of all such Hamiltonians.

The next lemma is based on this characterization.

Lemma 22. Let C be a submanifold in a symplectic manifold (M,ω). As-
sume that every point p ∈ C admits an open neighborhood V such that any
H ∈ C∞c (V ), with H|C ≡ 0, satisfies φtH(p) ∈ C for every t ∈ [0,+∞).
Then C is coisotropic.

Moreover, for such a neighborhood V , there exists a smaller neighborhood
W b V such that, the leaf F(p) of the characteristic foliation of C passing
through p satisfies

W ∩ F(p) = W ∩ {φtH(p) | t ∈ [0,+∞), H ∈ C∞c (V ), H|C ≡ 0}.

Proof. Let p ∈ C and let V be an open subset as in the statement of the
lemma. Assume that C coincides locally with f−1

1 (0)∩ . . .∩ f−1
k (0) for some

smooth functions f1, . . . , fk whose differentials are linearly independent at
p. By multiplying by an appropriate cutoff function, we can assume that
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these functions are defined everywhere on M , have compact support in V ,
and vanish on C.

The Hamiltonian vector fields at p of f1, . . . , fk span (TpC)ω, and by
assumption belong to TpC. Thus (TpC)ω ⊂ TpC and C is coisotropic.

Now, since the characteristic leaves are preserved by smooth Hamiltonians
constant on C, we have the inclusion

F(p) ⊃ {φtH(p) | t ∈ [0,+∞), H ∈ C∞c (V ), H|C ≡ 0}.

Conversely, consider the map

F : Rk → C, (v1, . . . , vk) 7→ φ1∑k
i=1 vifi

(p).

Since,
∑k

i=1 vifi is constant on C, its flow preserves the characteristics, hence
F takes values in the characteristic leaf F(p) through p. The partial deriva-
tives of F at 0 are ∂viF (0) = Xfi(p) and in particular they are linearly
independent and span TpF(p) = (TpC)ω. The inverse function theorem then
shows that F is a diffeomorphism from a neighborhood of 0 to a neighbor-
hood of p in F(p). This shows

W ∩ F(p) ⊂W ∩ {φtH(p) | t ∈ [0,+∞), H ∈ C∞c (V ), H|C ≡ 0}

for some neighborhood of p in M and finishes the proof of Lemma 22. �

We are now ready to prove Theorem 1.

Proof of Theorem 1. Let C be a smooth coisotropic submanifold, and θ : U →
V be a symplectic homeomorphism. Assume C ′ = θ(U ∩ C) is smooth. Let
p′ ∈ C ′ and p = θ−1(p′). By passing to an appropriate Darboux chart
around p, we may assume that U ⊂ R2n, p = 0 ∈ R2n, and C = C0. We
are going to prove that any function H ∈ C∞c (V ), with H|C′ ≡ 0, satisfies
φtH(p′) ∈ C ′ for all t ∈ [0,+∞). According to Lemma 22, this will imply
that C ′ is coisotropic.

Let H be such a function and consider the function H ◦ θ. It is com-
pactly supported in U and can be extended by 0 outside U to a continuous
compactly supported function K : R2n → R. Since H is smooth and θ is a
symplectic homeomorphism, K ∈ C0

Ham(R2n, ω0). Since K|C0 = 0, Theorem
3 yields φtK(0) ∈ F0(0) for any t > 0. Since K has support in U , we have

(8) ∀t > 0, φtK(0) ∈ F0(0) ∩ U ⊂ C0 ∩ U.

Since φtH = θφtKθ
−1, we deduce φtH(p′) ∈ C ′ as desired and hence that C ′ is

coisotropic.
Denote F ′ the characteristic foliation of C ′. From (8), we deduce that for

any H ∈ C∞c (V ), H|C′ ≡ 0,

∀t > 0, φtH(p′) ∈ θ(F0(0) ∩ U).

Now according to Lemma 22, there exists a neighborhood W ⊂ V such that

W ∩ F ′(p′) = W ∩ {φtH(p′) | t ∈ [0,+∞), H ∈ C∞c (V ), H|C′ ≡ 0}.



COISOTROPIC C0–RIGIDITY 21

Thus,
W ∩ F ′(p′) ⊂W ∩ θ(F0(0)).

We get the reverse inclusion by switching the roles of C and C ′, and we see
that θ sends locally F0(0) onto F ′(p′). �

Let us now turn to the proof of Theorem 5. The proof has three main
ingredients: the Lagrangian case in Theorem 3 (i.e., Propositions 17 and 19),
Theorem 1, and the fact that the graph of the characteristic foliation, given
by

Γ(F) = {(x, x′) ∈M ×M |x ∈ C, x′ ∈ F(x)},
is Lagrangian in the product M × M endowed with the symplectic form
ω ⊕ (−ω), as long as it is a submanifold.

Proof of Theorem 5. Let p ∈ C and (U, θ) be a coisotropic chart of C around
p sending p to 0. The symplectic diffeomorphism Θ = θ×θ, defined on U×U
maps Γ(F) to the graph of the standard characteristic foliation

Γ(F0) = {(x1, . . . , xn, y1, . . . , yn, x
′
1, . . . , x

′
n, y
′
1, . . . , y

′
n) ∈ R2n × R2n |

∀i ∈ {n− k + 1, . . . , n}, yi = y′i = 0 and

∀j ∈ {1, . . . , n− k}, xi = x′i, yi = y′i} .

Since Γ(F0) is a Lagrangian submanifold of R2n×R2n, then Λ = Θ−1(Γ(F0)) =
(U × U) ∩ Γ(F) is a Lagrangian submanifold of M ×M .

Now note that if H ∈ C0
Ham then the function K : [0, 1] ×M ×M → R

given by Kt(x, x
′) = Ht(x)−Ht(x

′) is a continuous Hamiltonian generating
the hameotopy φH × φH (recall that the symplectic form on M × M is
ω ⊕ (−ω)).

Assume for a contradiction that H is a function of time on every leaf
of the characteristic foliation F of C and that for some point q ∈ C and
some time t < 1, φtH(q) /∈ C. Set t0 = sup{t > 0 |φtH(q) ∈ C}. Since C
is a closed subset of M , p = φt0H(q) ∈ C and we can assume that the above
construction yielding the construction of Λ is performed in the neighborhood
of this point. Consider the ”time-reparametrized” Hamiltonians H̃, K̃ given
by H̃(t, x) = (1− t0)H(t0 + (1− t0)t, x) and K̃(t, x, x′) = H̃(t, x)− H̃(t, x′).
The fact that H is a function of time on any leaf implies that the restriction
of K̃ to Γ(F) is identically 0. In particular, it vanishes on the Lagrangian Λ
and according to Proposition 17 there exists ε > 0 such that for all t ∈ [0, ε],
φt
K̃

(p, p) = (φt
H̃
× φt

H̃
)(p, p) ∈ Λ. This implies that

φ
t0+ε(1−t0)
H (q) = φε

H̃
(p) ∈ C,

which contradicts the maximality of t0.
Conversely, assume that the flow φtH preserves C. By Theorem 1, φtH

sends leaves to leaves and in particular, it preserves the graph of the folia-
tion. Therefore, for any point p ∈ C, we may apply Proposition 19 to the
Lagrangian Λ and the continuous Hamiltonian K. We get that on a neigh-
borhood of (p, p), and for small times t, Kt is constant. Since K0(p, p) = 0
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we get that K0 vanishes in a neighborhood of (p, p). But this implies that
H0 is constant on a neighborhood of p in the leaf F(p). The argument can
be performed for any p ∈ C and at any initial time t instead of 0. It shows
that Ht is locally constant, hence constant, on leaves. �

6. Defining C0–Coisotropic submanifolds and their
characteristic foliations

In this section we will use Theorem 1 to define C0–coisotropic subman-
ifolds and their characteristic foliations. Below, we assume that R2n is
equipped with the standard symplectic structure. Recall from the begin-
ning of Section 5 that every coisotropic submanifold of codimension k is
locally symplectomorphic to

C0 = {(x1, . . . , xn, y1, . . . , yn) | (yn−k+1, . . . , yn) = (0, . . . , 0)} ⊂ R2n ,

and that the leaf of its characteristic foliation, F0, passing through p =
(a1, . . . , an, b1, . . . , bn−k, 0, . . . , 0) is given by

F0(p) = {(a1, . . . , an−k, xn−k+1, . . . , xn, b1, . . . ,bn−k, 0, . . . , 0) |

(xn−k+1, . . . , xn) ∈ Rk} .

Definition 23. A codimension–k C0–submanifold C of a symplectic mani-
fold (M,ω) is C0–coisotropic if around each point p ∈ C there exists a C0–
coisotropic chart, that is, a pair (U, θ) with U an open neighborhood of p and
θ : U → V ⊂ R2n a symplectic homeomorphism, such that θ(C∩U) = C0∩V .

A codimension–n C0–coisotropic submanifold is called a C0–Lagrangian.

Example. Graphs of symplectic homeomorphisms are C0–Lagrangians.
Graphs of differentials of C1 functions and, more generally, graphs of C0

1–forms, closed in the sense of distributions, provide a family of non trivial
examples; see Proposition 26 for a proof.

Conversely, we could ask whether every continuous 1–form whose graph
is a C0–Lagrangian is closed in the sense of distributions. An affirmative
answer in a particular case appears in Viterbo [26, Corollary 22].

As a consequence of Theorem 1, C0–coisotropic submanifolds carry (C0–)
characteristic foliations in the following sense.

Proposition 24. Any C0–coisotropic submanifold C admits a unique C0–
foliation F which is mapped to F0 by any C0–coisotropic chart.

Proof. If such a foliation exists it has to coincide with θ−1(F0) on the domain
of any C0–coisotropic chart ϕ. The only thing to check is that for any two
C0–coisotropic charts θ1 : U1 → V1 and θ2 : U2 → V2, the foliations θ−1

1 (F0)

and θ−1
2 (F0) coincide on U1∩U2. But this follows immediately from Theorem

1 applied to C = C0 and θ = θ1θ
−1
2 : θ2(U1 ∩ U2)→ θ1(U1 ∩ U2). �

Theorem 1 states that a smooth C0–coisotropic submanifold is coisotropic
and its natural C0–foliation coincides with its characteristic foliation.
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Example. If C = θ(C ′), with C ′ a smooth coisotropic submanifold and θ a
symplectic homeomorphism, then F = θ(F ′) where F ′ is the characteristic
foliation of C ′.

One may wonder if every topological hypersurface is C0–coisotropic. It is
possible to show, via an application of Proposition 24, that the boundary of
the standard cube in R4 does not possess a C0–characteristic foliation, and
hence, it is not C0–coisotropic.

The following proposition tells us that Theorems 3 and 5 hold for C0–
coisotropic submanifolds.

Proposition 25. Denote by C a connected C0–coisotropic submanifold of a
symplectic manifold (M,ω) which is closed as a subset of M . Let H ∈ C0

Ham
with induced hameotopy φH .

(1) The restriction of H to C is a function of time if and only if φH
preserves C and flows along the leaves of its (C0–)characteristic fo-
liation.

(2) The restriction of H to each leaf of the characteristic foliation of C
is a function of time if and only if the flow φH preserves C.

The above can be proven by adapting the proofs of Theorems 3 and 5
to C0–coisotropics. We will not provide a proof for Proposition 25 here,
and we only mention that to adapt the proofs one would have to introduce
C0–coisotropic charts and use the following simple fact: if θ is a symplec-
tic homeomorphism and H ∈ C0

Ham then H ◦θ ∈ C0
Ham and φtH◦θ = θ−1φtHθ.

Finally, we provide a family of non trivial examples of C0–Lagrangians.

Proposition 26. Let α be a C0 1–form on a smooth manifold N which is
closed in the sense of distributions. Then, its graph, graph(α) ⊂ T ∗N , is a
C0–Lagrangian.

Proof. Since the statement is local, it is sufficient to prove it when N is
an open set in Rn. Then α can be written as α =

∑n
i=1 pi(x)dxi, where

x1, . . . , xn are the canonical coordinates in Rn and p1, . . . , pn continuous
functions on N . The fact that α is closed is equivalent to the equations

(9) ∀i, j ∈ {1, . . . , n}, ∂jpi = ∂ipj ,

where ∂ipj is the i–th partial derivative of pj in the sense of distributions.
We use convolution to approximate α. To that end, take a compactly

supported smooth function ρ such that ρ > 0, and
∫
N ρ(x)dx = 1 and set

ρε(x) = 1
εn ρ
(
x
ε

)
for every ε > 0. For any continuous function f on N , the

functions

f ∗ ρε(x) =

∫
N
f(y)ρε(x− y)dy

are well-defined on any compact subset of N for ε small enough. Moreover,
for any ε, f ∗ ρε is smooth, converges locally uniformly to f as ε goes to 0,
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its differential satisfies d(f ∗ ρε) = (df) ∗ ρε and converges in the sense of
distributions to df .

Let U b N be an open subset of N . Then, for ε small enough,

αε =
n∑
i=1

pi ∗ ρε dxi

is a well-defined 1–form on U . It satisfies Equations (9) and thus is closed.
Moreover, it converges uniformly to α on U .

Now let φε be the family of symplectic diffeomorphisms of T ∗U defined
by φε(x, p) = (x, p+ αε(x)). They converge uniformly on U to the symplec-
tic homeomorphism φ : T ∗U → T ∗U , (x, p) 7→ (x, p + α(x)) and graph(α)
restricted to T ∗U is φ(U). This shows that graph(α) is locally the image of
a smooth Lagrangian by a symplectic homeomorphism. �

Appendix A. The main results for closed Lagrangian

In this section we provide relatively simple proofs for Theorems 1, 3, and
5 in an enlightening and important special case. We suppose that M = T ∗L
equipped with its canonical symplectic structure for some closed smooth
manifold L. Denote by θ a symplectic homeomorphism of T ∗L. And let
L′ = θ(L0), where L0 denotes the 0–section of T ∗L.

Below, we will prove Theorems 1, 3, and 5 in the special case where the
coisotropic C is taken to be the zero section L0. In this case Theorem 1
states the following:

Theorem 27. If L′ is smooth, then it is Lagrangian.

In the settings considered in this appendix, Theorems 3 and 5 coincide
and state the following:

Theorem 28. Let H ∈ C0
Ham with induced hameotopy φH . The restriction

of H to L0 is a function of time if and only if φH preserves L0.

We believe that the above special cases provide the reader with the op-
portunity to get an idea of the proofs of our main results without having to
go through the technical details of Sections 4 and 5.

We will first show that Theorem 27 follows from Theorem 28. In order
to do so we will need the following dynamical characterizations of isotropic
and coisotropic submanifolds, respectively.

Lemma 29. Let I denote a (smooth) submanifold of a symplectic manifold
(M,ω). The following are equivalent:

• I is isotropic,
• For every smooth Hamiltonian H, if φH preserves I, then H|I is a
function of time only.

Lemma 30. Let C denote a (smooth) submanifold of a symplectic manifold
(M,ω). The following are equivalent:
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• C is coisotropic,
• For every smooth Hamiltonian H, if H|C is a function of time only,
then φH preserves C.

We leave the proofs of the above lemmas, which follow from symplectic
linear algebra, to the reader. In the proof of Theorem 1, we use Lemma 22
which is a variation of the second of the above two lemmas.

Proof of Theorem 27. Each of Lemmas 29 and 30 gives a different proof. We
provide both proofs here.
First proof: Suppose that H is any smooth Hamiltonian whose flow φH
preserves L′. Then H ◦ θ ∈ C0

Ham and its flow, θ−1φtHθ, preserves L0. It
follows from Theorem 28 that the restriction of H ◦ θ to L0 is a function of
time only. Therefore, H|L′ depends on time only, and so using Lemma 29
we conclude that L′ is isotropic.
Second proof: Suppose that H is any smooth Hamiltonian whose restric-
tion to L′ is a function of time only. Then H ◦ θ ∈ C0

Ham and its restriction
to L0 depends only on time. It follows from Theorem 28 that the flow of
H ◦ θ, which is θ−1φtHθ, preserves L0 and so the flow of H preserves L′.
Using Lemma 30 we conclude that L′ is coisotropic. �

Proof of Theorem 28. To prove the direct implication suppose that Ht|L0 =
c(t), where c(t) is a function of time only. For a contradiction assume that
φH does not preserve L0, then for some t0 we have φt0H(L0) 6⊂ L0, and after
the time reparametrization t 7→ t0t we may assume that t0 = 1, that is,
φ1
H(L0) 6⊂ L0.
SinceH ∈ C0

Ham there exists a sequence of smooth HamiltoniansHi : [0, 1]×
M → R such that Hi converges uniformly to H and φHi converges to φH in
C0–topology.

Because φ1
H(L0) 6⊂ L0, there exists a ball B such that B ∩ L0 6= ∅ and

φ1
H(B) ∩ L0 = ∅. It follows that φ−1

Hi
(L0) ∩B = ∅ for large i. And so,

γ(φ1
Hi

(L0), L0) = γ(φ−1
Hi

(L0), L0) > cLR(B;L0) > 0.

Inequality (2) from Section 2.2 implies that

max
t∈[0,1]

(osc(Hi(t, ·)|L0)) > cLR(B;L0),

contradicting the fact that H|L0 is a function of time. We conclude that φH
preserves L0.

Next, to prove the converse implication suppose that φH preserves L0. We
will show that H(0, ·)|L0 is constant. A time reparametrization argument,
where H(t, x) is replaced with H̃(t, x) = (1 − s)H(s + (1 − s)t, x), would
then show that H(s, ·)|L0 is constant for any choice of s ∈ [0, 1). This in
turn would imply that H|L0 is a function of time.

Let B denote an open ball intersecting L0 and U a small open neighbor-
hood of B, such that L0\π(U) has a non-empty interior, where π : T ∗L→ L0

is the natural projection. (Picking U in this way enables us to apply Lemma
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8.) Let ψ be any symplectomorphism supported in B and preserving L0.
Next, we pick ε > 0 such that φtH(B), (φtH)−1(B) b U for all t ∈ [0, ε]. By a
reparametrization in time, where H(t, x) is replaced with εH(εt, x), we may
assume that φtH(B), (φtH)−1(B) b U for all t ∈ [0, 1].

Consider the C0–Hamiltonian G = (H ◦ ψ −H) ◦ φH . We will now show
that G|L0 = 0. The support of G is included in ∪t∈[0,1](φ

t
H)−1(B) ⊂ U , and

moreover, its flow is (φtH)−1ψ−1φtHψ. Because ψ and φH preserve L0 the
flow of G also preserves L0.

Since G ∈ C0
Ham there exist smooth Hamiltonians Gi such that {Gi}

converges uniformly to G and {φGi} converges to φG. Furthermore, we can
require that all Gi’s are supported in U . This can be achieved by picking
a corresponding sequence of smooth Hamiltonians Hi for H and defining
Gi = (Hi ◦ ψ −Hi) ◦ φHi . For large i, Gi is supported in U .

Fix a small r > 0. Because φtG(L0) = L0 for any t ∈ [0, 1], for sufficiently
large i we have φtGi

(L0) ⊂ T ∗r L0. Furthermore, the Hamiltonians Gi are
all supported in U and hence we can apply Lemma 8 and conclude that
γ(φ1

Gi
(L0), L0) 6 Cr, i.e γ(φ1

Gi
(L0), L0)→ 0. Of course, the same reasoning

yields γ(φtGi
(L0), L0)→ 0 for all t ∈ [0, 1]. Then, Proposition 20 implies that

G|L0 = c(t). Since it has support in U , we conclude that G|L0 = 0.
In particular, G|L0 = 0 at time 0. Now since the ball B can contain any

chosen pair of points x1, x2 ∈ L0, and ψ can be chosen so that ψ(x1) = x2,
we conclude that the restriction H(0, ·)|L0 is constant. �

References

[1] J.-F. Barraud and O. Cornea. Lagrangian intersections and the Serre spectral se-
quence. Ann. of Math. (2), 166(3):657–722, 2007.

[2] M. S. Borman and M. McLean. Bounding Lagrangian widths via geodesic paths.
Compos. Math., 150(12):2143–2183, 2014.

[3] L. Buhovsky and S. Seyfaddini. Uniqueness of generating Hamiltonians for topological
Hamiltonian flows. J. Symplectic Geom., 11(1):37–52, 2013.

[4] F. Charette. A geometric refinement of a theorem of Chekanov. J. Symplectic Geom.,
10(3):475–491, 2012.

[5] Y. Eliashberg and N. Mishachev. Introduction to the h-principle, volume 48 of Grad-
uate Studies in Mathematics. American Mathematical Society, Providence, RI, 2002.

[6] U. Frauenfelder, V. L. Ginzburg, and F. Schlenk. Energy capacity inequalities via an
action selector. In Geometry, spectral theory, groups, and dynamics, volume 387 of
Contemp. Math., pages 129–152. Amer. Math. Soc., Providence, RI, 2005.

[7] V. L. Ginzburg. Coisotropic intersections. Duke Math. J., 140(1):111–163, 2007.
[8] M. J. Gotay. On coisotropic imbeddings of presymplectic manifolds. Proc. Amer.

Math. Soc., 84(1):111–114, 1982.
[9] M. Gromov. Partial differential relations, volume 9 of Ergebnisse der Mathematik

und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)]. Springer-
Verlag, Berlin, 1986.

[10] V. Humilière, R. Leclercq, and S. Seyfaddini. New energy-capacity-type inequali-
ties and uniqueness of continuous Hamiltonians. Comment. Math. Helv., to appear
(arXiv:1209.2134).



COISOTROPIC C0–RIGIDITY 27

[11] F. Laudenbach and J.-C. Sikorav. Hamiltonian disjunction and limits of Lagrangian
submanifolds. Internat. Math. Res. Notices, (4):161 ff., approx. 8 pp. (electronic),
1994.

[12] R. Leclercq. Spectral invariants in Lagrangian Floer theory. J. Mod. Dyn., 2(2):249–
286, 2008.

[13] R. Leclercq and F. Zapolsky. Spectral invariants for monotone Lagrangian submani-
folds. (in preparation).

[14] P. Libermann and C.-M. Marle. Symplectic geometry and analytical mechanics, vol-
ume 35 of Mathematics and its Applications. D. Reidel Publishing Co., Dordrecht,
1987. Translated from the French by Bertram Eugene Schwarzbach.

[15] S. Lisi and A. Rieser. Coisotropic Hofer–Zehnder capacities and non-squeezing for
relative embeddings. ArXiv:1312.7334, 2013.

[16] D. Milinković. On equivalence of two constructions of invariants of lagrangian sub-
manifolds. Pacific J. of Math., 195:371–415, 2000.

[17] D. Milinković. Geodesics on the space of Lagrangian submanifolds in cotangent bun-
dles. Proc. Amer. Math. Soc., 129(6):1843–1851 (electronic), 2001.

[18] A. Monzner, N. Vichery, and F. Zapolsky. Partial quasimorphisms and quasistates
on cotangent bundles, and symplectic homogenization. J. Mod. Dyn., 6(2):205–249,
2012.

[19] Y.-G. Oh. Symplectic topology as the geometry of action functional. I. Relative Floer
theory on the cotangent bundle. J. Differential Geom., 46(3):499–577, 1997.

[20] Y.-G. Oh. Locality of continuous Hamiltonian flows and Lagrangian intersections with
the conormal of open subsets. J. Gökova Geom. Topol. GGT, 1:1–32, 2007.

[21] Y.-G. Oh. Geometry of generating functions and Lagrangian spectral invariants.
ArXiv:1206.4788, June 2012.

[22] Y.-G. Oh and S. Müller. The group of Hamiltonian homeomorphisms and C0–
symplectic topology. J. Symplectic Geom., 5(2):167–219, 2007.

[23] E. Opshtein. C0–rigidity of characteristics in symplectic geometry. Ann. Sci. Éc.
Norm. Supér. (4), 42(5):857–864, 2009.

[24] M. Usher. The sharp energy-capacity inequality. Commun. Contemp. Math.,
12(3):457–473, 2010.

[25] C. Viterbo. Symplectic topology as the geometry of generating functions. Math. An-
nalen, 292:685–710, 1992.

[26] C. Viterbo. On the uniqueness of generating Hamiltonian for continuous limits of
Hamiltonians flows. Int. Math. Res. Not., pages Art. ID 34028, 9, 2006.

[27] C. Viterbo. Symplectic homogenization. ArXiv:0801.0206, Dec. 2008.
[28] A. Weinstein. Symplectic geometry. Bull. Amer. Math. Soc. (N.S.), 5(1):1–13, 1981.

VH: Institut de Mathématiques de Jussieu, Université Pierre et Marie
Curie, 4 place Jussieu, 75005 Paris, France

E-mail address: vincent.humiliere@imj-prg.fr

RL: Université Paris-Sud, Département de Mathématiques, Bat. 425, 91405
Orsay Cedex, France

E-mail address: remi.leclercq@math.u-psud.fr

SS: Département de Mathématiques et Applications de l’École Normale
Supérieure, 45 rue d’Ulm, F 75230 Paris cedex 05

E-mail address: sobhan.seyfaddini@ens.fr


	1. Introduction and main results
	Defining C0–coisotropic submanifolds
	Main tools: Lagrangian spectral invariants
	Organization of the paper
	Aknowledgements

	2. Preliminaries
	2.1. Symplectic and Hamiltonian homeomorphisms
	2.2. Lagrangian spectral invariants

	3. Energy-capacity inequalities
	3.1. The energy-capacity inequality for Hamiltonians constant on open sets
	3.2. The energy-capacity inequality for Lagrangians displaced from an open set
	3.3. An upper bound for the spectral distance

	4. Localized results for Lagrangians
	4.1. C0–Hamiltonians constant on a Lagrangian preserve it
	4.2. C0–Hamiltonians preserving a Lagrangian are constant on it

	5. C0–rigidity of coisotropic submanifolds and their characteristic foliations
	6. Defining C0–Coisotropic submanifolds and their characteristic foliations
	Appendix A. The main results for closed Lagrangian
	References

