Contribution à l'étude des valeurs extrêmes dans un contexte spatial

 $C.\ Lantu\'ejoul$ christian.lantuejoul@ensmp.fr

Centre de Géostatistique Ecole des Mines de Paris

Introduction

Source d'inspiration:

- le rapport "Dépendance des extrêmes" de J.N. Bacro sur les coefficients de dépendance asymptotique;
- les modèles de type "tempête" étudiés par M. Schlather dans "Models for stationary max-stable random fields";
- la théorie des ensembles aléatoires de Matheron.

Thèmes abordés:

- coefficients de dépendance asymptotique des extrêmes;
- caractérisation statistique des modèles "tempête";
- utilisation des outils de la théorie des ensembles aléatoires à l'étude des extrêmes.

Coefficients de dépendance asymptotique des extrêmes

Quelques questions

Soient X et Y deux variables aléatoires positives. Pour étudier la dépendance asymptotique des extrêmes de X et de Y, deux fonctions χ et $\bar{\chi}$ ont été introduites:

$$\chi(z) = P\{Y > z \mid X > z\} \qquad \bar{\chi}(z) = \frac{\ln[P\{X > z\}P\{Y > z\}]}{\ln P\{X > z, Y > z\}}$$

On a ensuite posé $\chi = \lim_{z \longrightarrow \infty} \chi(z)$ ainsi que $\bar{\chi} = \lim_{z \longrightarrow \infty} \bar{\chi}(z)$.

L'introduction de ces coefficients suscite les questions suivantes:

- pourquoi $\bar{\chi}$ est symétrique en X et en Y, et pas χ ?
- pourquoi l'introduction des logarithmes?
- quels sont les liens exacts entre ces coefficients?
- d'autres coefficients peuvent ils être envisagés?
- les répartitions spatiales des faibles et des fortes valeurs peuvent elles être étudiées de la même façon?

Cas de variables échangeables

Plutôt que de considérer X et Y, il est plus commode de s'intéresser au minimum $X \wedge Y$ et au maximum $X \vee Y$ de X et de Y.

Dans ce cas, il n'existe que deux lois non triviales reliant ces deux variables:

$$\alpha(z) = P\{X \land Y > z \mid X \lor Y > z\} \qquad \beta(z) = P\{X \lor Y < z \mid X \land Y < z\}$$

Ces quantités se récrivent

$$\alpha(z) = \frac{P\{X \land Y > z\}}{P\{X \lor Y > z\}} \qquad \beta(z) = \frac{P\{X \lor Y < z\}}{P\{X \land Y < z\}}$$

Il n'existe pas de relation simple entre $\alpha(z)$ et $\beta(z)$ hormis

$$\alpha_{X,Y}(z^{-1}) = \beta_{X^{-1},Y^{-1}}(z)$$
 $\beta_{X,Y}(z^{-1}) = \alpha_{X^{-1},Y^{-1}}(z)$

Quelques exemples

Exemple 1: X et Y sont complétement indépendantes de même loi F.

$$\alpha(z) = \frac{1 - F(z)}{1 + F(z)}$$
 $\beta(z) = \frac{1 - \bar{F}(z)}{1 + \bar{F}(z)}$

où $\bar{F}=1-F$ est la fonction de répartition complémentaire de F. Lorsque z croit, α est décroissante de 1 vers 0 tandis que β est croissante de 0 vers 1. Leur vitesse de croissance ou de décroissance dépendent de F.

Exemple 2: X et Y sont totalement dépendantes (X = Y). On trouve immédiatement $\alpha(z) = \beta(z) = 1$.

Exemple 3: X et Y sont totalement dépendantes avec la probabilité r ou bien complétement indépendantes de même loi F avec la probabilité complémentaire 1-r. On a alors

$$\alpha(z) = \frac{1 - (1 - r)F(z)}{1 + (1 - r)F(z)} \qquad \beta(z) = \frac{1 - (1 - r)\bar{F}(z)}{1 + (1 - r)\bar{F}(z)}$$

A la limite, on obtient

$$\lim_{z \to \infty} \alpha(z) = \lim_{z \to 0} \beta(z) = \frac{r}{2 - r} \qquad \lim_{z \to \infty} \beta(z) = \lim_{z \to 0} \alpha(z) = 1$$

Fonctions aléatoires tempêtes

Définition

Ingrédients de base:

- Π processus de Poisson homogène de densité μ sur $I\!\!R^d \times I\!\!R_+$;
- $-(Y_{y,t}, y \in \mathbb{R}^d, t \in \mathbb{R}_+)$ copies indépendantes d'une même fonction aléatoire stationnaire Y définie sur \mathbb{R}^d et à valeurs positives.

Définition:

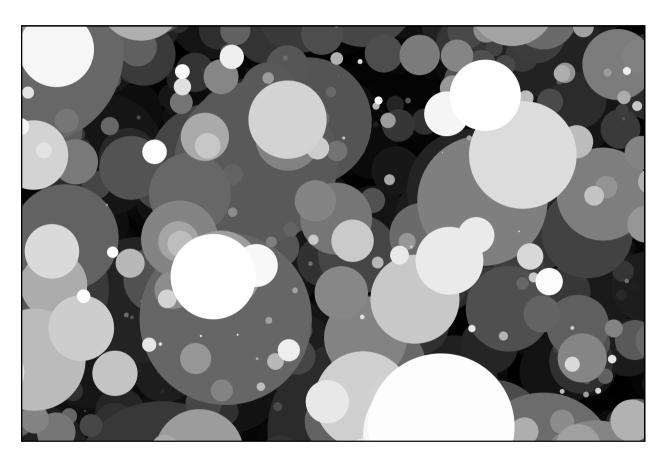
Z(x) est le maximum pris par les fonctions de base au point x, pondérées par leur temps d'arrivée

$$Z(x) = \sup_{(y,t)\in\Pi} \frac{Y_{y,t}(x-y)}{t} \qquad x \in \mathbb{R}^d$$

Exemple: disques de rayon constant

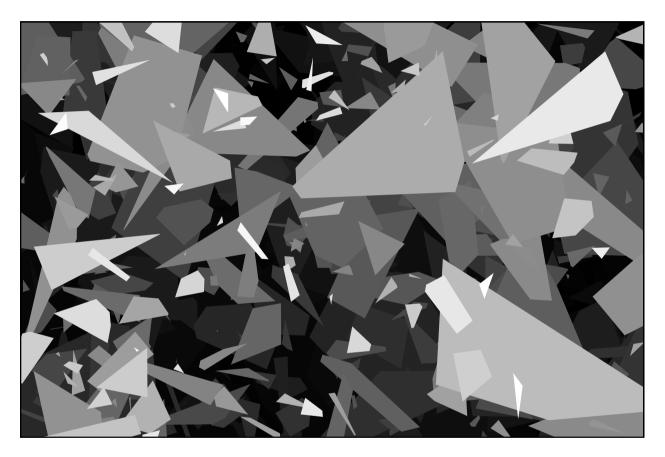
 $\label{eq:Rayon} \begin{aligned} \text{Rayon} &= 10 \\ \text{Champ } 300 \times 200 \end{aligned}$

Exemple: disques de rayon exponentiel



Rayon moyen = 7.072Champ 300×200

Exemple: polygones poissonniens

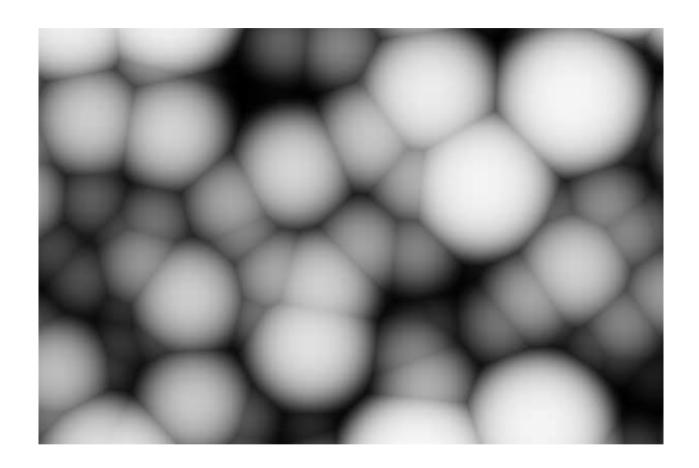


Surface moyenne d'un polygone = 314Champ 300×200

Exemple: chapeaux chinois

$$Y(x) = \left(1 - \frac{|x|}{R}\right) \, \mathbf{1}_{|x| < R}$$

Exemple: fonctions gaussiennes



$$Y(x) = \exp\left(-\frac{|x|^2}{\sigma^2}\right)$$

Loi ponctuelle

On pose

$$m = E\left\{ \int_{\mathbb{R}^d} Y(x) \, dx \right\} = \int_{\mathbb{R}^d} E\{Y(x)\} \, dx$$

Si $0 < m < \infty$ (ce qui se produit lorsque Y est à support compact ou bien à décroissance rapide à l'infini), alors $0 < Z < \infty$ p.s.

Dans ce cas, Z est une fonction aléatoire stationnaire à loi marginale Fréchet unité:

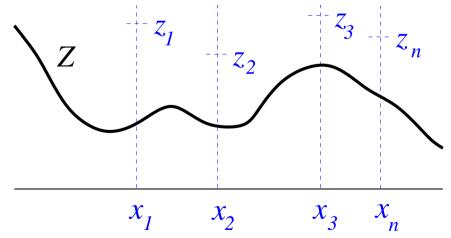
$$P\{Z(x) < z\} = \exp\left(-\frac{\mu m}{z}\right)$$

Loi spatiale

Plus généralement, la loi spatiale de Z est donnée par

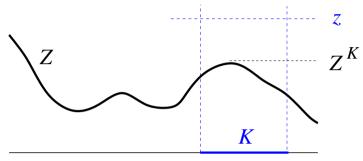
$$P\left\{\bigcap_{i \in I} Z(x_i) < z_i\right\} = \exp\left(-\mu \int_{\mathbb{R}^d} E\left\{\max_{i \in I} \frac{Y(x_i - y)}{z_i}\right\} dy\right)$$

pour toute famille finie de points $(x_i, i \in I)$ et toute famille finie de valeurs $(x_i, i \in I)$.



Loi du maximum sur un compact

Soit $Z^K = \max_{x \in K} Z(x)$ le maximum pris par Z (supposé s.c.s.) sur le compact K de $I\!\!R^d$



On peut montrer que ce maximum suit également une loi Fréchet unité:

$$P\{Z^K < z\} = \exp\left(-\frac{\theta(K)}{z}\right) \qquad K \in \mathcal{K}, z > 0$$

avec

$$\theta(K) = \mu E \left\{ \int_{\mathbb{R}^d} Y^{K_y} \, dy \right\} = \mu \int_{\mathbb{R}^d} E\{Y^{K_y}\} \, dy$$

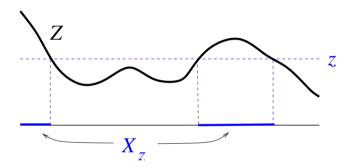
 K_y translaté de K selon \vec{oy}

Utilisation de la théorie des ensembles aléatoires

Seuils des processus tempêtes

Définition:

Il s'agit des ensembles aléatoires $X_z = \{x \in \mathbb{R}^d : Z(x) \geq z\}$ pour tout z > 0. Comme Z est s.c.s., ces ensembles sont topologiquement fermés.



Caractérisation statistique:

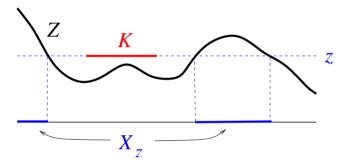
La théorie des ensembles fermés aléatoires (Matheron, 1975) montre les propriétés statistiques de X_z sont données par sa fonctionnelle d'évitement:

$$Q_z(K) = P\{X_z \cap K = \emptyset\} \qquad K \in \mathcal{K}$$

Seuils des processus tempêtes (2)

- La fonctionnelle d'évitement de X_z a pour formule

$$Q_z(K) = P\{X_z \cap K = \emptyset\} = P\{Z^K < z\} = \exp\left(-\frac{\theta(K)}{z}\right)$$



 $-X_z$ est infiniment divisible pour la réunion: il est en effet réunion de n copies indépendantes de X_{nz} :

$$Q_z(K) = \exp \left[-\frac{\theta(K)}{z}\right] = \exp \left[-n\frac{\theta(K)}{nz}\right] = \left[Q_{nz}(K)\right]^n$$

 $-X_z$ est sans point fixe: $Q_z(\{x\}) = P\{Z(x) < z\} = \exp(-1/z) < 1$

Caractérisation des fermés aléatoires infiniment divisibles et sans point fixe

Théorème (Matheron, 1975):

- (i) Il existe une mesure positive σ -finie ζ_z sur l'ensemble \mathcal{F}' des fermés non vides de \mathbb{R}^d telle que $\zeta_z(\mathcal{F}_K) = -\ln Q_z(K)$ pour tout compact K de \mathbb{R}^d ;
- (ii) X_z a la même loi que la réunion des fermés d'un processus de Poisson localement fini sur \mathcal{F}' de densité ζ_z .

$$\mathcal{F}_K$$
 est l'ensemble des fermés rencontrant K

Un processus de Poisson sur \mathcal{F}' est dit localement fini lorsque le nombre de fermés du processus rencontrant tout compact K est fini presque sûrement.

$$\zeta_z(\mathcal{F}_K) = -\ln Q_z(K) = \frac{\theta(K)}{z} \qquad K \in \mathcal{K}$$

En particulier $\zeta_1(\mathcal{F}_K) = \theta(K)$. Pour la suite, on notera ζ au lieu de ζ_1 .

Quelques relations de cohérence

$$\theta(K) = \zeta(\mathcal{F}_K) \qquad K \in \mathcal{K}$$

$$-\theta(K) \geq 0$$
 et $\theta(\emptyset) = \zeta(\mathcal{F}_{\emptyset}) = 0$;

$$-K \subset K' \Longrightarrow \theta(K) = \zeta(\mathcal{F}_K) \le \zeta(\mathcal{F}_{K'}) = \theta(K');$$

- si $(K_i, i \in I)$ est une famille finie de compacts, alors

$$0 \leq \zeta(\cap_{i \in I} \mathcal{F}_{K_i}) = \sum_{J \subset I} (-1)^{|J|-1} \zeta(\cup_{j \in J} \mathcal{F}_{K_j})$$
$$= \sum_{J \subset I} (-1)^{|J|-1} \zeta(\mathcal{F}_{\cup_{j \in J} K_j})$$
$$= \sum_{J \subset I} (-1)^{|J|-1} \theta(\cup_{j \in J} K_j)$$

Liens avec la représentation de Resnick

Soit $(x_A=(x_a,a\in A)$ une partie finie de $I\!\!R^d$. D'après Resnick (1987), il existe une mesure H sur le simplexe $S=\{w_A=(w_a,a\in A):w_a\geq 0\ {\rm et}\ \sum_{a\in A}w_a=1\}$ telle que

$$\theta(x_B) = \int_S \max_{b \in B} (w_b) \, dH(w)$$

pour toute partie x_B de x_A .

On peut montrer par récurrence sur les points de x_A que l'on a

$$\int_{S} \min_{b \in B} (w_b) dH(w) = \zeta (\cap_{b \in B} \mathcal{F}_{x_b})$$

pour toute partie x_b de x_A .

Bibliographie

- Bacro J.N. (2005) "Dépendance des extrêmes". Rapport non publié.
- Matheron G. (1975) Random sets and integral geometry. Wiley (New York).
- Resnick S.I. (1987) Extreme values, iregular variation and point processes. Springer-Verlag (New York).
- Schlather M. (2002) "Models for stationary max-stable random fields".
 Extremes, Vol. 5-1, pp. 33-44, 2002.
- Schlather M. et Tawn J.A. (2003) "A dependence measure for multivariate and spatial extreme values: Properties and inference". Biometrika, Vol. 90.1, pp. 139-156.