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Structural equation modeling (SEM)

e Most generally, structural equation modeling combines the ideas of factor

analysis with regression.

e researcher interested in possibly several regression-type relationships, but
some or all of the variables of interest can not be measured directly (i.e.,

they are latent).

e a set of observable variables is assumed to represent imperfect measure of

the underlying latent variable of interest

e Then a structural equation model assumes a factor analysis type model to
“measure” the latent variables via the multiple imperfect measures, while

simultaneously assuming a regression-type model for the relationship among

the latent variables.




SEM - Traditionally

Restricted to:
e normally distributed observed variables
e linear relations among the latent variables

e independently observed individuals

e used in sociology and psychology




SEM - Developments

For example,

e Methods for allowing observed variables of mixed types from an exponential
family (Muthén 1984; Sammel et al., 1997; Moustaki and Knott, 2000)

e Methods for including nonlinear relationships among latent variables (Wall
and Amemiya, 2000, 2001; Lee and Zhu, 2002; Lee and Song, 2003)

e Methods for clustered individuals, i.e., “multi-level” sampling designs (Mc-
Donald and Goldstein, 1989; Muthén,1989; Dunson, 2000; Lee and Shi 2001,
Rasbash et al., 2002)

In this paper/talk extend the method for use with geographically referenced

population based public health data.




Multivariate geographically referenced data in public healt

Multivariate geographically referenced (e.g. state, county, census tract) data
are very common in population-based data sources used for assessing public

health and socioeconomic research.

e Vital records - births and deaths - are geographically coded to county of

residence and often coded to smaller regions.

e National Cancer Institute - SEER - County-level incidence rates for different

cancers

e Behavioral Risk Factor Surveillance Survey - population phone survey con-

tains county level information.

e Several different education and economic variables collected by the US Cen-

sus summarized geographically




Multivariate geographically referenced data in public healt
e Large number of variables available at each geographic unit

e Possibility of performing ecological-type regressions for investigating influ-

ences of risk factors on outcomes.

e Health Disparities Initiative - Quantify and assess relations between poverty,

minorities, and health.




Example - Minnesota cancer mortality data
e Three groups of observed variables of Minnesota counties are used corre-
sponding to three underlying factors.

— Death counts due to esophagus, pancreas, and lung cancer, sharing un-

derlying factor called common cancer risk factor

— Three census variables, high school education, median household income,
and percapita income measuring a underlying factor called social eco-
nomic status (SES)

— Two census variables, public water, and home heat wood measuring a

underlying factor called access to public utilities

e County level smoking prevalence variable of Minnesota - a known covariate
of interest (BRFSS)

e The interest of this study is the relationship between the shared common

cancer factor, social economic status, access to public utilities, and smoking.
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Summary of Minnesota Census data

Population around 5 million

Selected 1990 census variables.

For the whole state: household median income $30,900,
per capita income $14,389, 73% access to public water,

4.9% use wood to heat home, 82.4% have at least high school education

Summary of the 87 individual counties...

variable mean
edubs — Per cent with hugh-school education 3.
medbhin  Median houschold income (in dolars) AL
petcapit — Per capita income (in dollars) 1127
pubwater ~ Per cent of households with access to public water 34
Wood Per cent of houscholds using wood fo heat the home 10,

b4.)
16924
1137
112
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0]
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11
34




Maps of five of the 5 census variables




Scatterplot of the 5 census variables by county
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Summary of Minnesota County Cancer data

lung cancer | pancreas cancer | esophagus cancer

Min | Max | Min Max Min Max
Observed | 15 | 3797 2 830 0 319
Expected | 21 | 3528 5 791 2 298

Expected counts
Eij = 2 1 Nk Nik
Where \j; is the statewide “age specific” mortality rate for cancer j in the kth

age group, and N;; is the population of people in county i who are in the kth

age group.

This use of Expected counts (which will serve as the “offset” in the later Poisson

model) prevents the results being confounded with age.




SMR cancer and smoking percents
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Related methods for multivariate Spatial data

Methods for reducing dimensionality

e Related methods mainly use principle component methods on the variance
covariance matrix of the data to generate components of different spatial
scales (e.g., Switzer and Green, 1984, Grunsky and Agterberg, 1992, Grze-
byk and Wackernagel 1994; Wackernagel 2003; or Banerjee, Carlin, and
Gelfand 2004)

e Descriptive in the sense that they perform direct operation on the data

instead of making explicit statistical modeling assumptions.
Model based spatial factor analysis

e Christensen and Amemiya (2002, 2003) developed exploratory factor anal-
ysis frameworks for multivariate spatial data aiming to explore the rela-
tionship between the underlying factors and the observed variables, applied
their methods on agricultural data.

In our approach concentrate on full statistical modeling based methods. More

confirmatory than exploratory.




Traditional factor analysis model

e Let Z; be a p X 1 observed random vector, then

where f; is a () x 1 vector of underlying factors, A is a p X () matrix of

unknown parameters, called factor loadings matrix and ) << P.

e The assumptions are:
— £, % Np(0,®), (i=1,...,n)

— e X Ny(0,%¥), (¢=1,...,n) where ¥ = Diag(¢1,...,¥,),
— e, and f; are independent.

e These assumptions imply that any correlations found between the variables

in Z,; are the result of their relationship with the shared underlying factors
f;.




The generalized single common spatial factor model
(Wang and Wall, 2003)

Variable correlated within site because they share a common latent factor, vari-

ables correlated across sites because the common factor is spatially distributed.

o Let Z;; be the jth random variable observed at location s; (i=1,...n,
j:17° ° 7p)7 ‘

Zii | 6ij,0; ! F(0;,07),

J

and for some function g(-),
9(0:5) = 1y + A1,
e Assumptions:

— There is 1 underlying common factor, i.e. () = 1.

— Z;;’s given the underlying factors are independent.
— Let £ = (f50), ..., f(n)) then

f ~ N(psln, Car)),

where C(a) is a spatial covariance matrix, e.g. exponential covariance

17 )

O () A



Use of Generalized Common Spatial factor model
e Minnesota cancer mortality data - Wang and Wall ( Biostatistics, 2003)

Zij | 05 % Poi(0:;),  (i=1,....n, j=1,...,p)
log(g?’j):log<Ez3)—|—A]f(S(L)? <i:17"'7n7 j:17"'7p)

where n = 87 represents the 87 counties of Minnesota; p = 4 county-level death
counts due to cancer of the lung, pancreas, esophagus, and stomach; F;; known
constant for standardized expected number of deaths in county s; for cancer j.
A conditional autoregressive (CAR) structure was used for the spatial covariance
structure for f.

e Material deprivation - Hogan and Tchernis (JASA, 2004)

ind . .
Zij‘eij,O'j NN(@@',O‘?), (’L:l,...,n, ]:1,...,]?)
Qijzaij—i—)\jf(si), (i=1,....n, j=1,...,p).

Used p census variables related to ownership of property and goods collected in
census tracts of Rhode Island. Proposed several parametric covariance structures
C(a) for the underlying factor including a combination of geostatistical and areal

spatial analysis methods where a CAR model is used with a distance-dependent

neighbor structure. A posterior predictive criterion was used for selection.




Generalized spatial structural equation model (GSSEM):
motivation

e Structural equation models (SEM) offer a unified method by combining
factor analysis and regression analysis.

e A SEM incorporates:
— A measurement model - relating observed data to latent variables.

— A structural model - relating latent variables to other latent variables.

e The motivation of GSSEM is to extend the SEM methods to spatial data.




GSSEM : The model

e Measurement model:
Suppose there are () underlying factors measured by () separate groups of

observed variables:

znd (q)
fo)|9(q) (2) (Q(q) 2 )

i 0 ii 07 ) (t=1,....n, J=1,...,Dq)

(O(Q)):B§q> (Q)+)\(Q)f(8 (7:217"'777’7 jzl?'“?pq)?

(q) -

where x;,” 1s a vector of possible observed covariates relating specifically to

the jth Varlable measuring the qth factor.




GSSEM : The model (cont.)

e Structural model:

Let f; a vector of the () underlying factors at location s;. We partition f;
into two vectors of lengths Q1 and Qo, i.e. fI' = (f].,fL). Then,

f), = EX; + I'fy; + 94,

where

f1; is called endogenous (dependent) underlying factors
fy; is called exogenous (independent) underlying factors

and the X; is a matrix of possible observed covariates influencing the en-

dogenous factor, 2 and I' are matrices of unknown constants, and d; is a

()1 vector of errors that is independent of f5;.




GSSEM : The model (cont.)

e Spatial distributions for f; and d,: We specify those two multivariate spatial

process using the linear model of coregionalization (LMC) idea, i.e.
67;:A1w2-, (z:l,,n)

fQZ':AQVi, (’L:L,n)

where A; and As are two upper triangular matrix of size ()1 and (J2; w;
and v; are independent zero-mean and unit-variance spatial processes of
dimension ()7 and ()2, where these independent spatial processes can be

from different spatial parametric distributions, such as, isotropic exponen-

tial distributions, or conditional autoregressive distributions (CAR).




Linear model of coregionalization (LMC)

e LMC is a flexible method to jointly modeling multiple processes.

e Let Y(s;) (px1) be a realization of p variate spatial process at location s;. (i =1,...,n).
Then LMC model:

Y(Sz) = AV(SZ‘),
where A is a p X p full rank matrix, v(s;) is a vector of p independent spatial processes
vi(s)) (G =1,...,p) at s;.

— If the p independent processes have the same covariance structure with covariance
matrix C, then the covariance matrix of Y7 = (Y (s1),...,Y(sn)), X is:

>=C®T, where T=AAT.

— If the p independent process v1,...,vp to have p different covariance structures with

covariance matrix Cq,...,Cyp, then
p
> = Z Cj & Tj,
J=1
where T'; = AjA;f, and Aj is the jth column of A.

e The covariance structures of v1,...,vp can take any parametric continuous spatial distri-

butions with a proper covariance matrix, e.g. exponential, proper CAR structures.




Model fitting of the GSSEM
e A full Bayesian approach will be used to fit the the GSSEM.

e Prior specifications:

— Vague normal priors for all the fixed constants in the mean structure of
both the measurement and structural part

— Vague Inverse Gamma priors for all the variance and spatial covariance
components in the model

— Vague Inverse Gamma priors for the diagonal elements of matrix A; and

A5 and vague normal priors for their off diagonal elements




Model fitting of the GSSEM (cont.)

e Posterior distributions: Let Z be the (np) x 1 vector of all the observed
variables, f; be a (Q1n) x 1 vector of endogenous factors, and f5 be a
(Q2n) x 1 vector of exogenous factors over n locations. Then the joint

posterior of all the unknown parameters and the factors is:

P(@vflan | Z7X> X P(Z | X7f17f27{/6(Q)70-2(Q)7A(Q) . g = 177Q})
P(fl | X7F7f27E7a5)P(f2 ‘ V7av)P(q))

e The marginal posterior distributions can be obtained through sampling
based MCMC method, i.e. Gibbs sampler and Metropolis-Hasting algo-

rithm.

e The model fitting can be implemented in Winbugs.




Measurement model

Zf’l), Zél),Zél) are the esophagus, pancreas, and lung cancer death counts for each

county i which manifest the first factor (cancer mortality risk)
Z§2>, Z§2), Z§2) are eduhs, medhhin and percapit, measuring the second factor (SES)
ZfS), Z§3) are wood and pubwater, measuring the third factor (utility accessibility)
For simplicity, drop county index i¢. The measurement model for this example is:
ZW 10~ Poi(0M)
zM 1050~ Poi(657)
ZM 1650~ Poi(6yY)

zP 102,27~ NOP, o)
zP 102,627~ NP, 027
ZP 169,637~ NOP 037
z&109,627 ~ NOP,63)
z& 109,037~ N@OP, 027,




Measurement model continued
Let 67 = (01,65 6" 612 682 68 6% 65, then define the link and joint

mean structure as

g(@) = pu+ Af
log(61") ) ((log(Er) \ (A 0 0 )
log(5") log(E») Y00
log(@él)) log(FEs) 1 0 0
e ) 0 L] AP ;1
o2 0 0 A2 :
g 0 0 1 0 Js
o) 0 0o 0 AP
\ ) \ o /) Vo oo 1)

where Fq, E5, B3 are age-adjusted expected number of deaths for the three

cancers.




Structural model

The f1, fo and f3 are the underlying factors representing cancer mortality risk,
SES, and utility accessibility, respectively. The relationships among the factors

is then modeled in the structural equation model:

J1=0H +vy1fa +72/f3 + 0,

where H is the fixed covariate, smoking prevalence and (3, 7, and 7, are

unknown constants.




Spatial model for factors and errors

Let 0 be the vector of 0 over the 87 Minnesota counties. Since we are only con-
sidering one structural model, i.e., (); = 1, it is natural to assume that 0 has a
univariate CAR covariance structure with covariance parameters as = (75, ps),
where 75 is the precision parameter and ps the spatial correlation parameter.
We use LMC to model the joint distribution of (fa, f3)?"

f2 a;p a U1
p— A_V p— ]

E 0 a3 U2

where v; and vy are vectors of v; and vy over 87 Minnesota counties (the
subscript 7 is again suppressed). We assume v; and vy are independent spatial
processes with CAR covariance structures having overall scale parameter set to

1 and spatial correlation parameters p,, and p,., respectively.




Eistimation

Implemented in Winbugs software to obtain posterior summaries for the

parameters.
Ran three Markov Chains simultaneously started from different initial points.
Monitor plots show that the three chains mixed well within 5000 iterations.

The lag 1 posterior sample autocorrelations of most parameters (e.g., As, (3,
vs, and ps) are lower than 0.5, and the Gelman-Rubin diagnostic plot of the
chains are mostly within the 0.8 to 1.2 band, which suggests satisfactory

convergence.

We also calculate the posterior summaries at different points of the Markov

Chain, and the result summaries are almost identical after burn-in period.

No thinning on the draws seems necessary.




Posterior Estimates

Table 2: Posterior summaries for Minnesota cancer data analyzed using GSSEM

Posterior mean (Posterior .025 and .975 quantiles)

A 082 (0.36,1.28) | - - -
A 046 (0.19,0.75) | - - -
( . 19, 0.

Measurement )\gl) 1 - — _ _

Model AP 090 (0.79,1.02) | 02 023  (0.16,0.33)

Parameters | AYY 097  (0.88,1.07) |o2” 010  (0.06, 0.16)
AP - o2”0.047  (0.003, 0.094)
AP 115 (-1.29,-099) | 02 0.016  (0.0005, 0.079)

AP - o2 023  (0.16, 0.32)

B 004 (0.003,0073) | 75 0.036 (0.004, 0.08)
Structural | v 0.053  (0.008,0.098) | ps  0.97 (0.8, 0.998)
Equation v2  -0.067 (-0.13,-0.008) | p,,  0.96 (0.88, 0.997)
Parameters ay 1.49 (1.25, 1.76) pv, 097 (0.91, 0.998)
as 072 (0.45,1.02)

as  1.06  (0.86, 1.3)




Posterior predicted values

1.SEM.predicted
B -0.29-0.1

0.4 --0.03
I -0.03-0.03

0.03-01

0.1 -028

f3 (utility access.)

I-Z.E =06

06 --0.3

0.3-0.3
0,3 =06

.04(7/

ok /
2.15--125

-1.25--0.25
0.25-025
0.25-1.25

I 125275




Example - Minnesota cancer mortality data
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Residual - still a missing spatial factor?

1.SEM.predicted
I 020 04
01-003
0.03-0.03

fi{cancer mort, risk)

I 0,20 -0,

.1 =003
o[,03 0,03

=003 = 0.1
0,1 - 0,28

0.03-01
I 0.1-029




Discussion

e Generalized spatial structural equation modeling provides a method for
researchers to perform ecological regressions incorporating many correlated

variables in a meaningful way while taking account of spatial structure.
e Model could be extended to incorporate both space and time.

e Model could be extended to allow underlying cluster process for underlying

factors (factors could be categorical).




C’est tout




