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Introduction (légèrement détaillée) en français

Le contexte général de ce travail est la géométrie symplectique grossièrement décrite
ci-dessous à travers quatre dichotomies.

Flexibilité vs rigidité
Une variété symplectique est une variété M de dimension paire, munie d’une

2-forme fermée non-dégénérée ω. Une telle structure est très flexible. Par exemple, le
théorème de Darboux assure qu’elle n’admet aucun invariant géométrique local puisque
tout point de toute variété symplectique admet un voisinage symplectiquement équivalent
à une boule de l’espace euclidien de la même dimension, muni de sa forme symplectique
standard.

Cependant, une structure symplectique présente également un caractère rigide in-
attendu. Par exemple, un automorphisme ϕ d’une variété symplectique (M ,ω), appelé
symplectomorphisme, est un difféomorphisme de M qui préserve ω, c’est-à-dire dont la
différentielle satisfait ϕ∗ ω =ω. Un théorème célèbre dû à Gromov et Eliashberg affirme
que cette condition passe à la limite C0 malgré son caractère C1, au sens où un homéo-
morphisme obtenu comme limite C0 d’une suite de symplectomorphismes est lui-même
un symplectomorphisme dès qu’il est lisse.

Automorphismes vs sous-variétés
Les objets principalement étudiés par la géométrie symplectique classique sont les

symplectomorphismes, certaines sous-variétés naturelles des variétés symplectiques, ain-
si que les relations qui les unissent.

Par exemple, le groupe des difféomorphismes hamiltoniens est un sous-groupe du groupe
des symplectomorphismes, dénoté Ham(M ,ω), qui est formé des symplectomorphismes
engendrés par le flot de fonctions lisses définies sur M , possiblement dépendantes du
temps. Une illustration frappante de l’importance de ce sous-groupe est donnée par
un résultat de Banyaga qui montre que la structure algébrique du groupe des dif-
féomorphismes hamiltoniens détermine la structure symplectique de la variété. Plus
précisément, si ω et ω′ sont deux variétés symplectiques dont les groupes de difféo-
morphismes hamiltoniens Ham(M ,ω) et Ham(M ,ω′) sont isomorphes, alors (M ,ω)
est symplectomorphe à (M , cω′) pour une certaine constante c.

Il y a plusieurs types de sous-variétés naturelles d’une variété symplectique : les
sous-variétés isotropes, coisotropes, lagrangiennes et symplectiques. Une sous-variété
symplectique de (M ,ω) est une sous-variété sur le tangent de laquelle la restriction de ω
est non-dégénérée. “Au contraire”, une sous-variété est lagrangienne si elle est de dimen-
sion dimM

2 et si la restriction de ω s’annule identiquement sur son fibré tangent. Les
sous-variétés lagrangiennes sont surprenamment rigides pour des sous-variétés d’une
si grande codimension.

Difféomorphismes hamiltoniens et sous-variétés lagrangiennes interagissent de nom-
breuses façons et ces interactions conduisent à certains phénomènes fascinants. Par
exemple, une lagrangienne L d’une variété symplectique (M ,ω) dont le second groupe
d’homotopie relative π2(M ,L) s’annule ne peut être déplacée d’elle-même par un difféo-
morphisme hamiltonien : L intersecte son image par tout tel difféomorphisme. Ci-dessous,
l’ensemble des lagrangiennes qui sont obtenues comme image de L par un difféomor-
phisme hamiltonien est dénoté par LHam(L).
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10 INTRODUCTION (LÉGÈREMENT DÉTAILLÉE) EN FRANÇAIS

Géométrie vs topologie
De nombreux outils importants ont été mis au point pour étudier la géométrie et

la topologie des groupes de difféomorphismes hamiltoniens ainsi que des ensembles
de lagrangiennes précités. Pour justifier (de manière subtile !) le choix du titre de ce
mémoire, mentionnons (par exemple !) les invariants spectraux, qui conduisent en parti-
culier à une (pseudo-)distance sur ces ensembles, et le morphisme de Seidel qui a permis
d’obtenir des informations sur leurs groupes fondamentaux.
Mou vs dur

Cette dernière dichotomie concerne les outils utilisés en vue d’obtenir les résultats
désirés. L’adjectif “dur” se réfère aux outils basés sur l’utilisation de techniques de
courbes pseudo-holomorphes, introduites en géométrie symplectique par Gromov en
1985. Par exemple, l’homologie quantique et l’homologie de Floer sont des parangons
de techniques “dures”, à partir desquelles les invariants spectraux et le morphisme de
Seidel sont construits. Par opposition une technique est qualifiée de “molle” si elle n’est
pas dure.

Au vu de ces dichotomies, il s’avère que j’ai étudié avec persévérance des
Propriétés de rigidité de trucs symplectiques grâce à des techniques dures.

Malheureusement, ceci semblait inapproprié comme titre pour ce mémoire.
Une autre conséquence malheureuse d’avoir étudié à la fois les propriétés géomé-

triques et topologiques des objets divers regroupés sous l’appellation “trucs symplec-
tiques” est que cela complique l’organisation du mémoire. En particulier, si le reste de
cette introduction est organisée pour illustrer l’affirmation encadrée ci-dessus, le mémoire
lui-même est organisé différemment, en fonction des outils utilisés.
• Le chapitre I présente les homologies quantique et de Floer, nécessaires aux construc-
tions des invariants spectraux et du morphisme de Seidel.

• Le chapitre II est centré sur les invariants spectraux. Leurs définition et propriétés
sont expliquées en section 1. Les sections 2 et 3 présentent certaines de leurs consé-
quences en termes de rigidité en géométrie symplectique “classique” (ou “lisse”) et
en géométrie symplectique “continue” respectivement. Finalement, les sections 4 et 5
abordent plusieurs travaux en cours.

• Le chapitre III est centré sur le morphisme de Seidel. En section 1, ce morphisme est
utilisé pour établir une certaine rigidité homologique de lagrangiennes particulières.
La section 2 montre comment il peut être explicitement calculé dans certaines situa-
tions1. La section 3 contient des pistes pour des travaux ultérieurs dans la continuité
des sections 1 et 2.

Terminons l’introduction de cette introduction par deux avertissements.
Avertissement 1. Bien que l’article (L 2008) faisant suite à ma thèse de doctorat
ne soit pas discuté dans ce mémoire, il apparaît à différents endroits puisqu’il a bien
évidemment inspiré pour partie les travaux présentés dans ces pages.

L’article (L 2009) n’est mentionné que deux fois dans ce mémoire. Ceci
reflète le fait qu’il est très technique et prouve, sous des hypothèses raisonnables, une
propriété naturelle et prévisible du morphisme de Seidel des produits de variétés sym-
plectiques. Il peut être utilisé par exemple, comme c’est le cas plus bas, pour obtenir
plus d’exemples en prenant des produits.

Finalement, cette phrase contient la seule référence à l’article (B et L
2012) de tout le mémoire. Ceci reflète le fait que cet article est déconnecté du reste des
travaux présentés ici.
Avertissement 2. Dans le but de garder cette introduction courte et lisible, le nombre de
références à d’autres travaux a été réduit au minimum. Le lecteur est prié de consulter
les sections appropriées du mémoire pour plus de détails.

1. C’est la seule partie du mémoire qui ne conduit pas évidemment à des propriétés de rigidité...
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1. Les outils principaux (des “techniques dures”)

Les résultats présentés dans ce mémoire concernent et/ou ont été obtenus grâce
aux invariants spectraux et au morphisme de Seidel. Nous introduisons ces deux outils
rapidement ici et spécifions nos contributions à leur développement.

Ils reposent tous les deux sur les théories d’homologies quantique et de Floer. Ces
homologies dénotées respectivement HQ et HF ci-dessous, peuvent être associées à une
variété symplectique ou à une sous-variété lagrangienne d’une variété symplectique.
Elles sont toutes deux un mélange de théorie de Morse et de techniques de courbes
pseudo-holomorphes (mais selon des recettes très différentes). La définition de ces ho-
mologies et des structures additionnelles dont elles jouissent, ainsi que les relations qui
les lient sont décrites longuement au chapitre I.

Invariants spectrauxInvariants spectrauxInvariants spectrauxInvariants spectrauxInvariants spectrauxInvariants spectrauxInvariants spectrauxInvariants spectrauxInvariants spectrauxInvariants spectrauxInvariants spectrauxInvariants spectrauxInvariants spectrauxInvariants spectrauxInvariants spectrauxInvariants spectrauxInvariants spectraux (L et Z 2018)
Ils ont été introduits par Viterbo (V 1992) pour les lagrangiennes des fibrés

cotangents via la théorie des fonctions génératrices. La construction a été ensuite adaptée
à l’homologie de Floer dans le même contexte par Oh (O 1997). Puis, Schwarz (S
2000) et Oh (O 2005) ont adapté la construction aux variétés symplectiques compactes
(sans mention de lagrangienne). Le cas des lagrangiennes des variétés symplectiques
compactes a été initié dans l’article (L 2008) sous une hypothèse assez restrictive
dite d’asphéricité symplectique et pour des théories d’homologie à coefficients dans Z/2Z.

Dans un travail commun avec Zapolsky (L et Z 2018), nous avons
étendu cette dernière construction à des lagrangiennes satisfaisant l’hypothèse beaucoup
plus faible de monotonie et pour des théories d’homologie à coefficients dans des anneaux
beaucoup plus généraux. Étant donnée une lagrangienne monotone2 L d’une variété
symplectique (M ,ω), les invariants spectraux sont donnés sous la forme d’une fonction

` : HQ∗(L)× C0
(
M × [0, 1]

)
−→ R ∪ {−∞}

qui associe un nombre réel à toute classe d’homologie (quantique) non nulle de L et à
toute fonction continue dépendant du temps définie sur M . L’ingrédient principal de la
construction est une filtration naturelle de l’homologie de Floer. La version Morse de la
fonction `, qui lui sert de modèle, est par ailleurs assez facile à décrire. Étant donnée une
fonction de Morse f surM et une classe d’homologie (de Morse) α non nulle, la filtration
est donnée par les valeurs de f et `(α , f) est définie de sorte que {x ∈M | f(x) ≤ `(α , f)}
soit le plus petit sous-niveau de f qui contienne un représentant de α (voir aussi la
figure II.1 pour une illustration).

La définition de la fonction ` est détaillée en section 1.1 du chapitre II. Dans les
sections 1.1 et 1.2 sont établies ses propriétés, dont les principales sont rassemblées dans
le théorème suivant.

T 1. Soient α et β des classes d’homologie quantique de L non nulles, et H et K
des fonctions continues sur M × [0 , 1].
[Finitude] `(α ;H) est fini.
[Spectralité] Si H est lisse, `(α ;H) appartient aux valeurs critiques d’une fonctionnelle AH.
[Continuité] `(α ; ·) est continue par rapport à la norme L1,∞, plus précisément∫ 1

0
min
M

(Kt −Ht) dt ≤ `(α;K)− `(α;H) ≤
∫ 1

0
max
M

(Kt −Ht) dt .

[Monotonie] Si H ≤ K, alors `(α ;H) ≤ `(α ;K).
[Inégalité triangulaire] Soit ∗ le produit (d’intersection) de HQ∗(L) et ] la concaténation,

`(α ∗ β;H]K) ≤ `(α;H) + `(β;K) .

2. La monotonie d’une lagrangienne donne un contrôle sur l’aire symplectique des disques dans
M , à bord dans L. Voir la section 1.2.1 pour une définition précise.
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[Décalage temporel] Si c est une fonction du temps, `(α ;H + c) = `(α ;H) +
∫ 1
0 c(t) dt.

[Valuation quantique] `(α ; 0) est une valuation sur HQ∗(L) et `([L] ; 0) = 0.
[Contrôle lagrangien] `(· ;H) est contrôlée par la restriction de H à L :∫ 1

0
min
L

Ht dt ≤ `(α;H)− `(α; 0) ≤
∫ 1

0
max
L

Ht dt .

[Action de Novikov] Soit A ∈ π2(M ,L), on a `(A · α ;H) = `(α ;H)−ω(A).
[Positivité] `([L] ;H) + `([L] ;H) ≥ 0 où H est définie par Ht(x) = −H1−t(x).
[Maximum] `(α ;H) ≤ `([L] ;H) + `(α , 0).

Ces propriétés rendent la fonction ` très pertinente, par exemple en vue de l’étude
de la géométrie de Ham(M ,ω) et LHam(L), ainsi que de leurs revêtements universels,
munis de distances naturelles introduites par Hofer (H 1990). En effet, les propriétés
de spectralité et de continuité ci-dessus montrent que la fonction ` induit une fonction

` : HQ∗(L)× H̃am(M,ω) −→ R ∪ {−∞} .

À ce niveau, l’expression `([L] ;H) + `([L] ;H) se lit `([L] ; φ̃H) + `([L] ; φ̃−1H ) où φ̃H est
la classe d’équivalence de l’isotopie hamiltonienne engendrée par H. Les propriétés
de positivité et d’inégalité triangulaire montrent alors que ‖φ̃H‖ = `([L] ; φ̃H) + `([L] ; φ̃−1H )

définit une pseudo-norme sur H̃am(M ,ω). Finalement, la propriété de continuité montre
que la pseudo-distance obtenue est bornée par la distance de Hofer. Utiliser la propriété
de contrôle lagrangien montre que ceci s’adapte naturellement au cas des lagrangiennes,
définissant une pseudo-distance sur L̃Ham(L) également majorée par la distance de Hofer
appropriée.

Ceci conduira à un résultat (Theorem II.12) dont la conséquence principale peut
être exprimée dans le cadre de cette introduction de la façon suivante.

T 2. Soit Θ dénotant H̃am(M ,ω) ou L̃Ham(L). Pour toute classe non nulle
α ∈ HQ∗(L), la fonction spectrale ` induit des fonctions `α : Θ× H̃am(M ,ω)→ R, qui sont
lipschitziennes par rapport à la distance de Hofer naturelle sur Θ× H̃am(M ,ω).

Le morphisme / la représentation de SeidelLe morphisme / la représentation de SeidelLe morphisme / la représentation de SeidelLe morphisme / la représentation de SeidelLe morphisme / la représentation de SeidelLe morphisme / la représentation de SeidelLe morphisme / la représentation de SeidelLe morphisme / la représentation de SeidelLe morphisme / la représentation de SeidelLe morphisme / la représentation de SeidelLe morphisme / la représentation de SeidelLe morphisme / la représentation de SeidelLe morphisme / la représentation de SeidelLe morphisme / la représentation de SeidelLe morphisme / la représentation de SeidelLe morphisme / la représentation de SeidelLe morphisme / la représentation de Seidel (H, L et L 2011)
L’autre outil important étayant les résultats présentés dans ces pages est dû à Seidel

(S 1997). Il a deux descriptions équivalentes : l’une géométrique et l’autre algébrique,
respectivement comme morphismes

π1
(
Ham(M,ω)

)
−→ HQ∗(M)× et π1

(
Ham(M,ω)

)
−→ Aut

(
HF∗(M)

)
,

où HQ∗(M)× dénote le groupe des inversibles de HQ∗(M).
Shengda Hu et François Lalonde (H et L 2010) ont adapté la construction

algébrique à l’homologie de Floer d’une lagrangienne monotone L. Le morphisme
obtenu est défini sur le groupe fondamental de Ham(M ,ω) relativement à Ham(M ,ω ;L),
son sous-groupe formé des difféomorphismes hamiltoniens qui préservent globalement
L :

π1
(
Ham(M,ω),Ham(M,ω;L)

)
−→ Aut

(
HF∗(L)

)
.

Dans un travail en collaboration avec eux (H, L et L 2011), nous avons
adapté la construction géométrique, définissant ainsi un morphisme

π1
(
Ham(M,ω),Ham(M,ω;L)

)
−→ HQ∗(L)×

dont nous avons prouvé l’équivalence avec sa contrepartie algébrique.
Au vu des applications discutées dans ce mémoire, la version algébrique du mor-

phisme de Seidel d’une lagrangienne est présentée en section 1.1 du chapitre III, tandis
que la version géométrique du morphisme de Seidel d’une variété symplectique (sans
mention d’une lagrangienne) est présentée en section 2.1 (ibid.).



2. PROPRIÉTÉS DE RIGIDITÉ DE TRUCS SYMPLECTIQUES 13

2. Propriétés de rigidité de trucs symplectiques

Voici à présent trois types de rigidité très différents discutés dans ce mémoire.
Lagrangiennes super-lourdesLagrangiennes super-lourdesLagrangiennes super-lourdesLagrangiennes super-lourdesLagrangiennes super-lourdesLagrangiennes super-lourdesLagrangiennes super-lourdesLagrangiennes super-lourdesLagrangiennes super-lourdesLagrangiennes super-lourdesLagrangiennes super-lourdesLagrangiennes super-lourdesLagrangiennes super-lourdesLagrangiennes super-lourdesLagrangiennes super-lourdesLagrangiennes super-lourdesLagrangiennes super-lourdes (L et Z 2018)

Les invariants spectraux lagrangiens peuvent être appliqués à la théorie des en-
sembles lourds et super-lourds d’Entov et Polterovich (E et P 2009). Ce
sont des sous-ensembles de M qui sont très rigides en termes d’intersection. En par-
ticulier, ils ne peuvent être disjoints d’eux-mêmes par un symplectomorphisme (non
nécessairement hamiltonien). Ce phénomène de rigidité est bien plus fort que celui
mentionné dans l’introduction. Considérons par exemple le tore T2 = S1 × S1 muni
de la forme volume produit. C’est une variété symplectique et tout lacet fermé plon-
gé en est une sous-variété lagrangienne compacte. Soit L un méridien de T2. Comme
π2(T2 , L) = 0, aucun difféomorphisme hamiltonien ne peut disjoindre L de lui-même.
Au contraire, toute rotation (non triviale !) de T2 le long d’une longitude est un sym-
plectomorphisme (la forme volume étant préservée) qui y parvient. L’exemple le plus
simple de lagrangienne ne pouvant être disjointe d’elle-même par un symplectomor-
phisme est l’équateur de S2 (munie de la forme volume standard) puisqu’il divise la
sphère en deux partie d’aires égales.

En section 2.2 du chapitre II, nous prouvons que le tore de Chekanov de CP2, ainsi
que le tore exotique de S2 × S2 sont super-lourds. Ces exemples ne procurent pas de
nouvelles lagrangiennes super-lourdes, la super-lourdeur du tore de Chekanov ayant
été prouvée par Wu (W 2012), et celle du tore exotique par Eliashberg et Polterovich
(E et P 2010). Cependant, ils illustrent à quel point il est facile de
prouver de telles propriétés une fois que les invariants spectraux lagrangiens ont été
définis et leurs propriétés établies. En effet, la preuve se réduit à établir une inégalité
qui découle directement des propriétés de valuation quantique et de contrôle lagrangien du
théorème 1, ainsi que d’une propriété additionnelle (la propriété de structure de module
de la section 1.4.2 du chapitre II) qui exprime le fait que les invariants spectraux se
comportent bien avec un structure algébrique additionnelle de l’homologie quantique.
Trivialité de la monodromie lagrangienneTrivialité de la monodromie lagrangienneTrivialité de la monodromie lagrangienneTrivialité de la monodromie lagrangienneTrivialité de la monodromie lagrangienneTrivialité de la monodromie lagrangienneTrivialité de la monodromie lagrangienneTrivialité de la monodromie lagrangienneTrivialité de la monodromie lagrangienneTrivialité de la monodromie lagrangienneTrivialité de la monodromie lagrangienneTrivialité de la monodromie lagrangienneTrivialité de la monodromie lagrangienneTrivialité de la monodromie lagrangienneTrivialité de la monodromie lagrangienneTrivialité de la monodromie lagrangienneTrivialité de la monodromie lagrangienne (H, L et L 2011)

Ce second résultat de rigidité est basé sur le morphisme de Seidel. Supposons que
φ soit un difféomorphisme hamiltonien d’une variété symplectique, qui préserve une la-
grangienne L. La restriction de φ à L induit donc un isomorphisme de l’homologie de
L et se pose la question naturelle de savoir quels isomorphismes peuvent être obtenus
de la sorte. Par exemple, Yau (Y 2009) a prouvé que les générateurs du premier
groupe d’homologie du tore de Chekanov de CP2 peuvent être inter-changés via un
difféomorphisme hamiltonien de CP2. Il s’avère que la monotonie du tore de Chekanov
est cruciale ici. En effet, nous avons montré que lorsque la lagrangienne est symplec-
tiquement asphérique, c’est-à-dire quand l’aire symplectique des disques de la variété à
bord dans L est identiquement nulle, la situation est autrement plus rigide...

T 3 (Theorem III.2). Soit L une lagrangienne symplectiquement asphérique de
(M ,ω), seule l’identité de H∗(L) peut être induite par un difféomorphisme hamiltonien de
(M ,ω) préservant L.

De manière équivalente, ceci assure que si un difféomorphisme de L n’induit pas
l’identité en homologie, il ne peut être étendu en un difféomorphisme hamiltonien de la
variété ambiante. Bien sûr, si l’homologie de L s’injecte dans celle de l’espace total, un
difféomorphisme hamiltonien (qui est isotope à l’identité) ne peut produire un automor-
phisme non trivial de H∗(L). Par exemple, l’homologie du produit de deux méridiens
dans T4 = T2×T2 est fixée par tout difféomorphisme hamiltonien de T4. Par contre, un
lacet L plongé dans la surface Σ2 orientée fermée de genre 2, dont la classe d’homotopie
est non nulle mais dont la classe d’homologie est nulle, est une lagrangienne (symplecti-
quement) asphérique (puisque π2(M ,L) = 0), dont l’homologie disparaît dans celle de
Σ2. Aucune raison a priori n’empêche donc un difféomorphisme hamiltonien de Σ2×Σ2

d’inter-changer les générateurs de H1(L× L) ; ce que le théorème 3 interdit pourtant.
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Rigidité C0 des sous-variétés coisotropesRigidité C0 des sous-variétés coisotropesRigidité C0 des sous-variétés coisotropesRigidité C0 des sous-variétés coisotropesRigidité C0 des sous-variétés coisotropesRigidité C0 des sous-variétés coisotropesRigidité C0 des sous-variétés coisotropesRigidité C0 des sous-variétés coisotropesRigidité C0 des sous-variétés coisotropesRigidité C0 des sous-variétés coisotropesRigidité C0 des sous-variétés coisotropesRigidité C0 des sous-variétés coisotropesRigidité C0 des sous-variétés coisotropesRigidité C0 des sous-variétés coisotropesRigidité C0 des sous-variétés coisotropesRigidité C0 des sous-variétés coisotropesRigidité C0 des sous-variétés coisotropes (H, L et S 2015b, 2015a,
2016)

Le résultat inattendu de rigidité dû à Gromov et Eliashberg mentionné dans la
partie liminaire de cette introduction a marqué la naissance de la géométrie symplectique
C0, “première merveille” de la géométrie symplectique d’après (P et R
2014). La section 3 du chapitre II rassemble plusieurs résultats que j’ai obtenus dans
ce domaine, en collaboration avec Vincent Humilière et Sobhan Seyfaddini.

Le résultat central est dans l’esprit du théorème de Gromov–Eliashberg, mais plutôt
que de considérer une suite de symplectomorphismes (ψk)k∈N qui converge C0 vers un
difféomorphisme ψ, nous fixons une sous-variété coisotrope C et nous nous concentrons
sur la suite (ψk(C))k∈N. Rappelons qu’une sous-variété coisotrope C d’une variété sym-
plectique est une variété telle qu’en chacun de ses points, son espace tangent contient
son orthogonal symplectique. Les plus grandes (au sens de la dimension) sous-variétés
coisotropes propres sont les hypersurfaces, les plus petites sont les lagrangiennes. Sy-
métriquement, il existe des sous-variétés isotropes dont l’orthogonal symplectique du
tangent en tout point contient le tangent. Les variétés coisotropes admettent un feuille-
tage naturel, dit feuilletage caractéristique, dont les feuilles sont isotropes.

T 4 (Theorem II.39). Soit C une sous-variété coisotrope de (M ,ω) et (ψk)k∈N
une suite de difféomorphismes symplectiques qui converge C0 vers un homéomorphisme ψ.
Si l’image ψ(C) est lisse, elle est coisotrope et ψ envoie le feuilletage caractéristique de C sur
celui de ψ(C).

Ce résultat est remarquable sous différents points de vue. Tout d’abord, il montre
que des résultats qui n’étaient a priori pas reliés, de Laudenbach et Sikorav (L
et S 1994) pour les lagrangiennes et de Opshtein (O 2009) pour les hyper-
surfaces, sont en fait les cas extrêmes (au sens de la dimension) d’un même phénomène
de rigidité. De plus, le théorème 4 est local au sens où C n’est pas nécessairement
fermée ou, de manière équivalente, (ψk)k∈N n’est pas requise d’être définie globalement
sur M . Finalement, il a aussi comme conséquence surprenante le fait qu’il suffit que la
variété ψ(C) soit lisse, pour qu’il en soit de même de son feuilletage caractéristique.

Le fait que ce dernier soit préservé sous limite C0 pose une question très naturelle.
Quotienter une sous-variété coisotrope C par les feuilles de son feuilletage caractéris-
tique définit (au moins localement) une nouvelle variété symplectique. Dans la situation
du théorème 4, la restriction à C de ψ descend en un homéomorphisme entre les variétés
symplectiques quotients et l’on peut alors se demander “à quel point” cet homéomor-
phisme est symplectique.

Si la réponse générale semble hors de portée, nous sommes parvenus à répondre
partiellement, dans un cas particulier. En effet, pour un difféomorphisme la propriété
d’être symplectique (ou anti-symplectique) est équivalente à la préservation de quantités
appelées capacités symplectiques. En considérant la capacité symplectique qui peut être
naturellement définie via les invariants spectraux, dite capacité spectrale, dans le cas des
tores symplectiques, nous avons établi le résultat suivant.

T 5 (Theorem II.44). Si un homéomorphisme symplectique du tore symplectique
standard T2(k1+k2) préserve un sous-tore coisotrope standard : T2k1+k2 × {0} ⊂ T2(k1+k2),
alors l’homéomorphisme induit sur la réduction préserve la capacité spectrale.

La preuve du théorème 4 est aussi basée sur l’utilisation des invariants spectraux
et de certaines capacités. En particulier, nous établissons des inégalités de type énergie-
capacité pour difféomorphismes hamiltoniens (Theorem II.30) et pour lagrangiennes
(Theorem II.27), qui s’inspirent d’inégalités classiques en géométrie symplectique. Elles
montrent que les capacités peuvent être utilisées pour borner inférieurement des dis-
tances naturelles (dont la distance de Hofer) entre difféomorphismes hamiltoniens et
entre certaines lagrangiennes.
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Ces inégalités ont des conséquences en termes de dynamique hamiltonienne C0. Dans
l’esprit du théorème de Gromov–Eliashberg mentionné plus haut, Müller et Oh (O et
M 2007) ont défini une notion d’homéomorphisme hamiltonien. Un tel homéomor-
phisme est engendré (en un sens approprié) de manière unique par certaines fonctions
continues appelées hamiltoniens continus. En utilisant nos inégalités de type énergie-
capacité, nous avons montré entre autres le résultat suivant, étape essentielle de la
preuve du théorème 4.

T 6 (Theorem II.37 (1)). Un hamiltonien continu H : M × [0 , 1]→ R engendre
un flot qui préserve une sous-variété coisotrope C et se propage le long des feuilles de son
feuilletage caractéristique si et seulement si H est une fonction du temps (indépendante de la
composante M).

3. Calculs d’invariants symplectiques

La dernière section du mémoire est de nature différente du reste (et en particulier
ne conduit a priori à aucun phénomène de rigidité). Il s’agit de calculer le morphisme
de Seidel de certaines variétés et d’en déduire leur anneau d’homologie quantique. Plus
précisément, McDuff et Tolman (MD et T 2006) ont calculé le terme de plus
haut degré et spécifié la structure des autres termes des images, par le morphisme de
Seidel, de certains lacets de difféomorphismes hamiltoniens de variétés presque com-
plexes (M ,J) n’admettant aucune sphère pseudo-holomorphe de premier nombre de
Chern3 strictement négatif, dites NEF. Lorsque toutes les sphères pseudo-holomorphes
ont un nombre de Chern strictement positif, tous les termes d’ordre inférieur dispa-
raissent ; au contraire, l’existence d’une sphère à nombre de Chern nul peut provoquer
la présence d’une infinité de termes.

Dans un travail en collaboration avec Sílvia Anjos (A et L 2018), nous
avons exprimé ces termes additionnels sous la forme de formules fermées, lorsque la
variété est de dimension 4 et torique. De telles variétés peuvent être représentées par
un polytope convexe de R2, et nous montrons également comment lire ces formules
combinatoirement sur le polytope. La formule précise et la façon de la lire sur le polytope
est le contenu de la section 2.2 du dernier chapitre.

Le groupe fondamental du groupe des difféomorphismes hamiltoniens de certaines
variétés symplectiques toriques de dimension 4 étant connu, ceci nous a permis de déter-
miner totalement le morphisme de Seidel dans ces cas particuliers (même pour certaines
variétés “même pas” NEF). Grâce à ces calculs, nous sommes parvenus dans (A et
L 2017) à détecter des éléments non-triviaux dans le noyau du morphisme de
Seidel de certains éclatements de CP1 × CP1.

T 7 (Theorem III.18). Soit Xc la variété symplectique obtenue de CP1 × CP1,
munie de sa forme symplectique produit pour laquelle le volume de chaque facteur vaut 1, après
deux éclatements de capacité c. Le morphisme de Seidel de Xc n’est pas injectif.

De plus, nous décrivons explicitement un élément du noyau en termes des actions en
cercle dont est munie Xc. Nous avons aussi déterminé qu’une telle situation ne pouvait
se présenter sur CP1 × CP1 quelle que soit la forme symplectique dont elle est munie.

T 8 (Theorem III.19). Le morphisme de Seidel est injectif sur toutes les surfaces
d’Hirzebruch.

Nos calculs de l’image du morphisme de Seidel nous ont également permis d’expri-
mer l’homologie quantique de certaines variétés symplectiques toriques NEF de dimen-
sion 4, toujours en suivant des idées de McDuff et Tolman (ibid.). Ceci nous a ensuite
permis d’établir l’expression du super-potentiel de Landau–Ginzburg de ces variétés
qui s’avère lisible combinatoirement sur le polytope. Ces applications sont développées

3. Il s’agit en fait de la valeur du premier nombre de Chern de (TM , J) appliqué à la classe
d’homologie de la dite sphère.
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en section 2.3 et illustrées sur des exemples naturels en section 2.4. Plutôt que d’énon-
cer le résultat final (Theorem III.15), terminons cette introduction par l’esquisse d’un
des exemples de la section 2.4, illustrant comment extraire un invariant a priori très
compliqué directement du polytope d’une telle variété (et donc – espérons-le – justifier
la pertinence de cette dernière partie).

Exemple 9. Le but est de calculer l’anneau d’homologie quantique de la variété (M ,ω)
de dimension 4 obtenue de (S2×S2 , ωµ) après trois éclatements de capacités respectives
c1, c2 et c3 (ωµ est la forme symplectique produit telle que le premier facteur ait aire
µ ≥ 1 et le second aire 1). La théorie générale des variétés symplectiques toriques assure
que (M ,ω) correspond de manière unique (à une relation d’équivalence raisonnable
près) au polytope P ⊂ R2 suivant :

D1
D2

D3

D4

D5

D6

D7

Normals Constants
η1 = (0, 1) κ1 = µ

η5 = (0,−1) κ5 = 0

η3 = (1, 0) κ3 = 0

η7 = (−1, 1) κ7 = µ+ 1− c2

η2 = (1, 1) κ2 = µ− c3

η6 = (−1, 0) κ6 = 1

η4 = (1,−1) κ4 = −c1

qui est donné comme l’ensemble des points x ∈ R2 intérieurs (largement) à P , i.e. les
points satisfaisant pour tout i, 〈x , ηi〉 ≤ κi où ηi est la normale entière et primitive,
extérieure à l’arête Di. Chaque arête Di du polytope correspond à une sphère de M .

La variété de dimension 4 (M ,ω) est NEF et donc son anneau d’homologie quan-
tique est engendré par ses éléments de degré 4, et HQ4(M ,ω) est isomorphe à un quo-
tient d’un anneau de polynômes par un idéal. L’anneau de polynômes est l’ensemble
des polynômes de Laurent en deux variables z1, z2, à coefficients dans un anneau de
séries de Laurent généralisées en une variable t. L’idéal est engendré par toutes les
dérivées partielles de l’un de ces polynômes W , le super-potentiel de Landau–Ginzburg.
Pour obtenir une description explicite de l’anneau d’homologie quantique, il “suffit”
donc de calculer W . Dans le cas présent, il est donné à partir de P sous la forme

W =
7∑
i=1

zηitκi + corrections quantiques

où les termes de corrections quantiques proviennent des arêtes de P qui correspondent
à des sphères de M dont le premier nombre de Chern est nul.

Orientons les arêtes dans le sens anti-trigonométrique et associons à Di un poids wi
défini comme le vecteur de R2 entier et primitif porté par Di. L’arête Di correspond à
une sphère de M de premier nombre de Chern nul si et seulement si son poids associé
est la moyenne des poids de ses voisines, i.e. si 2wi = wi−1 + wi+1. En parcourant le
polytope, on conclut aisément que seules les arêtes D1 et D3 correspondent à de telles
sphères. Notre résultat (Theorem III.15) s’applique dans ce cas et assure qu’il n’y a
que deux termes additionnels de corrections quantiques, q(Di) = zηitκi+1+κi−1−κi avec
i = 1 et 3, et donc finalement
W =

(
z2t

µ + z1z2t
µ−c3 + z1 + z1z

−1
2 t−c1 + z−1

2 + z−1
1 t+ z−1

1 z2t
µ+1−c2

)
+ z2t

µ+1−c2−c3 + z1t
µ−c1−c3 .



Introduction

The general context of the work presented here is that of symplectic geometry, whose
description I will loosely divide into four dichotomies.

Flexibility vs rigidity
A symplectic manifold is an even-dimensional manifold M , endowed with a nonde-

generate closed 2–form ω. Such a structure is quite flexible. For example, it is a classical
result by Darboux that there are no local geometric invariants, as any point of any sym-
plectic manifold admits a neighborhood symplectically equivalent to a small ball in the
Euclidean space of the same dimension, endowed with its standard symplectic form.

On the other hand, a symplectic structure also presents unexpectedly strong rigidity
properties. For example, an automorphism ϕ of a symplectic manifold (M ,ω), also
known as symplectomorphism, is a diffeomorphism ofM which preserves ω, i.e. whose
differential satisfies ϕ∗ ω =ω. A famous theorem due to Gromov and Eliashberg asserts
that this condition goes through C0–limits despite its C1 nature, in the sense that a
smooth C0–limit of symplectomorphisms is a symplectomorphism.

Automorphisms vs submanifolds
The main objects of study are natural subgroups of the automorphism group and

natural submanifolds of symplectic manifolds, and the relationships between those.
For example, there is a subgroup of the group of symplectomorphisms, called the

Hamiltonian diffeomorphism group and denoted Ham(M ,ω), consisting of symplectomor-
phisms generated by the flow of time-dependent functions onM . A striking illustration
of the importance of this subgroup is given by a result of Banyaga, which shows that the
algebraic structure of the Hamiltonian diffeomorphism group determines the symplectic
structure of the manifold. Namely, if ω and ω′ are two symplectic forms on a manifold
M so that the Hamiltonian diffeomorphism groups Ham(M ,ω) and Ham(M ,ω′) are
isomorphic, then (M ,ω) is symplectomorphic to (M , cω′) for some constant c.

There are several natural types of submanifolds of a given symplectic manifold :
isotropic, coisotropic, Lagrangian, and symplectic submanifolds. At one end of the
spectrum, a submanifold of (M ,ω) is symplectic if the restriction of ω to its tangent
bundle is nondegenerate. At the other end, a submanifold is Lagrangian if the re-
striction of ω to its tangent bundle vanishes and if it is of maximal dimension among
submanifolds with this property. What is quite surprising about Lagrangians is that
they are small as their dimension is half that of M , but they are very rigid.

Hamiltonian diffeomorphisms and Lagrangians interact in many ways and these
interactions led to fascinating phenomena. For example, a Lagrangian L of a symplectic
manifold (M ,ω) such that π2(M ,L) = 0 cannot be displaced from itself by Hamiltonian
diffeomorphisms, that is L intersects its image by any Hamiltonian diffeomorphism. We
denote the set of all those Lagrangians which are obtained from L by a Hamiltonian
diffeomorphism by LHam(L).

Geometry vs topology
Several beautiful tools were built in order to study the geometry and the topology of

Hamiltonian diffeomorphism groups as well as the aforementioned sets of Lagrangians.
In order to justify in a subtle way the choice of title for these memoirs, let me mention
(for example !) spectral invariants, which yield a (pseudo-)distance on these groups,
and the Seidel morphism which gives information on their fundamental group.

17
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Soft vs hard
Finally, this last dichotomy concerns the tools used to get to the desired results.

The adjective “hard” refers to tools relying on pseudo-holomorphic curves techniques,
introduced in symplectic geometry by Gromov. For example, quantum and Floer ho-
mology are parangons of “hard” techniques, on top of which the Seidel morphism and
the version of spectral invariants used here were built. The adjective “soft” refers to
techniques which are not hard.

In view of these dichotomies, it turns out that I consistently studied
Rigidity properties of symplectic stuff via hard techniques.

Unfortunately, this seemed inappropriate as a HDR title.
Another unfortunate consequence of studying both geometrical and topological

properties of the various objects included in “symplectic stuff” is that it made the present
memoirs harder to organize. Hence, even though the remaining of this introduction is or-
ganized as to reflect the boxed sentence above, the memoir is not. It is organized around
(yet) another dichotomy, based on the main tools I used.
• Chapter I presents necessary background on quantum and Floer homologies.
• Chapter II is centered on spectral invariants. Their definition and properties are
explained in Section 1. Sections 2 and 3 address some of their consequences to
“smooth” and continuous symplectic geometry respectively. Finally, Sections 4 and 5
sketch works in progress.

• Chapter III is centered on the Seidel morphism. In Section 1, this morphism is used
to establish some homological rigidity of certain Lagrangians. Section 2 shows how
it can be explicitly computed in particular situations4. Section 3 contains ideas for
future works.

Let me close the introduction of the introduction with two disclaimers.

Disclaimer 1. While the article (Leclercq 2008), subsequent to my Ph.D. thesis, is not
discussed in here, it will appear at several places as, unsurprisingly, it inspired some of
the work presented here.

The article (Leclercq 2009) is only cited twice in this memoirs. This reflects the fact
that it is quite technical and proves, under a reasonable assumption, a natural property
of the Seidel morphism of product manifolds. It can for example be used, as it is the
case here, to obtain more examples by taking products.

Finally, this sentence contains the only reference to (Buss and Leclercq 2012) in the
memoirs. This reflects the fact that it is quite disconnected from the rest.

Disclaimer 2. In order to keep the introduction short and readable, I kept the number
of references to other works at a minimum level (and a very small one at that). Please,
refer to the appropriate sections for more details.

1. The main tools (via “hard” techniques)

The results presented in this HDR memoirs concern or have been obtained thanks
to spectral invariants and the Seidel morphism. Let me quickly introduce them here and
explain my contribution to their respective development.

They both rely on quantum and Floer homology. These homologies, respectively
denoted by HQ and HF below, can be associated with a symplectic manifold as well
as with a Lagrangian submanifold. They are both a mix between Morse homology
and pseudo-holomorphic curves techniques (though, in very different fashions). The
definition of these homologies and of additional algebraic structures they enjoy, as well
as the relationships they share, are described at length in Chapter I.

4. This is somehow the only part of the present memoirs which does not obviously lead to rigidity
properties...
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Spectral invariants (Leclercq and Zapolsky 2018)
They were introduced by Viterbo (Viterbo 1992) for Lagrangians of cotangent bun-

dles via the theory of generating functions. The construction was later adapted to Floer
homology, in the same setting by Oh (Oh 1997). Then, Schwarz (Schwarz 2000) and Oh
(Oh 2005) adapted the construction to compact symplectic manifolds, without mention
of a Lagrangian. The case of Lagrangians of compact symplectic manifolds was first
dealt with in (Leclercq 2008) under a fairly restrictive technical assumption of asphericity
and with respect to homology theories with coefficients in Z/2Z.

In a joint work with Frol Zapolsky (Leclercq and Zapolsky 2018), we extended the
latter construction to Lagrangians satisfying the much weaker assumption of monotonicity
and for homology theories with a much wider range of coefficients. Given such a
Lagrangian L of a symplectic manifold (M ,ω), the resulting object is a function

` : HQ∗(L)× C0
(
M × [0, 1]

)
−→ R ∪ {−∞}

which associates a real number with any non-zero (quantum) homology class of L and
any continuous time-dependent function onM . The main ingredient in the construction
is a natural filtration of Floer homology. The Morse-theoretic version of `, which serves
as toy-model, is rather easy to describe. For a (Morse) homology class α and a Morse
function f on M , the filtration is given by the values of f and `(α , f) is defined so that
{x ∈M | f(x) ≤ `(α , f)} is the smallest sublevel set of f which contains a representative
of α (see also Figure II.1).

The definition of the function ` as well as its properties are presented in Section 1 of
Chapter II. Then, in the following section, we explain how the aforementioned properties
make ` well-suited to study the geometry of Ham(M ,ω) and LHam(L), with respect to
quite natural distances on these sets, introduced by Hofer (Hofer 1990). This is the
content of Theorem II.12.

The Seidel morphism / representation (Hu, Lalonde, and Leclercq 2011)
The other important tool on which the present work relies is due to Seidel (Seidel

1997). It has two equivalent descriptions : a geometric and an algebraic description,
respectively as morphisms

π1
(
Ham(M,ω)

)
−→ HQ∗(M)× and π1

(
Ham(M,ω)

)
−→ Aut

(
HF∗(M)

)
,

where HQ∗(M)× denotes the multiplicative group of the invertible elements of HQ∗(M).
Shengda Hu and François Lalonde (Hu and Lalonde 2010) adapted the algebraic

construction to the Floer homology of a monotone Lagrangian L of the symplectic
manifold (M ,ω). The resulting morphism is defined on the fundamental group of
Ham(M ,ω) relative to Ham(M ,ω ;L), its subgroup consisting of those Hamiltonian dif-
feomorphisms which preserve L globally :

π1
(
Ham(M,ω),Ham(M,ω;L)

)
−→ Aut

(
HF∗(L)

)
.

In a joint work with them (Hu, Lalonde, and Leclercq 2011), we then adapted the
geometric construction by defining a morphism

π1
(
Ham(M,ω),Ham(M,ω;L)

)
−→ HQ∗(L)×

which we proved to be equivalent to its algebraic counterpart.
In view of the applications discussed in this memoir, the algebraic version of the

Seidel morphism of a Lagrangian is presented in Section 1.1 of Chapter III and the
geometric version of the Seidel morphism of the ambient manifold in Section 2.1 (ibid.).

2. Rigidity properties of symplectic stuff

Here are three quite different types of rigidity results which are discussed in this
HDR memoirs.
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Super-heaviness of Lagrangians (Leclercq and Zapolsky 2018)
Lagrangian spectral invariants can be applied to the theory of heavy and super-

heavy sets of Entov and Polterovich (Entov and Polterovich 2009). These are subsets
of M which are very rigid in terms of intersections. In particular, they cannot be
displaced by any symplectomorphism (non necessarily Hamiltonian). This is a much
stronger rigidity phenomenon than the one mentioned in the introduction. For example,
consider the 2–torus T2 = S1 × S1 together with the product volume form. This is a
symplectic manifold and any closed embedded loop is a Lagrangian submanifold. Let L
be a meridian of T2. Since π2(T2 , L) = 0, no Hamiltonian diffeomorphisms can displace
it from itself. However, “rotating T2 along a longitude” is a symplectomorphism (the
volume form is preserved !) which displaces L from itself. The toy-example of a
Lagrangian which is not displaceable by any symplectomorphism is the equator of S2

(endowed with the round volume form). Since it divides the sphere into two parts of
equal areas, no symplectomorphisms can displace it from itself.

In Section 2.2 of Chapter II, we prove that the Chekanov torus of CP2, as well as
some exotic Lagrangian torus of S2×S2 are super-heavy. These examples do not provide
new super-heavy Lagrangians, the Chekanov torus was proved to be super-heavy by
Wu (Wu 2012), and the exotic torus by Eliashberg and Polterovich (Eliashberg and
Polterovich 2010). However, they illustrate how easy it is to prove (super-) heaviness
once Lagrangian spectral invariants have been defined and their properties established.
Indeed, the proof boils down to an estimate which directly follows from the facts that
these invariants
(i) are “controlled” by the values of the restriction to the Lagrangian L of the continuous

function which enters the spectral invariant function ` as second variable, and
(ii) behave well with respect to their non-Lagrangian counterparts, through an addi-

tional algebraic structure of quantum homology
(see the proof of Proposition II.16).

Vanishing of Lagrangian monodromy (Hu, Lalonde, and Leclercq 2011)
This second rigidity result is based on the Lagrangian Seidel morphism. Assume

that φ is a Hamiltonian diffeomorphism of a symplectic manifold which preserves a
Lagrangian L. Then the restriction of φ to L induces an isomorphism of the homology of
L and a natural question is to determine which isomorphisms can be obtained this way.
For example, it was shown by Yau (Yau 2009) that the generators of the first homology
group of the Chekanov Lagrangian torus of CP2 can be interchanged by a Hamiltonian
diffeomorphism of CP2. It turns out that the monotonicity of the Chekanov torus is
crucial here. Indeed, Theorem III.2 shows that, when the Lagrangian is aspherical, the
situation exhibits surprising rigidity as only the identity of H∗(L) can be obtained like
this. Equivalently, this ensures that if a diffeomorphism of L is not homologically trivial,
it cannot be extended to M as a Hamiltonian diffeomorphism.

Of course, if the homology of the Lagrangian injects in that of the total space, a
Hamiltonian diffeomorphism (which is isotopic to the identity) cannot induce any non-
trivial automorphism of H∗(L). For example, the homology of the product of meridians
in T4 = T2 × T2 is fixed by any Hamiltonian diffeomorphism of the ambient manifold.
On the other hand, consider the following Lagrangian loop of the closed oriented surface
Σ2 of genus 2 :

Σ2

L

There is no a priori reason why a Hamiltonian diffeomorphism of Σ2 × Σ2 could not
switch the generators of H1(L× L). And yet, it cannot, by Theorem III.2.



3. COMPUTING SYMPLECTIC INVARIANTS 21

C0 rigidity of coisotropic submanifolds (Humilière, Leclercq, and Seyfaddini 2015b, 2015a,
2016)

The surprising rigidity result of Gromov and Eliashberg mentioned above consti-
tuted the birth of C0–symplectic geometry, the “first wonder” of symplectic geometry
according to (Polterovich and Rosen 2014). Section 3 of Chapter II gathers several
results obtained in this area, in joint works with Vincent Humilière and Sobhan Sey-
faddini.

The central result, Theorem II.39 below, is in the spirit of the Gromov–Eliashberg
theorem, but rather than looking at a sequence of symplectomorphisms (ψk)k∈N which
C0 converges to a diffeomorphism ψ, we fix a coisotropic submanifold C and we restrict
our attention to the sequence (ψk(C))k∈N. Our result is that, if ψ(C) is smooth (ψ
however can be “only” continuous), then it is coisotropic. Moreover, a coisotropic
submanifold admits a foliation called characteristic foliation and we showed that the
characteristic foliation of the limit is the C0–limit of the characteristic foliations.

This result is remarkable for several reasons. First, it connects earlier a priori un-
related results, for Lagrangians by Laudenbach and Sikorav (Laudenbach and Sikorav
1994) and for hypersurfaces by Opshtein (Opshtein 2009), as “extreme” cases of the
same rigidity phenomenon5. Second, it is local in the sense that C is not required
to be closed, or equivalently the sequence (ψk)k∈N is not required to be globally de-
fined. Third, it shows that the smoothness of the image of C automatically yields the
smoothness of the limiting foliation.

The preservation under C0–limits of the characteristic foliation also raises another
interesting question. Quotienting a coisotropic C by the leaves of its characteristic
foliation yields (at least locally) another symplectic manifold. In the situation of The-
orem II.39, the restriction to C of ψ descends to a homeomorphism of the resulting
symplectic manifold and one might wonder “how symplectic” it is. Theorem II.44 pro-
vides a partial answer to this question as it shows, in the particular case of tori, that
the resulting homeomorphism “preserves a capacity” built from spectral invariants.

The proof of the central theorem also relies on spectral invariants and capacities.
In particular, we establish new energy-capacity inequalities for Hamiltonian diffeomor-
phisms Theorem II.27 as well as for Lagrangians Theorem II.30, which are inspired by
the classical ones. They show that capacities provide lower bounds on certain natural
distances on Hamiltonian diffeomorphism groups and sets of Lagrangians (Hamiltonian-
isotopic to a fixed Lagrangian).

These inequalities have several consequences on C0 Hamiltonian dynamics. Roughly
speaking, as a homeomorphism which is a C0–limit of symplectomorphisms can be
thought of as a symplectic homeomorphism in view of the Gromov–Eliashberg Theorem,
Müller and Oh (Oh and Müller 2007) defined a notion of Hamiltonian homeomorphism.
They are uniquely generated (in some appropriate sense) by certain continuous func-
tions called continuous Hamiltonians. These consequences are presented in Sections 3.2
and 3.3 of Chapter II. For example, Theorem II.37 shows that a continuous Hamil-
tonian H generates a flow which preserves a coisotropic C and flows along the leaves
of its characteristic foliation if and only if H is a function of time (that is, H is a
time-dependent constant function on M !). This result is a main step in the proof of
Theorem II.39.

3. Computing symplectic invariants

The last part of this HDR memoirs is of different nature as it consists of computations
of all Seidel elements (i.e. the invertible quantum classes in the image of the geometric
description of Seidel’s morphism) of certain symplectic manifolds and, in turn, of their
quantum homology ring.

5. The adjective “extreme” refers to dimensions : Lagrangians are the smallest coisotropic subman-
ifolds, while hypersurfaces are the greatest (proper) ones.
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More precisely, McDuff and Tolman (McDuff and Tolman 2006) computed the high-
est order term and specified the structure of the other terms of the Seidel elements asso-
ciated with certain loops of Hamiltonian diffeomorphisms for manifolds endowed with
an almost complex structure which does not admit pseudo-holomorphic spheres with nega-
tive first Chern number (such manifolds are called NEF). When all pseudo-holomorphic
spheres have positive first Chern number, all lower order terms vanish. In contrast, the
existence of even one sphere with vanishing first Chern number might yield infinitely
many terms.

In joint work with Sílvia Anjos (Anjos and Leclercq 2018), we express these addi-
tional terms by closed formulae, when the manifold is 4–dimensional and toric. Toric
manifolds can be represented by convex polytopes of R2, and we also explain how one
can read these formulae from the polytope. The specific formulae and how they can be
extracted from the polytope is the content of Section 2.2 in the last chapter.

The fundamental group of the group of Hamiltonian diffeomorphisms of some of
these 4–dimensional, toric symplectic manifolds are known, and we were able to com-
pute all their Seidel elements (even for some non-NEF manifolds). As applications of
these computations in the subsequent (Anjos and Leclercq 2017), we first observe that
Seidel’s morphism is injective on all Hirzebruch surfaces, see Theorem III.19. Then,
turning to certain 3–point blow-ups of CP2, we are able to determine explicitly an ele-
ment in the kernel of Seidel’s morphism, see Theorem III.18. As far as we know, this
is the only such example.

Another consequence of our computations is that we can compute the quantum
homology of certain 4–dimensional NEF toric symplectic manifolds, still following ideas
of McDuff and Tolman (ibid.). In turn, we establish the expression of the Landau–
Ginzburg superpotential of such manifolds, which in this case happens to be readable
from the associated polytope, see Section 2.3. We finish this introduction with an
example which illustrates how easy it is to read such an a priori complicated information
directly from the polytope (and thus – hopefully – illustrates the relevance of this work).
This is part of several examples presented in Section 2.4.
Example 3. We want to compute the quantum homology ring of the 4–dimensional
toric manifold (M ,ω), obtained from (S2 × S2 , ωµ) by performing three blow-ups of
respective capacities c1, c2, and c3 (ωµ is the split symplectic form such that the first factor
has area µ ≥ 1 while the second has area 1). General theory of toric symplectic geometry
asserts that (M ,ω) corresponds uniquely (up to reasonable equivalence relations) to the
following polytope P ⊂ R2 :

D1
D2

D3

D4

D5

D6

D7

Normals Constants
η1 = (0, 1) κ1 = µ

η5 = (0,−1) κ5 = 0

η3 = (1, 0) κ3 = 0

η7 = (−1, 1) κ7 = µ+ 1− c2

η2 = (1, 1) κ2 = µ− c3

η6 = (−1, 0) κ6 = 1

η4 = (1,−1) κ4 = −c1

which consists of the points x ∈ R2 such that for all i, 〈x , ηi〉 ≤ κi. Each edge Di

corresponds to a sphere in M .
The 4–dimensional manifold (M ,ω) is NEF so its quantum homology ring is gen-

erated by its elements of degree 4, and HQ4(M ,ω) is isomorphic to a quotient of a
polynomial ring by an ideal. The polynomial ring consists of Laurent polynomials in
two variables, z1, z2, over a ring of generalized Laurent series in a variable t. The ideal
is generated by all the partial derivatives of one of these polynomials, W , called the
Landau–Ginzburg superpotential. To get an explicit description of the quantum homology
ring of (M ,ω), we “only” need to compute W . In our case, it is given from P by

W =
7∑
i=1

zηitκi + quantum correction terms
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where the quantum correction terms arise from edges which correspond to spheres in
the manifold with vanishing first Chern number.

We orient all edges in the clockwise direction and we associate with Di a weight
wi defined as its integral primitive direction vector. The sphere in M corresponding
to the edge Di has vanishing first Chern number if and only if its weight is the mean
of the weights of its neighbors, i.e. if 2wi = wi−1 + wi+1. Going around the polytope,
we can easily check that only D1 and D3 correspond to spheres with vanishing first
Chern number. Then Theorem III.15 asserts that there are only two additional quantum
correction terms, q(Di) = zηitκi+1+κi−1−κi for i = 1 and 3, so that finally
W =

(
z2t

µ + z1z2t
µ−c3 + z1 + z1z

−1
2 t−c1 + z−1

2 + z−1
1 t+ z−1

1 z2t
µ+1−c2

)
+ z2t

µ+1−c2−c3 + z1t
µ−c1−c3 .





CHAPTER I

Homology theories

Once upon a time, Gromov... (1)
“The paper under review opens a new effective approach to fundamental problems

of symplectic topology.” It is by this sweet euphemism that Yakov Eliashberg starts
the MathSciNet® review of Gromov’s foundational article (Gromov 1985). The use of
pseudo-holomorphic curves did have and still has striking consequences in symplectic
geometry, two of which are described below.

In the end of the 1980’s, Floer (Floer 1989b, 1988a, 1988b, 1989a) constructed
a homology theory, subsequently called Floer homology, in order to tackle the Arnol’d
conjecture. This theory is built as “an infinite dimensional analogue of Morse homology”
where the main piece of the construction (the analogue of the gradient flow lines)
are 2-dimensional objects satisfying the pseudo-holomorphic equation, perturbed by a
Hamiltonian function. The fact that the moduli spaces of such objects can be efficiently
used in the construction is due to pseudo-holomorphic curves techniques, developed by
Gromov (ibid.). Since Floer’s work, this theory has been developed in a great variety
of contexts, see the introduction of Section 4 for details and references.

Another (not unrelated !) striking consequence is the theory of Gromov–Witten in-
variants, relying also on Kontsevich’s work on stable maps (Kontsevich 1995). They in
particular yielded the definition of quantum homology, another homology theory for sym-
plectic (sub-) manifolds. It was introduced in the context of topological quantum field
theory by Vafa (Vafa 1991) and Witten (Witten 1991), then by Ruan and Tian (Ruan
and Tian 1995) in symplectic geometry, together with Kontsevich and Manin (Kont-
sevich and Manin 1994) in algebraic geometry. This theory is also a mixed construc-
tion involving (the usual, finite-dimensional) Morse theory and pseudo-holomorphic
2-dimensional objects.

The description of these homology theories for symplectic manifolds and their La-
grangian submanifolds, as well as the relationships they share constitute the content of
this chapter.

Organization of Chapter I
In Section 1, we first introduce the main objects and notions which will be studied

in this HDR memoirs, we set up notation, and present important technical assumptions
mentioned above and under which we will perform the different constructions.

In Section 2, we briefly describe the construction of Morse homology since it serves
as an example for the two types of homology successively introduced afterward :
• the quantum homology ring in Section 3, which is Morse homology whose product
(and even its differential in the Lagrangian setting) is twisted by the use of pseudo-
holomorphic objects,

• the Floer homology ring in Section 4, where the ideas of the Morse construction are
adapted to the infinite-dimensional setting.

Both Sections 3 and 4 are divided into 3 subsections since, after the construction of
Lagrangian homology, we quickly describe that of the homology of the ambient space,
and then show how to view the former as a module over the latter.

In Section 5, we describe interactions between quantum and Floer homologies, while
Section 6 explains how to use specific classes of diffeomorphisms to act on these ho-
mologies.
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Our contribution to this chapter is not much greater than the value of the ∂ oper-
ator on a Floer trajectory. Namely, the isomorphism of Section 5.3, between the Floer
(respectively quantum) homology of a symplectic manifold and the Floer (respectively
quantum) homology of the Lagrangian diagonal in the product, was proved under as-
phericity by Biran, Polterovich, and Salamon (Biran, Polterovich, and Salamon 2003)
and extended to the monotone setting in a joint work with Zapolsky (Leclercq and
Zapolsky 2018).

A slightly more original result, Theorem I.22 below, which shows in particular that
exact Lagrangian isotopies act on Lagrangian quantum homology (and that the resulting
isomorphisms only depend on the homotopy class of the isotopy) also appeared in the
aforementioned paper.

Finally, one might also hold the author responsible for the viewpoints of Sections 5.1
and 6 and, of course, for all the (hopefully rare and small) remaining mistakes...

1. The symplectic setting

1.1. Main objects of study
Let (M ,ω) be a symplectic manifold. We will be interested in understanding certain

properties of the group of its Hamiltonian diffeomorphisms as well as specific sets of its
Lagrangian submanifolds. This section is dedicated to presenting in more details the
objects, setting the notation used in the rest of the memoirs, as well as explaining which
properties will be of interest.

1.1.1. The objects
A symplectic manifold is a 2n-dimensional (smooth) manifold M endowed with a

nondegenerate closed 2-form, ω. The automorphisms of (M ,ω), i.e. diffeomorphisms
ψ of M such that ψ∗ ω =ω, are called symplectomorphisms and form a group, the sym-
plectomorphism group, which is usually denoted by Symp(M ,ω).

A Hamiltonian function on M is a smooth, time-dependent function H : M × [0 , 1]→
R. For a fixed t ∈ [0 , 1], we will often denote the function H(t , ·) : M→ R by Ht. The
symplectic form being nondegenerate, it establishes a diffeomorphism between tangent
and cotangent bundles of M , so that the differential of Ht corresponds to a unique
vector field Xt

H satisfying

for all p ∈M and all ξ ∈ TpM, ω(Xt
H(p), ξ) = −dpHt(ξ)

and called Hamiltonian vector field generated by H. We will denote by φH = {φtH}t
the Hamiltonian isotopy generated by H , defined by φ0H = Id and for all t in [0 , 1],
∂tφ

t
H = Xt

H(φ
t
H). For all t, φtH is a symplectomorphism.

The set of time-1 diffeomorphisms of such isotopies is called the Hamiltonian group
and is denoted by Ham(M ,ω) = {ψ ∈ Symp(M ,ω) | ∃H so that ψ = φ1H}. It is easy to
see that it is indeed a subgroup of the symplectomorphism group. For given Hamil-
tonians H and K , the Hamiltonian isotopy φtH ◦ φtK is generated by the Hamiltonian
H ◦K defined by (H ◦K)t(p) = Ht(p) +Kt((φ

t
H)
−1(p)). This immediately shows that

Ĥ defined by Ĥt(p) = Ht((φ
t
H)
−1(p)) generates the isotopy (φtH)

−1.

Since adding a function of time to a Hamiltonian function does not alter the Hamil-
tonian vector field (and thus its flow), we need a normalization of Hamiltonian functions
so that each of them uniquely corresponds to a Hamiltonian isotopy. The standard nor-
malization condition depends on the compactness of the ambient manifold.

Definition I.1. A Hamiltonian is said to be normalized if for all t,
∫
M Ht ω

n = 0 in case
M is compact or if it has compact support otherwise.

There is an equivalence relation on the set of normalized Hamiltonians which nat-
urally arises when one is interested in studying Hamiltonian diffeomorphism groups.
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Definition I.2. We say that normalized Hamiltonians H0 and H1 generating the same
Hamiltonian diffeomorphism φ are equivalent if they are the extremities of a homotopy
Hs, s ∈ [0 , 1], such that for all s, Hs is normalized and φ1Hs = φ.

It was proved by Banyaga (Banyaga 1978) that a smooth path of Hamiltonian
diffeomorphisms starting at identity, {φt}t∈[0,1], is a Hamiltonian isotopy, i.e. there exists
a Hamiltonian H : M× [0 , 1]→ R such that for all t, φt = φtH . Moreover, notice that two
normalized Hamiltonians generate isotopies which are homotopic relative to endpoints
if and only if they are equivalent. It follows that the set of equivalence classes of
normalized Hamiltonians coincides with the universal cover of the Hamiltonian group,
H̃am(M ,ω), whose elements will be denoted by φ̃.

Example I.3. Consider the concatenation of two Hamiltonians H and K , usually de-
noted H]K , and defined by (H]K)t(x) = 2K2t(x) for t ∈ [0 , 12 ] and by (H]K)t(x) =

2H2t−1(x) for t ∈ [12 , 1]. It generates a flow whose time-1 diffeomorphism is φ1H ◦ φ1K .
If H and K are normalized, then H]K and H ◦ K are normalized and equivalent to
one another. Similarly, H , defined by Ht(x) = −H1−t(x), generates an isotopy whose
time-1 diffeomorphism is (φ1H)−1, and is equivalent to Ĥ. In short, φ̃H◦K = φ̃H]K and
φ̃
Ĥ

= φ̃H in H̃am(M ,ω).

We will also be interested in certain sets of Lagrangians. Recall that an n-dimensional
submanifold L0 of M is Lagrangian if ω|TL0 = 0. We will denote by LHam(L0) the set of
all Lagrangians isotopic to L0 via a Hamiltonian isotopy. We will denote its universal
cover by L̃Ham(L0). Notice that by construction of the universal cover, the endpoint of
one of its elements, L̃, is a well-defined Lagrangian which we will denote by L̃(1).

We will also need to “reverse the perspective”, so that we denote by Ham(M ,ω ;L0),
the subgroup of Ham(M ,ω) which preserves L0 globally. We denote by PL0Ham(M ,ω)
the set of smooth paths of Hamiltonian diffeomorphisms starting at identity and ending
in Ham(M ,ω ;L0). The set of homotopy classes relative to endpoints of such paths is
the pullback of the universal cover of the Hamiltonian diffeomorphism group by the
inclusion :

π0
(
PL0Ham(M,ω)

)
H̃am(M,ω)

Ham(M,ω;L0) Ham(M,ω)

ev1

i

which is why this set will appear later on.
1.1.2. Hofer’s distances

There is a very natural quantity which can be associated with a Hamiltonian dif-
feomorphism φ, expressing the minimum amount of energy required to generate it.
Namely, define the energy of a compactly supported Hamiltonian function H as its
L(1,∞)-norm

‖H‖ =

∫ 1

0
osc
M
Ht dt =

∫ 1

0

(
max
M

Ht −min
M

Ht

)
dt .(I.1)

(This quantity can also be interpreted as the length of the induced Hamiltonian isotopy
φH .) It induces a norm on the group of Hamiltonian diffeomorphisms

‖φ‖ = inf{‖H‖ |φ1H = φ}

which, in turn, induces a distance on Ham(M ,ω) by setting d(φ , ψ) = ‖φψ−1‖ ; the
resulting distance is bi-invariant with respect to the action of Ham(M ,ω).

The fact that this defines a genuine distance, i.e. that d(φ , ψ) > 0 as soon as φ differs
from ψ, is highly non-trivial. It was first proved by Hofer for Ham(R2n , ω0) in (Hofer
1990) and was then extended to more general manifolds by Polterovich (Polterovich
1993) and to the general case by Lalonde and McDuff (Lalonde and McDuff 1995).



28 I. HOMOLOGY THEORIES

This distance, now called Hofer’s distance, is nothing short of fascinating. It gave rise
to (arguably countably) many interesting questions, deep results, and powerful tools.
Let us give two examples here and encourage the interested reader to start additional
readings with (Polterovich 2001).

First, Hofer’s geometry is essentially unique. By this we mean that constructing a
bi-invariant pseudo-distance on the Hamiltonian diffeomorphism group the Finsler way1
produces either one of two things : either 0 or a distance equivalent to Hofer’s distance.
This deep result was proved by Buhovsky and Ostrover (Buhovsky and Ostrover 2011)
building on an earlier result by Ostrover and Wagner (Ostrover and Wagner 2005).
It generalized a (much) earlier result by Eliashberg and Polterovich (Eliashberg and
Polterovich 1993) who proved that replacing the L∞-norm by the Lp-norm for any p
in Equation (I.1) produces 0, the trivial pseudo-distance.

Second, the development of the theory of spectral invariants, which is the focus of
Chapter II, has been greatly motivated by the will to understand Hofer’s geometry. For
example, Viterbo introduced spectral invariants via the theory of generating functions in
(Viterbo 1992) and used them to give a different proof of the nondegeneracy of Hofer’s
distance for Ham(R2n , ω0). The idea is that spectral invariants also yield a bi-invariant
pseudo-distance which is smaller than Hofer’s. Thus the nondegeneracy of the former
immediately ensures the nondegeneracy of the latter. We will illustrate this fact in
Section 2.1 of Chapter II.

A version of Hofer’s distance for Lagrangians was defined and studied by Chekanov
(Chekanov 2000). Define for L̃ ∈ L̃Ham(L),

‖L̃‖ = inf{‖H‖ | {φtH(L)}t∈[0,1] ∈ L̃}
and for Lagrangian submanifolds themselves, set

δ(L,L′) = inf{‖H‖ |φ1H(L) = L′}

for any L and L′ ∈ LHam(L0). (When L = L0, δ(L0 , L
′) = inf{‖L̃‖ | L̃(1) = L′}.)

Chekanov proved the nondegeneracy of δ on any symplectic manifold (M ,ω) admitting
an almost complex structure J such that ω(· , J ·) is a Riemannian metric with bounded
sectional curvature and with injectivity radius bounded away from 0.2

1.1.3. Symplectic and pseudo-complex toolbox
As explained in the introduction, most of the constructions which are presented in

this first chapter are based on pseudo-holomorphic curves techniques. This necessitates
some basic tools and notions which we gather here ; a good reference for this is (McDuff
and Salamon 1998).

First, we will need almost complex structures, that is endomorphisms of TM which
square to −Id. They will be chosen to be compatible with ω, in the sense that

ω(J · , J ·) =ω,a) for all v 6= 0, ω(v , Jv) > 0.b)
An important feature of the set of almost complex structures, compatible with a given
symplectic form, is that it is contractible (and non-empty !).

The compatibility condition ensures that the bilinear form g =ω(· , J ·) is a Riemann-
ian metric. It is used to define the energy of a 2-dimensional surface (immersed) in M .
For example, the energy of a (half-) cylinder in M , u : R× [0 , 1]→M , is defined as

E(u) =

∫
R×[0,1]

‖∂su‖2g dsdt =
∫
R×[0,1]

ω(∂su, Ju∂su) dsdt .(I.2)

1. The set of normalized autonomous Hamiltonians can be identified with the Lie algebra of the
infinite dimensional Lie group Ham(M ,ω) endowed with the C∞ topology. Thus by picking a norm on
this set (e.g. the oscillation norm), we can “as usual” define the length of isotopies starting at identity by
(I.1), and then infer a distance on Ham(M ,ω) by taking the infimum over the set of appropriate paths.

2. Such a manifold is called “tame” in (Chekanov 2000) while “tame” usually refers only to the
fact that ω(· , J ·) is positive definite, see e.g. (McDuff and Salamon 1998) and also below for quite related
notions.
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We will also often refer to the first Chern class of (M ,ω) which is short for “the first
Chern class of the tangent bundle of M with respect to (any) almost complex structure
compatible with ω”. It will be denoted by c1 when there will be no ambiguity.

We will also need assumptions on the minimal Chern number of M , which will be
denoted by CM . It is defined as the positive generator of c1(π2(M)) = CMZ if the latter
is not trivial and it is set to CM = ∞ otherwise.

On the Lagrangian side, additionally to spheres in M there will also be discs in M
with boundary on a Lagrangian L, and the Maslov index (Viterbo 1987), µ : π2(M ,L)→
Z, plays the role of the first Chern class. Roughly writing, a disc in M with boundary
in L, u, gives a trivialization of u∗TM thanks to which we get a loop of Lagrangians
in R2n along ∂u, the boundary of u. The Maslov index quantifies the non-triviality of
this loop. This leads to the notion of minimal Maslov number, NL, defined as the positive
generator of µ(π2(M ,L)) = NLZ if it exists, or set to NL = ∞ otherwise.

Finally, and as is already partially clear from the last paragraph, we will need discs
(and half-discs) in M . The discs will be maps from D, the standard unit disc in C, to
M . They will be equipped with the usual complex structure coming from C, also known
as i, whenever we will need them to be pseudo-holomorphic mappings to (M ,J), for
a given almost complex structure on TM . They will usually have boundary either in
L or along a Hamiltonian orbit for which they will serve as cappings.

The half-discs will be cappings of Hamiltonian chords from L to itself. They will
be maps from D− = {z ∈ D | im(z) ≤ 0} to M , the “round” part of their boundary will
be mapped to L, and the “straight” part to a chord.

1.2. Symplectic (and almost complex) assumptions
The different constructions we present below can be performed under different

technical assumptions. We now quickly review the most common ones and explain the
choices made in the rest of the present memoirs.

1.2.1. Common technical assumptions
A symplectic manifold (M ,ω) is
(1) exact if the symplectic form is exact, i.e there exists a 1-form λ such that ω = dλ,
(2) (symplectically) aspherical if the symplectic form, ω, and the first Chern class, c1,

vanish on π2(M),
(3) monotone if there exists a constant ν ≥ 0 such that for all A ∈ π2(M), ω(A) =

νc1(A) ; ν is called the monotonicity constant,
(4) rational if the group of periods ω(π2(M)) is discrete.
There are many other assumptions – with quite subtle variations of adjectives –

which appeared in the literature during the development of Floer homology, for example
(5) strong semi-positivity : for any A ∈ π2(M), 2− n ≤ c1(A) < 0 ⇒ ω(A) ≤ 0,
(6) weak monotonicity : for any A ∈ π2(M), 3− n ≤ c1(A) < 0 ⇒ ω(A) ≤ 0.

Strong semi-positivity is equivalent to : either monotonicity, or the vanishing of c1 on
π2(M), or the minimal Chern number being greater than or equal to n− 1. The same
holds for weak monotonicity, with n − 1 replaced by n − 2. They are quite natural
(if not from a geometric viewpoint) in terms of the difficulties encountered to define
Floer homology since a lower bound on the first Chern number of pseudo-holomorphic
spheres is quite helpful to ensure the compactness of moduli spaces which is itself
necessary to the construction.

The existence of pseudo-holomorphic spheres with vanishing first Chern number
will also be in the center of Section 2 of Chapter III, so that we introduce here two
additional definitions. We do emphasize that they concern almost complex manifolds
rather than symplectic manifolds. An almost complex manifold (M ,J) is Fano if all
pseudo-holomorphic spheres have positive first Chern number, while it is NEF (for
Numerically EFfective) if such spheres have non-negative first Chern number.
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Let L be a Lagrangian submanifold of a symplectic manifold (M ,ω). Similarly to
the previous definitions, L is

(1) exact if (M ,ω) is exact and the restriction to L of the primitive of ω is itself
exact, i.e. λ|L = df for some function f : L→ R,

(2) (relatively symplectically) aspherical or weakly exact if the symplectic form, ω, and
the Maslov number, µ, vanish on π2(M ,L),

(3) monotone if there exists a constant τ ≥ 0 such that for all A ∈ π2(M ,L),
ω(A) = τµ(A) ; τ is called the monotonicity constant.

It is easy to see that the monotonicity of L implies that the restrictions to π2(M) of
ω and c1 either both vanish, that is (M ,ω) is symplectically aspherical (this is for
example the case when π2(M) = 0), or satisfy ω|π2(M) = 2τc1|π2(M), in which case
(M ,ω) is monotone with monotonicity constant ν = 2τ .

Definition I.4. We will often work under the assumptions that L is monotone with
constant τ > 0 and that its minimal Maslov number NL satisfies NL ≥ 2. In order to
ease the reading we will call such a Lagrangian monotone+.

Disclaimer I.5. When not specified, all the considered symplectic manifolds and La-
grangian submanifolds are connected, and closed (compact, without boundary).

1.2.2. In this memoirs...
Unlike in a talk where it is common (and much easier) to present a general theory

under the most restrictive assumptions and then shamelessly appeal to the imagination
of the audience, opportunity is given here to expose many constructions in a fairly
general situation.

This being written, there are choices to be made so that the present memoirs can still
be readable (I gave up all hope of an enjoyable reading after writing down the titles of
all subsections of Chapter I...). This is mainly due to the fact that there are many, sub-
tly different, versions of the main constructions which will be needed in the following
chapters : pretty much all possible combinations of [“absolute” or Lagrangian], [quan-
tum or Floer] homology under the [asphericity or monotonicity or NEF] assumption
will appear later3. Moreover, the coefficients used for these homology theories is also a
sensitive matter and many different cases will be evoked, Z/2Z, Z, Q, Novikov rings of
all sorts...

So in the reminder of this chapter, choice was made to present the main constructions
with a focus on

the Lagrangian setting, under the monotonicity condition, and for Z/2Z coefficients.
This being written, let us immediately add that we will also briefly describe the

“absolute” versions of the constructions, and explain how to pass from monotonicity to
asphericity. Moreover, we will also briefly describe the “absolute” quantum homology
ring under the NEF assumption, as this will be needed to understand the second half
of Chapter III.

2. The finite dimensional model : Morse homology

Let us start with the mother of all homology theories presented below, also known
as Morse homology. (This is a very quick overview, for more details on the topic, in
the perspective of shifting to Floer theory, we recommend (Schwarz 1993) together with
(Audin and Damian 2014), or the quite enjoyable recent survey (Abbondandolo and
Schlenk 2017).)

Let W be a smooth compact manifold and f : W → R a Morse function. Let Crit(f)
denote the set of its critical points. As f is Morse and W compact, Crit(f) is finite. Let

3. This is even without mentioning Floer homology for intersections of pairs of Lagrangians...
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ρ be a Riemannian metric on W . It allows us to define, for any p ∈ Crit(f) the stable
and unstable manifolds of p, that is, respectively

Ws(p; f, ρ) = {x ∈W | lim
t→∞

γx(t) = p} and Wu(p; f, ρ) = {x ∈W | lim
t→−∞

γx(t) = p}

where t 7 → γx(t) is the flow line of the negative gradient flow of f with respect to ρ,
going through x at time t = 0. This in turn yields the following two definitions. A
pair (f , ρ) is Morse–Smale if for any pair of critical points p and q of f , Ws(p ; f , ρ) and
Wu(q ; f , ρ) intersect transversely. The (Morse) index of a critical point p of f , denoted
|p|f , is defined as the dimension of Wu(p ; f , ρ). We now fix such a Morse–Smale pair
(f , ρ) and since there is no ambiguity, we will denote respectively Ws(p ; f , ρ) by S(p)
and Wu(p ; f , ρ) by U(p).

Example I.6. Consider the sphere S2 endowed with the metric ρ induced by its embed-
ding into R3 illustrated on the left-most part of Figure I.1. Let f be the height function.
It has 4-critical points p0, p1, p12, and p22.

f

p0

p1 p1

p12 p12
p22 p22

p0

R

F I.1. Illustration of the construction of Morse homology

The black 2-dimensional open disc on the left is the unstable manifold of p12, while
the unstable manifold of p1 is represented in blue. Of course, the unstable manifold of
p22 is the gray open 2-disc on the right, and p0 has a 0-dimensional unstable manifold.
(Notice that the subscript of a critical point is the dimension of its unstable manifold,
i.e. its index.)

Now, we consider the Z/2Z-vector space generated by the critical points of f ,
CM∗(W ; f) = Z/2Z〈Crit(f)〉, which is graded by the Morse index. Let us define a
map of degree −1 on CM∗(W ; f) by setting

∂(f,ρ) p =
∑

q s.t. |q|f=|p|f−1

#2M(p, q; f, ρ) · q with M(p, q; f, ρ) =
(
U(p) ∩ S(q)

)
/R

for all critical points p of f and extending it by linearity to the whole space. The
symbol #2 denotes the cardinality mod 2, and R acts on the connecting manifold of p
and q, U(p) ∩ S(q), by reparameterization of flow lines. Hence, #2M(p , q ; f , ρ) actually
counts (mod 2) the number of geometric flow lines going from p to q.

To ease the reading, we remove all references to the fixed f and ρ from the notation.
The essential fact which makes the whole construction work is that, for general critical
points p and q, M(p , q) is a manifold of dimension

dim(M(p, q)) = dim(U(q) ∩ S(q))− 1 = |p| − |q| − 1

which can be compactified in a very specific way. In particular, when |q| = |p| − 1,
M(p , q) is a compact 0-dimensional manifold so that the map ∂ is well-defined.

Moreover, when |r| = |p| − 2, M(p , r) can be compactified in such a way that the
boundary of its compactification splits as the union of broken flow lines

∂M(p, r) =
⋃

q s.t. |q|=|p|−1

M(p, q)×M(q, r) .
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Since the number of boundary components of a compact 1-dimensional manifold
vanishes mod 2, we deduce that

∂2(f,ρ) p =
∑
q,r

#2M(p, q) · #2M(q, r) =
∑
r

#2 ∂M(p, r) = 0 .

This ensures that the map ∂(f,ρ) squares to 0. It is a differential on CM∗(W ; f) and
the pair (CM∗(W ; f) , ∂(f,ρ)) is the Morse complex of M associated with the Morse–Smale
pair (f , ρ). By taking the homology of this complex, we get the Morse homology of W ,
relatively to the Morse–Smale pair (f , ρ) : HM∗(W ; f , ρ) = H∗(CM(W ; f) , ∂(f,ρ)).

Example I.7. Back to Example I.6 above, we immediately see that
CM0(S

2; f) = Z/2Z〈p0〉 , CM1(S
2; f) = Z/2Z〈p1〉 , and CM2(S

2; f) = Z/2Z〈p12, p22〉 .
We represented on the right-most part of Figure I.1 the elements of the moduli space
of connecting flow lines which belong to its 0-dimensional component. Notice that
M(p12 , p1) and M(p22 , p1) consist of a single element (each), while M(p1 , p0) consists of
two elements. (In particular,M(p12 , p0) is of dimension 1 and can indeed be compactified
so that the boundary of its compactification corresponds to the two trajectories “broken
at p1”.)

Thus, we get that ∂p22 = ∂p12 = p1, while ∂p1 = 2p0 = 0 = ∂p0. This shows that there
are three cycles p12 + p22, p1, and p0, one of which is a boundary. In short,

HM0(S
2; f, ρ) = Z/2Z〈p0〉 and HM2(S

2; f, ρ) = Z/2Z〈p12 + p22〉

while HM∗(S2 ; f , ρ) = 0 in any other degree ∗ 6= 0 and 2, which turns out to be
isomorphic to the (whichever natural) homology of S2 with coefficients in Z/2Z.

The last observation is no coincidence, it is well-known that the homology of the
Morse complex is independent of the Morse–Smale pair and coincides with the (cellular)
homology of W . Thus we will usually denote it simply by HM∗(W ). Moreover, it
admits a product which is defined by counting a slightly more complicated type of
connecting manifolds involving flow lines of several Morse–Smale pairs. This product
corresponds to (i.e. is the Morse-theoretic version of) the intersection product, which
turns the homology of W into a ring with unit. The unit is denoted [W ], by analogy
with the fundamental class of W . (This will be explained in some details below, in
the exposition of the quantum adaptation of the theory, see respectively Sections 3.1.2
and 3.1.3 below.)

Remark I.8 (Action of the diffeomorphism group of W ). The diffeomorphism group of
W , Diff(W ), acts on Morse homology as follows. Let (f , ρ) be a Morse–Smale pair for
W and, for any diffeomorphism h of W , define the pair (fh , ρh) by fh = f ◦ h−1 and
ρh = (h−1)∗ρ. It is also Morse–Smale and mapping p ∈ Crit(f) to ph = h(p) ∈ Crit(fh)
induces a bijection

h∗ : CM∗(W ; f, ρ) −→ CM∗(W ; fh, ρh) ,
∑
i

pi 7−→
∑
i

phi .

Given any two critical points of f , p and q, a flow line of f with respect to ρ and
connecting p to q is mapped to a flow line of fh with respect to ρh, connecting ph to
qh, by γ 7 → γh = h ◦ γ. This shows that h∗ is a degree-0 chain morphism which then
descends to an isomorphism h∗ : HM∗(W ; f , ρ)→ HM∗(W ; fh , ρh).

This is the Morse theoretic version of the usual action of Diff(W ) on H∗(W ) by
automorphisms, Diff(W )→ Aut(H∗(W )).

3. From Morse to quantum homology

Beyond presenting the construction of quantum homology (and many of the addi-
tional structures it enjoys), this section will hopefully show that quantum homology is
somehow the most efficient way to get a Morse-type homology which also encodes the
symplectic / almost complex data by taking into account pseudo-holomorphic objects
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(discs in M with boundary in L for the Lagrangian case, spheres in M in the absolute
case).

In Section 4, we will present another way to do it, called Floer homology, which relies
also on the additional data of a Hamiltonian. Then we will explain the relationships
between the two theories and in particular, in Section 5.1, we will explain how one
can see quantum homology as a Morse–Bott version of Floer homology, when the
Hamiltonian function vanishes.

3.1. Lagrangian quantum homology
Lagrangian quantum homology was defined by Biran and Cornea (Biran and Cornea

2009, 2012)4. It was reformulated by Zapolsky (Zapolsky 2015) in a way allowing
orientations of the various moduli spaces to be handled canonically, which can be
understood as “allowing to define these homology theories with respect to a very large
choice of coefficients”. While the article (Leclercq and Zapolsky 2018), whose results
are exposed in Sections 1 and 2 of the next chapter, follows the convention of the latter,
we base the exposition of the homology theories on the former, more standard, since
choice was made not to give any account on orientations by restricting the exposition
to Z/2Z coefficients.

To end this introduction, let us make the pretty whimsical remark that this section
can also be used to get more details on some aspects of the construction and properties
of Morse homology, simply by throwing away all pseudo-holomorphic discs... In par-
ticular, all quantum constructions below reduce to their Morse counterparts under the
assumption of symplectic asphericity.
3.1.1. The complex

Let L denote a Lagrangian of a symplectic manifold (M ,ω). Recall that we work
here under the monotone+ assumption (see Definition I.4). We fix a quantum datum for
L, that is a triple D = (f , ρ , J) where (f , ρ) is a Morse–Smale pair for L and J is an
almost complex structure on TM which is compatible with ω.

Introduce a variable t whose degree is set to −NL and denote by Λ = Z/2Z[t−1 , t],
the ring of Laurent polynomials in t. Now define the Lagrangian quantum complex as
the Z/2Z-vector space CQ∗(L ;D) = Z/2Z〈Crit(f)〉 ⊗ Λ. The differential is defined by
counting strings of pearls, that is combinations of Morse flow lines of f with respect to
ρ, and (i , J)-pseudo-holomorphic discs. Namely, for A ∈ π2(M ,L), let M̂Q(p , q ;D , A)
consists of r-tuples of non-constant J-pseudo-holomorphic discs with boundary in L,
u = (u1 , . . . ur) with r ≥ 1, such that

(1) u1(−1) ∈ U(p) (in particular, u1(−1) = p is allowed),
(2) for all 1 ≤ i ≤ r − 1, ui+1(−1) = γui(1)(ti) for some ti > 0,
(3) ur(1) ∈ S(q) (in particular, one might have q = ur(1)),
(4) the total class [u] = [u1] + . . .+ [ur] = A ∈ π2(M ,L).

Recall that for a point x in L which is not a critical point of f , γx denotes the flow line
of f with respect to ρ which passes through x at t = 0, and recall that for a critical
point x, S(x) and U(x) respectively denote the stable and unstable manifolds of x. A
typical element is depicted in Figure I.2.
Remark I.9. It is important in the above definition to allow p and q to lie respectively
on the first and last pseudo-holomorphic discs, but to require the flow line between any
two successive discs to have positive length. This will be used to compensate for the
phenomenon of bubbling off of certain pseudo-holomorphic discs at the boundary of
the moduli space.

In the Morse case, in order to count geometric objects we had to take the quotient of
the connecting manifolds U(p)∩S(q) by the action of R corresponding to time shift. In
the quantum case, we also need to do that for the possible non-trivial initial and final

4. The proofs of the main statements of (Biran and Cornea 2009) are carried out with (a dreadful
but necessary amount of) details in (Biran and Cornea 2007).
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p q

A=[u1] + +[u2] . . . [ur]

L

u1 u2 ur

−∇ρf −∇ρf −∇ρf∂J=0 ∂J=0 ∂J=0

u1(−1) u2(−1) ur(−1)u1(1) u2(1) ur(1)

F I.2. A typical element u ∈ M̂Q(p , q ;D , A)

flow lines, but we also need to mod out by the automorphism group of the set of pearls
u. Two such sets, u1 and u2, are equivalent if they have same length r1 = r2 = r and
if, for each pearl, there exists an automorphism σi of the domain, fixing ±1 and such
that u2i = u1i ◦ σi (1 ≤ i ≤ r). We denote the quotient by MQ(p , q ;D , A) and define the
differential by

∂D p =
∑
q,A

#2MQ(p, q;D, A) q ⊗ t
µ(A)
NL(I.3)

on (Morse) generators and extend it by linearity and tensor product. In this definition,
#2 denotes the cardinality mod 2 of MQ(p , q ;D , A) and the sum runs over the set of
q ∈ Crit(f) and A ∈ π2(M ,L) such that dimMQ(p , q ;D , A) = |p|f −|q|f +µ(A)−1 = 0.

Disclaimer I.10 (Transversality). There is a fairly big approximation implied by the
notation dimMQ here as the moduli spaces are not (even only generically) smooth
manifolds. The usual reason for this is the fact that some curves appearing in the
moduli spaces are not simple. For spheres, for example, such a curve decomposes as
a simple curve composed with a branched covering of the domain which allows one
to deal with this issue by replacing the initial curve by the simple one. However, this
decomposition does not hold in the case of discs with boundary on a Lagrangian and
one has to be more subtle. The idea, which has been independently developed by
Lazzarini (Lazzarini 2000, xxxx) and Kwon and Oh (Kwon and Oh 2000), is to start
by a division of the domain into subdomains on which the restriction of the initial map
decomposes into simple map and branched covering. The division preserves the total
class [u] and one can conclude as above. For generic choices, the moduli spaces of
dimension 0 and 1 can thus be assumed to be smooth manifolds.

As the 0-dimensional component of MQ is compact, (I.3) defines a morphism of
the graded vector space CQ∗(L ;D) whose square can be shown to vanish. In order to
do that, we proceed as in the Morse case : we need to understand the boundary of the
compactification of the 1-dimensional component of the moduli space MQ. Gromov’s
compactness theorem (Gromov 1985) states that up to possible bubbling off phenomena,MQ

can be compactified by adding “broken” strings of pearls. The bubbling off phenomena
are then taken care of by index considerations and the observation made in Remark I.9.

More precisely, the boundary of the compactification of MQ(p , r ;D , A) might a
priori consist of elements of the following various types (and combinations of such) :

(1) a Morse breaking, i.e. the products ∪q,B,CMQ(p , q ;D , B) × MQ(q , r ;D , C)
(with B + C = A) appear in ∂MQ(p , r ;D , A),

(2) the shrinking-to-nothing of a Morse flow line,
(3) the bubbling off of a J-pseudo-holomorphic disc (on ±1 or elsewhere),
(4) the bubbling off of a J-pseudo-holomorphic sphere.

It is easy to see that, generically, the latter case does not happen. Indeed, the bubbling off
of a sphere v requires the existence of an element in MQ(p , r ;D , A− [v]). However by
the formula giving the (virtual) dimension of the moduli space, this specific component
has dimension dimMQ(p , r ;D , A)−c1([v]) = 1−c1([v]) which is negative since c1([v]) ≥
CM which is greater than or equal to 2 (since CM is infinite or NL|CM ).
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F I.3. Compactifying the 1-dimensional component of M̂Q(p , q ;D , A)

The same observation applies to the bubbling off of a side disc, that is a disc which
bubbles off of a sequence of pseudo-holomorphic discs at a boundary point different
from ±1. Thus, such bubbling off (illustrated by the lower right side of Figure I.3)
generically does not happen.

What does happen is the bubbling off of discs at ±1. However, this is compensated
by the fact that such an element actually appears twice in the compactification, since it
is also the limit of a sequence of elements for which one of the Morse flow lines entirely
collapses (as illustrated on the upper right side of Figure I.3).

Proving that not only these are the only possibilities but that they actually appear
results from standard gluing arguments which will not be exposed here (and not only
because the proof is too large to fit in the margin).

This procedure shows that mod 2 (or with suitable orientations but Hush !) the
Morse breakings sum to 0 which proves, as in the Morse case, that the differential
squares to 0. We can thus define the Lagrangian quantum homology of L as the homology
of this complex :

HQ∗(L) = H∗(CQ(L;D), ∂D) .

3.1.2. Independence on the data
As suggested by the notation of the homology, even though the complex itself heavily

depends on the auxiliary choice of quantum datum D, its homology does not. A
standard proof of this fact is inspired by cobordism techniques from Morse homology.
Pick two admissible quantum data Di = (fi , ρi , Ji) for i = 0 and 1 and a smooth
1-parameter family of admissible interpolating triples t 7 → Dt = (ft , ρt , Jt) for t ∈ [0 , 1]
such that Dt indeed coincides with D0 and D1 respectively for t = 0 and 1.

Considering f : [0 , 1] × L→ R, defined by f(t , ·) = ft for all t, one additionally
requires that ∂f

∂t < 0 (which might impose to first globally shift f1 by a big enough
constant) so that Crit(f) =

(
{0}×Crit(f0)

)
∪
(
{1}×Crit(f1)

)
. This allows us to identify

(i , p) ∈ Crit(f) with p ∈ Crit(fi) for i = 0 and 1. Under this identification, the indices
satisfy |p|f = |p|f0 + 1 if p ∈ Crit(f0) and |p|f = |p|f1 if p ∈ Crit(f1).

Now, define a morphism by formula (I.3) where the moduli space MQ is slightly
altered :

(1) p ∈ Crit(f1) while the sum runs on q ∈ Crit(f2),
(2) the Morse–Smale pair is replaced by (f , ρ), and non-trivial flow lines hit discs

inside (0 , 1)× L,
(3) each disc ui is Jτi-pseudo-holomorphic for some τi ∈ [0 , 1].
In view of the indices, counting mod 2 the 0-dimensional component of these new

moduli spaces yields a degree-0 morphism ΦD : CQ∗(L ;D0)→ CQ∗(L ;D1). Thanks to
the same argument as above (however slightly harder as for example gluing arguments
need to take into account that the almost complex structure is not constant anymore),
analyzing the boundary of the compactification of the 1-dimensional component of the
moduli spaces ensures that this chain morphism induces a morphism in homology.
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Finally, one can show the following :
(1) ΦD does not depend on the choice of admissible cobordism triple D from D0

to D1, and we will thus denote it ΦD1←D0 ,
(2) if D and D′ are admissible cobordism triples respectively from D0 to D1 and

from D1 to D2, then ΦD2←D1 ◦ ΦD1←D0 = ΦD2←D0 ,
(3) if D is the constant cobordism from D0 to itself, then ΦD is the identity.

The first point is proved along the exact same lines as the construction of ΦD except
that one needs one more parameter in order to consider a cobordism triple between two
given cobordism triples D and D′ with identical extremities D0 and D1. Considering the
indices one now constructs by counting the 0-dimensional component of these “new”
moduli spaces a degree-1 map, ξ : CQ∗(L ;D0)→ CQ∗+1(L ;D1), which can then be seen
to be a chain homotopy, ΦD − ΦD′ = ξ ∂D1 + ∂D0 ξ, by analyzing the boundary of the
compactification of the 1-dimensional component.

The last two points are straightforward and obviously show that the canonical mor-
phism constructed that way is actually an isomorphism. It is usually called the contin-
uation morphism of quantum homology.

3.1.3. Quantum product
There exists a Lagrangian quantum version of the intersection product which turns it

into an algebra over Λ. This enhancement, inspired by its Morse-theoretic counterpart, is
realized at the chain level by counting the 0-dimensional component of suitable moduli
spaces and is shown to induce a product in homology by considering the boundary of
the compactification of the 1-dimensional component of the same moduli spaces. Hence,
I will only describe the moduli spaces (as the deep arguments which make the whole
machinery work – by ensuring transversality and compactness of the moduli spaces –
are the exact same ones as the ones I did not describe earlier).

Consider three admissible quantum data Di for i = 0, 1, and 2, consisting of three
Morse functions fi, a common metric ρ such that the three pairs (fi , ρ) are Morse–
Smale, and a common ω-compatible almost complex structure J . We will reserve the
subscript i for critical points of fi and, to avoid notational redundancy, we will denote
by | · | their respective indices (i.e. pi ∈ Crit(fi) and |pi| will stand for |pi|fi).

The moduli space used to define the product consists of “Y” configurations for which
each branch is a string of pearls with respect to a quantum datum Di, all three of them
meeting at a (possibly trivial) J-pseudo-holomorphic disc. More precisely, for three
critical points p0, p1, q2, and a class A ∈ π2(M ,L), defineM∗Q(p0 , p1 , q2 ;D0 ,D1 ,D2 , A)

as the set of quadruples {u0 , u1 , u2 , v} such that
(1) v is a possibly constant J-pseudo-holomorphic disc, on which three points are

marked : p′0 = v(e
2π
3 ), p′1 = v(e

−2π
3 ), and q′2 = v(1),

(2) for i = 0 and 1, ui ∈ MQ(pi , p
′
i ;Di , Ai), while u2 ∈ MQ(q

′
2 , q2 ;D2 , A2), with

A0, A1, and A2 ∈ π2(M ,L), such that A = A0 +A1 +A2 + [v].

p1

p0
q2

A0

A2

A1 L

v

−∇ρf1

−∇ρf0
−∇ρf2

−∇ρf1

−∇ρf0
−∇ρf2

p′1
p′2

p′0

F I.4. A typical element u ∈ M∗Q(p0 , p1 , q2 ;D0 ,D1 ,D2 , A)

The virtual dimension ofM∗Q(p0 , p1 , q2 ;D0 ,D1 ,D2 , A) is |p0|+ |p1|−|q2|+µ(a)−n
(with n being the dimension of L) and its 0- and 1-dimensional components are smooth
manifolds for generic choices of the data Di. The 0-dimensional component is compact,
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thus the formula

p0 ∗ p1 =
∑
q2,A

#2M∗Q(p0, p1, q2;D0,D1,D2, A) q2 ⊗ t
µ(A)
NL

where the sum runs over all the critical points q2 of f2 and all classes A ∈ π2(M ,L) such
that |q2| − µ(a) = |p0|+ |p1| − n, extended by bi-linearity and tensor product, defines a
chain map CQ∗(L ,D0)×CQ∗′(L ,D1)→ CQ∗+∗′−n(L ,D2). The latter is shown to induce
a product in homology,

∗ : HQ∗(L)×HQ∗′(L) −→ HQ∗+∗′−n(L) ,
by considering the boundary of the compactification of the 1-dimensional component
of M∗Q .

Remark I.11. It is possible and sometimes very useful to “only” consider two admissible
quantum data by choosing f1 = f2 in the construction we just described. (This slightly
simplifies some arguments which have not been made explicit in this memoirs, but
somehow breaks the symmetry.)

Let us finish this section with a useful exercise.

Exercise I.12. Show that the algebra (HQ∗(L) , ∗) admits a unit which is of degree n.
(Hint. This is one of the occurrences where choosing f1 = f2 might help. Choose also
f0 with a single maximum, m0. Then show that for all p1 ∈ Crit(f1), m0 ∗ p1 = p1,
thanks to clever considerations on the respective dimensions of the moduli spaces M∗Q
and MQ.)

This element is denoted [L] and called (quantum) fundamental class of L by analogy.

3.2. Quantum homology
There is also a quantum homology theory of the ambient manifold without mention

of an auxiliary Lagrangian. It was defined earlier than the Lagrangian version described
above, and served as model. The main difference between both versions is that in this
“absolute” setting, pseudo-holomorphic objects only alter non-trivially the intersection
product (and not the differential of the complex itself, compare with the definition of
MQ of Section 3.1.1).

Disclaimer I.13. Exceptionally, we describe this construction in the more general setting
of strongly semi-positive manifolds and with coefficients in the field Q rather than Z/2Z.
This is due to the fact that we will have to work under this assumption and with these
coefficients in Section 2 of Chapter III. This is also why we follow the presentation of
McDuff and Tolman (McDuff and Tolman 2006).

In Remark I.14 below, we briefly explain how the construction gets simplified under
the more restrictive assumption of monotonicity and with Z/2Z coefficients since this
case will also be of interest (as for example in Section 3.3). We also harmonize the
presentation with that of the Lagrangian quantum homology above.

The quantum homology of (M ,ω) is defined as the tensor product HQ∗(M ; Γ) =
H∗(M ;Q)⊗Q Γ where Γ is the ring Γuniv[q , q−1] : the variable q is of degree 2 and Γuniv

is a ring of generalized Laurent series in a variable of degree 0,

Γuniv =
{∑
κ∈R

rκt
κ
∣∣ rκ ∈ Q, and for all c ∈ R, #{κ > c | rκ 6= 0} <∞

}
.(I.4)

The quantum homology HQ∗(M ; Γ) is Z-graded in such a way that for all a ∈ Hk(M ;Z),
all d ∈ Z and all κ ∈ R, deg(a⊗ qdtκ) = k + 2d.

For two classes a ∈ Hi(M ;Z) and b ∈ Hj(M ;Z), their quantum intersection product,
a ∗ b ∈ HQi+j−dimM (M ; Γ), has the form

a ∗ b =
∑

B∈HS2 (M ;Z)

(a ∗ b)B ⊗ q−c1(B)t−ω(B) ,(I.5)
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where HS2 (M ;Z) is the image of π2(M) under the Hurewicz map. The homology class
(a ∗ b)B ∈ Hi+j−dimM+2c1(B)(M ;Z) is defined by the requirement that

(a ∗ b)B ∗M c = GWM
B,3(a, b, c) for all c ∈ H∗(M) .

In this formula, ∗M is the intersection product inM , and GWM
B,3(a , b , c) ∈ Q denotes the

Gromov–Witten invariant which, roughly, counts the number of J-pseudo-holomorphic
spheres in M in class B that meet cycles representing the classes a, b, and c ∈ H∗(M ;Z).
The product ∗ is extended to HQ∗(M ; Γ) by tensor product with Γ. It is associative. It
also respects the grading and gives HQ∗(M ; Γ) the structure of a graded commutative
algebra over Γ, with unit [M ] ∈ H2n(M ;Z), seen as [M ]⊗ 1 ∈ HQ2n(M ; Γ).

Remark I.14. First, note that we will use this theory in Chapter III for blow-ups of
CP2 which are simply connected so that their second homotopy and homology groups
are isomorphic and thus HS2 ' π2.

Second, if we replace H∗(M ;Z) by its Morse theoretic version, we see that we need a
Morse–Smale pair for M , (f , ρ), together with an almost complex structure J which is
ω-compatible. The triple D = (f , ρ , J) constitutes the equivalent “absolute” quantum
datum. Moreover, we see that in this case, the quantum intersection product corre-
sponds in spirit to its Lagrangian counterpart (again, except for the fact that pseudo-
holomorphic objects do not alter the differential of the Morse complex), roughly counting
the 0-dimensional component of moduli spaces of pseudo-holomorphic spheres meeting
the unstable manifolds of critical points representing a and b, and the stable manifold
of a critical point representing c (compare, with Figure I.5).

Finally, we see that when the manifold is not monotone, we need two variables, t and
q, which respectively keep track of the symplectic area and the first Chern number of the
involved pseudo-holomorphic spheres. When (M ,ω) is monotone and the coefficient
field is chosen to be Z/2Z rather than Q, the quantum homology of M can be taken
with coefficients in Γ = Z/2Z[q−1 , q]. To harmonize the presentation with that of the
Lagrangian case above, change the variable q for the variable s = q−CM whose degree is
thus −2CM and define the quantum homology ofM as HQ∗(M ; Γ) = H∗(M ;Z/2Z)⊗Z/2Z
Γ, with Γ = Z/2Z[s−1 , s]. (There are of course a few additional adaptations to be made,

for example q−c1(B) should be replaced by s
c1(B)
CM in the formula defining the product of

classes a and b, (I.5) above.)

3.3. A quantum module structure
There is one more algebraic structure which will be useful in Section 1 of the next

chapter : the Lagrangian quantum homology of L is a module over the quantum ho-
mology ring of M .5 This additional structure is defined via the procedure described
above already several times...

Namely, suitable moduli spaces consisting of geometric objects relating genera-
tors of the different complexes will be defined thanks to auxiliary data. For generic
choices, the low dimensional components of these moduli spaces are smooth manifolds
which dimension is expressed in terms of the respective indices of the generators. The
0-dimensional component of the moduli spaces is compact and allows to define a chain
map via a mod 2 count. The 1-dimensional component of the moduli space can be
compactified, and analyzing the boundary of its compactification will show that this
chain map induces a structure on the homologies. Finally, via cobordism arguments,
one can show that it does not depend on the auxiliary data chosen for its construction
and commutes with the adequate continuation morphisms.

As this is standard procedure by now (in this memoirs also), I will only here describe
the relevant moduli spaces.

5. Actually, both rings being algebras over their respective Novikov rings, this yields a structure of
super-algebra of HQ∗(L) over HQ∗(M).
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Remark I.15. As we need both quantum homology theories to interact, let us recall
from Section 1.2 that since L satisfies the monotone+ assumption, either ω|π2(M) = 0
or (M ,ω) is monotone of monotonicity constant twice that of L. Below, we work in the
latter case, when (M ,ω) is monotone. The construction in the aspherical case, when ω
vanishes on π2(M), can easily be deduced by simply removing all pseudo-holomorphic
spheres from our description (since these spheres do not exist / have to be trivial). In
particular, in the absence of pseudo-holomorphic spheres in M , the minimal Chern
number is set to be ∞, the Novikov ring is nothing but the field Γ = Z/2Z, and the
quantum homology of M then reduces to its Morse homology.

Since (M ,ω) is assumed to be monotone, we consider the construction of its quan-
tum homology as described in Remark I.14 above. In particular, Γ = Z/2Z[s−1 , s] with
s of degree −2CM . Now, since CM is a multiple of NL, we see that there is a natural
inclusion of Γ into Λ = Z/2Z[t−1 , t] given by s 7 → t

2cM
NL . In turn, this allows us to

consider Λ as a Γ-module and the quantum homology of M , with coefficients in Λ by
setting

HQ∗(M ; Λ) = H∗(M ;Z/2Z)⊗Z/2Z Λ = HQ∗(M ; Γ)⊗Γ Λ .

Let (fM , ρM ) be a Morse–Smale pair for M and denote the Morse complex with Λ
coefficients by CM∗(M ; fM , ρM ; Λ) = Z/2Z〈Crit(fM )〉⊗Λ. There is an obvious Λ-module
isomorphism between the homology of this complex and HQ∗(M ; Λ).

We pick a Morse–Smale pair (fL , ρL) for L and an ω-compatible almost complex
structure J . We denote by DM = (fM , ρM , J) and DL = (fL , ρL , J) the respective
quantum data. Let p and q ∈ Crit(fL), a ∈ Crit(fM ), and A ∈ π2(M ,L). First, consider
pairs (u , k) where u = (u1 , . . . ur), for some integer r, is a generalized string of pearls
from p to q, i.e. an element of MQ(p , q ;DL , A) which satisfies Items 1 to 4 above
Remark I.9 except for the following facts :

(1) the J-pseudo-holomorphic disc uk, with 1 ≤ k ≤ r, is allowed to be constant,
(2) uk(0) lies in U(fM ,ρM )(a), the unstable manifold of a for fM with respect to ρM .

p

a

q

L
u1 . . . uk . . . ur−∇ρLfL

−∇ρM fM

−∇ρLfL

uk(0)

F I.5. A typical element (u , k) ∈ M�Q(a , p , q ;DM ,DL ;A)

Now, define M�Q(a , p , q ;DM ,DL ;A) as the set of equivalence classes of such pairs
(u , k), where (u1 , k1) and (u2 , k2) are equivalent if k1 = k2 and u1 is equivalent to u2 as
generalized strings of pearls. The slight difference with Section 3.1.1 is that this reduces
here to the existence of r−1 automorphisms σi of D (r denotes r1 = r2) preserving ±1,
such that u2i = u1i ◦ σi for all i 6= k, as ujk has already three marked points.

As mentioned in introduction of the section, the standard procedure shows that

a� p =
∑
y,A

#2M�Q(a, p, q;DM ,DL;A) q ⊗ t
µ(A)
NL

where the sum runs over all y ∈ Crit(fL) and A ∈ π2(M ,L) such that |y|fL − µ(A) =
|x|fL + |a|fM − 2n, extended by linearity and tensor product, defines a chain map. The
latter yields the external product

� : HQ∗(M)⊗HQ∗′(L) −→ HQ∗+∗′−2n(L)

which is independent of all auxiliary data and turns HQ∗(L) into a HQ∗(M)-module.
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4. From Morse to Floer homologies

We now present the other striking consequence of Gromov’s work on pseudo-
holomorphic curves (Gromov 1985) mentioned in the introduction of the present chap-
ter, that is Floer homology. This homology theory was constructed by Floer (Floer 1989b,
1988a, 1988b, 1989a) in his successful quest of a proof to the Arnol’d conjecture. Since
this seminal work, Floer homology has been extended to more general situations by
Hofer and Salamon (Hofer and Salamon 1995) for example for weakly monotone man-
ifolds and by Oh (Oh 1993, 1995), Biran and Cornea (Biran and Cornea 2009, 2012),
Seidel (Seidel 2008), Fukaya, Oh, Ohta, and Ono (Fukaya et al. 2009a, 2009b) for the
Lagrangian counterpart. Recently, Zapolsky wrote an extensive account of the theory
(Zapolsky 2015) incorporating canonical orientations. As for the quantum case, we will
not describe the theory beyond Z/2Z coefficients and the exposition will be based on
Oh (op.cit.), with notation adapted from (Leclercq and Zapolsky 2018).

4.1. Lagrangian Floer homology
We now describe Floer homology. It is “an infinite dimensional analogue of Morse

homology” which makes extensive use of the pseudo-holomorphic tools and techniques
exposed in the previous sections on quantum homology.
4.1.1. The complex

As above, L denotes a compact monotone+ Lagrangian of a compact symplectic
manifold (M ,ω). Let ΩL be the set of homotopically trivial chords from L to itself :

ΩL = {γ : [0, 1] →M | γ(0), γ(1) ∈ L, [γ] = 0 ∈ π1(M,L)} .
A capping of a path γ ∈ ΩL is a smooth half-disc γ̂ : D−→M such that the image of the
“straight” part of its boundary, {ti | t ∈ [−1 , 1]}, is mapped to γ while the “round” part
of its boundary, D−∩∂D, lies in L. Given γ ∈ ΩL, such a capping exists as γ is required
to be homotopically trivial with respect to L. Two pairs (γ , γ̂) and (γ′ , γ̂′) are equivalent
if γ = γ′ and ω(γ̂) =ω(γ̂′), that is if the piecewise smooth disc in M with boundary
in L obtained as the concatenation u = γ̂](−γ̂′) has zero symplectic area (here, −γ̂′
denotes the disc γ′ with reversed orientation). Notice that this is equivalent, under the
monotone+ assumption, to µ(u) = 0. We will denote γ̃ = [γ , γ̂] the equivalence class of
the pair (γ , γ̂) under this relation, and by Ω̃L the set of these equivalence classes.

Let H : [0 , 1] × M→ R be a time-dependent Hamiltonian on M . Floer’s action
functional is defined by

AH:L : Ω̃L −→ R , AH:L

(
γ̃
)
=

∫ 1

0
Ht

(
γ(t)

)
dt−

∫
D−

γ̂∗ω .

Its critical points are classes [γ , γ̂] for which γ is a Hamiltonian chord of H , i.e. satisfying
the condition ∂tγ(t) = Xt

H(γ(t)), which can also be expressed as γ(t) = φtH(γ(0)).
The HamiltonianH is said to be nondegenerate if for every critical point γ̃ ∈ Crit(AH:L),

the linearized map (φ1H)∗ : Tγ(0)M→ Tγ(1)M maps Tγ(0)L transversely to Tγ(1)L.
It is well-known that for such a Hamiltonian, there exists a well-defined function

mH:L : Crit(AH:L) −→ Z

called the Conley–Zehnder index which we normalize so that when H is a lift to a Wein-
stein neighborhood of L of a C2-small Morse function f on L, and q̂ is the trivial capping
of some q ∈ Crit(f), mH:L

(
[q , q̂]

)
= |q|f (and in general mH:L

(
[γ ,A]γ̂]

)
= mH:L

(
[γ , γ̂]

)
−

µ(A) for A ∈ π2(M ,L)). The critical points of AH:L (which play the role of the criti-
cal points of f) generate the Lagrangian Floer complex, CF∗(L ;H) = Z/2Z〈Crit(AH:L)〉,
whose graduation is given by the Conley–Zehnder index (which plays the role of the
Morse index).

Now we proceed with defining the differential. Fix a 1-parameter family of almost
complex structures compatible with ω on TM , J , and define Floer half-tubes between
generators x̃± ∈ Crit(AH:L) as maps u : R× [0 , 1]→M such that
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(1) u converges uniformly in t : u(±∞ , · ) = x±,
(2) it has boundary in L : u(R× {0 , 1}) ⊂ L,
(3) it satisfies the equation ∂J,Hu := ∂su+ J(u)(∂tu−XH(u)) = 0,
(4) x̃+ = [x+ , x̂−]u], or equivalently ω

(
x̂−]u](−x̂+)

)
= 0.

(Figure I.6 illustrates a typical Floer half-tube.)

Remark I.16. In comparison with Morse theory, let us mention that such a Floer tube
can be considered as a negative gradient flow line of AH:L going from x̃− to x̃+, with
respect to the scalar product on

Tγ̃Ω̃L = C∞
(
[0, 1], {0, 1}; γ∗TM, (γ|{0,1})∗TL

)
defined by 〈ξ , η〉 =

∫ 1
0 ω
(
ξ(t) , Jtη(t)

)
dt. The gradient of AH:L at a point γ̃ then reads

∇AH:L(γ̃) = Jγ(∂tγ −XH(γ)) .(I.6)
Thus, viewing a Floer half-tube as a map u : R→ ΩL, we see that ∂su = −∇AH:L(u) is
equivalent to the Floer equation ∂J,Hu = 0.

Again, R acts on such a tube by shift of the variable s and the moduli spaces
MF (x̃− , x̃+ ;L ;H , J) is defined as the set of equivalence classes of Floer half-tubes.

x+
x−

[x̂+]=u ]][ x̂−

L

}
x̃+

∂J,H=0

F I.6. A typical element u ∈ M̂F (x̃− , x̃+ ;L ;H , J)

The differential of CF∗(L ;H) is defined, formally as in the Morse case, by setting

∂J,H x̃− =
∑

x̃+ : |x+|=|x−|−1

#2MF (x̃−, x̃+;L;H, J) x̃+(I.7)

for generators and extending it by linearity. Of course, there is a Morse–Smale type
regularity condition required in order to ensure that the component of dimension 0

(respectively 1) of MF is a compact (respectively compactifiable) smooth manifold.6
Given a nondegenerate Hamiltonian H , there exists a residual subset of ω-compatible
almost complex structures J such that the pair (H , J) satisfies this condition. Such a
pair (H , J) is said to be regular.

So, picking such a regular pair ensures that (I.7) defines a degree −1 chain mor-
phism. Showing that it squares to 0 requires to play the same game than in the Morse
case as well as handling possible bubbling off as in the Lagrangian quantum case. In-
deed, analyzing the boundary of the compactification of the 1-dimensional component
of MF (x̃− , x̃+ ;L ;H , J), i.e. when |x̃+| = |x̃−| − 2, leads to

(1) Floer breakings of the type MF (x̃− , ỹ ;L ;H , J)×MF (ỹ , x̃+ ;L ;H , J), where
ỹ ∈ Crit(AH:L) has index |ỹ| = |x̃−| − 1 = |x̃+|+ 1,

(2) possible bubbling off of J-pseudo-holomorphic spheres,
(3) possible bubbling off of J-pseudo-holomorphic discs with boundary on L, at-

tached to a half-tube along one of its sides.
However, under the monotone+ assumption, the two possible bubbling off phenomena
can not happen in the boundary of the compactification of the 1-dimensional component
of the moduli spaces for obvious dimension considerations as in Section 3.1.1.

This allows to conclude directly that the morphism defined by (I.7) squares to 0.
Thus we can define the Lagrangian Floer homology of L by taking the homology of the
Floer complex : HF∗(L) = H∗(CF(L ;H) , ∂H,J).

6. This condition is expressed by requiring that the linearization of the operator ∂J,H is surjective
for all u in MF (x̃− , x̃+ ;L ;H , J) (for any two elements x̃± ∈ Crit(AH:L)).
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Remark I.17. There is an equivalent description of the complex (CF∗(L ;H) , ∂H,J)
which requires more arbitrary choices but makes the construction looks more simi-
lar to Lagrangian quantum homology. Indeed, let arbitrarily assign a capping ux to
any Hamiltonian chord x i.e. we arbitrarily select a unique x̃ = [x , ux] ∈ Ω̃L lifting x,
for each Hamiltonian chord in ΩL. Observe that any capping of a Hamiltonian chord x
can be obtained from ux by concatenation with a disc in M with boundary in L.

Let πL : Ω̃L→ ΩL denote the projection [γ , γ̂] 7 → γ. We can now re-define the
complex as generated by Hamiltonian chords only and incorporate the cappings in the
Novikov ring Λ (the ring of Laurent polynomials in t from Section 3.1.1) by setting
CF′∗(L ;H) = Z/2Z

〈
πL
(
Crit(AH:L)

)〉
⊗ Λ. The observation above shows that CF∗(L ;H)

and CF′∗(L ;H) are isomorphic. In this slightly different viewpoint, the differential takes
the form

∂′J,H x− =
∑
x+,A

#2MF (x−, x+;L;H, J,A)x+ ⊗ t
µ(A)
NL

where the sum runs over all Hamiltonian chords x+ and all classes A ∈ π2(M ,L) such
that |x+| − µ(A) = |x−| − 1.

4.1.2. Independence on the data
Again, even though the complex heavily relies on the regular Floer datum (H , J),

its homology does not. There are Floer continuation morphisms defined via cobordism
techniques as described for Lagrangian quantum homology in Section 3.1.2. Here,
two regular Floer pairs are fixed (Hi , Ji) for i = 0 and 1, and a pair of interpolating
homotopies t 7 → (Ht , Jt) is chosen. Consider slightly amended moduli spaces MF

consisting of negative gradient flow lines (Floer half-tubes) for the 1-parameter family of
Floer data, from x̃0 ∈ Crit(AH0:L) to x̃1 ∈ Crit(AH1:L), i.e. satisfying

∂Js,Hsu = ∂su+ Js(u)(∂tu−XHs(u)) = 0

(i.e. the only difference with Item 3 in the definition of the Floer tubes composingMF ,
is the fact that J and H now depend on the parameter s).

For adequate choices of the cobordism pair, the low dimensional components of
these moduli spaces are manifolds of dimension mH1:L(x̃1)−mH0:L(x̃0). The component
of dimension 0 is compact and the continuation morphism, CF∗(L ;H0)→ CF∗(L ;H1), is
defined by counting its cardinality as in Equation (I.7). A careful analysis of the bound-
ary of the compactification of the 1-dimensional component shows that this morphism
induces a morphism in homology, ΦH,J : HF∗(L)→ HF∗(L).

By pulling over (and over) the same techniques, one can show that the continuation
morphism does not depend on the choice of the homotopy used to define it and enjoys
the same properties as its quantum counterpart. Thus it is a canonical isomorphism of
Lagrangian Floer homology which we will denote by Φ(H1,J1)←(H0,J0).

4.1.3. The product
Similarly to the Morse and quantum theories, there exists a Floer-theoretic version

of the intersection product, called the half-pair of pants product. It is defined in the same
fashion, by considering appropriate moduli spaces which we now describe.

Remark I.18. The central object below, called strip with a slit, was introduced by Ab-
bondandolo and Schwarz (Abbondandolo and Schwarz 2010). The product itself pre-
existed and was defined via somewhat “rougher” pants. The action estimates which
naturally follows from the construction were not sharp then and the introduction of
these fancier pants drastically simplified the proof of the triangle inequality property of
spectral invariants, see Section 1.2.

Let H1, H2, and H3 be time-dependent nondegenerate Hamiltonian functions on
M and choose almost complex structures J1, J2, and J3 so that (H i , J i), i = 1, 2, and
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3 are regular Floer data for L. By a simple time reparameterization, we can harmlessly
assume that H i

t vanish for t close to 0 and 1. Let us denote the strip with a slit by
Σ∗ = (R× [−1, 0] t R× [0, 1])/∼ ,

where the equivalence relation is (s , 0−) ∼ (s , 0+) for all s ≥ 0. The interior of this
Riemann surface is naturally identified with R× (−1 , 1) \ (−∞ , 0]× {0}. Its boundary
consists of three components : R × {−1}, R × {1}, and (−∞ , 0] × {0− , 0+}. Except at
(0 , 0), the inclusion of Σ∗ into C induces the standard complex structure (s , t) 7 → s+ it.
At (0 , 0), the complex structure is given by the map {z ∈ C |Re(z) ≥ 0}→ Σ∗, defined
by z 7 → z2. We also define a pair (K , I) where K is the family of Hamiltonian functions

K(s, t, x) =


H1(t+ 1, x) if s ≤ −1, t ∈ [−1, 0],
H2(t, x) if s ≤ −1, t ∈ [0, 1],
1
2H

3( t+1
2 , x) if s ≥ 1, t ∈ [−1, 1]

and I(s,t) a family of almost complex structures on M for s ∈ R and t ∈ [−1 , 1] such
that (K , I) is regular and

I(s, t, x) =


J1(t+ 1, x) if s ≤ −1, t ∈ [−1, 0],
J2(t, x) if s ≤ −1, t ∈ [0, 1],
J3( t+1

2 , x) if s ≥ 1, t ∈ [−1, 1].

Now, for x̃i ∈ Crit(AHi:L), we define the moduli spacesM∗F (x̃
1 , x̃2 , x̃3 ;K , I) as the

set of maps u : Σ∗→M such that
(1) for all t ∈ [−1 , 0], u(−∞ , t) = x1(t+ 1), for all t ∈ [0 , 1], u(−∞ , t) = x2(t),
(2) for all t ∈ [−1 , 1], u(+∞ , t) = x3

(
t+1
2

)
,

(3) u(∂Σ∗) = u(R× {−1 , 1} ∪ (−∞ , 0]× {0− , 0+}) ⊂ L,
(4) x̃3 = [x3 , x̂1]u]x̂2] i.e. the disc obtained by concatenating u and the cappings

x̂i for i = 1, 2 and 3 has zero symplectic area (and Maslov).
Figure I.7 illustrates three variations of the strip with a slit, Σ∗, Σ′∗, and Σ� re-

spectively used to construct the product on Lagrangian Floer homology (the present
section), the product on “absolute” Floer homology (see Section 4.2), and the Floer
module structure (see Section 4.3). Let us emphasize the fact that the blue segments
are mapped to the Lagrangian L, while the bent double arrows identify pairs of seg-
ments in M . Moreover, on the figure we denote lifts of Hamiltonian chords by x̃ while
γ̃ denotes lifts of periodic orbits.

Σ∗ Σ′∗ Σ�

x̃1 γ̃1 x̃1

x̃3 γ̃3 x̃3

x̃2 γ̃2 γ̃2

F I.7. Strips with a slit for Floer products and Floer module structure

The low dimensional component of M∗F (x̃
1 , x̃2 , x̃3 ;K , I) are smooth manifolds of

dimension mH1:L(x̃
1) +mH2:L(x̃

2) −mH3:L(x̃
3) − n. The 0-dimensional component is

compact so that one can define a bi-linear map by setting

x̃1 ∗ x̃2 =
∑
x̃3

#2M∗F (x̃
1, x̃2, x̃3;K, I) x̃3

where the sum runs over all x̃3 ∈ Crit(AH3:L) such that mH3:L(x̃
3) = mH1:L(x̃

1) +
mH2:L(x̃

2) − n. The 1-dimensional component can be compactified and analyzing the
boundary of its compactification shows that this map induces a well-defined product
on homology

∗ : HF∗(L)×HF∗′(L) −→ HF∗+∗′−n(L) .
Finally, it can be shown via cobordism arguments that this product commutes with the
relevant continuation morphisms, and does not depend on the choice of regular pair
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(K , I) used for its construction. It can also be shown that it admits a unit of degree n,
denoted [L] and called (Floer) fundamental class of L by analogy.
4.1.4. Duality

There is a Floer-theoretic version of Poincaré duality whose construction we sketch
here. (There is also Morse and quantum versions, based on the same observation
which we leave to the reader.) The idea is that, given a regular Floer datum (H , J),
one can turn the resulting complex upside down to get (CF∗(L;H),∂H,J) , and interpret
its homology as the Lagrangian Floer cohomology of L, HF∗(L) = H∗

( CF(L;H),∂H,J) )
.

More precisely, we define another Floer datum, (H , J) as Ht(x) = −H1−t(x) and
J t = J1−t, which is also regular. There is an identification between Crit(AH:L) and
Crit(AH:L) given by x̃ = [x , x̂] 7 → x̃ = [x , x̂] where x, x̂ satisfy x(t) = x(1−t) and x̂ = x̂◦τ
with τ : D−→ D− the symmetry with respect to R. We have that AH:L(x̃) = −AH:L(x̃)

and mH:L(x̃) = n−mH:L(x̃).
Proceeding in the same fashion, we can identify further the moduli spaces involved

in the definition of the Floer differential : MF (x̃ , ỹ ;L ;H , J) ' MF (x̃ , ỹ ;L ;H , J) by
mapping u to u defined by u(s , t) = u(−s , 1 − t). Hence there is an identification of
complexes, CF∗(L ;H , J) = CFn−∗(L ;H , J) which leads to a canonical isomorphism in
homology, PD : HF∗(L)→ HFn−∗(L).

It is easy to see that the identification above extends to all possible types of moduli
spaces which we encountered thus far on the Floer side of the theory. This yields the
compatibility of all morphisms and structures with this duality. For example, it is easy
to show that the diagram of complexes

(I.8)
CF∗(L;H0, J0) CF∗(L;H1, J1)

CFn−∗(L;H0, J0) CFn−∗(L;H1, J1)

ΦH,J

PD PD
ΦK,I

commutes as soon as the homotopy used to define the continuation morphism of the
line below,

ΦK,I : CF∗(L;H0, J0) −→ CF∗(L;H1, J1) ,

is obtained from that of the upper line, ΦH,J : CF∗(L ;H0 , J0)→ CF∗(L ;H1 , J1), by
“duality”, i.e. in such a way that K = H and I = J as above. This shows that Floer
continuation morphisms are compatible with duality.

4.2. (Ambient) Floer homology
As for quantum homology, there is a version of Floer homology concerned with the

ambient symplectic manifold with no reference to a Lagrangian submanifold. This Floer
homology is often called “Hamiltonian”, “absolute” (in that case the Lagrangian theory
is called “relative” Floer homology), or “periodic orbit” Floer homology (non exhaustive
list, in increasing level of accuracy). Its construction is similar to that of Lagrangian
Floer homology except that all half-objects with boundary on L (Hamiltonian chords,
half-disc cappings, Floer half-tubes, half-pairs of pants) are replaced by full objects
(respectively : periodic orbits, disc cappings, tubes, pairs of pants).7

Namely, define ΩM as the set of free contractible loops (parameterized by [0 , 1]) in
M . A capping of a loop γ ∈ Ω is a smooth disc γ̂ : D→M which maps ∂D to γ. Two
capped loops (γ , γ̂) and (γ′ , γ̂′) are equivalent if γ = γ′ and ω(γ̂) =ω(γ̂′), that is if the
piecewise smooth sphere u = γ̂](−γ̂′) lies in the kernel of ω (and c1 by monotonicity).
Again, γ̃ = [γ , γ̂] denotes the equivalence class of the pair (γ , γ̂) and Ω̃M denotes the
set of these equivalence classes.

7. This suggests yet another pair of names for these theories as Floer homology and half-Floer
homology.
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Given a 1-periodic Hamiltonian H : M×R/Z→ R, Floer’s action functional is defined
by

AH : Ω̃M → R , AH

(
γ̃
)
=

∫ 1

0
Ht

(
γ(t)

)
dt−

∫
D
γ̂∗ω

so that its critical points are the classes [x , x̂] where x is a periodic orbit of the Hamilton-
ian isotopy φH . In this setting, H is nondegenerate if for every critical point x̃ ∈ Crit(AH:L),
the linearized map (φ1H)∗ : Tx(0)M→ Tx(0)M does not admit 1 as eigenvalue. In this
case, we have a well-defined Conley–Zehnder index

mH : Crit(AH) → Z

(which we similarly normalize so that it coincides, when H is a C2-small Morse function,
with the Morse index on critical points endowed with their trivial capping and so that
mH

(
[x ,A]x̂]

)
= mH

(
[x , x̂]

)
− 2c1(A) for A ∈ π2(M)). This yields the graded Floer

complex, defined as CF∗(M ;H) = Z/2Z〈Crit(AH)〉.

The differential is defined as above. We fix a 1-parameter family of ω-compatible
almost complex structures on TM , and we consider Floer tubes, that is maps u : S1 ×
[0 , 1]→M such that

(1) u converges uniformly in t towards periodic orbits : u(±∞ , · ) = x±,
(2) it satisfies the equation ∂J,Hu = ∂su+ J(u)(∂tu−XH(u)) = 0,
(3) x̃+ = [x+ , x̂−]u].

Moduli spaces MF (x̃− , x̃+ ;H , J) are then defined as the set of equivalence classes of
Floer tubes and the differential is defined by the same formula (I.7) as its Lagrangian
counterpart. As above, if the pair (H , J) is regular (which has formally the exact same
definition as in the Lagrangian case), this defines a morphism on CF∗(M ;H) which
squares to 0 ; the Floer homology of M is the homology of this complex HF∗(M) =
H∗(CF(M ;H) , ∂(H,J)).

As in the Lagrangian case, there exist continuation maps which provide canonical
isomorphisms of Floer homologies built from different pairs of Floer data. Moreover,
there is also a product on the resulting homology, constructed as its Lagrangian coun-
terpart, starting from a (full) pair of pants

Σ′∗ = (R× [−1, 0] t R× [0, 1])/∼ ,

where the equivalence relation is, in this case, (s , 0−) ∼ (s , 0+) and (s ,−1) ∼ (s , 1) for
all s ≥ 0, while for all s ≤ 0, (s ,±1) ∼ (s , 0±) (see Figure I.7, middle situation). The
rest of the construction is formally similar and yields a product on this version of Floer
homology as well :

∗ : HF∗(M)×HF∗′(M) −→ HF∗+∗′−2n(M) ,

turning it into an algebra with unit, denoted [M ] ∈ HF2n(M).

4.3. Module structure on Floer homology
There is a Floer counterpart of the quantum module structure of Section 3.3. It

is based on moduli spaces which are very similar to those used to define the product
in Lagrangian Floer homology, described in Section 4.1.3. Below, we only outline the
differences.

The first difference is a small alteration of the Riemann surface as it has to “connect”
two Hamiltonian chords and a periodic orbit. So we denote

Σ� = (R× [−1, 0] t R× [0, 1])/∼ ,

where the equivalence relation is given by (s , 0−) ∼ (s , 0+) for all s ≥ 0, and (s ,−1) ∼
(s , 0−) for s ≤ 0 (see Figure I.7, right-most situation). The second difference is that H1
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is a periodic Hamiltonian function and that x̃1 ∈ Crit(AH1). The rest of the construction
is formally identical and leads to :

� : HF∗(M)⊗HF∗′(L) −→ HF∗+∗′−2n(L) ,

turning HF∗(L) into a HF∗(M)-module.

5. Interactions between quantum and Floer homologies

The fact that the algebraic structures described above naturally appear and are con-
structed in a similar way in both the quantum and Floer settings is not an accident as
these theories are isomorphic. Specific isomorphisms were first defined in (Piunikhin,
Salamon, and Schwarz 1996) and (Schwarz 1998), and then extended to various set-
tings (Katić and Milinković 2005 ; Albers 2008 ; Biran and Cornea 2009 ; Zapolsky
2015). They are commonly referred to as “PSS” morphisms. As for all the maps whose
construction we have described so far, these isomorphisms are induced in homology by
chain maps built thanks to suitable moduli spaces. We briefly describe these spaces in
Section 5.2.

In Section 5.3, we explain the following deep relation between absolute and relative
theories. Given a symplectic manifold (M ,ω), the diagonal ∆ ⊂M×M is a Lagrangian
submanifold of

(
M×M ,ω⊕(−ω)

)
. The quantum and Floer homologies ofM as ambient

manifold are respectively isomorphic to the quantum and Floer homologies of M ' ∆
as a Lagrangian. Moreover, these isomorphisms agree with the main features of the
involved homology theories.

However, we begin this section with the observation that Lagrangian quantum ho-
mology can be interpreted as a Morse–Bott Lagrangian Floer theory for (the action
functional associated with) the zero Hamiltonian.

5.1. Quantum theory as a Morse–Bott Floer theory
We first briefly recall the idea behind Morse–Bott theory. In comparison with a

Morse function which has nondegenerate isolated critical points, the critical set of a
Morse–Bott function ϕ decomposes as a disjoint union of connected submanifolds.
These critical submanifolds are nondegenerate in the sense that the kernel of the Hessian
of ϕ at a critical point is the tangent space to the critical component at this point. The
flow lines of ϕ thus “connect” one critical component to another and we need a way to
flow on the critical components to connect the critical points themselves. In order to do
this, we pick additional Morse functions, one for each critical component.

The objects playing the role of Morse flow lines in the definition of the differential
are cascades. A cascade is a finite succession of flow lines of ϕ going from one critical
submanifold to another alternating with pieces of flow lines of the Morse perturbations
on the critical manifolds. Moduli spaces of cascades were introduced in the symplectic
setting by Frauenfelder (Frauenfelder 2004), to which we refer for more details on the
construction.

Disclaimer I.19. As an additional piece of notation to that of Sections 3.1.1 and 4.1.1,
we denote by π̃2(M ,L) the quotient of the second homotopy group of M relative to L
by the kernel of the symplectic form seen as a morphism ω : π2(M ,L)→ R. Since L is
monotone, with monotonicity constant τ > 0, kerω = kerµ.

Let us slightly shift the viewpoint on quantum homology along the lines of Re-
mark I.17 about Floer homology (but with reversed orientation !). Namely, we can see
the quantum complex as generated by pairs (p ,A), with p ∈ Crit(f) and A ∈ π̃2(M ,L).
The equivalence between the two viewpoints is given by replacing elementary tensors
p ⊗ tn by pairs (p , Ã) for Ã ∈ π̃2(M ,L) defined by µ(Ã) = nNL. (As for Remark I.17,
the two descriptions only differ by arbitrary choices of a disc up for each p in Crit(f).
However, in the quantum setting, there is a canonical choice consisting of picking up to
be the constant disc at p.)
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We now come back to Floer’s theory for which we set H = 0 and consider the
associated Floer action functional, ϕ = A0:L : Ω̃L→ R defined by A0:L(γ̃) = −

∫
D−

γ̂∗ ω.
Its critical points are the equivalence classes of pairs (p ,A) where p is any point in M
and A any disc in M with boundary in L. Two pairs (p ,A) and (p′ , A′) are equivalent
if p = p′ and ω(A) =ω(A′). Thus, we can express these equivalence classes as pairs
(p , Ã) with Ã ∈ π̃2(M ,L).

The critical point set of A0:L decomposes as Crit(A0:L) =
∐
Ã
L
Ã
, the disjoint union

indexed by π̃2(M ,L) of countably many smooth manifolds L
Ã
= L×{Ã}, each of them

diffeomorphic to L. The Morse function f chosen to define quantum homology can
then be seen as inducing the Morse perturbations on all critical submanifolds required
by the Morse–Bott construction, by f

Ã
: L

Ã
→ R defined by f

Ã
(p , Ã) = f(p).

Moreover, from the expression (I.6) of the gradient of the action functional, we see
that when H = 0 the equation defining the gradient flow of A0:L reduces to the usual
J-pseudo-holomorphic equation.

This shows that a typical element of MQ(p , q ;D ;A), appearing in the definition
of the differential of the quantum complex as depicted in Figure I.2, can be seen as
a Morse–Bott cascade : the negative gradient flow lines of f are the pieces of the
gradient flow of the Morse perturbations f

Ã
, while the J-pseudo-holomorphic discs ui,

for 1 ≤ i ≤ r, play the role of the gradient flow lines of A0:L. More precisely, starting
from a critical point (p , Ã0) of A0:L, we first flow to (u1(−1) , Ã0) along the flow of
f
Ã0
, inside the critical component L

Ã0
. Then, u1 is a gradient flow line of A0:L from

(u1(−1) , Ã0) to (u1(1) , Ã1) where Ã1 = Ã0+Ũ1 (Ũ1 denotes the class of u1 ∈ π̃2(M ,L)).
Then, we flow via f

Ã1
to (u2(−1) , Ã1) and, from there, via A0:L to (u2(1) , Ã2) where

Ã2 = Ã1 + Ũ2... In the end, an element of MQ(p , q ;D ;A) can be interpreted as a
Morse–Bott cascade from (p , Ã0) to (q , Ã0 + Ã) (with Ã the class of A in π̃2(M ,L)).

5.2. PSS morphisms
Let D = (f , ρ , J) be a quantum datum for L and H a nondegenerate Hamiltonian

function such that both D and (H , J) are regular. With p in Crit(f) and x̃ ∈ Crit(AH:L)
are associated moduli spaces MPSS(p , x̃ ;D ,H) composed of equivalence classes (up to
automorphisms) of the following geometric objects. Consider a triple (u ,m , v) where
m is a point in L, u is a string of pearls ofMQ(p ,m ;D ;B) for some B ∈ π2(M ,L), and
v is a half-disc which satisfies an equation which interpolates between the J-pseudo-
holomorphic and the Floer equations. Namely, v is a map v : R × [0 , 1]→ M , with
boundary v(R × {0 , 1}) in L, asymptotics v(−∞ , t) = m and v(+∞ , t) = x(t), which
satisfies

for all (s, t), ∂sv(s, t) + Jv(s,t)
(
∂tv(s, t)− β(s)Xt

H(v(s, t))
)
= 0

where β : R→ [0 , 1] is a smooth increasing cut-off function vanishing for s ≤ 1
2 and with

value 1 for all s ≥ 1. As usual, one also has to specify a relative homotopy condition :
[u] = B, [v], and x̂ are related by [u] + [v](−x̂)] = 0.

p

x
[x̂]=[u1] [v]+ . . . [ur] ++[u2]

L

u1 u2
vur

−∇ρf −∇ρf −∇ρf

}
x̃

∂J,βH=0

∂J=0 ∂J=0 ∂J=0

m

F I.8. A typical element (u ,m , v) ∈ MPSS(p , x̃ ;D ,H)

This allows to define a chain map by the formula

PSSD,H(p) =
∑

x̃ |mH:L(x̃)=|p|f

#2MPSS(p, x̃;D,H) x̃
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on generators and linear extension to CQ∗(L ;D). Analyzing the boundary of the
1-dimensional component of these moduli spaces shows that it induces a morphism
in homology.

Showing that this map is independent of the data and commutes with the con-
tinuation morphisms can be done by standard cobordism arguments. This leads to a
canonical morphism

PSS : HQ∗(L) −→ HF∗(L) .

To show that it is an isomorphism, one first define a chain map θ : CF∗(L ;H , J)→
CQ∗(L ;D) by counting mod 2 the cardinal of moduli spaces consisting of equivalence
classes of objects mirror to the triples (u ,m , v) above. This map induces (for the same
reasons) a canonical morphism at the homology level. It remains to show that PSS
and θ are inverse from each other which can easily be done by ... considering moduli
spaces of similar types. This is also the standard way to show that the resulting PSS
isomorphisms intertwine the product structures on the quantum and Floer homologies,
i.e. PSS is a ring isomorphism between (HQ∗(L) , ∗) and (HF∗(L) , ∗). We leave the
details to the very interested reader.

Finally, let us point out that there exists an absolute version of these morphisms,
generating canonical ring isomorphisms

PSS : (HQ∗(M), ∗) −→ (HF∗(M), ∗) .

5.3. The Lagrangian diagonal in the product
Recall that the diagonal ∆ ⊂M ×M is a Lagrangian submanifold of

(
M ×M ,ω ⊕

(−ω)
)
. It is monotone if and only if (M ,ω) is a monotone symplectic manifold and,

in this case, the minimal Maslov number of ∆ coincides with twice the minimal Chern
number of M . In this section we explain the construction of an isomorphism between
the Floer homology of (M ,ω) and the Lagrangian Floer homology of ∆ ' M . This
is based on the following observation from (Biran, Polterovich, and Salamon 2003) in
which the isomorphism was established under the asphericity assumption. A geometric
object in M ×M with boundary in ∆ consists of two objects in M (one for each copy
of M in the product) which can be “glued” together since their respective boundaries
coincide. For example, a disc u = (u1 , u2) in M ×M with boundary in ∆ produces
a sphere v = u1](−u2) in M . Reciprocally, one can produce a relative object from an
absolute one by “splitting” it in the middle and reversing its second half.

More precisely, let (H , J) be a time-periodic regular Floer datum for M . We define
a Floer datum (Ĥ , Ĵ) for ∆ ⊂M ×M as follows. First define

H1
t = Ht , H2

t = H1−t , J1
t = Jt , J2

t = −J1−t for t ∈ [0, 12 ] ,

and put
Ĥt(x, y) = H1

t (x) +H2
t (y) , Ĵt(x, y) = J1

t (x)⊕ J2
t (y) .

Then (Ĥ , Ĵ) is a regular Floer datum for the diagonal ∆ which can be used to construct
HF∗(∆), up to very minor adjustments due to the fact that this datum is defined for
t ∈ [0 , 12 ].

Now we can build a canonical isomorphism of chain complexes

(I.9)
(
CF∗(H), ∂H,J

)
=
(
CF∗(Ĥ : ∆), ∂

Ĥ,Ĵ

)
,

preserving grading and action by “splitting” absolute objects into relative ones. We
start with Hamiltonian orbits. A periodic orbit x of H gives rise to a Hamiltonian chord
X : [0 , 12 ]→M ×M of Ĥ with endpoints on ∆ :

X(t) =
(
x1(t), x2(t)

)
where x1(t) = x(t) , x2(t) = x(1− t) .

This yields a bijection between the periodic orbits of H and the Hamiltonian chords of
Ĥ with endpoints on ∆.
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Let x̂ : (D , ∂D)→ (M , im(x)) be a capping of x. Up to reparameterization, we
can assume that x̂ maps −i to x(0) and i to x(12). Then, we can define a capping
X̂ : D−→M ×M of X by setting X̂ = [X̂1 , X̂2] where X̂1 = x̂|D+ ◦σ with σ : D+→ D−
the symmetry with respect to iR, and X̂2 = x̂|D− .

We end up with a bijection Crit(AH)→ Crit(A
Ĥ:∆

), defined by x̃ = [x , x̂] 7 → X̃ =

[X , X̂] preserving action values and grading.
This idea can be fairly straightforwardly adapted to the various geometric objects

defining the moduli spaces entering the definition of all morphisms and structures
described so far. Any such object in the Floer (respectively quantum) theory of M can
be identified with an object in the Lagrangian Floer (respectively Lagrangian quantum)
theory of ∆. This yields an identification of the Floer (respectively quantum) homology
of M and the Lagrangian Floer (respectively Lagrangian quantum) homology of ∆
which agrees with all their extra structures.

In particular, we get the following commutative diagram :

(I.10)
HQ∗(M) HQ∗(∆)

HF∗(M ;H, J) HF∗(∆; Ĥ, Ĵ)

PSS PSS

which will be useful in our study of spectral invariants.

6. Action(s) of the symplectomorphism group

Like the diffeomorphism group of a manifold acts on its Morse homology, as briefly
described in Remark I.8, the symplectomorphism group of a symplectic manifold acts
on its Floer and quantum homologies. In this section, we explain in which ways.

6.1. Action of a symplectomorphism
Compared to the Morse case, where we only need a diffeomorphism of L in order

to act on its homology, in the quantum case for example, we also need to address
the issue of the pseudo-holomorphic discs in the ambient manifold with boundary in
L. One obvious way to do that is to use diffeomorphisms of the ambient manifold
which preserve L (globally). Then a J-pseudo-holomorphic disc with boundary in L is
canonically mapped to a J ′-pseudo-holomorphic disc for some adapted almost complex
structure J ′. In that case, and for obvious reasons of preservation of the symplectic area
of discs for example, it is easy to see that we have to restrict to symplectomorphisms of
the ambient manifold. As a consequence, we do not need to require L to be preserved :
we can as well consider the quantum homology of L and that of its image.

Proposition I.20. Any symplectomorphism ψ induces degree preserving isomorphisms
ψQ∗ : HQ∗(L) −→ HQ∗(ψ(L)) , and ψF∗ : HF∗(L) −→ HF∗(ψ(L))

which coincide via the suitable PSS morphisms, i.e. the diagram

(I.11)
HQ∗(L) HQ∗(ψ(L))

HF∗(L) HF∗(ψ(L))

ψQ∗

PSS PSS
ψF∗

is commutative. (In that respect, both isomorphisms will be denoted ψ∗.)

Let us start with the quantum side. Choose a regular quantum datum, D = (f , ρ , J),
for L and ψ ∈ Symp(M ,ω). Since ψ maps a disc in M with boundary in L to
a disc in M with boundary in ψ(L) of identical symplectic area and Maslov index,
ψ(L) is a monotone+ Lagrangian whose monotonicity constant is the same as that
of L. We define Dψ = (fψ , ρψ , Jψ) where (fψ , ρψ) is the Morse–Smale pair for the
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Lagrangian ψ(L) defined by fψ = f ◦ ψ−1 and ρψ = (ψ−1)∗ρ, and Jψ the almost
complex structure ψ∗J . The datum Dψ is regular for ψ(L). Mapping p ∈ Crit(f) to
pψ = ψ(p) ∈ Crit(fψ) (extended to elementary tensors in the obvious way) induces a
bijection ψ∗ : CQ∗(L ;D)→ CQ∗(ψ(L) ;Dψ).

As in the Morse case, flow lines of f with respect to ρ are mapped to flow lines of
fψ with respect to ρψ by γ 7 → γψ = h ◦ γ. Moreover, a J-pseudo-holomorphic disc u
with boundary in L is mapped to a Jψ-holomorphic disc with boundary in ψ(L) via
u 7 → uψ = ψ◦u. This shows that composing by ψ induces a bijection between the moduli
spaces entering the definition of the differential of the quantum homology of L and of
ψ(L), respectivelyMQ(p , q ;D , A) andMQ(p

ψ , qψ ;Dψ , ψ∗A). Since the symplectic area
and Maslov index of u and uψ coincide, ψ provides a complete identification of the complexes
which induces a degree preserving isomorphism in homology.

The Floer-theoretic version of this construction is as straightforward. A given Floer
regular datum (H , J) for L gives rise to another one, (Hψ , Jψ) with Jψ as above
and Hψ = H ◦ ψ−1. Mapping a capped orbit of H , (x , x̂) to its image by ψ, (xψ =
ψ(x) , x̂ψ = ψ(x̂)) induces a bijection between Crit(AH:L) and Crit(AHψ :ψ(L)) which
preserves index and action. For x̃ and ỹ in Crit(AH:L), the image of a Floer half-
tube u ∈ MF (x̃ , ỹ ;L ;H , J) by ψ is an element of MF (x̃

ψ , ỹψ ;ψ(L) ;Hψ , Jψ) and this
shows that both Floer complexes are, again, identified. The isomorphism induced by
this identification in homology is the Floer version of φ∗.

The fact that they coincide via PSS morphisms is proved with the exact same method.
With the choices above, the moduli spaces entering the definition of the respective PSS
morphisms are pairwise identified so that, even at the chain level,

CQ∗(L;D) CQ∗(ψ(L);Dψ)

CF∗(L;H, J) CF∗(ψ(L);Hψ, Jψ)

ψQ∗

PSS PSS
ψF∗

commutes. This yields the commutativity of (I.11).

Remark I.21. With the exact same method, it is easy to show that ψ∗ agrees with all
the morphisms and extra structures presented in this chapter, as this will hold at the chain
level for careful choices of all the auxiliary data. In particular, ψ∗ commutes with the
continuation morphisms.

6.2. Action of a Hamiltonian diffeomorphism / an exact Lagrangian isotopy
In case the symplectomorphism is actually Hamiltonian, there is another way to deal

with the issue of the pseudo-holomorphic discs of the ambient manifold which appear
in the definition of quantum homology. The idea is that a Hamiltonian isotopy φH
going from identity to the desired Hamiltonian diffeomorphism provides a canonical
identification between the discs appearing in the relevant moduli spaces, by attaching a
tube (given by the isotopy φH).

More precisely, let v be a J-pseudo-holomorphic disc in M with boundary in L.
Let ∂v : S1→ L be a parameterization of its boundary, and denote by vH the cylinder
(s , t) 7 → φtH(∂v(s)). Now observe that the symplectic area of vH is zero since φH is
a Hamiltonian isotopy, so that (φ1H(∂v) , v]vH) and (φ1H(∂v) , φ

1
H(v)) are equivalent in

π̃2(M ,L) (the quotient of π2(M ,L) by the kernel of ω).
This indicates that in case we act by a Hamiltonian diffeomorphism φ1H , all the

information is contained in the exact isotopy of Lagrangians {φtH(L)}t. This is the content
of the following theorem from (Leclercq and Zapolsky 2018), which also shows that
the resulting action is an invariant of the homotopy class with fixed endpoints of such an
isotopy.
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T I.22. Let L′ ∈ LHam(L) and H a Hamiltonian such that L′ = φ1H(L). Then
the isomorphism, (φ1H)∗ : HQ∗(L)→ HQ∗(L′), only depends on the equivalence class of the
exact Lagrangian isotopy {φtH(L)}t in L̃Ham(L).

Equivalently, any L̃ ∈ L̃Ham(L) induces an isomorphism L̃∗ : HQ∗(L)→ HQ∗(L̃(1)),
which coincides with (φ1H)∗ for any Hamiltonian isotopy φH such that φH(L) ∈ L̃.

S      . Let {Ls,t}(s,t)∈[0,1]2 be a two-parameter family
of Lagrangians in the space LHam(L), such that for all s we have Ls,0 = L and Ls,1 = L′.
We wish to show that if φt and ψt ∈ Ham(M ,ω) are such that φ0 = ψ0 = IdM and
φt(L) = L0,t, ψt(L) = L1,t, then φ1∗ = ψ1

∗ : QH∗(L)→ QH∗(L
′).

We first start by the following observation that
Π: Ham(M,ω) −→ LHam(L) , φ 7−→ φ(L)

is a fibration. (Here, both Ham(M ,ω) and LHam(L) are endowed with the C∞-topologies.
It is not hard to see that Π is actually a fiber bundle with fiber Π−1(L′), the set of Hamil-
tonian diffeomorphisms mapping L to L′. Since this should be proved locally, we can
work in a C1-neighborhood of the 0-section of the cotangent bundle of L.)

This yields a 2-parameter family φs,t ∈ Ham(M ,ω) such that φs,0 = IdM , φ0,t = φt,
φ1,t = ψt, and finally φs,t(L) = Ls,t. Define χs = (φ1)−1φs,1. Then χs(L) = L, χ0 = IdM ,
and χ1 = (φ1)−1ψ1. Observe that for any σ1 and σ2 ∈ Symp(M ,ω) we have

(σ2 ◦ σ1)∗ = (σ2)∗ ◦ (σ1)∗ : QH∗(L) → QH∗(σ2(σ1(L))) .

Therefore χ1
∗ = (φ1∗)

−1 ◦ ψ1
∗.

Finally, we claim that since χ0 = IdM and χs(L) = L for all s, then χ1
∗ = Id on

QH∗(L), which in turn shows that φ1∗ = ψ1
∗.

Concerning this last claim, let us insist on the fact that this only holds because χs
is assumed to preserve L for all s.

The idea behind the phenomenon is that when φtH(L) = L for all t, the whole tube
vH (defined in the introduction of the present section) is included in L, so that not only
v]vH and φ1H(v) are equivalent discs in π̃2(M ,L) but they also define the same element
in π2(M ,L). Morally, we have acted on the homology of L with a transformation whose
restriction to L is isotopic to identity.

The idea behind the proof is to show that, under this assumption, χ1
∗ coincides with

the continuation morphism. Via the PSS morphism and the commutativity of (I.11), it
is equivalent to show that this holds on the Floer side. There, this is achieved at the
chain level by similar methods as in Section 6.1.

Indeed, let u be a Floer half-tube designed to define the differential of the complex
CF∗(L ;H), i.e. such that the unparameterized half-tube im(u) ∈ MF (x̃ , ỹ ;L ;H , J). By
using the whole isotopy χs we can produce an element v : (s , t) 7 → χs(u(s , t)) belonging
to the moduli spaceMF (x̃ , ỹ

χ1
;L ;K , I), designed to define the continuation morphism

for carefully chosen auxiliary data (K , I).
This leads to an identification ofMF (x̃ , ỹ ;L ;H , J), before moding out by the R-action,

and MF (x̃ , ỹ
χ1

;L ;K , I). Since we consider the 0-dimensional component of the latter
moduli space, it means that the initial Floer half-tube u cannot be reparameterized.
Thus it is the constant one and u(s , ·) = x for all s. In turn this gives that ỹ = x̃. By
definition of the continuation morphism, this leads to Φ(x̃) = x̃χ

1 which concludes. �

6.3. Action of a smooth path of Hamiltonian diffeomorphisms
Let us consider Floer theory. As explained above, there is an action of φ ∈

Ham(M ,ω) on Floer homology which is based on the idea that if x is a Hamilton-
ian chord of the Hamiltonian H , then xφ : t 7 → φ(x(t)) is a Hamiltonian chord of
Hφ = H ◦ φ.

The next natural idea (in particular after reading the very end of the proof above !)
would be to use a path of Hamiltonian diffeomorphisms to act on the Floer complex
of L rather than just its time-1 extremity. Indeed, pick a smooth 1-parameter family
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{φt}t ⊂ Ham(M ,ω) such that φ0 is the identity and φ1 preserves L. Why not mapping
a Hamiltonian chord x to the chord t 7 → φt(x(t)), which will be Hamiltonian for some
other well-chosen Hamiltonian function ? This is a great idea. The resulting morphism
is the algebraic description of the Lagrangian Seidel morphism. It is described in Section 1.1
of Chapter III.



CHAPTER II

Around spectral invariants

Once upon a time, Viterbo...
In the seminal (Viterbo 1992), Viterbo introduced spectral invariants for Lagrangian

submanifolds of cotangent bundles via the theory of generating functions. Then they
were adapted to Floer’s construction, for Lagrangian submanifolds in cotangent bundles
by Oh in (Oh 1997) and, in (Milinković and Oh 1998), the authors proved that both the
generating function and the Floer theoretical approaches lead to the same invariants,
thanks to some Floer–Morse theory defined in (Milinković 2000), see also (Monzner,
Vichery, and Zapolsky 2012) for another proof. Spectral invariants were then devel-
oped in the setting of Hamiltonian Floer homology, fairly simultaneously, by Schwarz
(Schwarz 2000) and Oh (Oh 2005). In (Leclercq 2008), the Floer-type construction for
Lagrangians is extended from cotangent bundles to the aspherical case1.

Spectral invariants also appeared in the realm of contact geometry, again via the
theory of generating functions, thanks to work by Chaperon (Chaperon 1995), Bhu-
pal (Bhupal 2001), Sandon (Sandon 2011), and Zapolsky (Zapolsky 2013) for both
Legendrian submanifolds and contactomorphisms of contact manifolds. Finally, Albers
and Frauenfelder (Albers and Frauenfelder 2010) developed them in the context of
Rabinowitz–Floer homology. This was the starting point of an on-going Floer-type
construction of contact spectral invariants by Albers, Shelukhin, and Zapolsky, while
another such on-going construction was started by Leclercq and Sandon, relying on
Sandon’s Floer-type theory of translated points (Sandon 201x).

The main idea
Consider a Morse function on a compact manifold f : M→ R. For small enough

values of f , the sublevel is empty and its homology is 0, while for big enough values the
sublevel is the whole manifold and its homology is that of M . Every homology class
α has to appear when one considers increasing values of f and the value for which α
appears is the spectral invariant associated with α and f .

More precisely, this idea works because the values of f decrease along its negative
gradient flow lines, so that given a Morse–Smale pair (f , ρ), for all t ∈ R, we have a
vector subspace

CMt
∗(M ; f) = Z/2Z〈p ∈ Crit(f) | f(p) < t〉 CM∗(M ; f)it

to which ∂(f,ρ) restricts as a differential. Thus, one can filter Morse homology by defining
HMt

∗(M ; f) = H∗(CMt(M ; f) , ∂(f,ρ)) and, for any non-zero class α ∈ HM∗(M),

c(α; f) = inf{t ∈ R |α ∈ im(it∗)}

where it∗ is the map induced in homology by it.
In this toy model, one can alternatively think of c(α ; f) as the smallest value for

which the (singular homology) class α ∈ H∗(M) appears in the homology of the sublevel
set of f , i.e. the infimum of the set of real numbers t such that α ∈ im(H∗({f < t}) ↪→
H∗(M)). This leads to the equivalent definition

c(α; f) = inf
{
max
p∈im(a)

f(p) | a ∈ α
}

1. The extension was two-fold as it was also extended from Floer homology to a Floer-type Leray–
Serre spectral sequence machinery of Barraud and Cornea (Barraud and Cornea 2007).
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which explains why these invariants are sometimes called min-max invariants. From this
fact and Figure II.1, it is then quite easy to get convinced that c(α ; f) is a critical value
of f , that it is “monotone in f” (i.e. that if f ≤ g then c(α ; f) ≤ c(α ; g)), and that it
is “continuous with respect to f” (at least before any bifurcation appears in the set of
critical values).

f

a1

a2

b1

b2

c(β; f)

c(α; f)

c([pt]; f)

c([T2]; f)

F II.1. Morse spectral invariants on T2

The goal of this chapter is to explain how this construction can be adapted to Floer
theory, which properties the resulting invariants enjoy, and what they are good for.

Organization of and contribution to Chapter II
Section 1 consists in the exposition of joint work with Frol Zapolsky (Leclercq and

Zapolsky 2018) in which we construct spectral invariants via Floer theory for Lagrangian
submanifolds, under the assumption of monotonicity of the Lagrangians, and with respect
to homology theories with coefficients in a very wide range of rings. (As mentioned
above, this is the natural extension of the author’s Ph.D. thesis and the subsequent
article (Leclercq 2008), in which such invariants were defined under the quite restrictive
assumption of asphericity, and with respect to homology theories with coefficients in the
field Z/2Z.) Then we review all the properties satisfied by these invariants, which make
them so useful in a great variety of situations. Finally, we briefly explain a variant of the
standard construction of spectral invariants, namely spectral invariants of “conormal-
type”, which were constructed for closed aspherical Lagrangians in joint work with
Vincent Humilière and Sobhan Seyfaddini (Humilière, Leclercq, and Seyfaddini 2016).
They will also prove to have useful applications.

Section 2 illustrates the power of spectral invariants in two classical situations : to
get information on the Hofer geometry of certain sets of Lagrangians, and to study
rigidity phenomena of “smooth” symplectic geometry via quasimorphism techniques
from Entov and Polterovich (Entov and Polterovich 2009). This is also part of the
aforementioned work with Frol Zapolsky.

In Section 3, we explain original applications of the theory of spectral invariants to
continuous symplectic geometry, obtained in collaboration with Vincent Humilière and
Sobhan Seyfaddini (Humilière, Leclercq, and Seyfaddini 2015b, 2015a, 2016). This
part is more involved in the sense that these were not expected applications of spectral
invariants and that, additionally to standard techniques (like classical energy-capacity
inequalities), we also had to use – and thus establish – neat intermediate results (on
continuous Hamiltonian dynamics, and ... non-classical energy-capacity inequalities).

In Section 4, we sketch two ideas which we want to explore and which naturally
extend what we have been doing with spectral invariants so far. Indeed, a particularly
promising extension of the theory results from the introduction of topological data
analysis techniques in symplectic geometry. The first idea is a very simple observation
coming from the standard “cone construction” from algebraic topology which, however,
might prove to be useful in this new language. The second is based on the Leray–Serre
spectral sequence machinery introduced by Barraud and Cornea (Barraud and Cornea
2007) which we already used in conjunction with spectral invariants in (Leclercq 2008).

Finally, in Section 5 we review work in progress with Sheila Sandon in which we
define spectral invariants in contact geometry, via a Floer-type homology due to Sandon.
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The first step of our work consists in extending Sandon’s homology to a less restrictive
setting (this corresponds, in symplectic geometry, to going from the aspherical case to the
monotone one). This already gives us a way to approach the contact Arnol’d conjecture.
Then, we define contact spectral invariants and explore their applications to contact
geometry and in particular to contact non-squeezing phenomena and orderability of
contactomorphism groups.

1. Spectral invariants : definition, main properties

This section follows (Leclercq and Zapolsky 2018) and its content relies heavily on
the homology theories exposed in Chapter I. It is divided as follows. In Section 1.1, we
construct the spectral invariant function ` on C0

(
M × [0 , 1]

)
, whose main properties we

review in Section 1.2. Then, in Section 1.3, we prove further invariance of `, leading to
additional properties and the definition of spectral invariants on the universal cover of
Ham(M ,ω). Finally, we compare Lagrangian spectral invariants with their “absolute”
counterparts in Section 1.4.

In addition to Disclaimer I.5 on compactness, let us emphasize that :

Disclaimer II.1. All the results stated here are stated for compact Lagrangians of com-
pact symplectic manifolds. However, they can be straightforwardly extended to man-
ifolds convex at infinity (Eliashberg and Gromov 1991), via techniques developed by
Frauenfelder and Schlenk (Frauenfelder and Schlenk 2007) and Lanzat (Lanzat 2013).

Moreover, most of the time the finiteness of the minimal Maslov number, NL < ∞,
will be implied. The case NL = ∞ is obtained by straightforward simplifications.

1.1. Definition of spectral invariants
In what follows, (M ,ω) is a compact 2n-dimensional symplectic monotone manifold

and L is a compact monotone+ Lagrangian submanifold (of dimension n).
The goal is to define spectral invariants for continuous time-dependent functions on

M . This is done in two steps. First, with any regular Floer datum (H , J) for L we
associate a function ` from the Lagrangian quantum homology of L to R∪{−∞}, along
the ideas sketched in the introduction of the present chapter for Morse functions. Then
we show that this function satisfies some continuity property (for a given non-zero class
in HQ∗(L)) with respect to H. This will indicate that `(α ;H , J) only depends on H
and that ` can be extended to a function

` : HQ∗(L)× C0
(
M × [0, 1]

)
−→ R ∪ {−∞} .

1.1.1. Nondegenerate Hamiltonians
Pick a regular Floer datum (H , J) for L. The associated Floer complex can be

naturally filtered by the action, as for a ∈ R the following Z/2Z-vector subspaces
CFa∗(L;H) = Z/2Z〈x̃ ∈ Crit(AH:L) | AH:L(x̃) < a〉

are preserved by the differential. Essentially, this comes from the fact that the boundary
operator of the Floer complex is defined by considering Floer half-tubes which are
negative gradient flow lines of AH:L. It can be proved thanks to the following elementary
argument which will come up regularly in the proofs of the main properties of spectral
invariants.

The argument is the following. Let x̃ and ỹ be generators so that ỹ appears (non-
trivially) in the image of x̃ by ∂(H,J). This ensures that the moduli space used to define
∂(H,J), MF (x̃ , ỹ ;L ;H , J), is not empty. Pick an element u and compute its energy (see
Equation (I.2)) :

E(u) =

∫
R×[0,1]

‖∂su‖2 dsdt =
∫
R×[0,1]

ω(∂su, ∂tu−XH(u)) dsdt

= ω([u])−
∫
R×[0,1]

duH(∂su) dsdt = ω([u])−
∫
[0,1]

(
H(y(t))−H(x(t))

)
dt

(II.1)
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where the first line reflects the (perturbed) pseudo-holomorphic nature of u and the
second line the convergence condition required on u ∈ MF (x̃ , ỹ ;L ;H , J). Now, the
fact that u also has to agree with the cappings, i.e. the equivalence between ŷ and x̂]u,
shows that E(u) = AH:L(x̃) − AH:L(ỹ) and we conclude that AH:L(x̃) ≥ AH:L(ỹ) since
E(u) ≥ 0.

This implies that (CFa∗(L ;H) , ∂(H,J)) is a subcomplex of the Floer complex ; we
denote the inclusion by ia : CFa∗(L ;H) ↪→ CF∗(L ;H), and by ia∗ the induced morphism
in homology. Now, using the canonical PSS isomorphism described in Section 5.2 of
Chapter I,

PSSH,J : HQ∗(L) −→ HF∗(L;H, J) ,

we define the Lagrangian spectral invariant associated with a non-zero class α ∈ HQ∗(L)
to be

`(α;H, J) = inf
{
a ∈ R |PSSH,J(α) ∈ im(ia∗)

}
.(II.2)

(Hopefully, this definition explains why spectral invariants are often called action selec-
tors.)

Recall from Section 3.1 that there exists a canonical class [L] in HQn(L). When
[L] 6= 0, the spectral invariant associated with this specific class is of particular interest.
It will be denoted `+(H , J) = `([L] ;H , J).

1.1.2. Main property of `, its continuity
The main property of ` is given by the following estimates.

Lemma II.2. Let (H i , J i), i = 0 , 1, be regular Floer data and α ∈ HQ∗(L), non-zero. We
have ∫ 1

0
min
M

(H1
t −H0

t ) dt ≤ `(α;H1, J1)− `(α;H0, J0) ≤
∫ 1

0
max
M

(H1
t −H0

t ) dt .(II.3)

The proof boils down to the same argument as above : compute the energy of an ele-
ment of some moduli space adapted to the situation. As the goal is to compare constructions
made with different Floer data, it seems natural to turn to the moduli spaces enter-
ing the definition of the continuation morphisms of Lagrangian Floer homology from
Section 4.1.2.

P. Let consider a homotopy from H0 to H1 of the form Ks
t (x) = H0

t (x) +
β(s)

(
H1
t (x) − H0

t (x)
)
where β : R→ [0 , 1] is a smooth nondecreasing cut-off function

which satisfies β(s) = 0 for s ≤ 0 and β(s) = 1 for s ≥ 1. There is a regular homotopy
of Floer data (Hs , Js)s, stationary for s /∈ (0 , 1), and with Hs ε-close to Ks.

Let x̃i ∈ Crit(AHi:L), i = 0 and 1, with common index and suppose that x̃2 appears
in the image of x̃1 via Φ(Hs,Js). Pick v ∈ MF (x̃0 , x̃1 ;L ;H , J) and compute its energy.
Since v satisfies the pseudo-holomorphic equation perturbed by the vector field induced
by the homotopy H , the computation is similar to (II.1), except that the dependence of
H on s yields an additional term :

E(u) = AH:L(x̃0)−AH:L(x̃1) +

∫
R×[0,1]

∂sH
s
t

(
v(s, t)

)
dsdt .

One can thus straightforwardly conclude that

AH:L(x̃1)−AH:L(x̃0) ≤
∫ 1

0
max
M

(H1
t −H2

t ) dt

since E(u) is non-negative, Ks was chosen ε-close to Hs, and ε was arbitrarily small.
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This computation proves the commutativity of

(II.4)
HFa∗(H0, J0 : L) HF∗(H0, J0 : L) HQ∗(L)

HFa+b∗ (H1, J1 : L) HF∗(H1, J1 : L)

Φ

ia∗

Φ

PSSH0,J0

PSSH1,J1

ia+b∗

with b =
∫ 1
0 maxM (H1

t −H2
t ) dt, which yields the right-most inequality of Equation (II.3).

The other inequality is obtained by exchanging the roles of H0 and H1. �

1.1.3. Invariance of `
The first obvious consequence of Lemma II.2 is that the spectral invariants defined

by (II.2) above are independent of the specific almost complex structure chosen for their
construction ; hence, we remove it from the notation.

The second obvious consequence is that their definition can easily be extended to
arbitrary continuous Hamiltonians H : M × [0 , 1]→ R. Indeed, pick a sequence of
smooth nondegenerate Hamiltonians (Hn)n∈N uniformly converging to a continuous H
on M × [0 , 1] and define `(α ;H) as the limit limn→∞ `(α ;Hn). Equation (II.3) ensures
that this limit exists and does not depend on the choice of the sequence {Hn}n. Hence,
we obtain a well-defined function ` on HQ∗(L)× C0

(
M × [0 , 1]

)
.

1.2. Main properties
Let L be a closed monotone+ Lagrangian of (M ,ω). We now present the main

properties satisfied by the function ` defined on HQ∗(L)×C0
(
M × [0 , 1]

)
in Section 1.1.

F For all H ∈ C0
(
M × [0 , 1]

)
, `(α ;H) = −∞ if and only if α = 0.

First, note that `(0 ;H) = −∞ for all H by convention. Now, the fact that `(α ;H) ∈ R for
any α 6= 0 and any H will easily come from Q  and C below.

S For H ∈ C∞
(
M × [0 , 1]

)
and α 6= 0, `(α ;H) ∈ Spec(H : L).

The action spectrum of H , Spec(H : L), is defined as the set of critical values of the
action functional associated with H , AH:L. The S property shades some
light as to why ` is called spectral invariant. The proof of the statement is standard
and goes back to (Oh 2005) in the setting of spectral invariants defined for monotone
symplectic manifolds (without reference to a Lagrangian). The main argument is that
ω(π2(M ,L)) = τNLZ is discrete. Together with the fact that the image of ia∗ does not
change as long as a stays in the complement of Spec(H : L) which is open and dense
when H is nondegenerate, this is already enough to handle the case of nondegenerate
Hamiltonians.
For degenerate Hamiltonians, one has to be a bit more careful. We first fix a sequence
of smooth nondegenerate Hamiltonians (Hn)n∈N which converges to H. By definition
of `(α ;H) and the nondegeneracy case above, there exists a sequence of equivalence
classes of capped orbits x̃n = [xn , x̂n] ∈ Crit(AHn:L) such that AHn:L(x̃n) converges to
`(α ,H). By Arzela–Ascoli we deduce the existence of a limiting Hamiltonian chord of
H. Then, for n0 big enough, it is easy to define an explicit capping for x, x̂, made of the
concatenation of a well-chosen cylinder between x and xn0 and x̂n0 . Finally, by using
again the discreteness of ω(π2(M ,L)), we see that AHn:L(x̃n) converges to AH:L([x , x̂])
which concludes.

C For any continuous functions H and K , and α 6= 0∫ 1

0
min
M

(Kt −Ht) dt ≤ `(α;K)− `(α;H) ≤
∫ 1

0
max
M

(Kt −Ht) dt .
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This is an immediate consequence of Lemma II.2, since (II.3) obviously extends to
continuous functions.

M If H ≤ K , then `(α ;H) ≤ `(α ;K).
This follows directly from C.

T  For all α and β, `(α ∗ β ;H]K) ≤ `(α ;H) + `(β ;K).
First note that by C, it is enough to prove this for nondegenerate smooth Hamil-
tonians. Now, for such Hamiltonians the proof is similar to the proof of Lemma II.2,
boiling down to computing the energy of an element of some moduli space adapted to the
situation. It is natural to consider here the moduli space entering the definition of the
Lagrangian Floer product, as described in Section 4.1.3 of Chapter I. Thus, we choose
H3 to be a nondegenerate Hamiltonian ε-close to the concatenation H1]H2 and J3

accordingly. Computing the energy of an element u ∈ M∗F (x̃
1 , x̃2 , x̃3 ;K , I) leads to

AH1:L(γ̃
1) +AH2:L(γ̃

2)−AH3:L(γ̃
3) ≥ −2ε .

From this, it follows that the restriction of ∗ to the filtered complexes satisfies :

∗ : CFa1∗ (H1;L)⊗ CFa2∗ (H2;L) → CFa1+a2+2ε
∗ (H3;L)

for any a1 and a2 ∈ R. Since ε can be chosen arbitrarily small, we get the expected
result

`(α ∗ β;H1]H2) ≤ `(α;H1) + `(β;H2)

thanks to the commutativity of a diagram similar to (II.4).

T  If c is a function of time then

`(α;H + c) = `(α;H) +

∫ 1

0
c(t) dt .

This follows from the fact that, for smooth Hamiltonians, the spectrum of Hs = H + sc

for s ∈ [0 , 1] coincides with the spectrum of H , shifted by s ·
∫ 1
0 c(t) dt. Thus the

statement holds by C and S properties and obviously extends to
continuous functions.

Q  We have `(α ; 0) = ν(α)wL where ν is the quantum valuation and
`+(0) = 0.
In the above formula, wL denotes the generator of the group of periods ω(π2(M ,L)) ⊂
R. Since L is monotone with monotonicity constant τ , we have wL = τNL.
The Q  property reflects the fact that spectral invariants agree with the
interpretation of the quantum homology of L as the Lagrangian “Morse–Bott Floer homology”
of the zero Hamiltonian, as described in Section 5.1 of Chapter I.
Let us first explain how to see that. Recall from (Leclercq and Zapolsky 2018) the
definition of the Lagrangian quantum valuation, ν : HQ∗(L)→ Z ∪ {−∞}, inspired by
and analogous to its absolute counterpart defined by Entov and Polterovich (Entov and
Polterovich 2003). First fix a regular quantum datum D for L. Now, for any finite sum∑

k pk ⊗ tnk defining a chain C ∈ CQ∗(L ;D),2 define its valuation as

νD(C) = max
{
− nk |C =

∑
pk ⊗ tnk

}
and, if α ∈ HQ∗(L ;D) is non-zero, define its valuation as

νD(α) = inf{ν(C) | [C] = α} = inf
C∈α

{
max

{
− nk |C =

∑
pk ⊗ tnk

}}
2. Recall that we restricted ourselves to homology theories with coefficients in Z/2Z so that every

elementary tensor p⊗ tn appears with coefficient 1 (or does not appear).
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while ν(0) is set to −∞.
Now, let us consider this quantity, under the change of viewpoint from Section 5.1,
where elementary tensors p⊗ tn are replaced by pairs (p ,A) with A ∈ π̃2(M ,L). From
this viewpoint, the quantum valuation of C , formal sum of pairs (pk , Ak), is νD(C) =
1
wL
maxk

{
−ω(Ak)

}
and therefore, if α ∈ HQ∗(L ;D) is non-zero,

νD(α)wL = inf
C∈α

{
max

{
A0:L(Ak) |C =

∑
(pk, Ak)

}}
.(II.5)

The right-hand side term would be the spectral invariant associated with α and the
zero Hamiltonian, `(α ; 0), if the latter was nondegenerate. However, H = 0 is obviously
degenerate and thus the definition of `(α ; 0) requires picking a sequence of smooth
nondegenerate Hamiltonians converging to 0, and considering the limit of the sequence
of associated spectral invariants.

Remark II.3. Alternatively, we can also define a quantum subcomplex CQa∗(L ;D) gen-
erated by elements (p ,A) with νD(A) < a. We denote by iaQ the map induced in
homology by the inclusion of this subcomplex in the whole complex. Then (II.5) can
be reformulated as :

νD(α)wL = inf
{
a ∈ R |α ∈ im(iaQ)

}
,

which shows even more similarities with (II.2).

Let us now prove the Q  property. It is an obvious corollary of the
following statement : for all continuous time-dependent functions H ,∫ 1

0
min
M

Ht dt ≤ `(α;H)− ν(α)wL ≤
∫ 1

0
max
M

Ht dt .(II.6)

P. The proof is yet another occurrence of a (by now standard !) method :
compute the energy of an element of a well-chosen moduli space. The idea here being to link
the quantum and Floer situations, we consider an element entering the definition of the
PSS morphism, as depicted in Figure I.8, (u ,m , v) ∈ MPSS(p , x̃ ;D ,H). Recall that for p
in Crit(f) and x̃ ∈ Crit(AH:L), (u ,m , v) consists of a point m in L, a string of pearls u in
MQ(p ,m ;D ;B) for some B ∈ π2(M ,L), and a half-disc v satisfying an equation which
interpolates between the J-pseudo-holomorphic and the Floer equations. Computing
the energy of v gives in this case∫ 1

0
Ht

(
x(t)

)
dt−

∫
v∗ω ≤

∫ 1

0
max
M

(Ht − 0) .

(Alternatively, v can be considered as a Floer half-tube like those entering the definition
of the continuation morphism, interpolating between H and 0. Thus, considering m as
a Hamiltonian chord of the 0 Hamiltonian which we cap with the constant disc at m,
we can rewrite ∫ 1

0
Ht

(
x(t)

)
dt−

∫
v∗ω = AH:L

(
[x, v]

)
−A0:L

(
[m,m]

)
and C immediately gives the result.)

Since the action of x̃ is bounded from above by
∫ 1
0 Ht

(
x(t)

)
dt −

∫
v∗ ω (recall that u

consists of J-pseudo-holomorphic discs which thus have positive symplectic area), we
end the proof by exploiting the commutativity of

HQa∗(L;D) HFa+b∗ (L;H, J)

HQ∗(L;D) HF∗(L;H, J)

PSS

iaQ ia+b∗

PSS

with b =
∫ 1
0 maxM Ht dt (see also Remark II.3). �
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Now, Equation (II.6) obviously implies the first equality, `(α ; 0) = νD(α)wL, which in
turn implies that ν = νD does not depend on the regular quantum data D. Thus, we
get that `+(0) = `([L] ; 0) = ν(0)wL which is easily seen to be non-positive : consider
a Morse function with a unique maximum, this maximum is a cycle representing [L]
with valuation 0. The other inequality can be obtained by performing the following
meaningless trick3, involving   : `([L] ; 0) ≤ `([L] ; 0) + `([L] ; 0). In
the end, we get that `([L] ; 0) = 0.

L  If for all t, Ht|L = c(t) ∈ R (respectively ≤, ≥), then

`(α;H) =

∫ 1

0
c(t) dt+ ν(α)wL (respectively ≤,≥) .

So that, for all H :∫ 1

0
min
L

Ht dt ≤ `(α;H)− ν(α)wL ≤
∫ 1

0
max
L

Ht dt .

This property shows that the behavior of the Hamiltonian on the Lagrangian produces
bounds on its spectral invariants. These bounds generalize Equation (II.6) and thus
show that Q  is satisfied as soon as H vanishes on the Lagrangian.
Its proof is based on another idea which is quite frequently used in the context of
spectral invariants. The idea is to follow the evolution of the spectrum of the action
functional associated with a 1-parameter family of Hamiltonians, and then to conclude
with S and C.

P. Let H be a smooth Hamiltonian which restricts to L as a function of time,
c : [0 , 1]→ R and define Hs = sH for s ∈ [0 , 1]. Since L is Lagrangian, for any
fixed s, the chords of Hs are contained in L. Each of these comes with a natural
capping (itself), contained in L so that it has area 0. This shows that for all s ∈ R,
Spec(Hs) =

{
s ·
∫ 1
0 c(t) dt+ kwL

∣∣ k ∈ Z
}
.

By S and C, `(α ;Hs) = s
∫ 1
0 c(t) dt + k0wL for some k0 ∈ Z, inde-

pendent of s. Since H0 = 0, k0 = ν(α) by Q , we get the desired result
for s = 1.
If H satisfies Ht|L ≤ c(t) (respectively Ht|L ≥ c(t)) for all t, pick any function K such
that K ≥ H (respectively K ≤ H) and Kt|L = c(t) and conclude by M. This
handles the case of smooth Hamiltonians and we conclude by C. �

N  For A ∈ π2(M ,L), we have `(A · α ;H) = `(α ;H)−ω(A).
The Novikov action of π2(M ,L) (or rather π̃2(M ,L)) is induced by the attachment of
a disc, of relative homotopy class A, to a chain C ∈ CQ∗(L ;D) :

A · C = A ·
(∑

k

pk ⊗ tnk
)
=
∑
k

pk ⊗ t
nk−µ(A)

NL .

Via the PSS morphism, this leads on the Floer side to a shift of the action by −ω(A)
which yields the result.

S  Let ψ ∈ Symp(M ,ω) and L′ = ψ(L). Let

`′ : HQ∗(L′)× C0
(
M × [0, 1]

)
→ R ∪ {−∞}

be the corresponding spectral invariant. Then `(α ;H) = `′(ψ∗(α) ;H ◦ ψ−1).
The isomorphism ψ∗ : HQ∗(L)→ HQ∗(L′) is induced from the symplectomorphism ψ
as described in Section 6.1 of Chapter I.

3. Meaningless but which we did not manage to avoid nevertheless...
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The proof of this property is straightforward. Indeed, the commutative diagram (I.11),
which shows that the PSS morphism intertwines the isomorphisms ψ∗ induced by ψ
on both Floer and quantum homologies, is easily shown to agree with the filtration of
Floer homology.

D Let α ∈ HQ∗(L) and α∨ ∈ HQn−∗(L) be dual classes, −`(α ;H) = `(α∨ ;H).
This is a simplified version of the D property which can be found in (Leclercq
and Zapolsky 2018). However, this is the part which will be used in the applications
below.
Recall that the Floer version of Poincaré duality is presented in Section 4.1.4 of Chapter I.
There also exists a quantum version of this duality, which is constructed thanks to the
exact same idea, that is to consider the same geometric objects, with reversed orientation.
Given a regular quantum datum D for L, we easily build another regular quantum
datum D, such that CF∗(L ;D) is canonically identified with CFn−∗(L ;D), yielding an
isomorphism PD : HQ∗(L)→ HQn−∗(L). It is also easy (see for example the proof of the
commutativity of (I.8)) to show that the PSS morphism induces also an isomorphism
between the quantum and Floer cohomologies of L.
The only observation to make in order to prove the D property was made in
Section 4.1.4 : “dual” generators with respect to dual Floer data have opposite action,
namely AH:L(x̃) = −AH:L(x̃).

1.3. Further invariance and consequences
We now show that, when computed for normalized Hamiltonians, the spectral in-

variants defined by Equation (II.2) above only depend on the equivalence class of the
Hamiltonian defined in Definition I.2.

Proposition II.4. Let H0 and H1 be normalized, equivalent Hamiltonians. Then, for all
α ∈ HQ∗(L), `(α ;H0) = `(α ;H1).

We will use this further invariance to add two important properties, N-
and M, to the long list of the previous section. Finally, we will derive from ` a
function defined on the universal cover of the Hamiltonian group.
1.3.1. Further invariance

We want to prove that if H0 and H1 are equivalent normalized Hamiltonians
in the sense of Definition I.2, their respective associated spectral invariant functions
`(· ;H i) : HQ∗(L)→ R ∪ {−∞} coincide.

First, let us show that the desired invariance property will be a consequence of the
following result on the spectrum of the action functional.

T II.5. Let H be normalized, Spec(H : L) only depends on the equivalence class
of H.

Indeed, this lemma shows that for a normalized homotopy (Hs)s, such that for all
s ∈ [0 , 1], φ1Hs = ϕ, the spectrum of AHs:L does not depend on s. This, combined with
the fact that the spectrum is nowhere dense4 and with the S and C
properties of spectral invariants, shows that for every non-zero α ∈ HQ∗(L), `(α ;H0) =
`(α ;H1).

Now, the proof of Theorem II.5 easily follows from the fact that, given a normalized
homotopy H = (Hs)s∈[0,1] so that φ1Hs = ϕ for all s, there exists a map φ̃H : Crit(AH0)→
Crit(AH1) such that AH0:L(x̃0) = AH1:L(φ̃H(x̃0)).

The map itself is very easy to construct. First, given H0 and H1 generating the
same Hamiltonian diffeomorphism ϕ, there is a canonical identification between their

4. This regularity property of Floer’s action functional in the Lagrangian case can be proved
similarly to the Hamiltonian case, see (Oh 2005).



62 II. AROUND SPECTRAL INVARIANTS

respective Hamiltonian chords, via x0 7 → x1 = φtH1(x
0(0)). Next, as explained at the

beginning of Section 6.2 of Chapter I, the homotopy H provides a lift of this map to
the critical sets of the respective action functionals, by setting x̂0 7 → x̂1 = x̂0]uH where
uH : [0 , 1]× [0 , 1]→M , defined by uH(s , t) = φtHs(x0(0)), connects x0 to x1.

The proof that this map preserves the action is standard and can be summarized as
follows. Denote by I the interval [0 , 1]. Similarly to the proof of the inequalities (II.3),

AH1:L(x̃
1)−AH0:L(x̃

0) =

∫
I
∂sAHs:L(x̃

s) ds =

∫
I
dx̃sAHs:L(∂sx̃

s) ds+

∫
I2
∂sH

s
t ◦ uH dsdt

where xs = uH(s , ·), x̂s = x̂0]uH |[0,s]×[0,1], and x̃s = [xs , x̂s]. Since x̃s ∈ Crit(AHs:L), the
first summand in the last expression vanishes and we end up with

AH1:L(x̃
1)−AH0:L(x̃

0) =

∫
I2
(∂sH

s
t ) ◦ uH dsdt .(II.7)

Making the same computation with H replaced by Ks = H
0
]Hs, and uH replaced by

the map up defined by (s , t) 7 → φtHs(p), yields

AK1(γ̃1p) =

∫ 1

0
dγ̃spAKs(∂sγ̃

s
p) ds+

∫
I2
(∂sH

s
t ) ◦ up dsdt =

∫
I2
(∂sH

s
t ) ◦ up dsdt(II.8)

where γ̃sp is the equivalence class of γsp = up(0, ·)]up(s , ·), capped by γ̂sp = up|[0,s]×[0,1].
(As such, it is a critical point of AKs .) As p 7 → γ̃1p is a smooth embedding of M (which
is connected) into Crit(AK1), we deduce that the quantity (II.8) is independent of p.

Starting from the normalization of H0 and H1,

0 =

∫ 1

0
dt

∫
M

(
H1
t (p)−H0

t (p)
)
ωnp =

∫
I2

(∫
M
∂sH

s
t (p)ω

n
p

)
ds dt

and using the facts that φtHs is a symplectomorphism for all s and t, and the indepen-
dence of (II.8) on p, we deduce that

0 =

∫
I2

(∫
M
∂sH

s
t

(
φtHs(p)

)
ωnp

)
ds dt =

∫
I2
∂sH

s
t

(
φtHs(p)

)
ds dt ·

∫
M
ωn

which, together with (II.7), allows to conclude that AH1:L(x̃
1)−AH0:L(x̃

0) = 0.

Remark II.6. After these computations it is not hard to see that when L is aspherical,
the spectrum of AH:L (for a normalized Hamiltonian H) is even more invariant as it
only depends on ϕ = φ1H .

1.3.2. Additional properties
The following properties of the function `+ = `([L] ; · ) are consequences of the

invariance proved in the above section, and of the properties established in Section 1.2.

N- For all H ∈ C0
(
M × [0 , 1]

)
, `+(H) + `+(H) ≥ 0.

By T  with α = β = [L], we have `+(H)+`+(H) ≥ `+(H]H). By T
 and the definition of H and ], it suffices to prove the result for H normalized. In
that case, H]H is also normalized and is equivalent to 0, in the sense of Definition I.2.
By invariance of spectral invariants, `+(H]H) = `+(0) which vanishes by Q
.

M For all H ∈ C0
(
M × [0 , 1]

)
, `(α ;H) ≤ `+(H) + ν(α)wL.

If H is normalized, since α = [L] ? α and H]0 is equivalent to H in the sense of
Definition I.2, by invariance and T  we obtain `(α ;H) ≤ `+(H) +
`(α ; 0). Again, when H is not normalized, the result follows from the first case and
T .
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1.3.3. Invariants of the universal cover of the Hamiltonian group
Since the set of equivalence classes of normalized smooth Hamiltonians can be iden-

tified with H̃am(M ,ω), the function ` defined by (II.2) induces a function

` : HQ∗(L)× H̃am(M,ω) −→ R ∪ {−∞}

which enjoys properties similar (and induced by) the properties listed in Sections 1.2
and 1.3.2. We list them below to indicate the very few delicate points in the adaptation
as well as for further use.

F `(α ; φ̃) = −∞ if and only if α = 0.

S For all α 6= 0, `(α ; φ̃) ∈ Spec(φ̃ : L).
Recall from Section 1.3.1, that the spectrum of the action itself only depends on the
equivalence class of normalized Hamiltonians and thus is naturally associated with
elements of H̃am(M ,ω).

C Assume H and K are normalized, then∫ 1

0
min
M

(Ht −Kt)dt ≤ `(α; φ̃H)− `(α; φ̃K) ≤
∫ 1

0
max
M

(Ht −Kt)dt .

M If M is noncompact, and H ≤ K have compact support, `(α ; φ̃H) ≤
`(α ; φ̃K).
Here, M is assumed to be noncompact since isotopies naturally correspond to normal-
ized Hamiltonians, and that there are no normalized Hamiltonians H and K satisfying
H ≤ K on a compact manifold except if they coincide everywhere. On noncompact
manifolds, isotopies also correspond to normalized Hamiltonians and the natural nor-
malization condition is requiring the Hamiltonian to have compact support.

T  For all α and β, `(α ∗ β ; φ̃ψ̃) ≤ `(α ; φ̃) + `(β ; ψ̃).

Q  We have `(α ; Id) = ν(α)wL and `+(Id) = 0.

L  If for all t, Ht|L = c(t) ∈ R (respectively ≤, ≥), then

`(α; φ̃H) = ν(α)wL +

∫ 1

0

(
c(t)−

∫
M
Ht ω

n

)
dt (respectively ≤,≥ ) .

Thus, for all H :∫ 1

0
min
L

Ht dt ≤ `(α; φ̃H)− ν(α)wL +

∫ 1

0

∫
M
Ht ω

n dt ≤
∫ 1

0
max
L

Ht dt .

Note that the Hamiltonian Ht−
∫
M Ht ω

n is normalized and generates the same Hamil-
tonian flow as Ht, therefore

`(α; φ̃H) = `
(
α;Ht −

∫
M Ht ω

n
)
= `(α;H)−

∫ 1
0

∫
M Ht ω

n dt ,

and the property now follows from its counterpart on Hamiltonian functions.

N  For A ∈ π2(M ,L), `(A · α ; φ̃) = `(α ; φ̃)−ω(A).

S  Let ψ ∈ Symp(M ,ω), L′ = ψ(L) and

`′ : HQ∗(L′)× H̃am(M,ω) −→ R ∪ {−∞}

the associated spectral invariant function. Then `(α ; φ̃) = `′(ψ∗(α) ;ψφ̃ψ
−1).
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We use the natural action of the group Symp(M ,ω) on H̃am(M ,ω) by conjugation.
Recall that if φ̃ = φ̃H then ψφ̃Hψ−1 = φ̃H◦ψ−1 . The result now follows from the previous
case.

D For dual elements α ∈ HQ∗(L) and α∨ ∈ HQn−∗(L), −`(α ; φ̃−1) = `(α∨ ; φ̃).

N- `+(φ̃) + `+(φ̃
−1) ≥ 0.

M `(α ; φ̃) ≤ `+(φ̃) + `(α ; Id) = `+(φ̃) + ν(α)wL.

Remark II.7. As we will see in Definition II.10, we can infer from ` a bi-invariant
pseudo-distance on H̃am(M ,ω), thanks to its N-, T , and
S  properties. It is called spectral distance or Viterbo distance. The
C property immediately yields that it is smaller than Hofer’s distance.

1.4. Relationship with “absolute” spectral invariants
As mentioned in the introduction of this chapter, Schwarz (Schwarz 2000) and Oh

(Oh 2005) adapted Viterbo’s construction to get spectral invariants of symplectic man-
ifolds via Floer theory under asphericity condition for the former and monotonicity
for the latter. The definition is formally the same as that of their Lagrangian coun-
terpart. Indeed, one can, similarly to what was done here, filter the Floer complex of
(M ,ω) with respect to the values of the action. Spectral invariants are then defined by
Equation (II.2), with Lagrangian quantum and Floer homologies (and PSS morphism)
replaced by their respective “absolute” versions. We will denote them by5

c : HQ∗(M)× C0
(
M × R/Z

)
−→ R ∪ {−∞} .

1.4.1. Spectral invariants and the Lagrangian diagonal
An a priori different way to define such “absolute” invariants would be via the

diagonal construction from Section 5.3 of Chapter I. Indeed, one could associate with
a Hamiltonian function H of (M ,ω), the Lagrangian spectral invariant relative to the
Lagrangian diagonal ∆ ⊂ (M ×M ,ω ⊕ (−ω)) associated with the Hamiltonian H ⊕ 0.

It turns out that both constructions coincide. Indeed, the canonical ring isomor-
phism between the Floer (respectively quantum) theory of (M ,ω) and the Lagrangian
Floer (respectively quantum) theory of ∆ preserves both degree and action. This en-
sures that Diagram (I.10) can be filtered to get

HFa∗(M ;H, J) HF∗(M ;H, J) HQ∗(M)

HFa∗(∆; Ĥ, Ĵ) HF∗(∆; Ĥ, Ĵ) HQ∗(∆)

ia∗ PSSH,J

ia∗
PSS

Ĥ,Ĵ

for any periodic nondegenerate smooth Hamiltonian H on M . Recall from Section 5.3
that Ĥ is defined from H as H1 ⊕ H2 with H1 and H2 roughly corresponding to H ,
respectively on [0 , 12 ] and [12 , 1]. However, up to a time reparameterization of H , which is
harmless to spectral invariants, one can assume that H vanishes on the second interval.

This is enough to prove that

T II.8. Let α denote classes in HQ∗(M) and HQ∗(∆), corresponding to each other
via the canonical isomorphism. For all H ∈ C0

(
M × R/Z

)
, c(α ;H) = `(α ;H ⊕ 0).

This theorem was first proved under asphericity condition in (Leclercq 2008) and
then under monotonicity in (Leclercq and Zapolsky 2018). It shows in particular that
the “absolute” spectral invariants can be computed from their Lagrangian counterparts.

5. Recall that for periodic orbit Floer theory, the Hamiltonian is assumed to be periodic.
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1.4.2. Spectral invariants and the module structure on quantum homology
There is another interaction between the “absolute” and Lagrangian versions of

quantum and Floer homologies, as the absolute theory yields a ring over which the
Lagrangian homology is a module (see Sections 3.1.3 and 4.3 of Chapter I). In view
of the definition of the module structures and their compatibility with the PSS mor-
phism, it is not surprising that “absolute” and Lagrangian spectral invariants can be
compared tanks to this additional algebraic structure. Namely, they satisfy the following
property :

M  For all a ∈ HQ∗(M) and α ∈ HQ∗(L),

`(a� α;H1]H2) ≤ c(a;H1) + `(α;H2)

(with H1 assumed to be 1-periodic).
The proof is formally similar to the proof of the T  except that the
“typical element of a suitable moduli space” whose energy is computed is an element
of the moduli space entering the definition of the module structure, i.e. a map from
the Riemann surface Σ� (instead of Σ∗).

This also translates to invariants of isotopies as follows :

M  For all a ∈ HQ∗(M) and α ∈ HQ∗(L), `(a � α ; φ̃ψ̃) ≤ c(a ; φ̃) +

`(α ; ψ̃).

1.5. Conormal-type spectral invariants
To finish the exposition of Lagrangian spectral invariants, we now present conormal-

type spectral invariants which we introduced in (Humilière, Leclercq, and Seyfaddini
2016) in order to study the behaviour of spectral invariants under symplectic reduction.
They are inspired by the conormal spectral invariants defined in a cotangent bundle T ∗N
via consideration of the Lagrangian Floer homology of the zero section 0N and the
conormal ν∗V of a submanifold V ⊂ N , see e.g. (Oh 1997). The idea that these
invariants are well-suited to study symplectic reduction goes back to Viterbo (Viterbo
1992) in the context of generating functions. In Section 3.5, however, we will need to
work with closed submanifolds which is why we implemented them in Floer theory.

Thanks to an adequate change of Floer datum, the Floer homology of a Lagrangian
L can be viewed as generated by intersection points between L and φ1H(L), rather than
Hamiltonian chords of φH from L to itself. (This is very much related to the construction
of the Seidel morphism of Section 1.1 in Chapter III.) Lagrangian spectral invariants
behave well under this shift of perspective, at least when L is aspherical. This was used
in (Leclercq 2008) to define spectral invariants associated with any pair of Hamiltonian
isotopic Lagrangians L and L′, by `(α ;L ,L′) = `(α ;H) for any H such that φ1H(L) = L′.
(The fact that the right-hand side only depends on φ1H(L) follows from the invariance
of the action spectrum under asphericity, see Remark II.6.)

On the contrary, conormal-type spectral invariants are defined with respect to La-
grangians which are not Hamiltonian isotopic. Indeed, the case we have in mind for
applications is the case of two aspherical Lagrangians, L0 and L1, which intersect trans-
versely in a single point p. (This prevents L1 to be Hamiltonian isotopic to L0 because
Arnol’d said so.)

Example II.9. Let M be the torus T2k1 × T2k1 × T2k2 × T2k2 . Our Lagrangians are

L0 = Tk1 × {0} × Tk1 × {0} × Tk2 × {0} × Tk2 × {0} ,

L1 = Tk1 × {0} × Tk1 × {0} × Tk2 × {0} × {0} × Tk2 .

As mentioned above, if we heuristically think of the torus M as a compact version of
the cotangent bundle to Tk1 × Tk1 × Tk2 × Tk2 , then L0 corresponds to the zero section
and L1 to the conormal bundle of the submanifold V = Tk1 × Tk1 × Tk2 × {0}.
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Given two Lagrangians L0 and L1 which intersect transversely, one can construct a
Floer homology as in Section 4 of Chapter I, except that the generators are now chords
of some Hamiltonian H starting on L0 and ending on L1. A capping γ̂ of a chord γ is
again a half-disc u : D−→ M , such that the straight part of ∂D− is mapped to γ, and
∂D− ∩ {eiθ | θ ∈ [−π ,−π

2 ]} (respectively θ ∈ [π2 , π]) is mapped to L0 (respectively L1).
Necessarily, u(−1) ∈ L0 ∩ L1 and actually, we require that u(−1) is mapped to some
fixed point p of the intersection.

In this case, the asphericity assumption is manufactured such that any two cappings
of γ have the same symplectic area, so that the action functional AH:L0,L1 can be defined
on the set of paths from L0 to L1 by the formula

AH:L0,L1(γ) = −
∫
D−

γ̂∗ω +

∫ 1

0
Ht(γ(t)) dt

for any capping γ̂ of γ. The whole construction of Section 4.1.1 can be slightly adapted
in the same fashion and we denote by HF∗(L0 , L1 ; p) the resulting homology.

Next, one can associate spectral invariants with any class α 6= 0 in HF∗(L0 , L1 ; p) as
above : as the infimum of action values such that α appears in the filtration. Namely,
from any smooth nondegenerate Hamiltonian H , we get a real number `L0,L1(α ;H).
(Note that when L0 and L1 intersect in a single point, there exists exactly one non-
vanishing class α.)

These spectral invariants share many of the properties of their more classical coun-
terparts and in particular the S and C properties. This allows us to
define them for any continuous time-dependent function H. They also satisfy a T-
 , which allows us to compare them to the more classical Lagrangian
spectral invariants. Indeed, we have that for any non-zero class α, `L0,L1(α ;H) ≤ `+(H).

2. Applications to (smooth) symplectic geometry

Spectral invariants have been successfully used to approach such a great variety of
questions that it is now quite unreasonable to try to list them all. In the context of this
HDR memoirs, let us only mention the following questions, to which we made a modest
contribution, and which are presented in the next sections of this chapter. Section 2 is
concerned with applications to the study of metrics on infinite-dimensional diffeomor-
phism groups, the existence of quasimorphisms, and subsequent rigidity of subsets of
symplectic manifolds. In Section 3, we present applications to the C0 rigidity of the Pois-
son bracket of functions, to C0 Hamiltonian dynamics, and to C0 rigidity of coisotropic
submanifolds and their characteristic foliation. Section 5 sketch future applications to
the contact non-squeezing phenomenon and orderability of contactomorphism groups.

2.1. Spectral distance and Hofer’s geometry
Let us start with the Hofer geometry of Hamiltonian diffeomorphism groups and

some sets of Lagrangians. As mentioned in Remark II.7, spectral invariants yield a
natural pseudo-distance on the various spaces on which they are defined. This distance
is bi-invariant with respect to the action of the Hamiltonian diffeomorphism group and
is smaller that the appropriate Hofer distance. Let us for example define it in the setting
of Section 1.3.3.

Definition II.10. Let L be a monotone+ Lagrangian of (M ,ω) whose quantum funda-
mental class [L] ∈ HQn(L) does not vanish. The spectral (pseudo-) norm on H̃am(M ,ω)
is given by

‖φ̃‖γL = `+(φ̃) + `+(φ̃
−1) .

It induces a (pseudo-) distance on the group by setting γL(φ̃ , ψ̃) = ‖φ̃ψ̃−1‖γL .

Remark II.11. While verifying that this defines a pseudo-norm is straightforward in
view of the properties of `, its nondegeneracy is harder to prove. This is usually done
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by means of “energy-capacity inequalities”. For example, Theorem II.23 below yields
the nondegeneracy of the Lagrangian spectral distance induced by ‖ · ‖γL on certain
subsets of aspherical Lagrangians, see Section 3.1.2 for more details.

The nondegeneracy of ‖·‖γL is not proved in (Leclercq and Zapolsky 2018). This is
work in progress by Kawasaki (Kawasaki 20xx) who is following another approach, via
Poisson bracket techniques as in (Polterovich and Rosen 2014, Proposition 4.6.2).

Because of the C property of `, the spectral distance is smaller than Hofer’s.
We now illustrate this fact. As several Lagrangians appear in the statement, we add
them as a subscript to the notation of the Lagrangian spectral invariant function to
avoid ambiguity (e.g. `L′ is the spectral invariant associated with the Lagrangian L′).

T II.12. Let L be monotone+ and let Θ denote either Ham(M ,ω) or L̃Ham(L).
Let θ ∈ Θ and denote by Lθ the Lagrangian obtained from L via θ, i.e. respectively Lθ = θ(L)
or Lθ = θ(1). Via symplectic action, θ induces an isomorphism θ∗ : HQ∗(L)→ HQ∗(Lθ) such
that for all non-zero α ∈ HQ∗(L) and all H ∈ C0(M × [0 , 1]),

|`L(α;H)− `Lθ(θ∗(α);H)| ≤ ‖θ‖Hof .(II.9)

Hence, each non-zero α ∈ HQ∗(L) induces a function

`α : Θ× H̃am(M,ω) −→ R , (θ, φ̃) 7−→ `Lθ(θ∗(α); φ̃)

which is Lipschitz with respect to the natural Hofer metric on Θ× H̃am(M ,ω).

The Lipschitz nature of `α is a straightforward consequence of the C prop-
erty of `L, together with (II.9). The latter is itself a consequence of C, via the
following estimate.

Lemma II.13. Let H ∈ C0(M × [0 , 1]) and α 6= 0 in HQ∗(L). For any Hamiltonian
diffeomorphism φ and any Hamiltonian K such that φ1K = φ,

|`(α;H)− `(α;H ◦ φ)| ≤
∫ 1

0
osc
M
Kt dt .(II.10)

Before proving the lemma, let us show how it yields the theorem. First, let us point
out that the isomorphism θ∗ comes from the action of the symplectomorphism group
on quantum cohomology, as described in Section 6.1 of Chapter I : by Proposition I.20
when θ ∈ Ham(M ,ω) and by Theorem I.22 for θ ∈ L̃Ham(L).

Now, by S , we have that `Lθ(θ∗(α) ;H) = `(α ;H ◦ φ) so that
we get the desired result by taking the infimum of the right-hand side of (II.10) :
respectively over the set of Hamiltonians K such that φ1K = φ if θ ∈ Ham(M ,ω), and
over the set of Hamiltonians K such that φK(L) ∈ L̃ otherwise. The aforementioned
results from Section 6.1 show that the left-hand side is independent of the choice of
such Hamiltonians K and the result follows.

As a final remark, let us recall that, under the stronger assumption of asphericity, the
maps `α of Theorem II.12 descend to LHam(L)×Ham(M ,ω), see for example (Leclercq
2008) and (Monzner, Vichery, and Zapolsky 2012).

P    , L II.13. Since adding the same function of time
to both H and H ◦ φ does not affect their difference, by T  and the
invariance of ` proved in Section 1.3.1, we get

|`(α;H)− `(α;H ◦ ϕ)| = |`(α; φ̃H)− `(α;ϕ−1φ̃Hϕ)|

where φ̃H denotes the equivalence class of the isotopy φH in H̃am(M ,ω). Notice that
the Hamiltonian isotopies t 7 → φtH◦φ = φ−1φtHφ and t 7 → (φtK)−1φtHφ

t
K are homo-

topic relative to endpoints and thus define the same element ϕ−1φ̃Hϕ = φ̃−1K φ̃H φ̃K in
H̃am(M ,ω).
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Using this and the fact that the fundamental class [L] is the unit of the quantum
homology ring, T  leads to

`(α;ϕ−1φ̃Hϕ) = `([L] ∗ α ∗ [L]; φ̃−1K φ̃H φ̃K) ≤ `+(φ̃
−1
K ) + `(α; φ̃H) + `+(φ̃K)

from which we deduce that
`(α; φ̃H)− `(α;ϕ−1φ̃Hϕ) ≥ −`+(φ̃−1K )− `+(φ̃K) .

Similarly, by writing `(α ; φ̃H) = `(α ; φ̃K(φ̃−1K φ̃H φ̃K)φ̃−1K ), we get that

`(α; φ̃H)− `(α;ϕ−1φ̃Hϕ) ≤ `+(φ̃
−1
K ) + `+(φ̃K)

and thus conclude that
|`(α;H)− `(α;H ◦ ϕ)| ≤ `+(φ̃

−1
K ) + `+(φ̃K) .

By C of spectral invariants, since `+(φ̃K) ≤
∫ 1
0 maxM Kt dt and `+(φ̃

−1
K ) ≤∫ 1

0 maxM Kt dt = −
∫ 1
0 minM Kt dt, we deduce

|`(α;H)− `(α;H ◦ ϕ)| ≤
∫ 1

0
osc
M
Kt dt

which concludes. �

2.2. Symplectic rigidity
We now show that Lagrangian spectral invariants are also well-fitted to detect rigid

subsets via techniques introduced by Entov and Polterovich.
If e ∈ HQ∗(M) is any nonzero idempotent, Entov and Polterovich (Entov and

Polterovich 2009) defined two classes of rigid subsets of M , with respect to e.

Definition II.14. A closed subset X ⊂ M is called e-heavy if, for any smooth function
F on M ,

lim
k→∞

c(e; kF )

k
≥ min

X
F ,

and it is called e-superheavy if for any F ,

lim
k→∞

c(e; kF )

k
≤ max

X
F .

Recall that c denotes the “absolute” spectral invariants of (Oh 2005), which can also
be seen as Lagrangian spectral invariants via the Lagrangian diagonal construction of
Chapter I, Section 5.3, as explained in Section 1.4.1.

In (Entov and Polterovich 2006), they also introduced the notion of symplectic quasi-
states. In the following definition {· , ·} stands for the Poisson bracket.

Definition II.15. A quasi-state on M is a functional ζ : C0(M)→ R satisfying
Normalization. ζ(1) = 1.
Quasi-linearity. For F ,G ∈ C∞(M) with {F ,G} = 0, we have ζ(F + G) = ζ(F ) +
ζ(G).
Monotonicity. For F ,G ∈ C0(M) with F ≤ G, we have ζ(F ) ≤ ζ(G).

They developed a construction of (nonlinear) symplectic quasi-states onM using idem-
potents in HQ∗(M). We refer the reader to (Entov and Polterovich 2008) for details.
Briefly, if HQ∗(M) ' F ⊕Q as an algebra where F is a field, then the spectral invariant
c(e ; ·), where e ∈ F is the unit, has the property that the functional

F 7−→ ζe(F ) = lim
k→∞

c(e; kF )

k

is a symplectic quasi-state. They showed that, for such a class e, the notions of
e-heaviness and e-superheaviness coincide (Entov and Polterovich 2009).

Here is how the Lagrangian spectral invariants of Section 1 can be used to prove
the (super-) heaviness of certain Lagrangians.
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Proposition II.16. Let e ∈ HQ∗(M) be an idempotent. If e� [L] 6= 0, then L is e-heavy ;
L will thus be e-superheavy if, furthermore, e gives rise to a non-linear symplectic quasi-state
as above.

This proposition is analogous to, and in certain cases follows from, Proposition 8.1 of
(Entov and Polterovich 2009). Its (direct) proof elementarily relies on the properties of
`. Indeed, let F ∈ C∞(M), by M , Q , and L
 we have for k ∈ N :

c(e; kF ) + `([L]; 0) ≥ `(e� [L]; kF ) ≥ kmin
L

F + ν(e� [L])wL ,

which yields limk→∞ c(e ; kF )/k ≥ minL F , proving that L is e-heavy.

Disclaimer II.17. Thanks to this proposition, we were able to determine explicit exam-
ples of superheavy Lagrangians. However, this requires the use of more complicated
coefficients than those presented so far. We need both twisted coefficients (instead of
π̃2(M ,L), allowed by the more general construction) over a ground ring different from
Z/2Z (in particular for the second example).

Since this is the only part of Chapter II where more general coefficients were needed,
it seemed reasonable to present the whole theory with coefficients in Z/2Z. However,
while it permitted a less abstract presentation, this choice would make intermediate
computations in the proof below impossible to follow.

Hence, we only present the geometric setting and sketch the proofs so that it will
be clear how Proposition II.16 can be used. Brave readers are encouraged to check
(Leclercq and Zapolsky 2018, Section 2.6) or (Zapolsky 2015, Section 8).

The first example appeared in (Eliashberg and Polterovich 2010). Consider the
monotone product M = S2 × S2. View S2 ⊂ R3 as the set of unit vectors. Then
L =

{
(x , y) ∈ S2 × S2 |x · y = −1

2 , x3 + y3 = 0
}
, where x · y is the Euclidean scalar

product, is a monotone Lagrangian torus in M .
Over the ground ring C, the quantum homology HQ∗(M) contains two idempotents

e± so that [M ] = e++e−. Moreover, there is a choice of coefficients for which HQ∗(L) 6= 0
(and thus [L] 6= 0). As L is disjoint from the Lagrangian antidiagonal ∆ ⊂M which is
known to be e−-superheavy, it is not itself e−-superheavy, since superheavy sets must
intersect (Entov and Polterovich 2009). Therefore, Proposition II.16 implies e−�[L] = 0.

Gathering all these facts, we get that
e+ � [L] = e− � [L] + e+ � [L] = (e− + e+)� [L] = [M ]� [L] = [L] 6= 0 .

A final use of Proposition II.16 shows that L is e+-superheavy.
The second example is the Chekanov monotone torus L ⊂ CP2 (Chekanov and

Schlenk 2010) which can be defined as follows. Consider the degree 2 polarization of
CP2 by a conic. This conic is a complex (and thus symplectic) sphere, in which the
equator is a monotone Lagrangian. The Lagrangian circle bundle construction (Biran
and Cieliebak 2001 ; Biran 2006) in this situation yields L.

Again, one can show that there is a choice of coefficients (which requires the charac-
teristic of the ground ring to be different from 2) so that HQ∗(L) 6= 0. Since [M ] = [CP2]
is the unit of HQ∗(CP2), it follows that [M ]� [L] = [L] 6= 0 and we conclude with Propo-
sition II.16 that the Chekanov torus L is superheavy with respect to the fundamental
class [CP2], taken over the ground ring C.

3. Continuous symplectic geometry

Once upon a time, Gromov... (2)
The starting point of continuous symplectic geometry is the Gromov Alternative (Gro-

mov 1986) which states that the group of symplectomorphisms of a symplectic manifold
(M ,ω) is either C0-closed or C0-dense (up to a subgroup of finite order) in the group of
diffeomorphisms of M . The alternative itself is fascinating as, whichever option holds,
it is a manifestation of extreme behavior : extreme rigidity in the first case, extreme
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flexibility in the second. Moreover, while rigidity seems too much to ask (preserving a
symplectic form is a property of differential nature), flexibility, adding to the fact that
symplectic manifolds have no local invariants, seems to doom symplectic geometry all
together. Fortunately for symplectic geometry, Eliashberg (Eliashberg 1987) proved that
rigidity holds, leading to the following celebrated result, known as Gromov–Eliashberg
Theorem.

T II.18 (Gromov–Eliashberg). If a sequence of symplectomorphisms of a symplectic
manifold C0-converges to a diffeomorphism ψ, then ψ is a symplectomorphism.

This naturally suggests a definition of symplectic homeomorphisms.
Definition II.19. The C0-limit of a sequence of symplectic diffeomorphisms of a sym-
plectic manifold (M ,ω) is called a symplectic homeomorphism.

And in turn, these symplectic homeomorphisms allow one to define many other
C0 objects as, for example, C0 Lagrangian submanifolds (of smooth or C0) symplectic
manifolds and to study their rigidity properties.

In this section, are explained joint works with Vincent Humilière and Sobhan Seyfad-
dini (Humilière, Leclercq, and Seyfaddini 2015b, 2015a, 2016), in which we established
such rigidity phenomena, the most striking one being that coisotropic submanifolds,
together with their characteristic foliations, are C0 rigid, see Section 3.4 below.

However, one should not believe that all smooth rigidity phenomena have continu-
ous counterparts. Thanks to work by Buhovsky and Opshtein (Buhovsky and Opshtein
2016), we now know that there is also a good part of C0 flexibility. For example, they
showed that in dimension 2n ≥ 6, there exist symplectic homeomorphisms which map
a symplectic disc of C×{0}n−1 to a disc of different symplectic area ! In order to prove
such flexibility, they developed quantitative h-principle techniques which proved to be very
useful.

In the author’s opinion, the most striking C0 flexibility phenomenon established so
far is undoubtedly the counterexample to the C0 version of the Arnol’d conjecture, due
to Buhovsky, Humilière, and Seyfaddini (Buhovsky, Humilière, and Seyfaddini 2016).
The construction of this counterexample is based on many ingenious ideas, including
the aforementioned quantitative h-principle techniques.

Before going back to rigidity, let us refer the reader to (Humilière 2017) which
contains in particular an excellent survey of C0 symplectic geometry (in English, despite
the title of the memoirs).

Organization of this section
In what follows, we present the main results of (Humilière, Leclercq, and Seyfad-

dini 2015b, 2015a, 2016). We start with presenting several symplectic capacities (one
of which naturally coming from spectral invariants) and energy-capacity inequalities in
the Lagrangian and Hamiltonian settings in Section 3.1. Then, we explain what the
Hamiltonian energy-capacity inequalities can tell us in terms of continuous Hamilton-
ian isotopies, also known as hameotopies, whose definition we also explain in Section 3.2.
We then turn to the Lagrangian situation and use the energy-capacity inequalities to
establish dynamical properties of hameotopies in Section 3.3. In turn, these have con-
sequences in terms of C0 rigidity of (coisotropic) submanifolds which we describe in
Section 3.4. Finally, the latter rigidity phenomenon raises a very natural question about
symplectic homeomorphisms which we (very) partially answer in Section 3.5.

3.1. Energy-capacity inequalities
An energy-capacity inequality is an inequality between a symplectic capacity and a

quantity defined via the energy of suitable Hamiltonians. For example, the “most
classical” one compares the Hofer–Zehnder capacity of an open set U to the Hofer
energy of a Hamiltonian diffeomorphism displacing U . This is Theorem II.26 below.

Such comparisons, between quantities defined via quite different methods, have
already had many interesting consequences. We refer to (Hofer and Zehnder 1994)
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for a much more detailed account on the basics, and for example to (Frauenfelder,
Ginzburg, and Schlenk 2005) (and Sections 3.2 to 3.4 below !) for some applications.
3.1.1. Symplectic capacities

A symplectic capacity is a function c, which associates with 2n-dimensional sym-
plectic manifolds (not necessarily closed) elements of [0 ,∞], and which is

Monotone. We have c(M1 , ω1) ≤ c(M2 , ω2), as soon as (M1 , ω1) can be symplecti-
cally embedded into (M2 , ω2).

Conformal. For any real number λ 6= 0, c(M ,λω) = |λ| c(M ,ω).
Nontrivial. The standard symplectic6 ball and cylinder of radius 1 have identical

capacity, c(B2n(1) , ω0) = π = c(C2n(1) , ω0).
The notion of capacity arose thanks to Gromov’s non-squeezing Theorem (Gromov 1985)
which states that if B2n(r) can be symplectically embedded into C2n(R), then r ≤ R (see
also Section 5.2.1 below where we discuss the analogous statement in contact geometry).
This suggested the definition of what is now called the Gromov width of a symplectic
manifold as
wG(M,ω) = sup{πr2 | there exists a symplectic embedding (B2n(r), ω0) ↪→ (M,ω)} .
Capacities are particularly well-suited to detect the symplectic nature of a diffeo-

morphism. Indeed, a corollary of a result of Ekeland and Hofer (Ekeland and Hofer
1989) shows that, given a capacity, a diffeomorphism is symplectic (or anti-symplectic)
if and only if it preserves the capacity of small ellipsoids. (This is the central step of
modern proofs of The Gromov–Eliashberg Theorem, Theorem II.18 above.)

Since the Gromov width, several other capacities have been constructed. In what
follows, we will use three of them which we now introduce. The first one is very
natural in the context of this chapter as it is defined via spectral invariants. Recall from
Section 1.4 that we denoted by c(α ; ·) : C0(R/Z×M)→ R∪{+∞}, the spectral invariant
associated with α ∈ HQ∗(M). Let us pick α = [M ], the quantum fundamental class of
M : [M ] 6= 0 and we denote c([M ] ; ·) by c+. Now, we define the spectral capacity of an
open subset of M following Viterbo (Viterbo 1992, Definition 4.11).

Definition II.20. Let U be an open set of M . Its spectral capacity is the quantity
cV(U) = sup{c+(H) |H ∈ C0(R/Z×M) s.t. ∀t ∈ [0, 1], supp(Ht) ⊂ U} .

The other two capacities which will be useful here are (absolute and relative) variants
of the same construction initially due to Hofer and Zehnder (Hofer and Zehnder 1990).
We need one more piece of notation (each !), preliminary to their definition.

Definition II.21. A Hamiltonian H is slow if it is autonomous and if its flow {φtH} has
no non-trivial orbits of period at most 1. For an open subset U ⊂ M , we denote by
S+(U) the set of non-negative, slow Hamiltonians with compact support included in U .

Similarly, given a Lagrangian L, an autonomous Hamiltonian H is L-slow if its flow
has no non-trivial chords from L to itself of length at most 1. For an open set U ⊂M ,
we denote by S+

L (U) the set of non-negative, slow Hamiltonians with compact support
included in U , which reach their maximum at a point of L.

We can now define the Hofer–Zehnder capacity as well as its Lagrangian counterpart,
introduced by Lisi and Rieser (Lisi and Rieser 2016).

Definition II.22. Let U be an open set of M , its Hofer–Zehnder capacity is the quantity
cHZ(U) = sup{max

M
H |H ∈ S+(U)} .

Similarly, let L be a Lagrangian, the Lisi–Rieser capacity of U with respect to L is
cLR(U ;L) = sup{max

M
H |H ∈ S+

L (U)} .

6. The standard symplectic forms on B2n(r) and C2n(r) = B2n(r)×R2n−2 are inherited from their
embedding in R2n.
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Note that if U does not intersect L, cLR(U ;L) = 0.

3.1.2. The “classical” energy-capacity inequality
The first energy-capacity inequality which is presented here was proved in (Humil-

ière, Leclercq, and Seyfaddini 2015a). It is a relative version of the standard energy-
capacity inequality, see Remark II.25 below for more details.

T II.23. Let L be an aspherical Lagrangian of a symplectic manifold (M ,ω) and
U be an open subset of M . Assume that L′ is a Lagrangian Hamiltonian-isotopic to L such
that L′ ∩ U = ∅. Then γ(L′ , L) ≥ cLR(U ;L).

First, a word of explanation. We discussed how spectral invariants could be used to
produce various norms and we defined ‖ · ‖γL , the one obtained from ` on H̃am(M ,ω),
see Definition II.10. Now, when one considers aspherical Lagrangians, the quantity ‖φ̃‖γL
only depends on the Lagrangian obtained from L at time 1, L′ = φ̃1(L). This was
proved in (Leclercq 2008) and shows that in the aspherical case, γL descends as a
distance to the set of Lagrangians which are Hamiltonian-isotopic to L : for any two
such Lagrangians L0 and L1,

γL(L0, L1) = ‖φ̃‖γL for any φ̃ such that φ̃1(L0) = L1,
i.e. γL(L0, L1) = `+(H) + `+(H) for any H such that L1 = φ1H(L0).

Hence, Theorem II.23 reads : if a Hamiltonian H displaces an aspherical Lagrangian
L from an open set U, its spectral energy has to be greater than or equal to the relative
Hofer–Zehnder capacity of U .

Second, the C property of the function ` implies that the spectral energy
of H is smaller than its energy as defined by Equation (I.1). This has the following
immediate consequence.

Corollary II.24. Let L be aspherical and L′ be Hamiltonian-isotopic to L. If L′ ∩ U = ∅
then δ(L ,L′) ≥ cLR(U ;L), where δ denotes the Lagrangian Hofer distance.

It seems that we could obtain a sharper estimate by using L  instead
of C, as the former gives

∫ 1
0 oscLHt dt ≥ cLR(U ;L) instead of the oscillations

of H on the whole manifold M . This a priori intriguing fact was explored by Usher
(Usher 2015) who showed that the extra sharpness gets lost in the infimum process,
namely he proved that δ(L ,L′) = inf{

∫ 1
0 oscLHt dt |φ1H(L) = L′}.

Remark II.25. In the Hamiltonian setting, the counterpart of Theorem II.23 was proved
by Viterbo (Viterbo 1992) in cotangent bundles and generalized by Usher (Usher 2010)
to the general case. The classical energy-capacity inequality is the following counterpart
of Corollary II.24.

T II.26. If a Hamiltonian diffeomorphism φ displaces an open set U from itself,
then cHZ(U) ≤ ‖φ‖, where ‖ · ‖ denotes the Hofer norm.

It was initially proved by Hofer (Hofer 1990) in R2n.

Finally, before sketching the proof of Theorem II.23, let us mention that a special
case of this inequality appeared in Barraud–Cornea (Barraud and Cornea 2006) and
Charette (Charette 2012), while a similar inequality was worked out in Borman–McLean
(Borman and McLean 2014).

S    T II.23. Let H be a Hamiltonian such that φ1H(L) = L′

and choose any function f ∈ S+
L (U). We consider the family of Hamiltonian diffeo-

morphisms ψs = φ1sfφ
1
H . Recall from Remark II.6 that when L is aspherical, for any

normalized Hamiltonian F , the spectrum of AF :L only depends on φ1F . It is easy to see
that, here, the spectrum of ψs does not change with s. By S and C
of spectral invariants, this shows that `+ also remains constant.
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Then, by T  and D, one gets that

`+(φ
1
f ) ≤ `+(φ

1
fφ

1
H) + `+((φ

1
H)
−1) = `+(φ

1
H) + `+((φ

1
H)
−1) = γ(φ1H) .

We then conclude with the fact that for f ∈ S+
L (U), `+(φ1f ) = max f |L. (Note that this

fact, as natural as it seems, is not obvious. Our proof relies on the study of geodesics
of Lagrangians in Hofer’s geometry by Milinković (Milinković 2001).) �

3.1.3. The “dual” energy-capacity inequality
This second energy-capacity inequality is not classical and was also proved in (Hu-

milière, Leclercq, and Seyfaddini 2015a). The name “dual” was suggested in (Humilière
2017) and is quite suited because this inequality and the previous one will be used to
prove several pairs of dual statements, see for example Theorem II.37 below.

T II.27. Let L be an aspherical Lagrangian and U± be open subsets of M which
both intersect L. If a Hamiltonian H is constant on each subset, H|U± = ±C±, with values
C± > cLR(U± ;L), then γL(φ1H(L) , L) ≥ min{cLR(U− ;L) , cLR(U+ ;L)}.

Let us consider an easy example. Let U be an open ball in M , centered at a point of
L, and of radius r such that locally the situation is symplectomorphic to the standard
open ball of radius r in R2n while L coincides with Rn × {0}. Then, the Lisi–Rieser
capacity of U is cLR(U ;L) = πr2

2 , see (Lisi and Rieser 2016).
So the theorem states that if a Hamiltonian is constant, equal to (at least) πr2

2 on
such a ball, and constant equal to (at most) −πr2

2 on another, then the spectral distance
between L and its image φ1H(L) is at least

πr2

2 .

Note that, because of C, the same holds when the spectral distance is re-
placed by Hofer’s distance, δ.

Remark II.28. We omit the proof of Theorem II.27 as it is quite similar to that of the
classical energy-capacity inequality. First, in its philosophy, as one also studies how
the action spectrum changes along a homotopy (here along Hs = H − sf for s ∈ [0 , 1],
with the same notation as in the proof of Theorem II.23). Second, in the properties of
the spectral invariants involved, as T  and D, then S
and C are also used here, as well as the fact that `+(φ1f ) = max f |L when
f ∈ S+

L (U).
It is only slightly harder because of the fact that the whole spectrum is not constant

in this case, however, one can show that `+((φ1Hs)
−1) is constant.

Remark II.29. Theorem II.27 is the Lagrangian version of a result which we proved
earlier (Humilière, Leclercq, and Seyfaddini 2015b), namely

T II.30. Let (M ,ω) be a monotone symplectic manifold and let U± be non-empty
open subsets of M . If a Hamiltonian H is constant on each subset, H|U± = ±C± with values
C± > cHZ(U± ;L), then ‖φ̃H‖γ ≥ min{cHZ(U− ;L) , cHZ(U+ ;L)}.

Several remarks are in order. First, ‖·‖γ denotes here the Hamiltonian spectral norm
on H̃am(M ,ω) which is constructed as its Lagrangian counterpart ‖ · ‖γL , however
starting with the Hamiltonian spectral invariants of Section 1.4.

Second, this version is stated for monotone symplectic manifolds and not only for
aspherical ones. Actually, up to requiring the constant C± to be small enough (i.e.
smaller than a fourth of the generator of the group of periods wL), the same statement
holds for any rational symplectic manifold for which the spectral distance can be defined.

The ideas behind the proof of this result are the same as those yielding its aspherical-
Lagrangian counterpart. However, it requires to be slightly more subtle when dealing
with the non-trivial Novikov ring. We also omit the proof and refer to (Humilière,
Leclercq, and Seyfaddini 2015b) for details.
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3.2. Uniqueness of continuous generators of humiotopies
As mentioned in the introduction of this section, the Gromov–Eliashberg Theorem

naturally led to a definition of symplectic homeomorphisms, Definition II.19. Obvi-
ously, one would like to have a working definition of Hamiltonian homeomorphisms
and homeotopies which will be exceptionally called in this section humiomorphisms and
humiotopies respectively7.

The most straightforward idea, i.e. to define them as C0-limits of Hamiltonian dif-
feomorphisms, has the flaw that it is not obvious (nor even known actually) whether
these are “generated” in any relevant sense by functions. The following fix was sug-
gested by Oh and Müller (Oh and Müller 2007). We choose a distance d induced on
M by a Riemannian metric ; the C0-distance between two homeomorphisms φ, ψ is
defined by dC0(φ , ψ) = maxx d(φ(x) , ψ(x)). Similarly, paths of homeomorphisms φt
and ψt (t ∈ [0 , 1]) are at distance dC0(φt , ψt) = maxt,x d(φt(x) , ψt(x)). (A very enjoy-
able property of this distance is that if a sequence of homeomorphisms converges to a
homeomorphism, then the sequence of their inverses converges to the inverse of the limit.)

Definition II.31. A path of homeomorphisms ht is a humiotopy if there exists a sequence
of smooth Hamiltonian functions Hk : R/Z×M→ R (k ∈ N) such that

dC0(φtHk , h
t)→ 0,a) (Hk)k∈N converges uniformly to a continuous function H.b)

Analogously to the smooth case, the limit function H is said to “generate” the isotopy
ht. This is justified by the facts that : Müller and Oh showed that a continuous function
H generates at most one humiotopy, while Viterbo (Viterbo 2006), and later Buhovsky
and Seyfaddini (Buhovsky and Seyfaddini 2013), proved that given a humiotopy, the
generating continuous Hamiltonian is unique. The central result of (Humilière, Leclercq,
and Seyfaddini 2015b) is analogous to the latter, with the C0-distance replaced by the
spectral pseudo-distance γ.

T II.32. Let (M ,ω) be a rational symplectic manifold, let U be a non-empty open
subset of M, I be a non-empty open interval in R and (Hk)k∈N be a sequence of smooth
Hamiltonians so that

(i) for any t ∈ I, ‖φ̃tHk‖γ converges to zero when k goes to infinity,
(ii) (Hk)k∈N converges uniformly on I × U to a continuous function H.

Then, the restriction of H to I × U only depends on the time variable.

Here, given t ∈ R/Z, φ̃tH denotes the homotopy class with fixed endpoints of the
path defined on [0 , 1] by s 7 → φstH . Hence, Condition (i) expresses that φ̃H converges to
Id uniformly in time. The norm ‖ · ‖γ is the Hamiltonian spectral norm on H̃am(M ,ω).
However, by C property of spectral invariants, the conclusion also holds if ‖·‖γ
is replaced by the Hofer norm. The proof of Theorem II.32 mostly relies on the dual
Hamiltonian energy-capacity inequality Theorem II.30 (and very careful choices of ε’s
and δ’s – and η’s and even a σ...).

Remark II.33. Among other consequences, it is interesting to note that we can recover
the (initial) uniqueness of generator of a humiotopy proved by Viterbo. Thus, on one
hand the latter can be seen as a consequence of the dual energy-capacity inequality
Theorem II.30. On the other hand, the “dual” statement, i.e. the uniqueness of a
humiotopy (given a continuous function), is an immediate consequence of the classical
energy-capacity inequality Theorem II.26.

Finally, let us also mention that Theorem II.32 has consequences in terms of
C0-rigidity of the Poisson bracket. This phenomenon was first discovered by Cardin
and Viterbo (Cardin and Viterbo 2008) who proved the following result.

7. As a small tribute to Vincent H. for the very natural names of “hameomorphisms” and
“hameotopies”.
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T II.34. Let (Hk)k∈N and (Gk)k∈N be sequences of smooth Hamiltonians converging
uniformly to the C1,1 Hamiltonians H and G respectively. If the sequence of Poisson brackets
{Hk , Gk} uniformly converges to 0 when k goes to ∞, then H is a first integral of G.

Recall that H is a first integral of G if it is constant along the flow of G. This is
equivalent, when H and G are smooth, to {H ,G} = 0. Theorem II.32 shows that the
same holds for continuous generators of humiotopies (the latter then play the roles of
the respective flows).

3.3. Continuous Hamiltonian dynamics
In this section, we explain that characteristic dynamical properties of smooth Hamil-

tonian isotopies also hold for their continuous analogues. These properties feature some
“big” natural submanifolds which carry a foliation and whose definition follows.

Definition II.35. A submanifold C of a symplectic manifold (M ,ω) is called coisotropic
if for any of its point p, its tangent space contains its symplectic orthogonal : TpC ⊃
(TpC)

ω.
Similarly, a submanifold I is isotropic if TpC ⊂ (TpC)

ω. A coisotropic submanifold
admits a foliation F , called characteristic foliation, with isotropic leaves, F(p) for all p ∈ C.

Obvious examples of coisotropic submanifolds are given by : the ambient manifold
M itself (the leaves of its characteristic foliation corresponding to its points), or any
hypersurface. The smallest ones are Lagrangian submanifolds (which are also the
biggest possible isotropic manifolds). In this case the foliation consists of a unique leaf,
the Lagrangian itself.

As for Darboux neighborhoods, there is a universal local model for any coisotropic
manifold, see e.g. (Libermann and Marle 1987, Proposition 13.7) and (Gotay 1982).

Example II.36 (Coisotropic chart). Let C be a coisotropic submanifold of codimension
k in a 2n-dimensional symplectic manifold. For every point p ∈ C , there exists a chart
(θ , U), such that U is an open neighborhood of p and θ : U→ V ⊂ R2n is a symplectic
diffeomorphism which maps p to 0 and C to the standard coisotropic linear subspace

C0 = {(x1, . . . , xn, y1, . . . , yn) | (yn−k+1, . . . , yn) = (0, . . . , 0)} .
Moreover θ sends the characteristic foliation of C to that of C0, whose leaf through a
point q = (a1 , . . . , an , b1 , . . . , bn−k , 0 , . . . , 0) ∈ C0 is the affine subspace

F0(q) = {(a1, . . . , an−k, xn−k+1, . . . , xn, b1, . . . , bn−k, 0, . . . , 0) | (xn−k+1, . . . , xn) ∈ Rk} .

Now, recall the following two dynamical properties of a coisotropic submanifold C :
(1) H|C is a function of time if and only if φH preserves C and flows along the

leaves of its characteristic foliation, by which we mean that for any p ∈ C and
any t ≥ 0, φtH(p) ∈ F(p).

(2) For each p ∈ C , H|F(p) is a function of time if and only if φH preserves C.
In (Humilière, Leclercq, and Seyfaddini 2015a), we proved that these properties hold for
continuous Hamiltonians. Let us denote by C0

Ham the set of time-dependent continuous
functions on M which generate a hameotopy in the sense of Definition II.31.

T II.37. Let C be a properly embedded connected coisotropic submanifold of a
symplectic manifold (M ,ω). Let H ∈ C0

Ham with induced hameotopy φH.
(1) The restriction of H to C is a function of time if and only if φH preserves C and

flows along the leaves of its characteristic foliation.
(2) The restriction of H to each leaf of the characteristic foliation of C is a function of

time if and only if the flow φH preserves C.

The first item drastically generalizes the aforementioned uniqueness of generators
Theorem : Indeed, if C is taken to be M , leaves of the characteristic foliation coincide
with points in M and the theorem follows immediately :
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Corollary II.38. H ∈ C0
Ham is a function of time if and only if φtH = Id.

When C is a Lagrangian, both items of Theorem II.37 coincide and state that : The
restriction of H to a Lagrangian L is a function of time if and only if φtH(L) = L for all
t. In an interesting manifestation of Weinstein’s creed, “Everything is a Lagrangian
submanifold !”, the general case of Theorem II.37 is essentially deduced from the a
priori particular case of Lagrangians.

Let us focus on the “only if” direction of the first statement, i.e. the fact that if H|C
is a function of time, φH preserves C and flows along the leaves of its characteristic
foliation.

I   . We start with a Lagrangian L. We want to prove that if H|L
is a function of time, then φH preserves L. The first observation is that by working
locally, one can reduce the situation to the case of (a neighborhood of) a point p of the
0-section in T ∗L or simply assume that L is aspherical.

Now, if φtH(p) does not belong to L for some t, it means that φtH displaces some
ball Bε centered at p from L. By definition, H is the C0-limit of a sequence of smooth
Hamiltonians (Hk)k∈N, so that for all k big enough, φtHk displaces some (possibly slightly
smaller) ball Bε′ from L.

By the classical Lagrangian energy-capacity inequality Theorem II.23, we deduce
that for such integers k, the oscillations of Hk on L are greater than cLR(Bε′ ; 0L). The
oscillations on L of H itself are thus also bounded from below by the same quantity.
This obviously contradicts the fact that H|L is a function of time.

Now that the statement is established for Lagrangians, the case of a coisotropic
submanifold C follows (still locally !) by viewing the k-dimensional leaf of C at p = 0,

F0(0) = {(0, . . . , 0, xn−k+1, . . . , xn, 0, . . . , 0) | (xn−k+1, . . . , xn) ∈ Rk}
as the intersection of the following n− k Lagrangians

Λi = {(x1, . . . , xi−1, 0, xi+1, . . . , xn, 0, . . . , 0, yi, 0, . . . , 0)} ⊂ R2n

for 1 ≤ i ≤ n− k. This gives the desired result locally, i.e. for small times, from which
it is not hard to deduce the general case. �

Let us conclude this section with the following facts.
(1) The statement whose proof is sketched above is one of the main ingredients of

the proof of the C0-rigidity of coisotropic submanifolds, Theorem II.39 below.
(2) The proof of the converse statement is similar in spirit, as the general case is also

deduced from the Lagrangian one ; the proof of the Lagrangian case relies in
particular on the dual Lagrangian energy-capacity inequality of Theorem II.27.

(3) The proof of item (2) of Theorem II.37 is based on the Lagrangian case proved
above, together with the aforementioned Theorem II.39, and the fact that the
characteristic foliation of a coisotropic submanifold of M can be viewed as a
Lagrangian in M ×M . We omit it.

3.4. Coisotropic rigidity
Building on the dynamical properties of hameotopies and their generators, we also

established in (Humilière, Leclercq, and Seyfaddini 2015a) a strong rigidity property of
coisotropic submanifolds.

T II.39. Let C be a smooth coisotropic submanifold of a symplectic manifold (M ,ω).
Let U be an open subset of M and θ : U→ V be a symplectic homeomorphism. If θ(C ∩ U)
is smooth, then it is coisotropic. Furthermore, θ maps the characteristic foliation of C ∩ U to
that of θ(C ∩ U).

An important feature of this result is its locality : C is not assumed to be necessarily
closed and θ is not necessarily globally defined.

Moreover, it has an immediate, but quite surprising, consequence.
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Corollary II.40. If the image of a coisotropic submanifold via a symplectic homeomorphism is
smooth, then so is the image of its characteristic foliation.

Finally, Theorem II.39 uncovers a link between two earlier rigidity results and
demonstrates that they are in fact extreme manifestations of a single rigidity phenom-
enon.

One extreme case, where C is a hypersurface, was established by Opshtein (Op-
shtein 2009). Clearly, in this case, the interesting part is the assertion on rigidity of
characteristics, as the first assertion is trivially true.

Lagrangians constitute the other extreme case. When C is Lagrangian, its charac-
teristic foliation consists of one leaf, C itself. In this case the theorem reads : If θ is
a symplectic homeomorphism and θ(C) is smooth, then θ(C) is Lagrangian. Laudenbach
and Sikorav (Laudenbach and Sikorav 1994) proved a similar result : Let L be a closed
manifold and (ιk)k∈N denote a sequence of Lagrangian embeddings, ιk : L→ (M ,ω), which
C0-converges to an embedding ι. If ι(L) is smooth, then (under some technical assumptions)
ι(L) is Lagrangian. On one hand, their result only requires convergence of embeddings
while Theorem II.39 requires convergence of symplectomorphisms. On the other hand,
Theorem II.39 is local : It does not require the Lagrangian nor the symplectic manifold
to be closed.

Before sketching the proof of the theorem, let us suggest the following exercise.

Exercise II.41. Assume Theorem II.39 and give a one-line proof of the Gromov–
Eliashberg Theorem (Theorem II.18 above).

S  . First, we show that the smooth version of the first item of The-
orem II.37 (more precisely, the direction whose proof is sketched above) characterizes
coisotropic submanifolds.

Lemma II.42. If the flow of any smooth autonomous Hamiltonian function H which vanishes
on a submanifold C preserves it, i.e. if for any such function H|C = 0 yields φtH(C) = C,
then C is coisotropic. Moreover, the leaf of its characteristic foliation at any point p is locally
the union of such flows :

F(p) ∩W = {φtH(p) | t ≥ 0, H ∈ C∞c (W ), H|C = 0} ∩W
for some small open set W .

This is not hard to prove. Infinitesimally speaking, it comes down to the fact that H
is constant on C if and only if TpC ⊂ ker(dpH), i.e. XH(p) ∈ (TpC)

ω , while φtH(C) = C
shows that XH(p) ∈ TpC.

Next, assume as in the theorem that a symplectic homeomorphism θ maps (a piece
of) a coisotropic C to a smooth submanifold C ′. Let H be a smooth autonomous
Hamiltonian H which vanishes on C ′. Even though the function K = H ◦ θ, resulting
from pulling back H to C via θ, might be non-smooth, it is a C0-Hamiltonian which
generates the hameotopy θ−1φtHθ. Thus, by item (1) of Theorem II.37, it preserves C ,
which shows that φH preserves C ′. Since this holds for any such H , we conclude with
Lemma II.42. �

3.5. Reduction of symplectic homeomorphisms
We saw in Sections 3.1 to 3.4 that spectral invariants (via energy-capacity inequali-

ties) allowed us to obtain information on continuous Hamiltonian dynamics, and then
in turn on C0 rigidity of coisotropics. In this section, we will see how they can also
suggest the symplectic nature of homeomorphisms which (so far) cannot be shown to
be symplectic in the sense of Definition II.19.

The specific question in which we are interested here was naturally raised by the
C0 rigidity of coisotropic submanifolds. Indeed, let C and C ′ be smooth coisotropic
submanifolds of a symplectic manifold (M ,ω), and denote by F and F ′ their respec-
tive characteristic foliations. Recall that one can define reduced spaces R = C/F and
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R′ = C ′/F ′ as the quotients of the coisotropic submanifolds by their characteristic fo-
liations. These spaces are, at least locally, smooth manifolds and they naturally come
with symplectic structures induced by ω. Assume that a symplectic homeomorphism
φ maps C to C ′, by Theorem II.37 it also maps F to F ′. Thus, it induces a homeomor-
phism φR : R→ R′ of the reduced spaces. It is a classical fact that when φ is smooth,
and hence symplectic, the reduced map φR is a symplectic diffeomorphism as well. It
is therefore natural to ask whether the homeomorphism φR remains symplectic when
φ is not assumed to be smooth.

A first remark is that even starting from a non-smooth symplectic homeomorphism
φ, if we assume the reduced homeomorphism to be smooth, then it is symplectic. This is
quite easily seen to be a consequence of item (1) of Theorem II.37 (again, of the specific
part whose proof is sketched above), see (Humilière, Leclercq, and Seyfaddini 2016).
A similar result, with a similar proof also appeared as (Buhovsky and Opshtein 2016,
Proposition 6).

However, if the reduced homeomorphism is not assumed to be smooth, the question
is still wide open (and possibly too hard for current techniques). Given the difficulty
of this question, one could instead ask if there exist symplectic invariants which are
preserved by the reduced homeomorphism. In this spirit, Opshtein formulated the
following a priori easier problem :

Question II.43. Is the reduction φR of a symplectic homeomorphism φ preserving a
coisotropic submanifold always a capacity preserving homeomorphism ?

This question is very meaningful, since a diffeomorphism preserving a capacity is
symplectic (or anti-symplectic), as mentioned in Section 3.1.1. Partial positive results
have been obtained by Buhovsky and Opshtein (Buhovsky and Opshtein 2016). They
prove in particular that for a hypersurface C the map φR is “non-squeezing”, in the
sense that for every open set U containing a symplectic ball of radius r, the image φR(U)
cannot be embedded in a symplectic cylinder over a 2-disk of radius R < r. This does
not resolve Opshtein’s question, but since capacity preserving maps are non-squeezing
it does provide positive evidence for it. In the case of general coisotropic submanifolds,
they conjecture that the same holds and indicate as to how one might approach this
conjecture.

In (Humilière, Leclercq, and Seyfaddini 2016), we work in the specific setting where
M is the torus T2(k1+k2) equipped with its standard symplectic structure and C is the
standard coisotropic subtorus T2k1+k2 ×{0}k2 . The reduction of C is T2k1 with its usual
symplectic structure. The theorem below shows that the reduced homeomorphism φR
preserves appropriate spectral invariants, namely c+, the “absolute” spectral invariant
from Section 1.4 associated with the fundamental class of M .

T II.44. Let φ be a symplectic homeomorphism of T2(k1+k2) equipped with its
standard symplectic form. Assume that φ preserves the coisotropic submanifold C = T2k1+k2 ×
{0}k2. Denote by φR the induced homeomorphism on the reduced space R = T2k1.

Then, for every time-dependent continuous function H on R/Z×R, we have c+(H ◦φR) =
c+(H), with H ◦ φR defined by H ◦ φR(t , x) = H(t , φR(x)).

This answers Opshtein’s question positively, as it follows immediately that the spec-
tral capacity of Definition II.20 is preserved by φR.

Corollary II.45. The map φR, from Theorem II.44, preserves the spectral capacity, i.e.
c(φR(U)) = c(U) for any open set U .

I     T II.44. Let gR be any continuous real-valued (au-
tonomous for simplicity) function on R and denote by fR the composition fR = gR◦φ−1R .
We want to show that c+(gR) = c+(fR). Let g and f be the respective lifts of gR and fR
to M = T2k1 ×T2k2 given by g(z1 , z2) = gR(z1) and f(z1 , z2) = fR(z1). By construction,
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g ◦ φ−1 = f on C. The situation can be summarized as follows

T2k1+2k2 T2k1+2k2 g g ◦ φ−1 f

C C g|C (g ◦ φ−1)|C f |C

R R gR gR ◦ φ−1R fR

φ
\/

restriction
φ|C

red red reduction
φR

To compare c+(gR) to c+(fR), we have to juggle “absolute” and Lagrangian spectral
invariants, and “classical” and conormal-type Lagrangian spectral invariants. Somehow,
we start at the lower right corner of the diagram above (fR) and we compare spectral
invariants, while going around the diagram in counterclockwise direction. Along the
way, we also use most of their properties and standard arguments (like following the
action spectrum along homotopies of Hamiltonians). Let us sketch very roughly the
proof to illustrate this.

First, we replace c+(fR) by its Lagrangian counterpart `+(fR), via the diagonal
construction of Section 1.4.1. Then, we compare `+(fR) to the conormal-type spectral
invariant `L0,L1(α ; f) (where L0 and L1 are the Lagrangians described in Example II.9).
This is done via a splitting formula which ensures that both quantities coincide.

Remark II.46. This splitting formula was not introduced earlier as it is used only at
this point and implies to first explain how to see the Künneth formula in Floer and
quantum homology. Let us do this now in a very brief fashion.

Let L and L′ be Lagrangians of respective symplectic manifolds (M ,ω) and (M ′ , ω′).
Then L × L′ is a Lagrangian of the product (M ×M ′ , ω ⊕ω′). Quantum and Floer
homologies split, i.e. H∗(L × L′) = H∗(L) ⊗H∗(L

′) with H∗ being either HQ∗ or HF∗.
This splitting agrees with the involved PSS morphisms, and with the filtrations of the
Floer complexes. Consequently it agrees with spectral invariants, in the sense that if
α⊗ α′ 6= 0 in HQ∗(L)⊗HQ∗(L′) corresponds to β in HQ∗(L× L′) :

`L×L′(β;H]H ′) = `L(α;H) + `L′(α′;H ′) .

For classical spectral invariants, this holds even under the monotonicity assumption,
see Theorem 40 in (Leclercq and Zapolsky 2018), with R being the field Z/2Z. For the
conormal-type spectral invariants, the equivalent splitting formula was proved under
asphericity assumption in (Humilière, Leclercq, and Seyfaddini 2016).

The third step is to compare the conormal-type spectral invariant associated with f
with that associated with g ◦ φ−1. In order to do this, we consider the linear homotopy
F between f and g ◦ φ−1. Since these two functions coincide on C and are constant
along the leaves of its characteristic foliation, the same holds for each Fs. This ensures
that the action spectrum does not change along the homotopy F , so that, by S
and C, spectral invariants also remain unchanged.

Next, we compare the conormal-type spectral invariant `L0,L1(α ; g ◦ φ−1) to the
classical `+(g ◦ φ−1). This time, we use the T  for conormal-type
invariants (see Section 1.5) which ensures that `L0,L1(α ; g ◦ φ−1) ≤ `+(g ◦ φ−1).

Applying the diagonal construction again and using the fact that φ is symplectic,
we get at this stage that c+(fR) ≤ c+(g). Going “back” the first three steps, we conclude
that c+(g) = c+(gR) which yields c+(fR) ≤ c+(gR).

By considering φ−1, the same proof yields c+(fR) ≥ c+(gR) which concludes. �

4. On-going work and further perspective (1) : From spectral invariants to
barcodes

Among natural extensions of spectral invariants, the most promising consists in
persistence module and barcode techniques from topological data analysis. They were
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introduced in symplectic geometry by Polterovich and Shelukhin (Polterovich and
Shelukhin 2016) who studied them further with Stojisavljević (Polterovich, Shelukhin,
and Stojisavljević 2017), and also appeared in the framework of Morse–Novikov theory
in work by Usher and Zhang (Usher and Zhang 2016), and in contact geometry in the
work of Fraser (Fraser 2015).

The core idea is that the homology of a filtered chain complex is equivalent to a
persistence module which can be coded in a barcode. In view of the construction of Morse,
quantum, and Floer homology it is then natural to wonder which invariants can be
read from such a representation ; it turns out that not only spectral invariants but also
the boundary depth defined by Usher (Usher 2011b) naturally appear in the barcode.

This section discusses two directions which the author is exploring in this frame-
work, both centered on understanding how barcodes get deformed to one another : via
the various additional structures and morphisms presented in Chapter I for the first
direction, and via a spectral sequence machinery introduced by Barraud and Cornea
(Barraud and Cornea 2007) for the second.

4.1. Persistence modules and barcodes
In the context of this memoirs, we will consider persistence modules of Z/2Z-vector

fields over R which can be defined as functors from R to the category VectZ/2Z of
Z/2Z-vector spaces. Here, R is seen as a category whose objects are the real numbers
and the morphism set between objects x and y is empty if x > y and consists of a single
arrow otherwise.

Equivalently, a persistence module (of Z/2Z-vector fields over R) is a family V =
(V t)t∈R of vector spaces parameterized by R such that for all s and t ∈ R with s ≤ t,
there is a morphism ιt←s : V

s→ V t such that
ιs←s = Id,a) for all r, s, and t ∈ R, if r ≤ s ≤ t then ιt←r = ιt←s ◦ ιs←r.b)

Example II.47. The main example in which we will be interested here is persistence
modules which are obtained by taking the homology of R-filtered chain complexes with
coefficients in Z/2Z. Indeed, let (C , ∂) be such a chain complex, the filtration defines for
all t ∈ R subvector spaces Ct ↪→ C , with natural inclusions Cs ↪→ Ct for s ≤ t, such that
the restriction of ∂ to Ct defines a differential on Ct. The vector spaces V t = H∗(Ct , ∂)
together with the maps induced in homology by the natural inclusions above form a
persistence module.

There is a classification theorem due to Zomorodian and Carlsson (Zomorodian and
Carlsson 2005), and Crawley-Boevey (Crawley-Boevey 2015), which states that if the
persistence module V is finite (in the sense that for all t in R, the dimension of V t is
finite), then V is a direct sum V = ⊕α(Z/2Z)Iα for some uniquely determined intervals
Iα. (The notation (Z/2Z)Iα indicates that V t admits a Z/2Z factor if t ∈ Iα.) The
collection of these intervals form the barcode. Explicit examples of such barcodes are
illustrated below, see Sections 4.2.2 and 4.3.1.

Both sets of persistence modules and barcodes can be endowed with a natural dis-
tance (respectively the interleaving and the bottleneck distance). Even though studying
the properties of these sets with respect to the appropriate distance is one of the goal
of what follows, the specific definition of the distances themselves does not appear ex-
plicitly below and we refer the interested reader to (Polterovich and Shelukhin 2016)
or (Usher and Zhang 2016).

4.2. Morphisms and operations as barcodes
This is a project which the author is currently exploring with Alberto Abbondandolo.

The idea behind it is quite simple. Most of the morphisms and additional structures
built on Morse and Floer homology naturally lead to filtered chain complexes via the
standard cone construction from algebraic topology. Thus, they also lead to persis-
tence modules and barcodes. This gives a way to encode certain important morphisms
between persistent modules into (persistence modules and thus) barcodes.
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Indeed, let (A∗ , ∂A∗ ) and (B∗ , ∂
B
∗ ) be graded chain complexes and consider a chain

map f of degree d between them, f∗ : A∗→ B∗+d. The cone of f , denoted by C(f), is
the graded chain complex (C∗(f) , ∂

f
∗ ) where

Ck(f) = Ak ⊕Bk+d+1 and ∂fk =

(
−∂Ak 0
fk ∂Bk+d+1

)
.

It is designed so that its homology measures how far f is from inducing an isomorphism
in homology. In particular the cone of f is acyclic (i.e. its homology vanishes), if and
only if f is a quasi-isomorphism (i.e. induces an isomorphism in homology).

Now, if we assume that both A and B are filtered by R, it is easy to see that the
cone of a filtration-preserving chain morphism is naturally filtered.
Lemma II.48. If the chain morphism f∗ : A∗→ B∗+d agrees with the respective filtrations,
i.e. if there exists δ(f) ∈ R such that f(At) ⊂ Bt+δ(f) for all t ∈ R, then C(f) admits a
R-filtration defined by Ct∗(f) = A

t−δ(f)
∗ ⊕Bt

∗+d−1 for all t.

The filtered chain complex C(f) yields a persistence module V(f) and a barcode
B(f). Here is a tentative description (whose proof in progress we omit) of the associated
barcode.
Proposition II.49 (Tentative statement...). The barcode B(f) associated with a chain mor-
phism f : A→ B as above admits infinite bars, in one-to-one correspondence with the generators
of the kernel and cokernel of the map induced by f in homology.

Its finite bars are of three types :
(i) finite bars from B(A) shifted by δ(f), and from B(B),
(ii) bars corresponding to the identification of [α] ∈ H∗(A) with f∗[α] 6= 0 ∈ H∗(B),
(iii) bars announcing the birth of an element in ker f∗ or cokerf∗.

Each bar (a , b) of the latter type is “paired” with an infinite bar which starts at b.
4.2.1. The continuation morphism

Let (f1 , ρ1) and (f2 , ρ2) be Morse–Smale pairs on M and pick a regular homotopy
(f , ρ) between them. The continuation morphism induced by (f , ρ) is the degree 0
quasi-isomorphism defined for all critical points p1 of f1, by

Φf,ρ : CM∗(f1, ρ1) −→ CM∗(f2, ρ2) , Φf,ρ(p1) =
∑

#2M(p1, p2; f, ρ) · p2

where the sum runs over all critical points of f2 of index |p2|f2 = |p1|f1 , and extended
by linearity (see the description of the slightly more complicated quantum version in
Section 3.1.2 of Chapter I).

Since the moduli space M(p1 , p2 ; f , ρ) counts negative gradient flow lines of (f , ρ)
connecting p1 to p2, it is easy to see that here Lemma II.48 immediately yields a filtration
on the cone of the continuation morphism, where the shift δ(Φf,ρ) only depends on f1
and f2. The filtration is defined for all t ∈ R by

Ct∗(Φf,ρ) = CM
t−δ(f1,f2)
∗ (f1)⊕ CMt

∗+1(f
2) i.e.

Ct(Φf,ρ) = Z/2Z
〈
p1 ∈ Crit(f1) | f1(p1) < t+m(f1, f2)

〉
⊕ Z/2Z

〈
p2 ∈ Crit(f2) | f2(p2) < t

〉
with δ(f1 , f2) = maxM f2 −minM f1 + ε.
4.2.2. The intersection product

Recall that the Morse-theoretical version of the intersection product is obtained by
counting Y-configurations. More precisely let us briefly adapt Section 3.1.3 in Chapter I
by forgetting all the almost complex data and by picking f2 = f3 (see Remark I.11).
The intersection product

∗r :
(
CM∗(f1)⊗ CM∗(f2)

)
r
=
⊕
k+l=r

CMk(f
1)⊗ CMl(f

2) → CMr−d(f
2)
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is defined on generators p1 ∈ Crit(f1) and p2 ∈ Crit(f2) (and then extended by bilin-
earity) by

p1 ∗ p2 =
∑

#2Y(p1, p2, q2; f
1, ρ1, f2; ρ2) · q2

where the sum runs over all q2 ∈ Crit(f2) of index |q2|f2 = |p1⊗p2|−d = |p1|f1+|p2|f2−d.
A typical element of Y(p1 , p2 , q2 ; f

1 , ρ1 , f2 ; ρ2) is a pair of flow lines (γ1 , γ2) which
meet at t = 0. Namely, γ1 belongs to the unstable manifold of p1 with respect to the
Morse–Smale pair (f1 , ρ1), γ2 to the connecting manifold from p2 to q2 with respect to
(f2 , ρ2), and γ1(0) = γ2(0).

The cone of ∗ is the chain complex

Cr(∗) =
(
CM(f1)⊗ CM(f2)

)
r
⊕ CM(f2)r−d+1 , ∂∗ =

(
−∂⊗r 0

∗r ∂f2r−d+1

)
whose elements of degree r are of the form (p1 ⊗ p2) ⊕ q2 with |p1|f1 + |p2|f2 = r and
|q2|f2 = r − d+ 1. Recall that ∂⊗ is defined by the formula ∂⊗(p1 ⊗ p2) = ∂f

1
p1 ⊗ p2 +

(−1)|p1|f1p1 ⊗ ∂f
2
p2.

Filtering the tensor product by the maximum of the filtration on each factor, and
applying Lemma II.48 to the situation, we get that the cone of ∗ admits a filtration
defined for all t ∈ R by

Ct∗(∗) =
(
CMt
∗(f

1)⊗ CMt
∗(f

2)
)
⊕ CMt

∗+1(f
2) .

The fact that δ(∗) can be chosen to be 0, comes from the observation that p1 ∗ p2 is a
linear combination of critical points of f2 whose values by f2 are strictly lower than
f2(p2).
4.2.3. Perspectives and possible applications

Encoding the intersection product into a barcode would for example allow us to
detect different Morse functions which produce identical barcodes, as in (Polterovich,
Shelukhin, and Stojisavljević 2017, Section 2.4) where this is done by considering the
intersection product with a given homology class (which has to be cleverly chosen a
priori).

It should also allow us to define new invariants of powers of Hamiltonian diffeo-
morphisms (by considering f1 = f2 = F ).

Other structures can obviously be turned into barcodes via the same technique, as for
example the various module structures which appear in Morse and Floer theory. This
might be interesting if one manages to relate the properties of the resulting barcodes to
the properties of the initial structure.

For example, and as for the continuity property of spectral invariants (II.3), one can
show that the map which associates with a Morse function its barcode is continuous
with respect to the C∞ distance on Morse functions and the bottleneck distance on
barcodes, by studying the continuation morphism.

It could be interesting to understand which part of this phenomenon can be read
directly from the barcode associated with the continuation morphism itself, e.g. what
is the relation between the bottleneck distance between two barcodes and the length
of the finite bars of the barcode associated with the continuity morphism between the
complexes defined for the respective Morse functions ? (Note that this also concerns
barcodes coming from module structures, as Shelukhin noticed that one can prove
continuity with respect to the spectral and bottleneck distances by studying the latter
rather than the continuation morphism.)

Another application would be to extract other well-known invariants from these
barcodes. For example, it is not absurd to imagine that we might read (or bound) the
cuplength of a manifold on the barcode of its intersection product.

However, the main reason why we would like to explore this direction is of a different
nature. From the barcode perspective, a morphism of Morse homology deforms a
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barcode into another. Coding the deformation itself into a barcode makes it plausible
to deduce the barcode obtained after deformation by studying the initial barcode and
the barcode of the deformation. Somehow, this is also part of the motivation behind
the idea developed in the next section.

4.3. Spectral sequences as degeneration of barcodes
As the description of the various decorations of the Morse, quantum, and Floer

homologies from Chapter I hopefully made clear, most of them (starting with the differ-
ential of the respective complexes themselves) are defined at the chain level by counting
the 0-dimensional component of suitable moduli spaces. Then, the study of the bound-
ary of the compactification of the 1-dimensional component of the same moduli spaces
shows that they do satisfy the main property which they are expected to satisfy (e.g.
the differential squares to 0, the formula defining the continuation morphism is a chain
morphism...).

Somehow, by using this process we do not take into account the information carried
by the higher dimensional components of the moduli spaces. Barraud and Cornea
(Barraud and Cornea 2007) found a way to encode the additional information by
setting up Morse and Floer versions of the Leray–Serre spectral sequence of the path-
loop fibration.

Let M be a smooth manifold, which we assume simply connected (to ease the
construction and following statements), and from which we fix a point p. Its path-loop
fibration is the fibration given by the evaluation at 1 of paths in M starting at p :

ΩpM PpM M
ev1

whose fiber ΩpM is the set of loops in M based at p. Since p has been chosen once and
for all, we forget it from the notation of the fiber ΩM .

As any fibration, the path-loop fibration of M induces a spectral sequence known as
the Leray–Serre spectral sequence ofM , which we will denote by E(M). Let us describe this
specific example of spectral sequences, by only pointing out some of its main properties.
As for all homology theory in this memoirs, we work with coefficients in Z/2Z.

(1) E(M) consists of a finite numbers of pages, Er(M) with 2 ≤ r ≤ dimM .
(2) Each page is a bi-graded complex (Erp,q(M) , ∂r) such that the Z/2Z-vector

spaces Erp,q(M) = 0 unless q ≥ 0 and 0 ≤ p ≤ dimM .
(3) The differential ∂r as bi-degree (−r , r − 1).
(4) The vector spaces of the (r + 1)-th page are the homology of those of page r,

namely

Er+1
p,q (M) = ker

(
∂r : Erp,q(M) → Erp−r,q+r−1(M)

)
/im

(
∂r : Erp+r,q−r+1(M) → Erp,q(M)

)
.

(5) The vector spaces composing page 2 of the spectral sequence are

E2
p,q(M) = Hp(M)⊗Hq(ΩM) .

(6) The vector spaces of the last page vanish except for EdimM
0,0 = Z/2Z.

Note that property (4) above is satisfied by any spectral sequence. It shows in particular
that the vector spaces of the first page together with all the differentials determine the
whole spectral sequence.

Let us now explain the Morse-theoretical version of this construction. Given a
Morse–Smale pair (f , ρ) for M , Barraud and Cornea constructed a spectral sequence
starting at page 1 which can be roughly described by the facts that

(7) its page 1 is given by E1
p,q(f) = CMp(M ; f)⊗Hq(ΩM),

(8) the differential at page 1 is defined as the differential of the Morse complex

∂1(f,ρ) p =
∑

q | |q|f=|p|f−1

#2M(p, q; f, ρ) q with M(p, q; f, ρ) =
(
U(p) ∩ S(q)

)
/R ,
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(9) similarly, the differential at page r is defined by a suitable “count” of the
elements of M(p , q ; f , ρ) where |q|f = |p|f − r, i.e. the (r − 1)-dimensional
component of the moduli spaces.

Disclaimer II.50. The roughness of the previous description is two-fold. First, the
generators of page r for r ≥ 2 are not critical points of f per se but classes of linear
combinations of such (even when we completely forget the generators of H∗(ΩM)).

More importantly, one should define “counting” the r-dimensional component of
the moduli spaces. The idea behind it is to contract a path in M whose image contains
all critical points. A flow line of f in M going from a critical point to another is then
seen as a loop in the quotient. The r-dimensional components of M(p , q ; f , ρ) can
then be represented by elements in Hr(ΩM).

From (7) and (8) above it is clear that page 2 of this new spectral sequence is
isomorphic (as bi-graded vector space) to page 2 of the Leray–Serre spectral sequence
of M . Thus Barraud and Cornea’s result, which states that both spectral sequences
are isomorphic starting at page 2, shows that the additional information carried by
the higher dimensional components of the connecting manifolds of f with respect to ρ
are encoded in the differentials of the higher order pages of the Leray–Serre spectral
sequence of M .

Now, the rough idea is that property (2) above, together with the fact that the
Morse description comes naturally with a filtration, suggests that each page Er(f) might
be encoded as a barcode Br(f). In this perspective, property (5) then says that the
barcode extracted from page 2 is mostly the barcode coming from the Morse complex,
B2(f) = B(f). Property (6) indicates that the barcode corresponding to the last page
is the trivial barcode consisting of only one infinite bar. In a sense, the succession
of barcodes Br(f) shows how the higher dimensional components of the connecting
manifolds of f make B(f) degenerate to the trivial barcode.

Of course, this is again “rough” as, for example, one has to manage to “organize”
the extra-data coming from the homology of the loop space of M . This seems doable,
at least on easy examples as the following one.
4.3.1. Example of S2 × S4

We build on computations of the Barraud–Cornea spectral sequence of S2 × S4

which we made in (Leclercq 2008) to illustrate the ideas of the previous section.
The setting is as follows : we consider the sum of the height function of each of the

factors. This function f has four critical points denoted pi for i = 0, 2, 4, and 6 in such
a way that the Morse index of pi is i. The non-empty connecting manifolds are

Mp6,p4 , Mp6,p2 , Mp6,p0 ,Mp4,p0 , and Mp2,p0 .

Let α (respectively β) denote the generator of H1(ΩS
2) (respectively H3(ΩS

4)) seen
as homology classes of ΩS2 × ΩS4 = Ω(S2 × S4). It represents Mp6,p4 and Mp2,p0

(respectively Mp6,p2 and Mp4,p0).
The differential at page 2 vanishes except for ∂2p6 = p4 ⊗ α and ∂2p2 = p0 ⊗ α. At

page 3 the differential vanishes identically. At page 4, it vanishes except for ∂4p6 = p2⊗β
and ∂p4 = p0⊗β. The spectral sequence already collapses at page 5. After page 2, only
the classes of p0⊗βk and p4⊗βk (with k ≥ 1) survive. They die at page 4. Schematically,
this is summarized by Figure II.2.

This yields the following series of barcodes. The first one corresponds to the usual
barcode obtained from f : since the function is a perfect Morse function, we only get 4
infinite bars, each starting at a critical value. Then, we take into account ∂2(f,ρ) : B

2(f)

has two finite bars, the left-most one corresponds to p0 ⊗ αk for k > 0, while the right-
most to p4 ⊗ αk for k > 0. They reflect the fact that the 2-dimensional component of
the connecting manifolds is responsible for the death of two classes. Two infinite bars
consequently “disappear” in B3(f), compared to B1(f).
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p0 p0p2 p4 p4p6

α

β β

page 2 page 4

F II.2. The spectral sequence for S2 × S4

0 42 6

−⊗ αkβl, for any k, l ≥ 0.
B1(f)

−⊗ αkβl, for any k > 0, l ≥ 0.
B2(f) p0 ⊗ 1

−⊗ βl, for any l ≥ 0.
B3(f)

The same phenomenon happens when we take into account ∂4(f,ρ) and we end up
with the trivial barcode.

0 42 6

−⊗ βl, for any l ≥ 0.
B3(f)

−⊗ βl, for any l ≥ 0.
B4(f)

p0 ⊗ 1B5(f)

4.3.2. Interpretation and possible applications
As in Section 4.2 above, this might be interesting as a way to encode the deformation

of a given barcode (or the equivalent persistence module) to the trivial one. More
precisely, as in the tentative statement of Proposition II.49, it happens that a finite bar
(a , b) of page r is paired with an infinite bar of page r−1 which starts at b. The barcode
of page r+ 1 can then be deduced from the one at page r− 1 by removing this infinite
bar.

What makes these deformations relevant here is that they are given by (the higher
dimensional components of) the connecting manifolds of f with respect to ρ. This could
for example lead to distinguishing Morse functions which have the same barcode.

The example of S2 × S4 illustrates another interesting phenomenon. Inspired by
the boundary depth, the construction of Barraud and Cornea leads to the notion of r-th
boundary depth, for r ≥ 1. It can be defined as the length of the longest flow line making
a non-trivial contribution to the differential of the r-th page of the Morse-theoretic
Leray–Serre spectral sequence of f . As such, it can be read on the series of barcodes,
as the length of the longest finite bar of Br(f). For r = 1, it coincides with the usual
boundary depth.
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In the example above, while the boundary depth vanishes (since the Morse function
is perfect !), the 2-nd and 4-th boundary depths are non zero.

5. On-going work and further perspective (2) : From symplectic to contact
geometry

As mentioned in the introduction of the present chapter, spectral invariants were
also introduced in the setting of contact geometry. However, they have been defined so
far thanks to generating functions (as those initially defined by Viterbo in symplectic
geometry). Together with Sheila Sandon, we are working on defining them via a Floer-
type theory (in the process of having been) constructed by Sandon (Sandon 201x).

As for their symplectic counterparts, they are expected to be useful to study the
geometry and topology of contactomorphism groups and certain sets of Legendrian
submanifolds.

In this section, we present the main ideas of this project. In order to keep the
presentation short, we will not define the objects but will rather compare them to
their respective symplectic counterparts. For example, in the previous paragraph, a
contactomorphism is the contact counterpart of a symplectomorphism (and they are all
Hamiltonian), while a Legendrian is the counterpart of a Lagrangian.

5.1. Translated point homology and the contact Arnol’d conjecture
The first step of the program is to extend Sandon’s construction from hypertight

contact manifolds, which are the equivalent of aspherical symplectic manifolds, to a
more general situation which we want equivalent to the monotone case.

5.1.1. Going to the monotone case
The main examples we have in mind are prequantization bundles which are principal

S1-bundles over a symplectic base (W ,ω) obtained by a construction due to Boothby
and Wang (Boothby and Wang 1958). In short, let (W ,ω) be a symplectic manifold.
Assume that ω is integral, i.e. it is the image of some integral cohomology class e ∈
H2(W ;Z). Consider the principal S1-bundle

S1 (M,α) (W,ω)π

with Euler class e. Then there is a contact form α on M , whose Reeb flow generates the
S1-action, and which is a connection form with curvature form equal to ω (in particular,
dα = π∗ ω). The contact manifold (M , ξ = kerα) is the prequantization of (W ,ω).

Now, assume that a multiple γ of a fiber is contractible in the total space. Then there
exists a capping A of γ in M . This disc descends as a sphere to W whose symplectic
area is easily seen to coincide with the period of γ, ω(A) = η(γ). Since a contact form
is hypertight if it admits no contractible Reeb orbits, it is not hard to get convinced that
α is hypertight if and only if ω is symplectically aspherical.

Our goal is to be able to work with contact manifolds (M , ξ = kerα) obtained as
total spaces of such S1-bundles over monotone manifolds (W ,ω).

Adapting Sandon’s construction should be rather straightforward, by mimicking the
arguments used to construct Floer homology in monotone symplectic manifolds. This
will allow us to define the translated point homology of M , HT∗(M), which results from a
Floer-type construction. In particular, it comes from a chain complex which is naturally
filtered by the values of an appropriate action functional.

Slightly more precisely, its closest symplectic counterpart is quantum homology seen
as a Morse–Bott Floer theory, similarly to Section 5.1 of Chapter I. Recall that in the latter
case (when we pick the zero Hamiltonian), any point of the manifold is an “orbit” of
the Hamiltonian whose cappings are nothing but spheres. Moreover, the action of such
a capped orbit reduces to the symplectic area of the sphere. Since we saw that the
symplectic area of spheres in W corresponds to the period of capped Reeb orbits in M ,



5. ON-GOING WORK (2): FROM SYMPLECTIC TO CONTACT GEOMETRY 87

one shall not be surprised that the generators of the translated point complex are Reeb
orbits whose action is given by their periods.
5.1.2. A Gysin sequence result

In view of the construction above, it is quite natural to wonder what is the relation
between the “symplectic” homology of (W ,ω) and the “contact” homology of (M , ξ).
It turns out that they are related in the most natural way.

Indeed, we are in the process of establishing the existence of a quantum-Floer Gysin
long exact sequence, comparing the quantum homology of the base to the translated
point homology of the total space. Namely, it takes the form of a long exact sequence

· · · HQk−1(W ) HQk+1(W ) HTk+1(M) HQk(W ) · · ·∪ e π∗ π!

where (as in the topological case) e denotes the Euler class of the bundle (which in our
setting also corresponds to an integral lift of the symplectic form !).

Note that there were earlier adaptations to the symplectic and contact realms of
the Gysin sequence, see for example (Biran and Khanevsky 2013) and (Bourgeois and
Oancea 2013) which are the most relevant to our project.
5.1.3. Application : the contact Arnol’d conjecture

The main motivation for the development of Floer homology was to prove the
Arnol’d conjecture (Arnol’d 1965) which predicts that Hamiltonian diffeomorphisms
have many fixed points. There are several variants of the conjecture, here is one which
is now proved thanks to Floer’s seminal work (Floer 1989b) for monotone closed
symplectic manifolds and generalizations to the general case by Hofer and Salamon
(Hofer and Salamon 1995), Liu and Tian (Liu and Tian 1998), and Fukaya and Ono
(Fukaya and Ono 1999).8

Conjecture II.51. The number of fixed points of a nondegenerate Hamiltonian diffeomorphism
of a closed symplectic manifold (M ,ω) is at least the sum of the Betti numbers of M .

This conjecture obviously follows from the facts that Floer homology is generated
by orbits of a Hamiltonian isotopy and that it is isomorphic to the homology of M .

The naive contact analogue of this conjecture does not hold. For example, the Reeb
vector field which is generated by the constant Hamiltonian 1 does not vanish, so for
small times its flow does not admit any orbit. Morally speaking, being transported by the
flow generated by a constant contact Hamiltonian should not be held against any point
of a contact manifold. In this perspective, the relevant contact analogue to Hamiltonian
periodic orbits, or equivalently to fixed points of Hamiltonian diffeomorphisms, was
introduced by Sandon (Sandon 2011) :

Definition II.52. Let φ be a contactomorphism of a contact manifold (V , ξ). A point
p ∈ V is a translated point of φ if p and φ(p) belong to the same Reeb orbit, and if dpφ
preserves the contact form, (φ∗α)p = αp (concerning this condition, see Remark II.54
below).

Then Sandon (Sandon 2013) conjectured the contact analogue of the Arnol’d con-
jecture in terms of translated points and proved it in the case of S2n−1and RP2n−1.
Since then the conjecture has been proved to hold in several cases, mostly thanks to
Floer–Rabinowitz techniques, see e.g. (Albers and Merry 2013) and (Meiwes and Naef
2015).

The power of Sandon’s Floer-type homology in the perspective of proving this
conjecture is that the generators of the complex are in one-to-one correspondence with
translated points. Thus, as for the classical Arnol’d conjecture, it “only” remains to

8. The Arnol’d conjecture has been a great motivation not only for developing Floer’s theory but
also for writing epic MathSciNet® reviews, see e.g. those of (Liu and Tian 1998) by Jean-Claude Sikorav
and of (Fukaya and Ono 1999) by David E. Hurtubise.
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show that the resulting homology always has “many” generators. This is an important
motivation for its generalization to the case of monotone prequantization bundles.

5.2. Contact spectral invariants and applications
Here is another important motivation. As mentioned above, the translated point

homology comes from a complex which is filtered by the values of the action functional
(which turns out in this case to be the period of the generating Reeb orbits). This allows
us to define spectral invariants in a very similar fashion as the central construction of
this chapter.

The first question (again, in view of the setting) will then be to compare them to
the absolute spectral invariants of the base.

Concerning their properties, most of them (and in particular the most important one,
their continuity) should easily go through. One major difference however concerns the
triangle inequality. Indeed, thus far we have not been able to define a product structure
on the translated point homology. This will be a major issue as triangle inequality
is essential for some applications (as the definition of a spectral distance or spectral
quasimorphisms).

However, there are already several applications of the theory which do not require
spectral invariants to satisfy a triangle inequality. Below, I present two of these appli-
cations to questions which are currently extensively explored.
5.2.1. Contact non-squeezing

Recall from Section 3.1.1, that Gromov’s non-squeezing Theorem states that if the
standard 2n-dimensional symplectic ball of radius r, B2n(r), can be symplectically em-
bedded into the standard 2n-dimensional symplectic cylinder C2n(R) = B2(R)×R2n−2,
then r ≤ R.

In contact geometry, there is a priori no such rigidity. For example, in R3 endowed
with its standard contact structure (which, by Darboux is the local model around any
point of any contact manifold), the map (x , y , z) 7 → (cx , cy , c2z) is a contactomorphism
which can squeeze any domain into an arbitrarily small one.

However, Eliashberg, Kim, and Polterovich (Eliashberg, Kim, and Polterovich 2006)
showed that the contact (non-) squeezing problem was somehow more subtle than the
previous example might have suggested.

T II.53. In R2n × S1 endowed with the contact form dz −
∑

i

(
xidyi − yidxi

)
,

(1) if R2 ≤ m ≤ R1 for some integer m, no compactly supported contactomorphisms map
the closure of B2n

(√
R1
π

)
× S1 into C2n

(√
R2
π

)
× S1,

(2) if n ≥ 2, for any R1 and R2 in (0 , 1), the closure of B2n
(√

R1
π

)
× S1 can be

mapped into B2n
(√

R2
π

)
× S1 by a compactly supported contactomorphism.

The first statement shows that Gromov’s non-squeezing in R2n extends to the pre-
quantized objects if πR2 ≤ m ≤ πr2 for some integer m. The second statement shows
that it does not extend if both πr2 and πR2 < 1. (More recently, Chiu (Chiu 2017) filled
in the blanks, proving that one cannot squeeze the prequantization of B(r) into that
of B(R) if πr2 > πR2 ≥ 1, via completely different techniques coming from microlocal
sheaf theory.)

In (Eliashberg, Kim, and Polterovich 2006), the non-squeezing result is obtained
thanks to involved homology theories (cylindrical contact homology and symplectic ho-
mology). It was reproved, by Sandon (Sandon 2011) thanks to the theory of generating
functions. More precisely, and following earlier work of Bhupal (Bhupal 2001), Sandon
defines contact analogues of Viterbo’s spectral invariants (in other words contact spec-
tral invariants based on generating functions) associated with contactomorphisms, from
which she infers a capacity for subsets (which is analogous to that of Definition II.20)
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which plays the main role in her proof of the non-squeezing result of Eliashberg, Kim,
and Polterovich.
Remark II.54. Contactomorphisms were presented as contact counterparts of Hamil-
tonian diffeomorphisms. This is of course not accurate (Ô le bel euphémisme !) and
here is a very big difference. Contrarily to symplectomorphisms which preserve the
symplectic form, contactomorphisms preserve the contact structure. This means that
they preserve the contact form up to a conformal factor : φ∗α = efα for some real-valued
function f .

One consequence of this fact is that the contact version of Viterbo’s spectral invariants
are not conjugation invariant. However, Sandon proved that they satisfy c(ψφψ−1) =
c(φ) if (and only if) c(φ) ∈ N. Their integer part is thus conjugation invariant and this
is why the condition that “πR2 ≤ m ≤ πr2 for some integer m” naturally appears in
Sandon’s proof.

Since the definition of the spectral capacity does not require the spectral invariants
to satisfy the triangle inequality, there should not be any major issues in giving (yet) an
alternative proof of the non-squeezing result for R2n × S1.
5.2.2. Orderability

Another application which we have in mind concerns the orderability of contact
manifolds. This notion was introduced by Eliashberg and Polterovich (Eliashberg and
Polterovich 2000).
Remark II.55. Contactomorphisms were presented as contact counterparts of Hamil-
tonian diffeomorphisms, with the warning from Remark II.54 that they preserve the
contact form up ta a conformal factor. This is still not accurate (ibid.) and here is another
difference. Contrarily to a Hamiltonian isotopy whose generator is defined up to addi-
tion of a function of time (since the Hamiltonian vector field is defined as ω-dual to the
differential of the Hamiltonian function), the generator of a contact isotopy is uniquely
determined by α(Xt

H) = Ht.
One consequence of this fact is that there is a notion of positive contact isotopy, which

is a contact isotopy generated by a positive contact Hamiltonian function.
This naturally led Eliashberg and Polterovich to the definition of a relation be-

tween contact isotopies which induced a relation on the universal cover of the identity
component of the contactomorphism group of a contact manifold (V , ξ).

Definition II.56. Let φ̃ and ψ̃ ∈ C̃ont0(V , ξ). If φ̃ · ψ̃−1 can be generated by a non-
negative contact Hamiltonian, then φ̃ ≥ ψ̃.

This relation is easily seen to be reflexive and transitive ; when it is anti-symmetric
(and thus defines a partial order), the contact manifold (V , ξ) is said to be orderable. As an
example, let us mention (among the many results which are now known) that RP2n−1

is orderable, while S2n−1 is not. (Note that both manifolds can be obtained as prequan-
tization bundle over CPn−1 endowed with the standard Fubini–Study symplectic form,
multiplied by 1

π for the latter and by
2
π for the former.)

Both results were proved respectively in (Eliashberg and Polterovich 2000) and
(Eliashberg, Kim, and Polterovich 2006) via a criterion established by Eliashberg and
Polterovich which states that a manifold is orderable if and only if there are no positive
contractible loops of contactomorphisms.

This is another occurrence where contact spectral invariants might prove to be useful.
Indeed, it turns out that they detect the lack of such positive contractible loops, as we
can show that, if the spectral invariant associated with any homology class is finite, then
there are no positive contractible loops of contactomorphisms (so that the manifold is
orderable).

Again, this fact does not rely on any type of triangle inequality but rather on the
fact that we understand the behavior of these invariants along continuation morphisms.
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Indeed, the proof consists in making sense of the naive idea that since the loop is
contractible iterating it should not change the value of the spectral invariants, while since
it is positive these values should strictly decrease (for convention reasons, the opposite
of the spectral values strictly increase).



CHAPTER III

Around the Seidel representation

Once upon a time, Seidel...
The Seidel representation was introduced by Seidel (Seidel 1997) who described it

in two quite different (but equivalent !) ways. On one side it can be described as a
morphism

S : π1
(
Ham(M,ω)

)
−→ HQ∗(M)× , φ̃ 7−→ S(φ̃)(III.1)

where HQ∗(M)× denotes the multiplicative group formed by the invertible elements of
HQ∗(M). A quantum class in the image of S is called a Seidel element. This morphism is
defined by counting pseudo-holomorphic sections of Hamiltonian fibrations over S2 with
fibre M . On the other side, it can be seen as a representation of the fundamental group
of the Hamiltonian diffeomorphism group into the automorphisms of Floer homology,

π1
(
Ham(M,ω)

)
−→ Aut

(
HF∗(M)

)
, φ̃ 7−→ φ̃∗ .

The former interpretation will be called geometric and the latter algebraic.

Remark III.1. To be very specific, Seidel’s representation is naturally defined on a cov-
ering of the fundamental group which will be explained below. Since (Lalonde, McDuff,
and Polterovich 1999) and (McDuff 2000), one can work directly on π1(Ham(M ,ω)).
This change of perspective corresponds to choosing a favourite lift of any element of
the fundamental group ; this is very similar and related to Remark I.17. It will be made
explicit in the case of toric manifolds in Remark III.12.

The idea behind the equivalence between the algebraic and geometric viewpoints is
easy to describe. Let φ denote a loop of Hamiltonian diffeomorphisms based at identity.
The automorphism of Floer homology φ̃∗, induced by the homotopy class of φ in the
algebraic interpretation, is the pair-of-pants multiplication by an element of HF∗(M).
This element is thus invertible ; it corresponds, via the PSS morphism, to S(φ̃), the
invertible of HQ∗(M) associated with φ̃ by the geometric version. In short,

φ̃∗ : HF∗(M) −→ HF∗(M) , α 7−→ PSS
(
S(φ̃)

)
∗ α .

Both descriptions have been adapted to the Lagrangian quantum and Floer ho-
mologies of a monotone+ Lagrangian L. In this setting, the resulting morphisms are
naturally defined on (a covering of) the fundamental group of Ham(M ,ω) relative to
Ham(M ,ω ;L), its subgroup consisting of those Hamiltonian diffeomorphisms which
preserve L globally. The algebraic version

π1
(
Ham(M,ω),Ham(M,ω;L)

)
−→ Aut

(
HF∗(L)

)
(III.2)

appeared in (Hu and Lalonde 2010), and the geometric version

π1
(
Ham(M,ω),Ham(M,ω;L)

)
−→ HQ∗(L)×

in (Hu, Lalonde, and Leclercq 2011). The equivalence between the two Lagrangian
viewpoints is also proved in the latter.

Because of the applications discussed in this HDR memoirs, we will present the
Lagrangian algebraic description (III.2) under monotonicity assumption in Section 1.1
and the geometric description in the “absolute” case (III.1) under the more general NEF
assumption in Section 2.2.
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Organization of and contribution to Chapter III
This third chapter gathers results around the Seidel representation obtained in dis-

joint collaborations. The chapter is fairly straightforwardly divided into two parts. Since
the topics of each of these two parts are quite different, they are only overviewed here
and properly introduced at the beginning of each section.

Section 1 exposes a rigidity result obtained with Shengda Hu and François Lalonde
(Hu, Lalonde, and Leclercq 2011). By definition, a Hamiltonian diffeomorphism is
isotopic to identity and thus it acts trivially on the homology of the ambient manifold
M . However, when it preserves a Lagrangian submanifold L whose homology does not
inject into that of M , there is no reason why it should act trivially on the homology
of L. As a matter of fact, there exist Hamiltonian diffeomorphisms which interchange
the two generators of the degree 1 homology group of certain monotone Lagrangian
tori in CP2. Our main result shows that this can not happen when L is assumed to
be aspherical. Equivalently, it says that only those diffeomorphisms of L which induce
the identity in homology can be extended to Hamiltonian diffeomorphism of the total
space. The proof is based on the Lagrangian algebraic description (III.2) of the Seidel
morphism.

Section 2 covers work in collaboration with Sílvia Anjos (Anjos and Leclercq 2017,
2018). In this work, we compute explicitly all the Seidel elements of certain toric sym-
plectic 4-dimensional manifolds. Indeed, these manifolds can be represented by convex
2-dimensional polytopes. Edges of such a polytope correspond to Hamiltonian circle
actions, which are generated by loops of Hamiltonian diffeomorphisms based at identity.
Building on results of McDuff and Tolman (McDuff and Tolman 2006), we show that
when the toric symplectic manifold admits a NEF almost complex structure, we can
compute explicitly the Seidel elements associated with these Hamiltonian circle actions.
This allows us for example to determine specific loops of Hamiltonian diffeomorphisms
of certain blow-ups of CP2 whose homotopy class is in the kernel of the Seidel mor-
phism. We also use our computations of the Seidel elements to get explicit descriptions
of the quantum homology ring of NEF toric symplectic 4-dimensional manifolds. In
particular, we can read the Landau–Ginzburg superpotential of certain of these mani-
folds directly from their associated polytopes.

1. Homological rigidity of Lagrangian monodromy

Let L be a Lagrangian submanifold of a symplectic manifold (M ,ω). The natural
question which motivated (Hu, Lalonde, and Leclercq 2011) is the following. Recall that
we denote by Ham(M ,ω ;L) the subgroup of the Hamiltonian diffeomorphism group
consisting of diffeomorphisms which preserve L. Restriction to L yields the morphism

Ham(M,ω;L) −→ Diff(L) , φ 7−→ φ|L
whose image we denote by G. It induces G∗ a subgroup of Aut(H∗(L)) and the question
is : How big is G∗ ?

T III.2. If L is an aspherical Lagrangian in (M ,ω), then G∗ is trivial, i.e. if a
Hamiltonian diffeomorphism preserves L, it acts trivially on its homology.

Notice that the contrapositive version of the result is an interesting obstruction to
extending a given diffeomorphism of a Lagrangian to a Hamiltonian diffeomorphism
of the ambient space1. It was for example used by Varolgunes (Varolgunes 2016), in
conjunction with Polterovich’s Lagrangian surgery (Polterovich 1991), to prove that spe-
cific Dehn twists of certain immersed Lagrangian spheres do not extend to Hamiltonian
diffeomorphisms.

Disclaimer III.3. Yet another disclaimer ... about coefficient. Theorem III.2 was proved
for coefficient in Z/2Z, Z, and Q. As in the previous chapters, we focus here on Z/2Z

1. Of course, while “being interesting” is subjective, let us point out that it is objectively not interesting
when the homology of L injects in the homology of M .
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coefficient, i.e. G∗ is here a subgroup of Aut(H∗(L ;Z/2Z)). However, in order to discuss
related results below, we denote by G∗,R the relevant subgroup of Aut(H∗(L ;R)).

Theorem III.2 is yet another manifestation of the fact that asphericity tends to
rigidify drastically symplectic objects. Let us examine two different situations.

The most rigid case is that of exact Lagrangian submanifolds of cotangent bundles
T ∗W . Recall that the nearby Lagrangian conjecture states that any closed exact Lagrangian
L in T ∗W is Hamiltonian-isotopic to the 0-section. This conjecture is still wide open :
it is known to hold only for S2 by results of Hind (Hind 2004) and for T2 by results of
Dimitroglou-Rizell, Goodman, and Ivrii (Dimitroglou Rizell, Goodman, and Ivrii 2016).
However, its homological counterpart (with coefficients in Q) was proved by Fukaya,
Seidel, and Smith (Fukaya, Seidel, and Smith 2008) and by Nadler (Nadler 2009). More
precisely, they showed that when W is simply connected and L has Maslov class zero,
the canonical projection π : T ∗W → W induces an isomorphism (π|L)∗ : H∗(L ;Q)→
H∗(W ;Q) and the triviality of G∗,Q follows. The additional assumptions were later
removed respectively by Abouzaid (Abouzaid 2012) and Kragh (Kragh 2013).

On the other hand, monotonicity provides a much softer environment. Natural ex-
amples were constructed by Yau (Yau 2009) showing that it was possible to interchange
the generators of the degree 1 homology group with integer coefficients, H1(T2 ;Z), of
certain monotone Lagrangian tori of CP2 (namely, the Chekanov torus and the standard
monotone torus). Thus, in these cases G∗,Z ' Z/2Z.

1.1. The Seidel morphism (1 – algebraic description)
We now present the algebraic description of the Lagrangian Seidel representation.

Disclaimer III.4. While the proof of Theorem III.2 explained below is carried out under
the assumption of asphericity, we present the construction for monotone Lagrangians.
There are several reasons for this. Not only all required material was introduced in
Chapter I, but also the presentation of the construction is not much more complicated
than in the aspherical case. The main reason, however, is the following fact which is
central in the proof of Theorem III.2 : when L is aspherical, the seidel morphism is
trivial. Thus, it seemed rather pedantic to spend the rest of this section defining the
constant map φ̃ 7 → Id, in such a complicated way.

Let L be a monotone+ Lagrangian of (M ,ω). Our goal is to define the Seidel
representation relative to L which is a morphism

π̃1
(
Ham(M,ω),Ham(M,ω;L)

)
−→ Aut

(
HF∗(L)

)
,(III.3)

where π̃1 is a covering of the fundamental group which we now explain.
The main idea behind the whole construction is very similar to what was explained

about the symplectic action on quantum homology in Section 6.1 of Chapter I, the only
difference being that we want to use Hamiltonian isotopies to act on Floer homology
rather than “only” their time-1map. Thus, while it is as easy to transform a Hamiltonian
chord x0 of a given Hamiltonian into a Hamiltonian chord x1 of another, adapted,
Hamiltonian, there is no canonical way to obtain a capping for x1 from a capping of x0.
This is were the covering of the relative fundamental group above naturally appears :
lifts of the Hamiltonian isotopy to the covering will correspond to (non-canonical) ways
to do that.

Let us be more specific. Let PLHam(M ,ω) be the set of Hamiltonian isotopies2
starting at identity and ending in Ham(M ,ω ;L), and pick φ ∈ PLHam(M ,ω). With a
path γ in M with extremities in L, we associate the path γφ defined by γφ(t) = φt(γ(t)).
This path starts at γ(0) ∈ L and ends in L. Moreover, if [γ] = 0 in π1(M ,L), then
so does γφ ; this was initially proved in the aspherical case by Bialy and Polterovich
(Bialy and Polterovich 1992). Hence, γ 7 → γφ restricts to a map from ΩL to itself.

2. We replace any given isotopy of Hamiltonian diffeomorphisms by a smooth isotopy (which is
thus a Hamiltonian isotopy) in the same homotopy class relative to endpoints.
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Moreover, the action of φ can be lifted to a homeomorphism of Ω̃L and we can define
P̃LHam(M ,ω) as the set of pairs φ̃ = (φ , φ̂) where φ̃ lifts φ, i.e. for all [γ , γ̂] ∈ Ω̃L,
φ̂(γ̂) is a capping of γφ. The covering π̃1(Ham(M ,ω) ,Ham(M ,ω ;L)) is defined as
π0(P̃LHam(M ,ω)).

Now, denote by K : M × [0 , 1]→ R the generator of the isotopy φ = φK . Let (H , J)
be a regular Floer datum for L and define the Lagrangian Floer datum (Hφ , Jφ) by
setting Hφ = K +H ◦ φ−1K and Jφ = φ∗J . This new Floer datum is also regular for L.
Moreover, recall from Section 1.1.1, that Hφ = K ◦H generates the Hamiltonian isotopy
φtK ◦ φtH . Thus, if x is a Hamiltonian chord of H , then xφ is a Hamiltonian chord of
Hφ. Hence, any lift φ̃ of φ induces a map

φ̃ : Crit(AH:L) −→ Crit(AHφ:L) , [x, x̂] 7−→ [xφ, φ̂(x̂)]

which yields an isomorphism of vector spaces φ̃∗ : CF∗(L ;H)→ CF∗′(L ;Hφ). It is
not hard to see that starting from a Floer half-tube u ∈ MF (x̃ , ỹ ;L ;H , J), the same
procedure produces an element uφ : (s , t) 7 → φt(u(s , t)) in MF (φ̃(x̃) , φ̃(ỹ) ;L ;Hφ , Jφ)

so that φ̃ identifies the complexes (CF∗(L ;H) , ∂J,H) and (CF∗(L ;Hφ) , ∂Jφ,Hφ). This
ensures that φ̃∗ descends to an isomorphism, also denoted φ̃∗, in homology. The Seidel
morphism is then defined by φ̃ 7 → φ̃∗.

Remark III.5. The proof of the fact that it only depends on the homotopy class relative
to endpoints of φ ∈ PLHam(M ,ω) is very similar to the last claim of the proof of
Theorem I.22. We omit it completely.

Remark III.6. We can identify further the various moduli spaces entering the definition
of the morphisms and structures described in Chapter I for carefully chosen auxiliary
data (Floer data, triple of data for the product, Floer and quantum data for the module
structure and so on). This shows that the map φ̃∗ : HF∗(L)→ HF∗′(L) “agrees” with
all these nice features.

Additionally, we can also prove with the same techniques that φ∗ is a module mor-
phism when HF∗(L) is seen as a module over HQ∗(L). This extra “mixed” module
structure has a direct description by counting elements in suitable moduli spaces3.
Moreover, it can also be seen as the composition of the PSS morphism together with
the Floer product,

HQ∗(L)⊗HF∗′(L) HF∗+∗′−n(L)

HF∗(L)⊗HF∗′(L)

PSS×Id

•

∗

(but in this case the compatibility with φ∗ is harder to show).

There are obvious similarities between this construction and the symplectic action on
Lagrangian quantum homology, presented in Section 6.1 of Chapter I. The interactions
between the two are central in the proof of Theorem III.2 which occupies the next
section.

1.2. Vanishing of the monodromy in the aspherical case
In this section, we consider a symplectic manifold (M ,ω) and an aspherical La-

grangian submanifold L. Recall that under this assumption, there are no non-constant
pseudo-holomorphic discs in M with boundary in L. In particular, the quantum com-
plex is identified with the Morse complex. On the Floer side, the action functional is

3. Totally unsurprisingly, as we wish to relate generators of the quantum and Floer complexes
to each other, the moduli spaces in question are formed of mixed objects, part string of pearls as in the
definition of the quantum differential and part Floer half-tube as in the definition of the Floer differential.
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well-defined on ΩL since any two cappings of the same chord have same symplectic
area, and the Floer complex is generated by the Hamiltonian chords of H themselves.

Let φ ∈ PLHam(M ,ω) be a Hamiltonian isotopy whose time-1 map is denoted φ1.
With L being aspherical and preserved by φ1, the symplectic action of the latter (see
Section 6.1 of Chapter I) coincides with the action of the diffeomorphism φ1|L on the
Morse homology of L, i.e., under asphericity, Diagram (I.11) reads

(III.4)
HM∗(L) HM∗(L)

HF∗(L) HF∗(L) .

(φ1|L)∗

PSS PSS
φ1∗

Next, we link the symplectic action of φ1 and the automorphism φ∗ obtained by
Seidel’s construction. Recall from Section 4.1.4 of Chapter I that there is a Floer-
theoretical version of Poincaré duality, which basically consists in considering the same
geometric objects but with reversed orientation. The relation between φ∗ and φ1∗ is
illustrated on Figure III.1. The idea is that, in order to send a chord x to φ1(x), one can
first send it to xφ via Seidel’s construction. Then, up to reversing orientations (twice !)
by duality, one gets φ1(x) from the automorphism obtained as the Seidel image of φ,
defined by φt = φ1 ◦ (φ1−t)−1.

x xφ1

xφ

φ1∗
φ∗

φ∗
PD

PD

F III.1. Relation between Seidel’s morphism and symplectic action.

It is straightforward to check that (Hφ)φ = Hφ1 = H
φ1 and (Jφ)φ = Jφ1 = J

φ1

(see notation from Section 4.1.4), and that all the involved pairs are regular as soon as
(H , J) is. Applying the same ideas to the various required objects, one can show that
moduli spaces are pairwise identified so that the following diagram of chain complexes
commutes :

(III.5)
CF∗(L;H, J) CF∗(L;Hφ1 , Jφ

1
) CFn−∗(L;Hφ1

, J
φ1
)

CF∗(L;Hφ, Jφ) CFn−∗(L;Hφ
, J

φ
)

φ∗

φ1∗ PD

PD
φ∗

The dotted arrow, usually denoted (φ∗)!, is defined by the commutativity of the right
square.

Now comes the main point of the proof.

Lemma III.7. When the Lagrangian L is aspherical, Seidel’s morphism is trivial, i.e. for all
φ ∈ PLHam(M ,ω), φ∗ = Id.

Note that this is equivalent to saying that φ∗ acts as the usual Floer continuation mor-
phism. Recall from Diagram (I.8) that continuation morphisms commute with duality.
Thus, assuming Lemma III.7, we can replace φ∗ and φ∗ by continuation morphisms in
Diagram (III.5) which then shows that the symplectic action of φ1 also coincides with
continuation morphism on the complexes. Thus it induces the identity in homology
and Theorem III.2 follows from Diagram (III.4).

It only remains to prove Lemma III.7. This can be done via a very simple alge-
braic trick. Recall from Remark III.6 that HM∗(L) is a ring over which HF∗(L) is a
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module and that φ∗ is a module morphism. The PSS morphism is also a module mor-
phism because, in view of the alternative description of the module structure given in
Remark III.6, this is equivalent to the fact that it intertwines the quantum and Floer
product structures. This yields the following diagram of HM∗(L)-modules

HM∗(L) HF∗(L)

HF∗(L)

PSS

PSS

φ∗

which we now show to commute. Let Φ = (PSS)−1 ◦φ∗ ◦PSS. Recall that [L] ∈ HMn(L)
is the unit of the ring HM∗(L). Since [L] generates HMn(L) (due to Z2 coefficients, signs
are arbitrary), Φ([L]) = [L]. On the other hand, since [L] is also the unit, we have for
any a ∈ HM∗(L) :

Φ(a) = Φ(a · [L]) = a · Φ([L]) = a · [L] = a .

Thus Φ is the identity and the diagram above commutes. As the PSS morphism com-
mutes with the usual comparison morphisms, the diagram shows that φ∗ coincides with
the continuation morphism on Floer homology. Lemma III.7 is proved.

2. Symplectic invariants of toric 4-manifolds

In this section, which covers works in collaboration with Sílvia Anjos (Anjos and
Leclercq 2017, 2018), we explain how to effectively compute the Seidel morphism for
certain toric manifolds.

A symplectic (2n)-dimensional manifold is said to be toric if it admits a Hamiltonian
action of a n-dimensional torus. This action allows to represent the manifold by a par-
ticularly friendly convex polytope in Rn, from which many invariants of the manifolds
can be extracted. Since symplectic toric manifolds satisfying all types of symplectic and
complex assumptions (monotone, Fano, NEF, ...) can easily be built, they form a family
which is quite useful in order to perform explicit computations of abstract constructions.

Disclaimer III.8. In what follows, “the first Chern number of a sphere in M” loosely
refers to 〈c1(TM , J) , [u(S2)]〉 where u is a map u : S2→ M (aka “the sphere”) and J
is an almost complex structure on TM . If no such structure was specified, please pick
any, compatible with ω.

Our computations build on work of McDuff and Tolman (McDuff and Tolman 2006)
who specified the structure of the Seidel element associated with a single Hamiltonian
circle action whose certain fixed point component, denoted Fmax, is semifree4. When
Fmax has codimension 2, their result immediately ensures that if there exists an almost
complex structure J on M so that (M ,J) is Fano, i.e. all J-pseudo-holomorphic
spheres in M have positive first Chern number, the Seidel element consists of a single
term involving the homology class of Fmax (and all lower order terms vanish).

In the presence of J-pseudo-holomorphic spheres with vanishing first Chern num-
ber, there is a priori no reason why arbitrarily large multiple coverings of such objects
should not contribute to the Seidel elements. As a matter of fact, McDuff and Tolman
exhibited an example of such a phenomenon when M admits an almost complex struc-
ture so that (M ,J) is NEF, i.e. so that there are no J-pseudo-holomorphic spheres in
M with negative first Chern number.

In Section 2.2 below, we explain that even though there are infinitely many con-
tributions to the Seidel elements associated with the Hamiltonian circle actions of a
NEF 4-dimensional toric manifold, not only these quantum classes can be expressed by
explicit closed formulae, but also these formulae are readable from the polytope.

4. Recall that this condition means that the action is semifree on a neighborhood of Fmax, or
equivalently here that the stabilizer of each point is trivial or the whole circle.
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Let us for example consider four NEF polytopes which we schematically represent
below. The actual polytopes are closed but we do not care about the edges which
are not drawn. Among the drawn edges, only those represented with non-doted lines
correspond to spheres in the manifold with vanishing first Chern number. The edge Dk

is the edge corresponding to the Hamiltonian circle action Λk whose associated Seidel
element we want to compute. We denote by Ai the homology class of the sphere in M
corresponding to the edge Di.

Dk DkDkDk

Dk+1 Dk+1Dk+1

Dk−1 Dk−1Dk−1

Dk−2 Dk−2Dk−2

P0 P1 P2 P3

The left-most polytope, P0, is Fano and McDuff and Tolman’s result ensures that
SP0(Λk) = Ak ⊗ qtΦmax ∈ HQ4(M ; Γ)× for some Φmax ∈ R.

The polytope P1 is not Fano. Exactly one of the drawn edges corresponds to a
sphere with vanishing first Chern number, Dk+1. Thus, not only Ak contributes to
SP1(Λk) but also lAk+1, for each integer l > 0. In (Anjos and Leclercq 2018), we
showed that the contribution of lAk+1 is −Ak+1 ⊗ qtΦmax−ω(lAk+1) ∈ HQ4(M ; Γ). Thus
we obtain that the Seidel element is

SP1(Λk) = Ak ⊗ qtΦmax −Ak+1 ⊗ q
tΦmax−ω(Ak+1)

1− t−ω(Ak+1)
.

In the polytope P2, exactly two drawn edges correspond to spheres with vanishing
first Chern number, Dk−1 and Dk−2. Thus not only Ak and lAk−1 (for each l > 0)
contribute to SP2(Λk) but also lAk−1 +mAk−2, for each pair of positive integers (l ,m).
Again, we computed each of these additional contributions : lAk−1+mAk−2 contributes
by B ⊗ qtΦmax−ω(lAk−1+mAk−2), where B = −Ak−1 if l ≥ m and Ak−2 otherwise. The
Seidel element is thus given by

SP2(Λk) = Ak ⊗ qtΦmax −Ak−1 ⊗ q
tΦmax−ω(Ak−1)

1− t−ω(Ak−1)

−

(
Ak−1 ⊗ q

tΦmax

1− t−ω(Ak−1)
−Ak−2 ⊗ q

tΦmax−ω(Ak−2)

1− t−ω(Ak−2)

)
t−ω(Ak−1)−ω(Ak−2)

1− t−ω(Ak−1)−ω(Ak−2)
.

Notice that the first line coincides with the previous case while the terms of the second
line are the additional contributions of the classes of the type lAk−1 +mAk−2.

Exercise III.9. Based on the expressions of SP1(Λk) and SP2(Λk) above, guess the
expression of SP3(Λk), the Seidel element associated with the circle action Λk in the
manifold corresponding to the polytope P3.

The next natural case to consider consists of polytopes for which the edge Dk itself
corresponds to a sphere with vanishing first Chern number. To illustrate this situation, in
Section 2.2, we explain how to get the formula for S(Λk) when Dk and Dk+1 correspond
to spheres with vanishing first Chern number (while Dk−1 and Dk+2 do not).

In Section 2.3, by building further on McDuff and Tolman’s ideas, we use the
computations of the Seidel elements to determine explicit presentations of the quan-
tum cohomology ring5 of NEF symplectic toric 4-dimensional manifolds. Indeed, they
showed that there is a ring isomorphism

HQ∗(M ; Γ̌) ' Q[Z1, . . . , Zn]⊗ Γ̌/(Lin(P ) + SRY (P ))

5. One can safely think of it as dual to HQ∗(M ; Γ) from Section 3.2 of Chapter I.
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where n is the number of facets of the polytope, the ideal Lin(P ) can easily be read on
the polytope, while the expression of the ideal SRY (P ) can be obtained thanks to the
expressions of the Seidel elements associated with all circle actions.

By using this presentation, we can in turn compute the Landau–Ginzburg superpo-
tential of certain NEF toric 4-dimensional manifolds. This superpotential, which in the
4-dimensional case is a Laurent polynomial in two variables z1 and z2, also yields a
presentation of the quantum cohomology ring of the manifold : a result of Givental
(Givental 1996) shows that there is an isomorphism

HQ∗(M ; Γ̌) ' Γ̌[z±1 , z
±
2 ]/JW

where JW is the ideal generated by all partial derivatives ofW . In the Fano case, the ex-
pression ofW is known and can easily be extracted from the polytope. In the NEF case,
there are again additional contributions coming from facets corresponding to spheres
with vanishing first Chern number. These contributions are given by Theorem III.15,
when such facets come in groups of at most two consecutive ones.

Remark III.10. This work is closely related to works by Fukaya, Oh, Ohta, and Ono
(Fukaya et al. 2010), González and Iritani (González and Iritani 2012), and Chan, Lau,
Leung, and Tseng (Chan et al. 2017). Roughly speaking, Fukaya et al. gave a presenta-
tion of the quantum homology of toric NEF symplectic manifolds using the Jacobian of
some “open Gromov–Witten potential”. Chan et al. proved that this potential actually
coincides with the Hori–Vafa superpotential and that, in this presentation, the Seidel
elements correspond to simple explicit monomials. This result which builds on a sim-
ilar result by González and Iritani, via mirror symmetry, generalizes ours (this is not
limited to dimension 4). However in dimension 4, our approach is more elementary
and stays on the symplectic side of the mirror. This explains in particular why our results
on the Landau–Ginzburg potential (luckily !) agree up to changes of variables with
those obtained by Chan and Lau (Chan and Lau 2014).

Finally, in Section 2.4, we describe several examples of toric manifolds for which we
compute explicitly all Seidel elements, the Landau–Ginzburg superpotential, etc. This
allows us to find examples of manifolds on which the Seidel morphism is injective, see
Theorem III.19, and examples on which it is not, see Theorem III.18. In the latter case,
we can also exhibit an explicit element of its kernel. As a final remark, let us emphasize
that the examples of Section 2.4.3 for which we compute all Seidel elements are “not
even” NEF.

But first, let us describe the geometric version of the Seidel morphism.

2.1. The Seidel morphism (2 – geometric description)
In this section, we explain the construction of the geometric version of Seidel’s mor-

phism, i.e. the morphism S : π̃1(Ham(M ,ω))→ HQ∗(M ,ω)×. It is defined by counting
pseudo-holomorphic sections of a Hamiltonian fibre bundle over S2 with fibre M .

The first step is the construction of the fibre bundle via the clutching construction :
a fibration over S2 consists of two trivial fibrations over both hemispheres which are
“glued” together along the equator thanks to the choice of a loop of automorphisms
of the fibre. Starting from a symplectic manifold (M ,ω), and a loop of symplectomor-
phisms φ based at identity, this produces a locally trivial symplectic fibration

(M,ω) (Mφ,Ωφ) (S2, ω0) ,
π

hence a symplectic fibre bundle. Its isomorphism class only depends on the homotopy
class of φ. The family Ωφ of symplectic forms parameterized by S2 is a symplectic form
on the vertical sub-bundle TMvert

φ = ker(dπ) of the tangent bundle TMφ. It can be
extended to a closed 2-form Ω̃φ on Mφ if and only if φ ⊂ Ham(M ,ω). In such a case,
(Mφ ,Ωφ) is said to be a Hamiltonian fibre bundle and we see that the isomorphism classes
of such objects are identified with π1(Ham(M ,ω)).
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Next, we fix almost complex structures j on S2 and J on Mφ in such a way that
the projection is pseudo-holomorphic, dπ ◦ J = j ◦ dπ, and for all z ∈ S2, the restriction
of J to the fiber π−1(z) is a (Ωφ)|π−1(z)-compatible almost complex structure. We also
require them to satisfy additional regularity conditions which we omit (even though
these conditions make the following work).

For a section class S in π2(Mφ), we denote the set of (j , J)-pseudo-holomorphic
spheres in the class S by S(j , J , S). The evaluation map at z0 ∈ S2 allows to define a
pseudo-cycle in M , which roughly means that evz0(S(j , J , S)) ⊂M can be compactified
by addition of finitely many submanifolds of codimension at least 2. This pseudo-cycle
yields in turn an honest (Morse) homology class [evz0(S(j , J , S))] see e.g. (Schwarz
1998). This class only depends on the equivalence class of S with respect to the
following relation : S and S′ are equivalent if Ω̃φ(S) = Ω̃φ(S

′) and c1(TMvert
φ ,Ωφ)(S) =

c1(TM
vert
φ ,Ωφ)(S

′).
Via the long exact sequence given in homotopy by the fibration, it is easy to see

that two section classes differ by an element of the second homotopy group of the fibre.
Hence, given a fixed section class S0, any other section class is given as SA = S0 + A,
with A ∈ π2(M). Moreover, two section classes SA and SA′ are equivalent if and only
if A and A′ have same symplectic area and same first Chern number in M , i.e. if
[A] = [A′] ∈ Γ. Notice that since (M ,ω) might not be monotone, the kernels of ω and
c1 do not necessarily coincide ; hence here Γ is defined as the quotient of π2(M) by
kerω ∩ ker c1. This finally defines an element

Q(Mφ, ωφ, S0) =
∑
[A]∈Γ

[evz0(S(j, J, S0 +A))]⊗ q−c1(A)t−ω(A)

in HQd(M ,ω) with d = 2n+ 2c1(TM
vert
φ ,Ωφ)(S0).

The final step is to provide a priori a fixed section class S0 as above. As for the
algebraic description, this is where we introduce the covering π̃1(Ham(M ,ω)). The idea
is the same as in Section 1.1. The set Ω̃M is formed of equivalence classes of capped
orbits (γ , γ̂) where (γ , γ̂) and (γ′ , γ̂′) are equivalent if γ = γ′ and A = [γ̂](−γ̂′)] = 0 ∈ Γ.

Then define Ω̃Ham(M ,ω) as the set of pairs φ̃ = (φ , φ̂) which lift φ to a homeomor-
phism of Ω̃M . The covering π̃1(Ham(M ,ω)) is defined as π0(Ω̃Ham(M ,ω)). Notice that
given a lift φ̃ = (φ , φ̂), we can easily get a fixed section class S

φ̃
by “clutching” a represen-

tative of any element γ̃ in Ω̃M together with a representative of its image φ̃(γ̃). The image
of φ̃ ∈ π̃1(Ham(M ,ω)) by the Seidel morphism is defined as S(φ̃) = Q(Mφ , ωφ , Sφ̃).

Remark III.11. As mentioned at the beginning of Section 1.1, the automorphism of Floer
homology φ̃∗ provided by the Seidel representation is the pair-of-pants multiplication
by the image of Q(Mφ , ωφ , Sφ̃) in HFd(M ,ω) via the PSS morphism. This immediately
shows that Q(Mφ , ωφ , Sφ̃) is invertible.

2.2. The Seidel morphism of NEF symplectic toric manifolds
In this section, we explain how one can compute the image by the Seidel morphism

of a circle action, coming from a Hamiltonian toric action, on a 4-dimensional NEF toric
symplectic manifold, by staring (intensely) at its associated polytope. This is the content
of Theorem 4.5 of (Anjos and Leclercq 2018). The complete proof is quite long and
involved (and sprinkled with tedious computations) so we will only explain its main
steps, in a particular case which already presents all the difficulties.

More precisely, we consider a 4-dimensional closed symplectic manifold (M ,ω),
endowed with a toric structure. We denote by P ⊂ R2 the corresponding Delzant
polytope which is assumed to have at least 4 edges.

Let Λ be a Hamiltonian action generated by a circle subgroup of the acting torus,
and denote its associated moment map by ΦΛ. We assume additionally, that the fixed
point component of Λ on which ΦΛ is maximal is a 2-sphere, Fmax. We denote the
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homology class of this sphere by A ∈ H2(M ;Z), the corresponding edge of P by D, and
by Φmax = ΦΛ(Fmax).

We assume further that M admits a NEF almost complex structure so that D and
a neighboring facet D′ correspond to spheres in M with vanishing first Chern number,
while the two other facets intersecting either D or D′ correspond to spheres with positive
first Chern number. We let A′ ∈ H2(M ;Z) denote the homology class of the sphere in
M corresponding to the edge D′ of P .

Under these assumptions and with this notation, we will see that the only section
classes which contribute to the Seidel element associated with Λ are kA+ lA′ with k ≥ 0
and l > 0. We will also explain how to prove that their respective contribution is
given by akA+lA′ ⊗ qtw(k,l) with akA+lA′ = A if k ≥ l and −A′ otherwise (and w(k , l) =
Φmax − kω(A)− l ω(A′)). In turn, we get that the associated Seidel element is

S(Λ) =

(
A⊗ q

tΦmax

1− t−ω(A)
−A′ ⊗ q

tΦmax−ω(A
′)

1− t−ω(A′)

)
1

1− t−ω(A)−ω(A′)
.

2.2.1. Toric symplectic manifolds
A closed symplectic (2m)-dimensional manifold (M ,ω) is toric if it is equipped

with an effective Hamiltonian action of a m-dimensional torus T . By definition of a
Hamiltonian action, this comes with a moment map, i.e. a map Φ: M→ t∗, where t∗ is
the dual of the Lie algebra t = Lie(T ).

There is a natural integral lattice tZ in t whose elements H exponentiate to circles
ΛH in T , and hence also a dual lattice t∗Z in t∗. By a result of Atiyah (Atiyah 1982), and
Guillemin and Sternberg (Guillemin and Sternberg 1982), the image Φ(M) is a convex
polytope P in t∗. Moreover this polytope is Delzant, that is, it is

simple : at each vertex meet exactly m facets, that is, (m− 1)-dimensional faces,
rational : each facet admits a normal vector which may be chosen integral, and
smooth : at each vertex v the outward normals to the facets meeting at v form a

basis of tZ.
Such a polytope can be described as

P = P (κ) = {x ∈ t∗|〈ηi, x〉 ≤ κi, i = 1, . . . , n}

where P has n facets D1 , . . . , Dn with outward primitive integral normals ηi ∈ tZ and
support constants κ = (κ1 , . . . , κn) ∈ Rn.

Delzant (Delzant 1988) proved that there is a one-to-one correspondence between
toric manifolds and Delzant polytopes up to reasonable equivalence relations, i.e. equi-
variant symplectomorphism of (M ,ω , T ,Φ) and translation of the polytope Φ(M) ⊂ t∗.

So here, we are given a 4-dimensional toric symplectic manifold (M ,ω , T ,Φ).

2.2.2. Hamiltonian fibre bundle associated with a circle action Λ

When we start with a toric symplectic (2m)-dimensional manifold (M ,ω , T ,Φ), it
turns out that the total space of the Hamiltonian fibre bundle obtained via the clutching
construction of Section 2.1 is a (2m+2)-dimensional toric manifold whose polytope can
easily be obtained from Φ(M). This was for example already used in a related context
by González and Iritani (González and Iritani 2012).

In our case, the loop of Hamiltonian diffeomorphisms based at identity we are
interested in is the circle action Λ, generated by some element b ∈ tZ. Then (MΛ ,ΩΛ) is
a 6-dimensional toric manifold whose associated Delzant polytope and integral lattice
are

PΛ = {(x, x0) ∈ (t× R)∗ | x ∈ P, c+ 〈x, b〉 ≤ x0 ≤ 0}

and tΛZ = tZ × Z ⊂ t×R where c > max{〈x , b〉 , x ∈ P} depends on the choice of closed
2-form Ω̃Λ extending ΩΛ. Moreover, the outward normals ηΛ of PΛ are given in terms
of those of P , η, as follows : ηΛ = {ηΛi = (ηi , 0) | ηi ∈ η} ∪ {ηΛt = (0 , 1) , ηΛb = (b ,−1)} .
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Roughly speaking, the polytope associated with MΛ is obtained from that of M as
follows : each facet (edge !) Di of P yields a vertical facet (a 2-dimensional face) DΛ

i of
PΛ. It only remains to “close” the 3-dimensional polytope PΛ with an upper horizontal
facet DΛ

t and a lower facet DΛ
b , which is normal to (b ,−1) ∈ t∗ × R.

2.2.3. The Seidel element associated with a circle action Λ

Recall that M admits an almost complex structure J so that (M ,J) is NEF, that the
maximal fixed point component of the moment map ΦΛ associated with Λ corresponds to
a divisor, which we denoted by Fmax, and that Φmax = ΦΛ(Fmax) denotes the maximal
value of the moment map associated with Λ. Notice that Fmax is semifree (and of
dimension 2) so that we can use the expression of the Seidel morphism associated with
Λ given in (McDuff and Tolman 2006).

Remark III.12. First, we need a bit of preparation. As mentioned in Remark III.1,
there is a way to define the Seidel morphism directly on the fundamental group of the
Hamiltonian diffeomorphism group (and not on a covering). In view of the description
of the Seidel morphism from Section 2.1, it amounts to canonically associating (an
equivalence class of) a section class S0 with a loop of Hamiltonian diffeomorphisms
based at identity.

When the loop in question is a circle action Λ, it is convenient to do it as follows.
Pick a fixed point x lying in Fmax. The “constant” discs {x} × D± (D± denote the
hemispheres of S2) are then naturally glued during the clutching construction, yielding
a section σmax of MΛ. The Seidel element associated with Λ can then be computed
with respect to the equivalence class of σmax : S(Λ) = Q(MΛ , ωΛ , σ̃max). Below, we
denote Amax = [σmax] ∈ H2(M ;Z). Any other section class is given by Amax + B with
B ∈ H2(M ;Z).

Disclaimer III.13. In Seidel’s construction, we are interested in (the equivalence class
of) the homotopy class of sections. However, they contribute to Seidel’s elements via their
homology class. It is thus convenient to consider the subgroup of H2(M) consisting of
spherical classes, i.e. the image of π2(M) via the Hurewicz map. Since toric manifolds
are simply connected, all these groups are isomorphic in the present situation and we
can safely consider the section classes as elements of H2(M).

Next we state the result we need from (McDuff and Tolman 2006). It aggregates
and adapts to the present case Theorem 1.10, Lemma 2.2, Definition 2.4, and Lemma
3.10 of the latter.

T III.14. Under our assumptions, the Seidel element associated with the circle action
Λ is

S(Λ) = [Fmax]⊗ qtΦmax +
∑

B∈H2(M ;Z)>0

aB ⊗ q1−c1(B)tΦmax−ω(B)(III.6)

where H2(M ;Z)>0 consists of all classes of positive symplectic area and the contribution aB ∈
H∗(M ;Z) of the section class Amax+B is defined by requiring that aB ∗M c = GWMΛ

Amax+B,1
(c)

for all c ∈ H∗(M ;Z). Moreover,
(1) if aB 6= 0 then B intersects Fmax, c1(B) = 0, and aB ∈ H2(M ;Z),
(2) if c1(B′) ≥ 1 for all J-holomorphic spheres B′ which intersect Fmax, then all the

lower order terms vanish,
(3) If c1(B′) ≥ 1 for all J-holomorphic spheres B′ which intersect Fmax but are not

included in Fmax, then aB 6= 0 ⇒ c1(B) = 0.

Recall that the polytope P = Φ(M) admits n ≥ 4 facets, D1 , . . . , Dn. These facets
correspond to divisors whose homology classes we respectively denote by A1 , . . . , An
(with the convention that ω(Ai) ≥ 0). We set An = [Fmax] : in other words the facets D
and D′ from the introduction of Section 2.2 are Dn and D1. They correspond via the
moment map to spheres in M with vanishing first Chern number, while the first Chern
number of the spheres corresponding to Dn−1 and D2 are positive.
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For any n-tuple ā = (a1 , . . . , an) ∈ Nn, we denote by Aā =
∑

i aiAi the homology
class of the union of (possibly multiply covered) spheres in M whose projection to P
is given by Dā = ∪iDi. With this notation, Theorem III.14 in particular yields that if
Aā contributes to S(Λ), i.e. the coefficient aB in (III.6) is non-zero for B = Aā, then

(1) Dā is connected and intersects Dn,
(2) c1(Aā) = 0 i.e. for all i so that ai 6= 0, c1(Ai) = 0.
Thus, we need to compute the contribution to S(Λ) of the section class Amax +Bk,l

with Bk,l = kAn+lA1 ∈ H2(M ;Z). A priori, this means to compute the 1-point Gromov–
Witten invariants of MΛ in these specific section classes for any possible constraint
c ∈ H∗(M ;Z). In the next section, we explain that we can reduce the problem to the
computations of very few specific Gromov–Witten invariants.6

2.2.4. Reducing the computation to that of few, simple Gromov–Witten invariants
Since P is Delzant, we can chose Dn and D1 to be orthogonal, and thus so are

their respective outward normals ηn and η1. Consecutive normals satisfy the following
relation : ηi−1 + ηi+1 = diηi where di = −Di ·Di (the indices are set “mod n”). From
this, we deduce the expression of the normals ηi, and in turn ηΛi , for i = n − 1, n, 1,
and 2. We also know the expression of ηΛt and ηΛb , the “top” and “bottom” facets of PΛ

respectively.

Then, we turn to the cohomology ofMΛ. It can be extracted from PΛ in the following
way, see also e.g. Cox and Katz (Cox and Katz 1999), or Batyrev (Batyrev 1993). There
is a ring isomorphism

H∗(MΛ;Q) ' Q[Z1, . . . , Zn, Zt, Zb]/(Lin(PΛ) + SR(PΛ))(III.7)

where Zi ∈ H2(MΛ ;Q) is Poincaré dual to AΛ
i , the degree 4 integral homology class of

MΛ, induced by the pre-image of the facet DΛ
i via the moment map ΦΛ.

The ideal Lin(PΛ) of linear relations is given by the columns of a matrix whose rows
consist of the ηΛi , while the Stanley–Reisner ideal SR(PΛ) cancels products of cohomology
classes corresponding to facets which do not intersect, e.g. Z1Z3, Z1Z4, ... Z2Z4, ... ZbZt.
In our specific case, it is then easy to see that Zn−1, Zn, and Zt are linear combinations
of the other classes so that Z1, ... Zn−2, and Zb generate H2(MΛ ;Q).

Going back to homology, it is then possible to show that A1, and A4 to An generate
H2(M ;Z). In particular, the contribution to S(Λ) of Bk,l = kAn + lA1 with k > 0 and
l ≥ 0 can be written as aBk,l =

∑n
i=1 ai(k , l)Ai where a2(k , l) = a3(k , l) = 0.

Next, remember that the contribution of AB is defined by requiring that aB ∗M c =

GWMΛ
Amax+B,1

(c) for all c ∈ H∗(M ;Z). In particular, for Bk,l we get

a4(k, l) = aBk,l ∗M A3 = GWMΛ
Amax+Bk,l,1

(A3) = 0

since A3 does not intersect Bk,l. Now since a4(k , l) = 0, the coefficient a5(k , l) =

aBk,l ∗M A4 = GWMΛ
Amax+Bk,l,1

(A4) which vanishes for the same reason. Going around the
polytope as above, we see that all coefficients ai(k , l) for 3 ≤ i ≤ n − 2 vanish, and we
get an expression of a1(k , l) and an(k , l) in terms of Gromov–Witten invariants :

a1(k , l) = GWMΛ
Amax+Bk,l,1

(A2),a) an(k , l)−2a1(k , l) = GWMΛ
Amax+Bk,l,1

(A1).b)

We now only need to prove that the pair of coefficients (an(k , l) , a1(k , l)) = (1 , 0)
if k ≥ l, and (0 ,−1) otherwise to get the expected result. This is done by computing
GWMΛ

Amax+Bk,l,1
(A1) and GWMΛ

Amax+Bk,l,1
(A2) by induction.

6. “very few” might seem optimistic as there will remain countably many Gromov–Witten invariants
to compute... However, for a fixed pair (k , l) there will be only two.
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2.2.5. Computing Gromov–Witten invariants by induction : 1. Base case
We computed all base cases for k = 1, and l = 0 or 1 thanks to Spielberg’s formula

(Spielberg 1999b, 1999a) which allows to count genus-0 Gromov–Witten invariants in
toric manifolds, see also Liu (Liu 2013) for a more general result. Spielberg’s formula
was established on the algebraic side of toric actions, based on (cones and) fans of
cones. In our particular case, where we “only” want to count 1-point Gromov–Witten
invariants, the general formula can be simplified. Still... the involved computations
remain rather tedious.

Basically, to compute the 1-point Gromov–Witten invariant in class A with constraint
given by a class B, one needs to consider all possible graphs in the fan (whose vertices
are given by cones of the fan) which represent the class A and contain one of the cones
which are “dual” to B. The whole combinatorial structure of each of such graphs is
encoded in a set of weights, and Spielberg’s formula combines all the weights of all
possible graphs.

For example, given the section class Amax+An+A1 (i.e. for k = l = 1) and constraint
A1, there are 5 such graphs, each of which made of 4 vertices and 3 edges. Moreover
the number of graphs and the complexity of each of them seem to explode with the
complexity of the section class. This explains why we do not add more detail on this
construction here (and also why only the base cases were computed via this method !).

2.2.6. Computing Gromov–Witten invariants by induction : 2. Inductive step
This step also amounts to several pages of tedious computations of all sorts. Hence,

we only explain the main steps.
First, we switch to cohomology so that we now want to compute the 1-point

Gromov–Witten invariants GWMΛ
Amax+Bk,l,1

(Z) when Z is Poincaré dual to A1 and A2,
i.e. respectively Z = Z1Zb and Z2Zb.

The inductive step is based on the splitting axiom of Gromov–Witten invariants which,
in our case, allows to “split” 4-point Gromov–Witten invariants as a sum of products of
3-point Gromov–Witten invariants. Namely, given cohomology classes αi ∈ H∗(M ;Q)
for i ∈ {1 , 2 , 3 , 4},

GWMΛ
A,4(α1, . . . , α4;pt) =

∑
A=A0+A1

∑
ν,µ

GWMΛ
A0,3

(α1, α2, eν) g
νµ GWMΛ

A1,3
(eµ, α3, α4)

where (eν)ν is a basis of H∗(M ;Q), gνµ are the coefficients of the cup-product matrix :
gνµ =

∫
M eν ∪ eµ, and gνµ the coefficients of its inverse. We also use repeatedly two

other properties of the Gromov–Witten invariants, the zero axiom and the divisor axiom.
However, these do not appear explicitly in this sketch of proof.

The first step is to compute GWMΛ
Bk,l,4

(Z1 , Zb , Zb , Z1 ;pt) via the splitting axiom by
considering the partition {(Z1 , Zb) , (Z1 , Zb)}. An unexpected difficulty arises from the
fact that we need to compute specific coefficients of the cup-product matrix and of its
inverse, even though we can not know the whole matrix. Indeed, we only imposed
conditions on the facets Dn−1, Dn, D1, and D2 so that we only know the local picture.
This turns out to be possible, via easy linear algebra considerations. The end result is
a first expression of GWMΛ

Bk,l,4
(Z1 , Zb , Zb , Z1 ;pt), in terms of GWMΛ

Bk,l,1
(Z1Zb).

We then follow the same strategy but considering the partition {(Z1 , Z1) , (Zb , Zb)}.
Here, another difficulty appears due to certain 0-point Gromov–Witten invariants which
we have to compute independently. It also turns out to be possible, thanks to Liu’s
localization techniques. We get a second expression of GWMΛ

Bk,l,4
(Z1 , Zb , Zb , Z1 ;pt), now

in terms of GWMΛ
Bk,l,1

(Z1Z2), which depends on whether k ≥ l or k < l.
Comparing in each case the expressions of GWMΛ

Bk,l,4
(Z1 , Zb , Zb , Z1 ;pt), we obtain

a relation between GWMΛ
Bk,l,1

(Z1Zb) and GWMΛ
Bk,l,1

(Z1Z2) (again, depending on whether
k ≥ l or k < l).
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We proceed along the same lines : starting with

• GWMΛ
Bk,l,4

(Z2 , Zb , Zb , Z2 ;pt), we get relations between the Gromov–Witten invari-
ants GWMΛ

Bk,l,1
(Z2Zb) and GWMΛ

Bk,l,1
(Z1Z2),

• GWMΛ
Bk,l,4

(Z1 , Zb , Zb , Z2 ;pt), we get relations between the invariants GWMΛ
Bk,l,1

(Z1Zb),
GWMΛ

Bk,l,1
(Z2Zb), and GWMΛ

Bk,l,1
(Z1Z2).

Finally, we combine all these relations into simple systems of linear equations. Solving
these gives us the desired Gromov–Witten invariants for all k and l, as well as those
associated to the constraint Z1Z2 (whose base cases we compute via Spielberg’s formula
as above !).

2.3. Quantum cohomology and the Landau–Ginzburg superpotential
We now explain how the previous computations of the Seidel elements help deter-

mining the quantum homology ring, and in turn the Landau–Ginzburg superpotential.
This also follows from (McDuff and Tolman 2006) together with work by Ostrover
and Tyomkin (Ostrover and Tyomkin 2009), which were themselves developments of
original ideas due to Batyrev (Batyrev 1993) and Givental (Givental 1996, 1998).

2.3.1. Quantum cohomology of NEF toric manifolds
Recall from (III.7) that the rational cohomology of a symplectic toric manifold M is

isomorphic to the quotient of the polynomial ring Q[Z1 , . . . , Zn] by the ideal of linear
relations and the Stanley–Reisner ideal. The isomorphism is given by mapping Zi to
Zi, i.e. the variable Zi to the cohomology class of M Poincaré dual to the homology
class Ai induced by the facet Di.

McDuff and Tolman proved that this has the following quantum adaptation :

HQ∗(M ; Γ̌) ' Q[Z1, . . . , Zn]⊗ Γ̌/(Lin(P ) + SRY (P )) .

The first difference is that we consider here the quantum cohomology of (M ,ω). It is
defined similarly to its homological counterpart (compare with (I.4)) by HQ∗(M ; Γ̌) =
H∗(M ;Q)⊗ Γ̌ where Γ̌ is the ring Γ̌ = Γ̌univ[q , q−1] with

Γ̌univ =
{∑
κ∈R

rκt
κ
∣∣ rκ ∈ Q, and for all c ∈ R, #{κ > c | rκ 6= 0} <∞

}
.

The second difference concerns the Stanley–Reisner ideal. The usual Stanley–Reisner
ideal is generated by monomials ZI = Zi1 . . . Zik with 2 ≤ k ≤ 1

2 dimM , whose index
sets I = {i1 , . . . , ik} are primitive, i.e. the facets Di1 , . . . , Dik do not intersect while any
proper subset of {Di1 , . . . , Dik} does.

In the Fano case, the quantum Stanley–Reisner ideal SRY (P ) is generated by differ-
ences of monomials ZI − Z

cI∗
I∗ ⊗ qc1(βI)tω(βI), for all primitive index sets I. Here, I∗ =

{j1 , . . . , jl} is a subset of {1 , . . . , n} disjoint from I , cI∗ ∈ (Z>0)
l, and βI ∈ H2(M ;Z) ;

they are all uniquely determined by I via the combinatorics of P .
In the NEF case, the expression of SRY (P ) is the same except that the classes

Zi are replaced by classes Yi determined by the Seidel elements associated with all
circle actions. More precisely, denote by S∗(Λi) the cohomology class Poincaré dual
to the Seidel element S(Λi). Define yi as the unique element of HQ∗(M ; Γ̌) such that
S∗(Λi) = yi⊗ q−1t−ηi(Di). The element Yi ∈ Q[Z1 , . . . , Zn]⊗ Γ̌ is a lift of yi. It is unique
up to “Γ̌-linear combinations” of the Zi which lie in Lin(P ).

The conclusion is that, in the Fano case (in which one can set Yi = Zi) and in the
NEF case (in which Yi is unique up to Lin(P ), the quantum cohomology of (M ,ω) is
determined by the image S(Λi), of the circle sub-actions by the Seidel morphism.
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2.3.2. The Landau–Ginzburg superpotential of NEF toric manifolds
Here is another presentation of the quantum cohomology ring, via the Landau–

Ginzburg superpotential, obtained by Givental (Givental 1996). When (M ,ω) is a NEF
symplectic manifold, there are ring isomorphisms

HQ∗(M ; Γ̌) ' Γ̌[z±1 , . . . , z
±
m]/JW and HQ0(M ; Γ̌) ' Γ̌univ[z±1 , . . . , z

±
m]/JW(III.8)

where JW is the Jacobian of the Landau–Ginzburg superpotentialW , i.e. W is a Laurent
polynomial and JW is the ideal generated by all its partial derivatives. A useful feature
of W is that, when (M ,ω) is toric, W can be extracted from the polytope. For example,
when (M ,ω) is not only NEF but Fano, W =

∑n
i=1 z

ηitκi , i.e.
(1) it is the sum of n monomials, one for each facet Di of the polytope P ,
(2) the factor zηi of each monomial is zηi = z

ηi,1
1 . . . z

ηi,m
m with ηi = (ηi,1 , . . . , ηi,m) ∈

Zm is the outward primitive vector normal to Di,
(3) the superscript κi is the constant defining the half-space delimited by Di in P

(for all x ∈ P , 〈ηi , x〉 ≤ κi).
In the NEF case, additional terms appear from the existence of facets corresponding

to spheres in M with first Chern number 0. When M is of dimension 4, we can give
the form of these correction terms thanks to our computations of the Seidel elements.

T III.15. With the notation above, the Landau–Ginzburg superpotential has the
following expression.

(1) If Dk is the only edge of P corresponding to a sphere with vanishing first Chern
number, or equivalently if c1 vanishes only on the class Ak, then

W =
n∑
j=1

zηj tκj + zηktκk+1+κk−1−κk .

(2) If c1 vanishes only on the classes Ak−1 and Ak then

W =

n∑
j=1

zηj tκj + zηktκk+1+κk−1−κk + zηk−1tκk+κk−2−κk−1

+ zηktκk+1+κk−2−κk−1 + zηk−1tκk+1+κk−2−κk .

The proof of this result is adapted from the Fano case, as carried out in (Ostrover
and Tyomkin 2009). The idea is to exhibit a surjective ring morphism

Ψ: Q[Z1, . . . , Zn]⊗ Γ̌ → Γ̌[z±1 , . . . , z
±
m]

such that SRY (P ) is in the kernel of Ψ. Then the image of the additive relations yields
the ideal JW . It turns out that in the Fano case, defining Ψ by setting Ψ(Zi) = qzvitκi

provides the desired morphism. This actually comes from the fact that the Stanley–
Reisner ideal is generated by elements of the form ZI − Z

cI∗
I∗ ⊗ qc1(βI)tω(βI). In view of

the discussion concerning SRY (P ) from Section 2.3.2, it is not surprising that defining Ψ
by setting Ψ(Yi) = qzvitκi , where Yi lifts S∗(Λi)⊗ qtηi(Di) to Q[Z1 , . . . , Zn]⊗ Γ̌, provides
the suitable morphism.

Remark III.16. Since our knowledge of W comes from its derivatives, we might forget
possible “constant” terms (only containing the variable t). In the NEF case we know
by (Chan et al. 2017) and (González and Iritani 2012) that such terms do not exist. In
general, however, there might be infinitely many of these.

2.4. Explicit computations and essential loops of Hamiltonian diffeomorphisms
We now present examples of manifolds for which we can explicitly compute the

Seidel morphism and the quantum cohomology ring. We start with a NEF manifold
(which is not Fano) to first illustrate the content of Sections 2.2 and 2.3. This is the
case of the 4-point blow-ups of CP2 presented in Section 2.4.1. Then, in Section 2.4.2,
we consider Fano manifolds, given as specific 3-point blow-ups of CP2, for which we
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can determine an explicit loop of Hamiltonian diffeomorphisms lying in the kernel of
Seidel’s morphism. Finally in Section 2.4.3, we consider the 1-point blow-ups of CP2,
also known as Hirzebruch surfaces. Even though most of these manifolds are “not-
even-NEF”, we can compute all their Seidel elements. These computations yield the
injectivity of the Seidel morphism of all Hirzebruch surfaces.

2.4.1. The 4-point blow-ups of CP2

The 4-point blow-ups of CP2 are also (symplectically) known as the 3-point blow-
ups of S2 × S2. Recall that in Example 3, we illustrate the “final” result of Section 2.3
by reading the expression of the Landau–Ginzburg superpotential of these manifolds
from their polytopes. Below, we complete the example by making explicit the results of
the intermediate steps appearing in Section 2.3. This example is a “strict” application
of the results of Sections 2.2 and 2.3 as these manifolds admit a NEF almost complex
structure, but no Fano ones.

Disclaimer III.17. This section contains explicit material which may not be suitable for
all mathematicians. Reader discretion is advised.

Let X4 be a 3-point blow-up of S2 × S2 endowed with the split symplectic form ωµ
for which the symplectic area of the first factor is µ and the area of the second factor is
1. We denote the capacity of the blow-ups by ci for i = 1 to 4. Let B and F ∈ H2(X4 ;Z)
denote the homology classes respectively defined by B = [S2×{pt}] and F = [{pt}×S2].
Let Ei ∈ H2(X4 ;Z) be the exceptional class corresponding to the blow-up of capacity
ci. Consider X4 endowed with the standard action of the torus T = S1 × S1 for which
the moment polytope is given by

P =

{
(x1, x2) ∈ R2

∣∣∣∣ 0 ≤ x2 ≤ µ, x2 + x1 ≤ µ− c3,
−1 ≤ x1 ≤ 0, c1 ≤ x2 − x1 ≤ µ+ 1− c2

}
so the primitive outward normals to the facets of P are as follows :

η1 = (0, 1), η2 = (1, 1), η3 = (1, 0), η4 = (1,−1), η5 = (0,−1), η6 = (−1, 0), η7 = (−1, 1)

(see also the figure in Example 3). Two constants appear in the expression of the
normalized moment map of X4, namely

ε1 =
c31 + 3c22 − c32 + c33 − 3µ

3(c21 + c22 + c23 − 2µ)
and ε2 =

c31 − c32 − c33 + 3c22µ+ 3c23µ− 3µ2

3(c21 + c22 + c23 − 2µ)
.

Finally, the homology classes Ai = [Φ−1(Di)] of the pre-images of the corresponding
facets Di are : A1 = F − E2 − E3, A2 = E3, A3 = B − E1 − E3, A4 = E1, A5 = F − E1,
A6 = B − E2, and A7 = E2.

Let Λi be the circle action associated with ηi. Since the complex structure on X4

is NEF, we can use the techniques from Section 2.2 to compute the Seidel elements
associated with the circle actions :

S(Λ1) = (F − E2 − E3)⊗ q
tµ−ε2

1− tc2+c3−1
,

S(Λ2) = E3 ⊗ qtµ−c3+ε1−ε2 − (F − E2 − E3)⊗ q
tµ+c2−1+ε1−ε2

1− tc2+c3−1
− (B − E1 − E3)⊗ q

tc1+ε1−ε2

1− tc1+c3−µ
,

S(Λ3) = (B − E1 − E3)⊗ q
tε1

1− tc1+c3−µ
,

S(Λ4) = E1 ⊗ qtε1+ε2−c1 − (B − E1 − E3)⊗ q
tε1+ε2+c3−µ

1− tc1+c3−µ
,

S(Λ5) = (F − E1)⊗ qtε2 ,

S(Λ6) = (B − E2)⊗ qt1−ε1 ,

S(Λ7) = E2 ⊗ qtµ+1−c2−ε1−ε2 − (F − E2 − E3)⊗ q
tµ+c3−ε1−ε2

1− tc2+c3−1
.



2. SYMPLECTIC INVARIANTS OF TORIC 4-MANIFOLDS 107

From these expressions we can deduce those of the yi, coming from the cohomology
class Poincaré dual to S(Λi), thanks to which we can in turn then determine the lifts
Yi. We get

Y1 = Z1 ⊗
1

1− t1−c2−c3
, Y2 = Z2 − Z1 ⊗

t1−c2−c3

1− t1−c2−c3
− Z3 ⊗

tµ−c1−c3

1− tµ−c1−c3
,

Y3 = Z3 ⊗
1

1− tµ−c1−c3
, Y4 = Z4 − Z3 ⊗

tµ−c1−c3

1− tµ−c1−c3
, Y5 = Z5,

Y6 = Z6, and Y7 = Z7 − Z1 ⊗
t1−c2−c3

1− t1−c2−c3
.

Then, we can write explicitly the relations generating the ideals SRY (P ) and Lin(P ).
In order to be able to write them on a line (not to ease the reading though), let us
inappropriately denote t2,3 = 1 − t1−c2−c3 and t1,3 = 1 − tµ−c1−c3 (and decrease the
font...). The quantum cohomology ring of the 4-point blow-ups of CP2 endowed with
the symplectic form ωµ can be described as

HQ∗(X4; Γ̌) ' Q[Z1, . . . , Z7]⊗ Γ̌/(SRY (P ) + Lin(P ))
where SRY (P ) is generated by

Z1Z3 = Z2 ⊗ qt
c3 t2,3t1,3 − Z1 ⊗ qt

1−c2 t1,3 − Z3 ⊗ qt
µ−c1 t2,3,

Z1Z4t1,3 = Z1Z3 ⊗ t
µ−c1−c3 + Z3 ⊗ qt

µ−c1 t2,3,

Z1Z5 = 1 ⊗ q
2
t
µ
t2,3,

Z1Z6 = Z7 ⊗ qt
c2 t2,3 − Z1 ⊗ qt

1−c3 ,

Z2Z4t2,3t1,3 = Z3(Z2 + Z3 + Z4) ⊗ t
µ−c1−c3 t2,3 + Z1Z4 ⊗ t

1−c2−c3 t1,3 − Z1Z3 ⊗ t
1+µ−c1−c2−2c3 ,

Z2Z5t2,3t1,3 = Z1Z5 ⊗ t
1−c2−c3 t1,3 + Z3Z5 ⊗ t

µ−c1−c3 t2,3 + Z3 ⊗ qt
µ−c3 t2,3,

Z2Z6t2,3t1,3 = Z1Z6 ⊗ t
1−c2−c3 t1,3 + Z3Z6 ⊗ t

µ−c1−c3 t2,3 + Z1 ⊗ qt
1−c3 t1,3,

Z2Z7t2,3t1,3 = Z1(Z1 + Z2 + Z7) ⊗ t
1−c2−c3 t1,3 + Z3Z7 ⊗ t

µ−c1−c3 t2,3 − Z1Z3 ⊗ t
1+µ−c1−c2−2c3 ,

Z3Z5 = Z4 ⊗ qt
c1 t1,3 − Z3 ⊗ qt

µ−c3 ,

Z3Z6 = 1 ⊗ q
2
tt1,3,

Z3Z7t2,3 = Z1Z3 ⊗ t
1−c2−c3 + Z1 ⊗ qt

1−c2 t1,3,

Z4Z6t1,3 = Z5 ⊗ qt
1−c1 t1,3 + Z3Z6 ⊗ t

µ−c1−c3 ,

Z4Z7t2,3t1,3 = Z1Z4 ⊗ t
1−c2−c3 t1,3 + Z3Z7 ⊗ t

µ−c1−c3 t2,3 − Z3Z1 ⊗ qt
1+µ−c1−c2−2c3 + 1 ⊗ q

2
t
µ+1−c1−c2 t2,3t1,3,

Z5Z7t2,3 = Z1Z5 ⊗ t
1−c2−c3 + Z6 ⊗ qt

µ−c2 t2,3

and Lin(P ) is generated by Z6 = Z1 + 2Z2 + Z3 − Z5 and Z7 = −Z1 − Z2 + Z4 + Z5.

We now turn to the Landau–Ginzburg superpotential. We translate the situation to
homology whose generators are more natural. Indeed, recall that the homology classes
Ai = [Φ−1(Di)] ∈ H2(X4 ;Z) are additive generators of H2(X4 ;Z) and multiplicative
generators of HQ∗(X4 ; Γ). Moreover the subring HQ4(X4 ; Γ) is generated by the ele-
ments Ai ⊗ q, i.e. Ei ⊗ q, for i = 1 to 3, (F − E1)⊗ q, (B − E2)⊗ q, (F − E2 − E3)⊗ q,
and (B − E1 − E3)⊗ q.

The presentation of the quantum cohomology above thus leads to the following
presentation of HQ4(X4 ; Γ) :

HQ4(X4; Γ) ' Γuniv[u, v]/J

where

u = (F − E2 − E3)⊗ q
1

1− tc2+c3−1
, and v = (B − E1 − E3)⊗ q

1

1− tc1+c3−µ

and J is the ideal generated by the following two relations :

v(1 + vtc1) = u2tµ(v + tc2−1)(1 + vtc3), and u(1 + utc2) = v2t(u+ tc1−µ)(1 + utc3).

Now, the expression of the Landau–Ginzburg superpotential given in Example 3,

W = z2t
µ + z1z2t

µ−c3 + z1 + z1z
−1
2 t−c1 + z−1

2 + z−1
1 t+ z−1

1 z2t
µ+1−c2 + z1t

µ−c1−c3 + z2t
µ+1−c2−c3
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leads to the ideal JW generated by

∂z1W = z2t
µ−c3 + 1 + z−12 t−c1 − z−21 t− z−21 z2t

µ+1−c2 + tµ−c1−c3 ,

∂z2W = tµ + z1t
µ−c3 − z1z

−2
2 t−c1 − z−22 + z−11 tµ+1−c2 + tµ+1−c2−c3 .

It is easy to see that JW coincides with J by setting u = z−12 t−µ and v = z−11 .
2.4.2. The 3-point blow-ups of CP2

Using the techniques presented above, we determined in (Anjos and Leclercq 2017)
an explicit loop of Hamiltonian diffeomorphisms lying in the kernel of the Seidel mor-
phism of certain 3-point blow-ups of CP2.

Namely, we consider the symplectic manifold Xc1,c23 endowed with the symplectic
form ωc1,c21 , obtained from (S2 × S2 , ω1) by performing two successive blow-ups of
capacities c1 and c2 such that 0 < c2 ≤ c1 < c1 + c2 ≤ 1. (The symplectic form ω1 is the
monotone split symplectic form for which the symplectic area of each factor is 1.) For
the standard Hamiltonian torus action, the moment polytope is given by

P =
{
(x1, x2) ∈ R2 | 0 ≤ x2 ≤ µ, −1 ≤ x1 ≤ 0, c1 ≤ x2 − x1 ≤ µ+ 1− c2

}
so the primitive outward normals to P are as follows :

η1 = (0, 1), η2 = (1, 0), η3 = (1,−1), η4 = (0,−1), η5 = (−1, 0), and η6 = (−1, 1) .

First, following the same steps as for X4 above, we can compute explicitly the Seidel
elements associated with the circle actions Λi. From these expressions we can further
compute the ideal SRY (P ), and conclude that there is an isomorphism

HQ4(X
c1,c2
3 ; Γ) ' Γuniv[u, v]/Ic1,c2

where Ic1,c2 is the ideal generated by

u2v2 + u2vt−c2 = vt−1−c2 + t−2+c1−c2 and u2v2 + uv2t−c2 = ut−1−c2 + t−2+c1−c2 .

Note that, alternatively, we can also read this result in (Entov and Polterovich 2008).
Second, recall from (Anjos and Pinsonnault 2013, Theorem 1.1) that if c2 < c1 then

π1(Ham(Xc1,c23 , ωc1,c21 )) ' Z〈x0, x1, y0, y1, z〉
where the generators x0, x1, y0, y1, and z correspond to circle actions contained in
maximal tori of the Hamiltonian group. In particular, x0 = Λ2 and y0 = Λ1 are the
circle actions associated with the primitive outward normals to the polytope P defined
above, η2 and η1 respectively. Recall also that the case c1 = c2 is an interesting limit
case in terms of the topology of the Hamiltonian group since y1 disappears.

Using the explicit description of HQ4(X
c1,c2
3 ; Γ) given above, and the explicit expres-

sions of the Seidel elements S(x0) and S(y0) associated with the generators x0 and y0,
it is then quite easy to prove that

T III.18. The class of 2(x0 + y0) belongs to ker(S) if and only if c1 = c2.

Hence, we have determined an element of kerS on Xc,c3 for all c ∈ R. Note that
for c0 = 1

2 , X
c0,c0
3 is monotone. We can build other examples from the latter, e.g. by

products via (Leclercq 2009).
2.4.3. The 1-point blow-ups of CP2

Hirzebruch surfaces are particularly interesting examples. Recall that the toric
“even” Hirzebruch surfaces (F2k , ωµ), 0 ≤ k ≤ ` with ` ∈ N and ` < µ ≤ ` + 1,
can be identified with the symplectic manifolds (S2 × S2 , ωµ). The moment polytope
of F2k is {

(x1, x2) ∈ R2 | 0 ≤ x1 ≤ 1, x2 + kx1 ≥ 0, x2 − kx1 ≤ µ− k
}

and its primitive outward normals are
η1 = (1, 0), η2 = (−k,−1), η3 = (−1, 0), and η4 = (−k, 1).
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Let Λ2k
1 and Λ2k

2 represent the circle actions whose moment maps are, respectively,
the first and the second component of the moment map associated with the torus
action T2k acting on F2k. It follows from the classification of 4-dimensional Hamiltonian
S1-spaces established by Karshon (Karshon 1999) that Λ2k

1 and Λ2k
2 satisfy the relations

Λ2k
1 = kΛ2

1 + (k − 1)Λ0
1 and Λ2k

2 = kΛ0
1 + Λ0

2.
Since F0 is Fano and F2 is NEF, we can compute explicitly the Seidel elements

associated with Λ0
1, Λ0

2, and Λ2
1. Thus, we get those associated with the circle actions of

F2k, even though for all k ≥ 2, F2k is non-NEF. In particular, we can give the explicit
expressions of the Seidel elements of F4 which admits a pseudo-holomorphic sphere
with negative first Chern number, representing the class B− 2F where B = [S2 ×{pt}],
and F = [{pt} × S2].

We made these computations in (Anjos and Leclercq 2018) and used them to deduce
the ideal SRY (P ) and in turn the Landau–Ginzburg superpotential W up to “constant”
terms (containing only powers of t), see Remark III.16. It is interesting to observe
that even in this non-NEF example the number of quantum corrections in the Landau–
Ginzburg superpotential is still finite. However, the number of constant terms is expected
to be infinite.

Finally, let us recall from (Abreu and McDuff 2000) that the circle actions whose
associated Seidel elements are computed above are known to generate the fundamen-
tal group of the Hamiltonian diffeomorphism group of the even Hirzebruch surfaces.
Moreover, similar computations can be made for the “odd” Hirzebruch surfaces, so
that we were also able to compute all their Seidel elements. This led us in (Anjos and
Leclercq 2017) to prove the injectivity of the Seidel morphism.

T III.19. On all Hirzebruch surfaces, the Seidel morphism is injective.

3. Further developments and prospects

There are several extensions of the Seidel morphism for which there is hope to get
explicit information in the setting of and with similar techniques as those presented in
Section 2.

3.1. Homotopy of the Hamiltonian group in higher degrees
There exist invariants of the homotopy/homology groups of higher degree of Hamil-

tonian diffeomorphism groups generalizing Seidel’s construction : the Floer-theoretic
invariants for families defined by Hutchings in (Hutchings 2008) and the quantum
characteristic classes introduced by Savelyev in (Savelyev 2008).

Briefly recall that the former are morphisms π∗(Ham(M ,ω))→ End∗−1(HQ∗(M ,ω))
obtained as higher continuation maps in Floer homology. The latter are defined via
parametric Gromov–Witten invariants and lead to ring morphisms

H∗(ΩHam(M,ω),Q) −→ HQ2n+∗(M,ω) .

Both constructions reduce to the Seidel representation, respectively, in degree 1 and 0.
It would be interesting to see if they can be computed, for example for some 2- and
3-point blow-ups of CP2. Indeed, the homotopy algebra of the Hamiltonian diffeomor-
phism groups of these manifolds are known, see (Pinsonnault 2008) and (Anjos and
Pinsonnault 2013).

This extension is also related to an open question (raised by Alexandru Oancea) and
concerning the Lagrangian Seidel morphism as described in Section 1.1. Indeed, in (Hu
and Lalonde 2010), the authors showed that the Lagrangian and “absolute” versions
of Seidel’s morphism are involved in the following commutative diagram :

(III.9)
π̃1(Ham(M,ω)) π̃1(Ham(M,ω),Ham(M,ω;L)) π̃0(HamL(M,ω))

HQ∗(M) HQ∗(L)

S SL
A
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The morphism A is the quantum counterpart of a morphism initially introduced by
Albers (Albers 2008) in Floer theory, by counting chimneys. It can alternatively be de-
scribed as the quantum product with the fundamental class of L, A = · ∗[L] : HQ∗(M)→
HQ∗(L), as described in Section 3.3 of Chapter I.

The upper horizontal sequence (is exact and) comes from the usual long exact
sequence of homotopy groups for pairs, so that one might wonder how to extend the
diagram to the left. It seems quite reasonable to think that the answer to this question
goes through a Lagrangian adaptation of Hutchings’ or Savelyev’s works.

3.2. Bulk extension
The version of quantum homology defined in Section 3.2 of Chapter I, and used in

the present chapter, should be referred to as the small quantum homology ring. There
is also a notion of big quantum homology ring, obtained by considering not only the
usual quantum product but also a family of deformations via even-degree cohomology
classes of M , see e.g Usher (Usher 2011a) and Fukaya, Oh, Ohta, and Ono (Fukaya
et al. 2011) for a precise definition.

For b ∈ Hev(M), one ends up with HQb∗(M ,ω) isomorphic to HQ∗(M ,ω) as a
vector space but with a twisted product. Fukaya et al. extended Seidel’s morphism
to morphisms π1(Ham(M ,ω))→ HQb∗(M ,ω)× and generalized in the toric case part of
the results of McDuff and Tolman. It would be interesting to see which information on
the big quantum homology can be extracted from the computations of Section 2.

3.3. Lagrangian setting
As we saw in Section 1 of the present chapter, the Seidel morphism has been ex-

tended to the Lagrangian setting in works by Hu and Lalonde (Hu and Lalonde 2010),
and Hu, Lalonde, and Leclercq (Hu, Lalonde, and Leclercq 2011). Following McDuff
and Tolman, Hyvrier (Hyvrier 2016) computed the leading term of the Lagrangian Sei-
del elements associated with circle actions preserving some given monotone Lagrangian.
He showed that when the latter is the real Lagrangian of a Fano toric manifold, all lower
order terms vanish.

It could be interesting to study the Lagrangian case in NEF toric manifolds. However
the preliminary question of the structure of the lower order terms has to be tackled with
different techniques than the ones used by Hyvrier since those require the use of almost
complex structures which generically lacks regularity. Let us also mention that Hyvrier’s
work, as well as such an extension, provide examples where one can apprehend the
categorical refinement of the Lagrangian Seidel morphism due to Charette and Cornea
(Charette and Cornea 2016).

Finally, it would also be interesting to see if the examples (at least the monotone one
when both blow-ups have capacity 1

2) of essential loops of Hamiltonian diffeomorphisms
undetected by Seidel’s morphism which were constructed in (Anjos and Leclercq 2017)
can be adapted to the Lagrangian setting, for example via the diagonal construction
from Section 5.3 of Chapter I, or via the Albers comparison map (III.9) above.

3.4. Contact setting
There should be an extension of the algebraic description of Seidel’s morphism

to the contact setting, via Sandon’s homology of translated points. Given a contact
manifold (V , ξ), the resulting morphism should be naturally defined on the relative
fundamental group π1(Cont0(V , ξ) ,Conts0(V , α)) up to necessary coverings. In the pre-
vious expression, Conts0(V , α) denotes the group of those contactomorphisms which
preserve the contact form α and not only the contact structure ξ = kerα. (This re-
striction comes from the fact that at a translated point of a contactomorphism φ, φ is
required to preserve the contact form, see Definition II.52.)

Because of our Lemma III.7 which asserts the triviality of the Lagrangian Seidel
morphism under the asphericity condition, it is reasonable to expect that this contact
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counterpart of Seidel’s morphism will turn out to be trivial on (for example) prequan-
tization bundles over aspherical symplectic manifolds. However, there is no a priori
reasons why it should be trivial when the base is monotone. This also motivates our
work to define translated point homology in this case, see Section 5.1.1. Defining such
a contact Seidel morphism on the total space of a prequantization bundle will imme-
diately raise the question of its relationship with the (usual) Seidel morphism of the
base.
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